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Stability of Ricci Yang–Mills flow at Einstein
Yang–Mills metrics

Andrea Young

Let P be a principal U(1)-bundle over a closed manifold M . On
P , one can define a modified version of the Ricci flow called the
Ricci Yang–Mills flow, due to these equations being a coupling of
Ricci flow and the Yang–Mills heat flow. We use maximal regularity
theory and ideas of Simonett concerning the asymptotic behavior
of abstract quasilinear parabolic partial differential equations to
study the stability of the volume-normalized Ricci Yang–Mills flow
at Einstein Yang–Mills metrics in dimension two. In certain cases,
we show the presence of a center manifold of fixed points, whereas
in others, we show the existence of an asymptotically stable fixed
point.

0. Introduction

By writing the Ricci flow equations for a metric on a U(1)-bundle in the
Kaluza–Klein ansatz with fixed fiber size, one obtains a coupled system of
equations – an equation that resembles the Ricci flow on the base metric and
an equation that resembles the Yang–Mills heat flow on the connection one-
form. We call this coupled system of equations the Ricci Yang–Mills flow.
Recall that the Yang–Mills heat flow is well behaved in low dimensions,
whereas the Ricci flow can become singular even in dimension two. Thus,
one hopes to exploit the nice behavior of the Yang–Mills heat flow part of
the system to obtain convergence results of the Ricci Yang–Mills flow.

In 1982, Richard Hamilton [7] proposed the Ricci flow as a means to
study three-manifolds with positive Ricci curvature. Specifically, let (Mn, g)
be an n-dimensional Riemannian manifold with metric g. The Ricci flow
equations are defined to be

(0.1)
∂g

∂t
= −2Rc,

where Rc is the Ricci curvature of g. It is well known that the Ricci flow is a
weakly parabolic system of equations. In his seminal paper, Hamilton showed
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that a closed three-manifold with positive Ricci curvature is diffeomorphic
to a spherical space form, thus that it admits a metric of constant sectional
curvature.

Hamilton developed a program intending to use Ricci flow to prove
Thurston’s geometrization conjecture, which states that every closed
three-manifold admits a geometric decomposition. Hamilton’s papers yielded
great progress towards this goal, studying a multitude of topics such as sin-
gularity formulation [8], compactness theorems [10] and nonsingular solu-
tions [9]. The recent work of Grisha Perelman, which in particular combined
comparison geometry and partial differential equations, has provided much
progress in the direction of studying geometrization [17, 18]. Additionally,
Ricci flow has proven to be a very fruitful area of study in its own right (for
overviews, see, e.g.,[3, 4]).

On the other hand, the Yang–Mills heat flow is a gauge-theoretic heat
equation; that is, it is a differential equation for a field on a principal fiber
bundle. Let P be a smooth principal G-bundle over a smooth closed manifold
M . If A is a connection on P , then A yields an exterior covariant derivative,
denoted DA, that acts on k-forms with values in G, the Lie algebra of G. The
curvature of A is then F (A) = DAA. We can define the Yang–Mills energy
to be

(0.2) YM(A) =
1
2

∫
M

|F (A)|2dV.

The L2 gradient flow for this functional is the Yang–Mills heat flow:

(0.3)
∂A

∂t
= −D∗

AF (A),

where D∗
A is the formal adjoint of DA. The Yang–Mills heat flow was first

used by Atiyah and Bott [1] and by Simon Donaldson [5]. Atiyah and
Bott used the Yang–Mills heat flow to study the topology of minimal Yang
Mills connections. Donaldson used it to give an analytic proof of a theorem
of Narasimhan and Seshadri concerning the relation between stable holo-
morphic vector bundles and equivalence classes of Yang–Mills connections.
Johan Rade [19] studied the behavior of the Yang–Mills heat flow in two
and three dimensions and was able to use a technique of L. Simon to show
that solutions converge as t → ∞.

In order to derive a natural coupling of the Ricci flow and the Yang–Mills
heat flow, we consider the following setting. Let M be a closed Riemannian
manifold with metric g, and let U ⊂ M be a local coordinate chart with
coordinates {xi}n

i=1. Suppose G is a compact Lie group with smooth metric
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ḡ parametrized by the base, and {yθ}m
θ=n+1 are local coordinates on G. Then

define π : P → M to be a principal G-bundle over M , having connection A.
We consider a metric h on the total space P of the form

h = g
ij

dxidxj + ḡθρ(dyθ + aθ
kdxk)(dyρ + aρ

l dxl).

