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Simon’s conjecture for two-bridge knots
Michel Boileau, Steve Boyer, Alan W. Reid,

and Shicheng Wang

It is conjectured that for each knot K in S3, the fundamental group
of its complement surjects onto only finitely many distinct knot
groups. Applying character variety theory we obtain an affirmative
solution of the conjecture for a class of small knots that includes
two-bridge knots.

1. Introduction

In this paper all knots and links are in S3. For a knot (link) K, we often
simply call the fundamental group of S3 \ K, the group of K or the knot
(link) group. Let K be a non-trivial knot. Simon’s Conjecture (see [16,
Problem 1.12(D)]) asserts the following:

Conjecture 1.1. π1(S3 \ K) surjects onto only finitely many distinct knot
groups.

Although this conjecture dates back to the 1970s, and has received con-
siderable attention recently (see [2, 3, 12, 20, 22, 23, 27, 28] to name a few),
little by way of general results appears to be known. Conjecture 1.1 is easily
seen to hold for torus knots (we give the proof in Section 3.1). In [2], the
conjecture is established under the assumption that the epimorphisms are
non-degenerate in the sense that the longitude of K is sent to a non-trivial
peripheral element under the epimorphism. In particular, this holds in the
case when the homomorphism is induced by a mapping of non-zero degree.

Since any knot group is the homomorphic image of the group of a hyper-
bolic knot (see for example [15]), it is sufficient to prove the conjecture for
hyperbolic knots. The main result of this paper is the following, and is the
first general result for a large class of hyperbolic knots.

Theorem 1.2. Conjecture 1.1 holds for all two-bridge knots.

Indeed, using [2, 3, 10, 12], one can say more about the nature of the
homomorphisms in Theorem 1.2. In particular, we establish:
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Corollary 1.3. Let K be a two-bridge hyperbolic knot, and K ′ a non-trivial
knot. If there is an epimorphism ϕ : π1(S3 \ K) → π1(S3 \ K ′), then ϕ is
induced by a map f : S3 \ K → S3 \ K ′ of non-zero degree. Furthermore, K ′

is necessarily a two-bridge knot.

As we discuss in Section 4.2, a strengthening of Corollary 1.3 holds,
where, epimorphism is replaced by a virtual epimorphism (see Section 4.2
for more details).

We will also prove some general results towards Conjecture 1.1 for a
larger class of knots satisfying certain conditions. These results will be used
in proving Theorem 1.2 and Corollary 1.3. Recall that a compact oriented
three-manifold N is called small if N contains no closed embedded essential
surface; and a knot (link) K ⊂ S3 is called small if the exterior E(K) is
small. The fact that two-bridge knots are small is proved in [13].

Theorem 1.4. Let L be a small hyperbolic link of n components. Then
π1(S3 \ L) surjects onto only finitely many groups of hyperbolic links of n
components.

Note that a knot is either a torus knot, or a hyperbolic knot, or a satellite
knot. In particular, it follows from Theorem 1.4, that if K is a small hyper-
bolic knot, then π1(S3 \ K) surjects onto only finitely many hyperbolic knot
groups. As we discuss below, it is easy to establish using the Alexander poly-
nomial, that any knot group surjects onto only finitely many distinct torus
knot groups.

It is perhaps tempting at this point to think that there cannot be an epi-
morphism from a small knot group to the group of a satellite knot, therefore
Conjecture 1.1 holds for small knots. This does not seem so easy to exclude
and motivates the following more general question:

Question 1.5. Does there exist a small knot K ⊂ S3 such that π1(S3 \ K)
surjects onto π1(S3 \ K ′), and S3 \ K ′ contains a closed embedded essential
surface?

When the target is the fundamental group of a satellite knot, we will
prove that if such a homomorphism exists, then the longitude λ of K must
be in the kernel. More precisely,

Proposition 1.6. Let K be a small hyperbolic knot and let K ′ be a satellite
knot. Assume that ϕ : π1(S3 \ K) → π1(S3 \ K ′) is an epimorphism. Then
ϕ(λ) = 1.
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In order to control the image of the longitude, we introduce the fol-
lowing definition which can be thought as a kind of smallness for the knot
in terms of the character variety of longitudinal surgery on K. For a knot
K ⊂ S3 we denote by K(0) the manifold obtained from S3 by a longitudinal
surgery on K.

Definition 1.7. Let K be a knot. We will say K has Property L if the
SL(2,C)-character variety of the manifold K(0) contains only finitely many
characters of irreducible representations.

The motivation for this definition is the following result.

Proposition 1.8. If a hyperbolic knot K has Property L, then for any non-
trivial knot K ′ and epimorphism ϕ : π1(S3 \ K) → π1(S3 \ K ′), ker ϕ does
not contain the longitude of K.

The following result is thus a consequence of Theorem 1.4 and Proposi-
tions 1.6 and 1.8:

Theorem 1.9. Let K be a small knot and assume that K has Property L.
Then Conjecture 1.1 holds for K.

Our main result (Theorem 1.2) now follows immediately from Theo-
rem 1.9 and the next proposition.

Proposition 1.10. Let K be a hyperbolic two-bridge knot. Then K has
Property L.

Although Property L is framed in terms of the character variety, which
can be difficult to understand, there are useful criteria which are sufficient
for a small knot to have Property L. The first one will be used to show
that Property L holds for two-bridge knots. For the definition of a parabolic
representation or of a strict boundary slope see Section 2.

Proposition 1.11. Let K be a small hyperbolic knot.

• If no parabolic representation ρ : π1(S3 \ K) → SL(2,C) kills the lon-
gitude of K, then Property L holds for K.

• If the longitude is not a strict boundary slope, then Property L holds
for K.
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Remarks on Property L. (1) Using Proposition 1.8, it is easy to construct
knots that do not have Property L.

For example, using the construction of [14] on a normal generator for
a knot group that is not a meridian (which exist in some abundance [2],
see [6] for explicit examples), one can construct a hyperbolic knot whose
group surjects onto another hyperbolic knot group sending the longitude
trivially. In [12], examples are given where the domain knot is small; for
example there is an epimorphism of the group of the knot 820 onto the
group of the trefoil-knot for which the longitude of 820 is mapped trivially.

(2) Control of the image of the longitude has featured in other work related
to epimorphisms between knot groups; for example Property Q∗ of Simon
(see [29] and also [10, 12]). Indeed, from [12], the property given by Propo-
sition 1.8 can be viewed as an extension of Property Q∗ of Simon.

(3) Note that if K and K ′ are knots with Alexander polynomials ΔK(t)
and ΔK′(t), respectively, and ϕ : π1(S3 \ K) → π1(S3 \ K ′) an epimorphism,
then it is well-known that ΔK′(t)|ΔK(t). Thus, simple Alexander polynomial
considerations show that any knot group surjects onto only finitely many
distinct torus knot groups, and so it is only when the target is hyperbolic
or satellite that the assumption of Property L is interesting.

The character variety (as in [3, 22]) is the main algebraic tool that organizes
the proofs of the results in this paper. In particular, we make use of the result
of Kronheimer and Mrowka [18] which ensures that the SL(2,C)-character
variety (and hence the PSL(2,C)-character variety) of any non-trivial knot
contains a curve of characters of irreducible representations.

A comment on application of the character variety to Simon’s conjecture: As
we can and will see from [3, 22] and the present paper, the theory of character
varieties is particularly useful in the study of epimorphisms between three-
manifolds groups when the domain manifolds are small.

However, comparison of the two results below suggests a possible limi-
tation of applying character variety methods to Simon’s conjecture as well
as the truth of Simon’s conjecture itself: On the one hand, the group of
each small hyperbolic link of n components surjects onto only finitely many
groups of n component hyperbolic links (Corollary 3.2); while on the other
hand, there exist hyperbolic links of two components whose groups surject
onto the group of every two bridge link (see the discussion related to Con-
jecture 5.1).

Organization of the paper: The facts about the character variety that will
be used later are presented in Section 2. Results stated for small knots, such
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as Theorem 1.4, Propositions 1.6, 1.8, and Theorem 1.9, will be proved in
Section 3. Results stated for two-bridge knots, such as Theorem 1.2, Corol-
lary 1.3, Proposition 1.10, will be proved in Section 4. Section 5 records more
questions, consequences and facts for the character variety and Simon’s con-
jecture that have arisen out of our work.

2. Preliminaries

2.1. Some notation

Throughout, if L ⊂ S3 is a link we shall let E(L) denote the exterior of L;
that is the closure of the complement of a small open tubular neighborhood
of L. If K ⊂ S3 is a knot and r ∈ Q ∪ ∞ a slope, then K(r) will denote
the manifold obtained by r-Dehn surgery on K (or equivalently, r-Dehn
filling on E(K)). Our convention is always that a meridian of K has slope
1/0 and a longitude 0/1. A slope r is called a boundary slope, if E(K)
contains an embedded essential surface whose boundary consists of a non-
empty collection of parallel copies of simple closed curves on ∂E(K) of slope
r. The longitude of a knot K always bounds a Seifert surface of K, and so
is a boundary slope. It is called a strict boundary slope if it is the boundary
slope of a surface that is not a fiber in a fibration over the circle.

2.2. Standard facts about the character variety

Let G be a finitely generated group. We denote by X(G) (resp. Y (G)) the
SL(2,C)-character variety (resp. PSL(2,C)-character variety) of G (see [4, 8]
for details). If V is an algebraic set, we define the dimension of V to be the
maximal dimension of an irreducible component of V . We will denote this
by dim(V ).

Suppose that G and H are finitely generated groups and ϕ : G → H is
an epimorphism. Then ϕ defines a map at the level of character varieties ϕ∗ :
X(H) → X(G) by ϕ∗(χρ) = χρ◦ϕ. This map is algebraic, and furthermore
is a closed map in the Zariski topology (see [3, Lemma 2.1]). In future we
will abbreviate composition of homomorphisms ϕ ◦ ψ by ϕψ.

We make repeated use of the following standard fact.

Lemma 2.1. Let G and H be as above, then ϕ∗ injects X(H) ↪→ X(G).
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Proof. Suppose χρ, χρ′ ∈ X(H) with ϕ∗(χρ) = ϕ∗(χρ′). Thus, χρϕ(g) =
χρ′ϕ(g) for all g ∈ G, and since ϕ is onto, we deduce that χρ(h) = χρ′(h)
for all h ∈ H. Hence χρ = χρ′ . �	

We now assume that D ⊂ X(G) is a component containing the char-
acter χρ of an irreducible representation and D = ϕ∗(C) (as noted ϕ∗ is a
closed map) for some component C ⊂ X(H). Then, χρ = ϕ∗(χρ′) for some
irreducible representation ρ′ : H → SL(2,C). By definition, ϕ∗(χρ′) = χρ′ϕ,
and so since the representations ρ and ρ′ϕ are irreducible, we deduce that
the groups ρ(G) and ρ′ϕ(G) = ρ′(H) are conjugate in SL(2,C). In particu-
lar, after conjugating if necessary, the homomorphisms ρ′ϕ and ρ have the
same image.