Here, a = σ∗A, where σ : U → P is a smooth local section. We have the
following basis for one-forms: dzi = dxi and dzθ = dyθ + aθ

i dxi with the cor-
responding frame ei = ∂

∂xi − aθ
i

∂
∂yθ and eθ = ∂

∂yθ .
Let us now consider this metric on a U(1)-bundle. In this setting, the

connection and its curvature are actually a one-form and a two-form, respec-
tively, on the base. If one writes down the Ricci flow equations for such a
bundle metric along with the additional hypothesis that the size of the fiber
remains fixed, one obtains the Ricci Yang–Mills flow:

∂gij

∂t
= −2Rij + F k

i Fkj ,(0.4a)

∂ai

∂t
= −d�Fi.(0.4b)

Due to the sign difference that terms involving F add to the Ricci tensor of
the bundle, one does not expect that the Ricci Yang–Mills flow will have as
its limit an Einstein metric. Rather, the canonical metric one should hope
for is an Einstein Yang–Mills metric; namely, one that is Einstein on the base
and that has a Yang–Mills connection. We point out that the analysis in this
paper will rely strongly on the fact that we are considering U(1)-bundles.
One expects that the analysis would become much more complicated in the
case of non-abelian fibers in part because a and F would be only locally
defined on the base. In this setting even short-time existence of the flow,
which uses the existence of the Coulomb gauge, is not known.

The Ricci Yang–Mills flow has been studied simultaneously and inde-
pendently by Jeffrey Streets in [21, 22]. In [21], the question of existence of
solutions to the Ricci Yang–Mills flow on surfaces was reduced to getting
a bound on the isoperimetric constant using similar techniques to that of
Struwe [23]. Additionally, Dan Jane has shown that the Ricci Yang–Mills
flow arises when studying magnetic flows on surfaces [12]. The classification
of Ricci Yang–Mills solitons on nilpotent Lie groups has been considered
in [11].

In this paper, we use the machinery of analytic semigroups to take opti-
mal advantage of the parabolic smoothing properties of the quasilinear Equa-
tion (0.4) in continuous interpolation spaces. In particular, our techniques
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show that a fixed point of the flow is exponentially attractive in time in the
norm of a smaller space for solutions whose initial data are close to that
fixed point in a larger interpolation space. We will use maximal regularity
theory to study the stability of the Ricci Yang–Mills flow at a fixed point.
In [6], Guenther, Isenberg and Knopf used the general theory of [20] to study
the stability of the Ricci flow at Ricci-flat metrics. Additionally, Knopf has
recently used these techniques to study the stability of locally R

N -invariant
solutions of Ricci flow [13]. We will consider the Ricci Yang–Mills flow to be
an ODE on an infinite-dimensional space. We will then linearize the right-
hand side of the equation and study the spectrum of that operator. This will
determine the local behavior of the flow. For computational reasons to be
mentioned later, our analysis only works in the case that the base manifold
is two-dimensional.

This paper is organized as follows. In Section 1, we state the theorems
concerning asymptotic behavior of general quasilinear partial differential
equations; this will provide the framework for the analysis that follows. In
Section 2, we compute the linearization of the Ricci Yang–Mills flow at
an Einstein Yang–Mills metric. We recall the definition of the little Hölder
spaces in Section 3, and in Section 4, we use these spaces to obtain our main
stability theorems.

1. Asymptotic Behavior of Quasilinear Partial
Differential Equations

Consider the general equation

∂u

∂t
= Φ(x, t, u, Du, D2u),(1.1a)

u(0) = u0.(1.1b)

For our purposes, this will be a parabolic system of partial differential
equations. Let ū be a fixed point of the equation (i.e., Φ(ū) = 0), and let
Σ = σ(DūΦ) ∩ R. Then

Definition 1.1. ū is

• linearly stable if Σ ⊂ (−∞, 0],

• strictly linearly stable if Σ ⊂ (−∞, 0),

• linearly unstable if Σ ∩ (0,∞) �= ∅,
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• asymptotically stable if there exists a neighborhood about ū such that
every solution of the equation having initial data in that neighborhood
exists for all positive time and converges to ū as t → ∞.

In the case of the Ricci Yang–Mills flow over a compact surface, we will
see that the linearized operator of the right-hand side, in the notation above,
either has a zero eigenvalue or has a strictly negative spectrum. The presence
of a zero eigenvalue will correspond to the existence of a finite-dimensional
center manifold, while an operator having strictly negative eigenvalues will
correspond to a stable fixed point. We will use the same general analysis in
both cases and will point out the differences in the techniques.

1.1. Center Manifold Theorem

We would like to analyze the stability of autonomous quasilinear parabolic
equations. Suppose that Φ in Equation (1.1a) is a quasilinear elliptic oper-
ator, and suppose that we are in the case where

sup {�(λ) : λ ∈ σ(DūΦ)} ≥ 0.

This critical case is complicated, and to treat it, we will work with interpo-
lation spaces. We will consider the case that

σ+(DūΦ) := {λ ∈ σ(DūΦ) : �(λ) ≥ 0}

consists of a finite number of isolated eigenvalues with finite algebraic mul-
tiplicity.