2.3. Existence of irreducible representations of knot groups

When G = π1(M), and M is a compact three-manifold we denote X(G)
(resp. Y (G)) by X(M) (resp. Y (M)). When M is a knot exterior in S3 we
write X(M) = X(K) (resp. Y (M) = Y (K)).

Now X(K) (resp. Y (K)) always contains a curve of characters corre-
sponding to abelian representations. When K is a hyperbolic knot (i.e.,
S3 \ K admits a complete hyperbolic structure of finite volume), it is a well-
known consequence of Thurston’s Dehn surgery theorem (see [9, Proposition
1.1.1]) that there is a so-called canonical component in X(K) (resp. Y (K)),
which is a curve, and contains the character of a faithful discrete representa-
tion of π1(S3 \ K). More recently, the work of Kronheimer and Mrowka [18]
establishes the following general result (we include a proof of the mild exten-
sion of their work that is needed for us).

Theorem 2.2. Let K be a non-trivial knot. Then X(K) (resp. Y (K)) con-
tains a curve for which all but finitely many of its elements are characters
of irreducible representations.

Proof. It suffices to prove Theorem 2.2 for X(K). As the set of reducible
characters is Zariski closed in X(K) [8, proof of Corollary 1.4.5], by a
result of Thurston (see [8, Proposition 3.2.1]) to find a curve as in the
conclusion of Theorem 2.2, it is enough to find an irreducible representa-
tion ρ : π1(E(K)) → SL(2,C) such that ρ(π1(∂E(K))) 
⊂ {±I}. Note that
the latter condition holds for any irreducible representation of π1(E(K)).

To find an irreducible representation ρ we proceed as follows. Note
that by [18], for any r ∈ Q with |r| ≤ 2, π1(K(r)), admits a non-cyclic
SU(2)-representation. Take r = 1 and suppose that the representation φ of
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π1(K(1)) guaranteed by [18] is reducible as a representation into SL(2,C).
Since π1(K(1)) is perfect, it coincides with its commutator subgroup and
therefore the trace of any element of the image of φ is 2. As I is the only
element of SU(2) with this trace, the image of φ is {I} which is a contradic-
tion.

Composing φ with the epimorphism induced by 1-Dehn surgery on K
determines a representation ρ : π1(E(K)) → SL(2,C) whose image coincides
with that of φ. This is the required irreducible representation. �	

2.4. X(K) for small hyperbolic knots and p-rep. characters

We now prove some results about the character variety of a small hyperbolic
knot. It will be convenient to recall some terminology from [9].

Let K ⊂ S3 be a knot and α ∈ π1(∂E(K)). If X ⊂ X(K) is a component,
define the polynomial function

fα : X → C by fα(χρ) = tr2(ρ(α)) − 4.

We first record the following well-known result.

Theorem 2.3. (1) Let N be a hyperbolic three-manifold with ∂N a union
of n tori. If X is an irreducible component of X(N) that contains the char-
acter of an irreducible representation, then dim(X) is at least n; moreover
dim(X) = n when N is small.

(2) Let K be a small hyperbolic knot and μ be a meridian of K. If x is an
ideal point of X, then fμ has a pole at x. In particular, fμ is non-constant.

Proof. (1) The dimension of X is at least n by [8, Proposition 3.2.1] and at
most n when N is small by [7, Theorem 4.1].

(2) Let x be an ideal point of X and consider

Iμ : X → C, Iμ(χρ) = tr(ρ(μ)).

Clearly fμ = I2
μ − 4, so to prove the lemma it suffices to show that Iμ has

a pole at x. Now [9, Proposition 1.3.9] implies that either Iμ(x) = ∞, or
μ is a boundary slope, or Iα(x) ∈ C for all α ∈ π1(∂E(K)). The second
possibility is ruled out by [9, Theorem 2.0.3], whereas the third is ruled
out by the fact that it implies E(K) contains a closed essential surface (cf.
the second paragraph of [9, Section 1.6.2]), which contradicts that E(K) is
small. �	
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Note that zeroes of fα correspond to representations ρ for which α either
maps trivially (in PSL(2,C)) or to a parabolic element. In this latter case,
it is easy to see that fβ(χρ) = 0 for all β ∈ π1(∂E(K)). Following Riley [24],
we call such a representation a parabolic representation or p-rep. We define
a character χρ to be a p-rep character if ρ is an irreducible representation
for which at least one peripheral element is mapped to a parabolic element.

The following proposition will be useful.

Proposition 2.4. Let K be a small hyperbolic knot and X ⊂ X(K) an
irreducible component that contains the character of an irreducible represen-
tation. Then X contains a p-rep character. Indeed, the set of p-rep characters
on X is the zero set of fμ on X.

Proof. By Theorem 2.3(1), X is a curve. Let X̃ be its smooth projective
model. Then X̃ = Xν ∪ I where ν : Xν → X is an affine desingularization
and I is the finite set of ideal points of X. The function fμ corresponds
to a holomorphic map f̃μ : X̃ → CP1 (see [8]) where f̃μ|Xν = fμ ◦ ν. Thus
Theorem 2.3 implies that f̃μ is non-constant, so it has at least one zero
x0, and also that x0 ∈ Xν . Set ν(x0) = χρ. Since X contains an irreducible
character, [9, Proposition 1.5.5] implies that we can suppose the image of ρ
is non-cyclic. Hence ρ(μ) 
= ±I and therefore ρ(μ) is parabolic. It follows
that if α ∈ π1(∂E(K)), then either ρ(α) is parabolic, or ρ(α) is ±I. Thus,
the proof of the proposition will be complete once we establish that ρ is
irreducible.

Suppose this were not the case and let R be the four-dimensional compo-
nent of the representation variety R(K) = Hom(π1(E(K)), SL(2,C)) whose
image in X(K) equals X (cf. [4, Lemma 4.1; 10, Corollary 1.5.3]). By
[9, Proposition 1.5.6] we can suppose ρ ∈ R. Since R is SL(2,C)-invariant
[8, Proposition 1.1.1], we can suppose that the image of ρ consists of upper-
triangular matrices. Hence consideration of the sequence ρn =( 1

n 0
0 n

)
ρ

( 1
n 0
0 n

)−1

shows that R contains a representation ρ0 whose

image is diagonal and which sends μ to ±I. Thus ρ0(γ) = ±I for all γ ∈
π1(E(K)). The Zariski tangent space of R at ρ0 is naturally a subspace of the
vector space of one-cocycles Z1(π1(E(K)); sl(2,C)Ad◦ρ0) (see [31]). Since the
image of ρ0 is central in SL(2,C), sl(2,C)Ad◦ρ0 is a trivial π1(E(K))-module.
It follows that Z1(π1(E(K)); sl(2,C)Ad◦ρ0) ∼= H1(π1(E(K)); sl(2,C)Ad◦ρ0) ∼=
H1(π1(E(K));C3) ∼= C3. Hence the dimension of the Zariski tangent space
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of R at ρ0 is at most 3. But this contradicts the fact that R is four-
dimensional. Thus ρ must be irreducible.

To complete the proof, simply note that we have shown that each zero of
fμ on a curve component of X(K) containing the character of an irreducible
representation is the character of a p-rep. The converse is obvious. �	

3. Results for small knots

3.1. Simon’s Conjecture for torus knots

In this section we give a quick sketch of the proof that torus knots satisfy
Conjecture 1.1 (see also Section 2 of [28]). Here Property L is not needed.

Thus suppose that K is a torus knot, and assume that there exist
infinitely many distinct knots Ki and epimorphisms

ϕi : π1(S3 \ K) → π1(S3 \ Ki).

Note that if z generates the center of π1(S3 \ K), then ϕi(z) 
= 1; otherwise,
ϕi factorizes through a homomorphism of the base orbifold group Cr,s which
is the free product of two cyclic groups of orders r and s for some co-prime
integers r and s. This is impossible, since π1(S3 \ Ki) is torsion-free. Thus
π1(S3 \ Ki) has non-trivial center, and so is a torus knot group by Burde–
Zieschang’s characterization of torus knots [5].

However, as mentioned in Section 1, ΔKi
(t) will be a factor of ΔK(t),

and so it easily follows that only finitely many of these Ki can be distinct
torus knots. This completes the proof. �	

Using this result for torus knots, to prove Conjecture 1.1 for small knots,
it therefore suffices to deal with the cases where the domain is a hyperbolic
knot. That is the case we will consider in the remainder of this section.

3.2. Proof of Theorem 1.4

In this section we will first prove Theorem 1.4. As remarked upon in Section
1, the finiteness of torus knot groups follows from Alexander polynomial
considerations. The finiteness of hyperbolic knot group targets follows easily
from our next result. Recall that an elementary fact in algebraic geometry
is that the number of irreducible components of an algebraic set V is finite,
and hence there are only finitely many of any given dimension n.
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Theorem 3.1. Let G be a finitely generated group. Assume that
dim(X(G)) = n and let m denote the number of irreducible components of
X(G) of dimension n. Suppose that for i = 1, . . . , k, Ni is a hyperbolic three-
manifold with incompressible boundary consisting of precisely n torus bound-
ary components, and that G surjects onto π1(Ni). We assume that the Ni’s
are all non-homeomorphic. Then k ≤ m.

Proof. Let ϕi : G → π1(Ni) be the surjections for i = 1, . . . , k. As discussed
in Section 2.1, this induces a closed algebraic map ϕ∗

i : X(Ni) ↪→ X(G) that
is injective by Lemma 2.1. Furthermore, if Xi denotes the canonical compo-
nent of X(Ni), then dim(Xi) = n by Thurston’s Dehn Surgery Theorem.

Suppose that k > m. Then there exists i, j ∈ {1, . . . , k}, and an irre-
ducible component X ′ ⊂ X(G) of dimension at least n such that

ϕ∗
i (Xi), ϕ∗

j (Xj) ⊂ X ′.

By the injectivity of ϕ∗
i and the assumption that dim(X(G)) = n it follows

that ϕ∗
i (Xi), ϕ∗

j (Xj) and X ′ all have dimension n and so as ϕ∗
i and ϕ∗

j are
closed maps

ϕ∗
i (Xi) = X ′ = ϕ∗

j (Xj).

Relabelling for convenience, we set i, j = 1, 2. The equality of these varieties
implies that for each

χρ1 ∈ X1, there exists χρ′
2

∈ X2 with ϕ∗
1(χρ1) = ϕ∗

2(χρ′
2
),

and for each

χρ2 ∈ X2, there exists χρ′
1

∈ X1 with ϕ∗
2(χρ2) = ϕ∗

1(χρ′
1
).

In particular, we can take ρ1 to be the faithful discrete representation of
π1(N1), and ρ2 to be the faithful discrete representation of π1(N2). Since
both ρ1 and ρ2 are faithful, we have

ρ1(π1(N1)) ∼= π1(N1) and ρ2(π1(N2)) ∼= π1(N2).

Hence from above, this yields representations ρ′
1 : π1(N1) → SL(2,C) and

ρ′
2 : π1(N2) → SL(2,C) which satisfy

ρ′
2(π1(N2)) ∼= π1(N1) and ρ′

1(π1(N1)) ∼= π1(N2).
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Hence, we get epimorphisms:

ρ′
2ρ

′
1 : π1(N1) → π1(N1) and ρ′

1ρ
′
2 : π1(N2) → π1(N2).

It is well-known that the fundamental groups of compact hyperbolic three-
manifolds are Hopfian, and so ρ′

2ρ
′
1 and ρ′

1ρ
′
2 are isomorphisms. It now follows

that ρ′
1 must be also an injection, hence π1(N1) ∼= π1(N2). Since both N1

and N2 are complete hyperbolic three-manifolds with finite volume, N1 and
N2 are homeomorphic by Mostow Rigidity Theorem, which contradicts the
assumption that they are non-homeomorphic. �	

The most interesting and immediate application of Theorem 3.1 is the
following (Theorem 1.4 of Section 1):

Corollary 3.2. Let L be a small hyperbolic link of n components. Then
π1(S3 \ L) surjects onto only finitely many groups of hyperbolic links of n
components.

Proof. The exterior of each link of n-components has a union of n tori as
boundary, and for a small hyperbolic link L of n components dim(X(L)) = n
by Theorem 2.3(1). Then the proof follows readily from Theorem 3.1. �	

Theorem 3.1 also provides information about the nature of X(K) for
possible counterexamples to Conjecture 1.1.

Corollary 3.3. Suppose K ⊂ S3 is a hyperbolic knot and assume that
Ki ⊂ S3 is an infinite family of distinct hyperbolic knots for which there
are epimorphisms ϕi : π1(S3 \ K) → π1(S3 \ Ki). Then X(K) contains an
irreducible component of dimension at least 2.

Proof. If all components have dimension 1, then Theorem 3.1 bounds the
number of knots Ki. �	

Remark. Theorem 3.1 can also be formulated for the PSL(2,C)-character
variety.

3.3. Satellite targets

In this section we prove Proposition 1.6. Before giving the proof we fix some
notation that will be employed in Sections 3.3 and 3.4.
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Notation. Let K be a knot, λ be a longitude for K, μ a meridian for K
commuting with λ and we denote by P the peripheral subgroup of π1(S3 \
K) generated by them.

Proof of Proposition 1.6. Suppose that K is a small hyperbolic knot, K ′ is
a satellite knot, and that there exists an epimorphism

ϕ : π1(S3 \ K) → π1(S3 \ K ′).

Suppose that ϕ(λ) 
= 1. Since a knot group is torsion-free, ϕ(P ) is either
infinite cyclic or isomorphic to Z ⊕ Z, Assume that the former case holds.
Then there is some primitive slope r = μmλn such that ϕ(r) = 1, so ϕ fac-
tors through the fundamental group of K(r). This is impossible, since by
assumption, r 
= λ±1, so π1(K(r)) has finite abelianization, and thus cannot
surject onto π1(S3 \ K ′).

Thus we can assume that ϕ(P ) ∼= Z ⊕ Z. Suppose f : E(K) → E(K ′) is
a map realizing ϕ and let T = ∂E(K). Let T ′ be a JSJ torus of E(K ′).

By the enclosing property of the JSJ decomposition we may assume that
f has been homotoped so that

(1) f(T ) ⊂ Σ, where Σ is a piece of the JSJ decomposition.

Moreover we can assume that

(2) f−1(T ′) is a two-sided incompressible surface in E(K); and

(3) f−1(T ′) has minimum number of components.

Note that f−1(T ′) cannot be empty, otherwise since T ′ is a separating
torus in E(K ′), f(E(K)) will miss some vertex manifold of E(K ′), therefore
f∗ = ϕ cannot be surjective. No component T ∗ of f−1(T ′) is parallel to
T , otherwise we can push the image of the product bounded by T and
T ∗ across T ′ to reduce the number of components of f−1(T ′). Therefore
f−1(T ′) is closed embedded essential surface in E(K). This is false since K
is small. �	

3.4. Property L

We start by proving Proposition 1.8 which shows that Property L allows
control of the image of a longitude under a knot group epimorphism. Nota-
tion for a longitude and meridian is that of Section 3.3. We remark that it
is here that crucial use is made of [18].
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Proof of Proposition 1.8. Let K be a hyperbolic knot and ϕ : π1(S3 \ K) →
π1(S3 \ K ′) an epimorphism. If ϕ(λ) = 1, then the epimorphism ϕ factor-
izes through an epimorphism ϕ′ : π1(K(0)) → π1(S3 \ K ′). Now Theorem
2.2 provides a curve of characters C ⊂ X(K ′) whose generic point is the
character of an irreducible representation. By Lemma 2.1, the curve D =
ϕ′∗(C) ⊂ X(K(0)) contradicts the Property L assumption. �	

Together with Proposition 1.6, we obtain:

Corollary 3.4. There cannot be an epimorphisim from the group of a small
knot having Property L onto the group of a satellite knot.

Now we prove Proposition 1.11 whose content is given by the following
Lemmas:

Lemma 3.5. Let K be a small hyperbolic knot with the property that for
any parabolic representation ρ, we have that ρ(λ) 
= 1. Then Property L holds
for K.

Proof. Suppose that X(K(0)) contained a curve C of characters of irre-
ducible representations. Then the epimorphism, ψ : π1(S3 \ K) → π1(K(0))
induced by 0-Dehn surgery together with Lemma 2.1, provides a curve
ψ∗(C) = D ⊂ X(K). Proposition 2.4 shows that D contains a p-rep. charac-
ter χθ, and by assumption θ(λ) 
= 1. On the other hand, χθ = ψ∗(χθ′) = χθ′ψ

for some χθ′ in C. Hence θ = θ′ψ up to conjugacy. Since θ factorizes through
ψ : π1(S3 \ K) → π1(K(0)), we must have θ(λ) = 1 and therefore reach a
contradiction. �	

The second part of Proposition 1.11 follows from:

Lemma 3.6. Let K be a small hyperbolic knot. If the longitude is not a
strict boundary slope, then Property L holds for K.

Proof. Let K be a small hyperbolic knot whose preferred longitude λ for K
is not a strict boundary slope. Assume that the character variety X(K(0))
contains a curve of characters C whose generic element is the character of
an irreducible representation. The epimorphism ϕ : π1(S3 \ K) → π1(K(0))
and Lemma 2.1 provide a curve component D = ϕ∗(C) ⊂ X(K). Since ϕ(λ) =
1, fλ : D → C is identically 0. Thus we deduce that λ is a boundary slope
detected by any ideal point of D (cf. proof of Theorem 2.3).

Fix an irreducible character χρ ∈ D. By hypothesis, λ is not a strict
boundary slope, so [4, Proposition 4.7(2)] implies that the restriction of ρ to
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the index 2 subgroup π̃ of π1(S3 \ K) has Abelian image. The irreducibility
of ρ implies that this image is non-central in SL(2,C), and as it is normal
in the image of ρ, the latter is conjugate into the subgroup of SL(2,C) of
matrices which are either diagonal or have zeroes on the diagonal. Further,
the image of π̃ conjugates into the diagonal matrices and that of a meridian
of K conjugates to a matrix with zeroes on the diagonal. Any such repre-
sentation of π1(S3 \ K) has image a finite binary dihedral group. As there
are only finitely many such characters of π1(S3 \ K) ([17, Theorem 10]), the
generic character in D, hence C, is reducible, a contradiction. �	

We can now give the proof of our main technical result Theorem 1.9.

Proof of Theorem 1.9. We are supposing that K is a small hyperbolic knot
with Property L. By Corollary 3.4, the targets cannot be fundamental groups
of satellite knot complements, hence they must be fundamental groups of
hyperbolic or torus knot complements. The case of torus knots was dealt
with in the “Remarks on Property L” of Section 1. The proof is completed
by Theorem 1.4. �	

4. Results for two-bridge knots

Given the discussion for torus knots in Section 3.1, it suffices to deal with
the case of a hyperbolic two-bridge knot.

4.1. Proof of Theorem 1.2 and Proposition 1.10

As mentioned in the introduction Theorem 1.2 follows from Theorem 1.9
and Proposition 1.10. This proposition is a straightforward consequence of
Lemma 3.5 and of the following lemma of Riley (see Lemma 1 of [25]). We
have decided to include a proof of this lemma since it is a crucial point.

Lemma 4.1. Let K be a two-bridge knot. If θ : π1(S3 \ K) → PSL(2,C) is
a p-rep, then θ(λ) 
= 1.

Proof. We begin by recalling some of the basic set up of p-reps. of two-bridge
knot groups (see [24]). Let K be two-bridge of normal form (p, q), so p and q
are odd integers such that 0 < q < p. The case of q = 1 is that of two-bridge
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torus knots. The group π1(S3 \ K) has a presentation

< x1, x2 | wx1w
−1 = x−1

2 >, where x1, x2 are meridians and

w = w(x1, x2) is given by xε1
1 xε2

2 . . . x
εp−2

1 x
εp−1

2 . Furthermore, each exponent
εj = (−1)[jq/p] where [x] denotes the integer part of x, and εj = εp−j . Hence
σ = Σεj is even.

The standard form for a p-rep sends the meridians x1 and x2 to parabolic
elements: (

1 1
0 1

)
and

(
1 0

−y 1

)
,

for some non-zero algebraic integer y (indeed y is a unit). The relation in
the presentation provides a p-rep polynomial Λ(y), and all p-reps determine
and are determined by solutions to Λ(y) = 0. The image of w under p-rep
has the form

W =
(

0 w12
w21 w22

)
,

with the entries being functions of the variable y. In addition, as is shown
in [24], the image of a longitude that commutes with x1 has the form

(
1 −2g
0 1

)
for some algebraic integer g = g(y).

Indeed, as shown in [24], g = w12w22 + σ. Thus, to prove the lemma we need
to show that g = g(y) 
= 0.

This is done as follows. First, observe that (mod 2), the matrix W for
the two-bridge knot of normal form (p, q) is the same as the matrix W ′ one
obtains from the two-bridge torus knot with normal form (p, 1). Further-
more, the word w in the case of (p, 1) is given as (x1x2)n with n = (p − 1)/2
the degree of Λ(y). Using this allows for an easy recursive definition of the
matrix W ′ in this case (see Section 5 of [24]); namely define two sequences
of polynomials fj = fj(y) and gj = gj(y), with f0(y) = g0(y) = 1 and

fj+1(y) = fj(y) + ygj(y) and gj+1(y) = fj+1(y) + gj(y).

Then the matrix W ′ is given by

W ′ =
(

fn gn−1
ygn−1 fn−1

)
.

In particular, the p-rep condition implies fn(y) = 0. Using the recursive
formula, we have fn(y) = fn−1(y) + ygn−1(y), and the p-rep condition (i.e.,
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fn(y) = 0) means that the matrix W ′ is given by

W ′ =
(

0 gn−1
ygn−1 −ygn−1

)
,

which (mod 2) is

W ′ =
(

0 gn−1
ygn−1 ygn−1

)
.

We deduce from these comments that w12w22 = −w12w21 (mod 2). The lat-
ter is 1 since it is the determinant of W . As noted above, σ is even, hence, it
follows that g = w12w22 + σ is congruent to 1 (mod 2), and so in particular
is not zero as required. �	

4.2. Proof of Corollary 1.3

Proof of Corollary 1.3. As before we let μ and λ denote a meridian and a
longitude of K. Firstly, we note that if K is a hyperbolic two-bridge knot
and ϕ : π1(S3 \ K) → π1(S3 \ K ′) is an epimorphism, then Proposition 1.6
and Lemma 4.1 combine to show that K ′ is either a hyperbolic or torus
knot.

In the case of K ′ a hyperbolic knot, since ϕ(λ) 
= 1, the epimorphism
is non-degenerate in the sense of [2], and in particular ϕ(μ) is a peripheral
element of π1(S3 \ K ′). Hence, [3, Theorem 3.15] applies to show that K ′ is
also a two-bridge knot. Furthermore, as noted in the proof of Corollary 6.5
of [2], the homomorphism ϕ is induced by a map of non-zero degree.

In the case when K ′ is a torus knot, ϕ(λ) (and therefore also ϕ(μ)), need
not be a peripheral element. Suppose that K ′ is an (r, s)-torus knot and fix a
meridian μ′ of K ′. There is a homomorphism ψ : π1(S3 \ K ′) → Cr,s (where
as in Section 3.1, Cr,s denotes the free product of two cyclic groups of orders
r and s) and generators a of Z/r and b of Z/s for which ψ(μ′) = ab. Theorem
2.1 of [10] and the remark following it, shows that one of r or s equals 2,
say r = 2. In particular K ′ is a two-bridge torus knot. We finish off this case
as we did the previous one using [2] once we show that ϕ(< μ, λ >) is a
subgroup of finite index in the peripheral subgroup P ′ of π1(S3 \ K ′). To do
this, it suffices to show ϕ(μ) is a meridian of K ′ since the centralizer of μ′

in π1(S3 \ K ′) is P ′.
To that end, Theorem 1.2 of [10] shows that there is an isomorphism

θ : C2,s → C2,s such that θψϕ(μ) = abm for some integer m. Up to inner
isomorphism, we can suppose that θ(a) = a and θ(b) = bk for some k coprime
with s (see, for example,[11, Theorem 13(1), Corollary 14]). Thus we can
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assume that ψϕ(μ) = abm. Now ϕ(μ) equals (μ′)±1 up to multiplication by
a commutator, so abelianizing in C2,s shows that m ≡ ±1 (mod s). Hence
ψϕ(μ) = ab±1, so up to conjugation in C2,s, ψϕ(μ) = (ab)±1 = ψ(μ′)±1. It
follows that ϕ(μ) = hk(μ′)±1 where h ∈ π1(S3 \ K ′) is the fiber class. Since
K ′ is non-trivial, |s| ≥ 3, and so as h represents 2s in H1(S3 \ K ′) ∼= Z, it
must be that k = 0. Thus ϕ(μ) = (μ′)±1, which completes the proof. �	

We conclude this section with some remarks on the proof of a stronger
version of Corollary 1.3. Before stating this result, we recall that if G and
H are groups and ϕ : G → H is a homomorphism, then ϕ is called a virtual
epimorphism if ϕ(G) has finite index in H.

Theorem 4.2. Let K be a two-bridge hyperbolic knot, K ′ be a non-trivial
knot. If there is a virtual epimorphism ϕ : π1(S3 \ K) → π1(S3 \ K ′), then ϕ
is induced by a map f : S3 \ K → S3 \ K ′ of non-zero degree. Furthermore,
K ′ is necessarily a two-bridge knot, and ϕ is surjective if K ′ is hyperbolic.

Sketch of the Proof. Since a subgroup of finite index in a satellite knot group
continues to contain an essential Z ⊕ Z the proof of Proposition 1.6 can be
applied to rule out the case of satellite knot groups as targets.

In the case where the targets are hyperbolic, we can deduce that this
virtual epimorphism is an epimorphism and we argue as before; briefly, since
the peripheral subgroup is mapped to a Z ⊕ Z in the image, and since K is
two-bridge, it follows from [1, Corollary 5] that these image groups are two-
bridge knot groups (being generated by two conjugate peripheral elements).
However, it is well-known that a two-bridge hyperbolic knot complement
has no free symmetries, and so cannot properly cover any other hyperbolic
three-manifold (see [26] for example).

When the targets are torus knot groups, standard considerations show
that the image of ϕ is the fundamental group of a Seifert Fiber Space with
base orbifold a disc with cone points. Moreover, this two-orbifold group is
generated by the images of the two conjugate meridians of K. It is easily
seen that this forces the base orbifold to be a disc with two cone points. It
now follows from [11, Proposition 17] that the base orbifold group is C2,s

where s is odd, and the proof is completed as before. �	

Remark. Note that the paper [20] gives a systematic construction of epi-
morphisms between two-bridge knot groups. In particular, the epimorphisms
constructed by the methods of [20] are induced by maps of non-zero degree.
Corollary 1.3 and Theorem 4.2 show that in fact any (virtual) epimorphism
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from a two-bridge knot group to any knot group is induced by a map of
non-zero degree.

4.3. Minimal manifolds and Simon’s Conjecture

The methods of this paper also prove the following strong form of Conjecture
1.1 in certain cases.

Theorem 4.3. Suppose K ⊂ S3 is a hyperbolic knot for which the canonical
component of X(K) is the only component that contains the character of an
irreducible representation. Then Conjecture 1.1 holds for K.

This obviously follows from the stronger theorem stated below.

Theorem 4.4. Suppose K ⊂ S3 is as in Theorem 4.3. Then π1(S3 \ K)
does not surject onto the fundamental group of any other non-trivial knot
complement.

Proof. Assume to the contrary that φ : π1(S3 \ K) → π1(S3 \ K ′) is a sur-
jection. It will be convenient to make use of the PSL(2,C) character variety.
Let Y0(K) denote the canonical component of Y (K), which as remarked
upon in Section 2.3, has dimension 1.

K ′ cannot be a torus knot since Y0(K) contains the character of a faithful
representation of π1(S3 \ K) and Y (Cp,q) clearly contains no such character.
That is to say Y0(K) 
= φ∗(Y (Cp,q)).

Theorem 3.1 handles the case when K ′ is hyperbolic. More precisely, tak-
ing G = π1(S3 \ K), in the notation of Theorem 3.1, k ≤ 1. Since, G surjects
onto itself, we deduce that there can be no other knot group quotient.

Now assume that K ′ is a satellite knot. In this case, we use Theorem 2.2
to deduce that φ∗(Y (K ′)) coincides with Y (K). However, if χρ denotes the
character of the faithful discrete representation on the canonical component
Y0(K), then there is a character χν ∈ Y (K ′) with ρ = νφ. But this is clearly
impossible. �	

By [19], when n ≥ 7 is not divisible by 3 or n ≤ −1 is not divisible by
3, the (−2, 3, n)-pretzel knot satisfies the hypothesis of Theorem 4.3. Hence
we get.

Corollary 4.5. Suppose that n ≥ 7 is not divisible by 3, or n ≤ −1 is not
divisible by 3, then Conjecture 1.1 holds for the (−2, 3, n)-pretzel knot.
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5. Possible extension of Simon’s Conjecture

We first state a possible extension of Simon’s Conjecture for links. To that
end, recall that a boundary link is a link whose components bound disjoint
Seifert surfaces. Such a link (say with n components) has a fundamental
group that surjects onto a non-abelian free group of rank n. A homology
boundary link of n components is a link of n components whose fundamental
group surjects onto a non-abelian free group of rank n.

Conjecture 5.1. Let L ⊂ S3 be a non-trivial link of n ≥ 2 components. If
π1(S3 \ L) surjects onto infinitely many distinct link groups of n components,
then L is a homology boundary link.

This conjecture is motivated by Simon’s conjecture for knots and the
following observations:

If n ≥ 2, then the trivial link of n-components has a fundamental group
which is free of rank n ≥ 2. Hence, it surjects onto all link groups that are
generated by n elements. This argument can now be made by replacing
the trivial link by a homology boundary link. In particular, since there are
non-trivial boundary links of two components, the fundamental groups of
such link complements will surject onto all two component two-bridge link
groups.

Hyperbolic examples are easily constructed from this using [15] for exam-
ple. Hence the group of any link with n components is the homomorphic
image of the fundamental group of a hyperbolic link with n components.

As in Corollary 3.3, Theorem 3.1 provides information about the dimension
of the character variety of a homology boundary link with n ≥ 2 components
(see also [7]):

Corollary 5.2. dim(X(L)) > n for each homology boundary link L of n ≥
2 components.

Proof. Let L be a homology boundary link of n components. The group of L
surjects onto all n component link groups that are generated by n elements.
As we note in the remark following this proof, infinitely many of these cor-
respond to distinct hyperbolic link complements, and so dim(X(L)) ≥ n by
Lemma 2.1. Hence dim(X(L)) > n by Theorem 3.1. �	
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Remark. It is easy to see that there are infinitely many n-component
hyperbolic links whose groups are generated by n-elements. Briefly, by
Thurston’s hyperbolization theorem for surface bundles [21, 30] a pseudo-
Anosov pure braid with n − 1 strings together with its axis forms a hyper-
bolic n-bridge link with n components. Moreover the group of such a link is
generated by n elements. Since there are infinitely many conjugacy classes
of pseudo-Anosov pure braids with n − 1 strings, infinitely many distinct
hyperbolic link complements can be obtained in this way. �	

Another natural extension of Simon’s Conjecture is.

Conjecture 5.3. Let X be a knot exterior in a closed orientable three-
manifold for which H1(X : Q) ∼= Q. Then π1(X) surjects onto only finitely
many groups π1(Xi) where Xi is a knot exterior with H1(Xi : Q) ∼= Q.

The condition on the rational homology is clearly a necessary condition
(otherwise one can use surjections that factor through a non-abelian free
group once again). Even here little seems known. Indeed, even for small
manifolds as in Conjecture 5.3 we cannot make as much progress as in the
case of S3, since Theorem 2.2 of Kronheimer and Mrowka is not known to
hold in this generality.
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Montréal, QC H3C 3P8

Canada

E-mail address: boyer@math.uqam.ca

Department of Mathematics

University of Texas

Austin, TX 78712

USA

E-mail address: areid@math.utexas.edu

LAMA Department of Mathematics

Peking University

Beijing 100871

China

Email address: wangsc@math.pku.edu.cn

Received September 1, 2009