We would like to study the stability of Ricci Yang–Mills flow at Einstein
Yang–Mills metrics using [20], which essentially shows that if Φ is a quasi-
linear differential operator satisfying certain conditions, with DΦ having a
zero eigenvalue, then the local behavior of the flow near a fixed point is
characterized by the presence of a local center manifold. The theorem that
we will use is based upon Theorem 2.2 in [6], which in turn is a compendium
of results from Theorems 4.1 and 5.8 and Remark 4.2 in [20]. The set-up
for the theorem is somewhat complicated, so we first collect the necessary
assumptions.

Let X1 ↪→ X0 be a continuous dense inclusion of Banach spaces, and let
Xα and Xβ denote the continuous interpolation spaces corresponding to fixed
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0 < β < α < 1. In other words, Xα = (X0, X1)α and similarly for Xβ. Let

(1.2)
∂

∂t
	x = A(	x)	x

be an autonomous quasilinear parabolic equation posed for t ≥ 0. Suppose
that Uβ ⊂ Xβ is an open set and that

A(·) ∈ Ck(Uβ, L(X1, X0))

for some positive integer k.
Additionally, assume that there exists a pair E1 ↪→ E0 of Banach spaces

and that there exists an extension Ã(·) of A(·) to domain D(Ã(·)) that is
dense in E0. We would like the following statements to hold for all 	x ∈ Uα =
Uβ ∩ Xα:

Assumptions (Requirements for the Center Manifold Theorem).

(1) X0 and X1 satisfy the following:

X0 ∼= DÃ(�x)(θ) ∼= (E0, D(Ã(	x)))θ,

X1 ∼= DÃ(�x)(1 + θ) ∼= (E0, D(Ã(	x)))1+θ,

for some θ ∈ (0, 1). Here (·, ·) denotes the continuous interpolation
method. Also DÃ(�x)(1 + θ) = {	x ∈ D(Ã) : Ã	x ∈ DÃ(�x)(θ)}.

(2) E1 ↪→ Xβ ↪→ E0 is a continuous and dense inclusion with the property
that there are C > 0 and δ ∈ (0, 1) such that for all η ∈ E1, one has

‖η‖Xβ
≤ C‖η‖1−δ

E0
‖η‖δ

E1
.

(3) Ã(	x) ∈ L(E1, E0) generates a strongly continuous analytic semigroup
on L(E0);

(4) A(	x) agrees with the restriction of Ã(	x) to the dense subset D(A) ⊆
X0.

Let x̂ ∈ Uα be a fixed point of Equation (1.2). Suppose the spectrum σ of
the linearized operator DA|x̂ admits the decomposition σ = σs ∪ σcu, where
σs ⊂ {z : �(z) < 0} and where σcu ⊂ {z : �(z) ≥ 0} consists of finitely many
eigenvalues of finite multiplicity. Suppose further that σcu ⊂ iR, and let
S(λ) denote the algebraic eigenspace of λ ∈ σcu. In what follows, B(X, x, d)
denotes a ball centered at x having radius d measured with respect to ‖ · ‖X.
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Theorem 1.1 (Statement of the Center Manifold Theorem). Xα

admits the decomposition Xα = X
s
α ⊕ X

cu
α for all α ∈ [0, 1], where X

cu
α ≡

⊕λ∈σcuS(λ). For each r ∈ N, there exists dr > 0 such that for all d ∈ (0, dr],
there is a Cr manifold Mcu

loc which arises as the graph of a function φ :
B(Xcu

1 , x̂, d) → X
s
1 and that is locally invariant for solutions of (1.2) as long

as they remain in B(Xcu
1 , x̂, d) × B(Xs

1, x̂, d). It satisfies Tx̂Mcu
loc

∼= X
cu
1 , so

that Mcu
loc is a local center manifold.

For all α ∈ (0, 1), there are constants Cα > 0 independent of x̂ and con-
stants ω > 0 and d̂ ∈ (0, d0] such that one has

‖πs(	x(t)) − φ(πcu	x(t))‖X1 ≤ Cα

t1−α
e−ωt‖πs(	x(0)) − φ(πcu	x(0))‖Xα

for all solutions 	x(t) with 	x(0) ∈ B(Xα, x̂, d) and all times t ≥ 0 such that the
solution 	x(t) remains in B(Xα, x̂, d). Here πs and πcu denote the projections
onto X

s
α

∼= (Xs
1, X

s
0)α and X

cu
α , respectively.

To summarize, the presence of eigenvalues with real part being zero cor-
responds to the existence of an exponentially attractive local center mani-
fold. The convergence is measured in the X1 norm for all initial data in an
Xα neighborhood of the fixed point.

Proof. For the proof of the theorem, we refer the reader to Sections 4 and 5
of [20]. �

1.2. Asymptotic Stability Theorem

Now suppose that we are in the case of σcu = ∅; i.e., σ(A) ≡ σs ⊂ {z : �(z) <
0}. In this case, our “center manifold” will consist of a single point. We would
still like to use the machinery of Simonett, as this yields an optimal regu-
larity result that solutions in a Xα-neighborhood of a fixed point converge
exponentially fast in X1-norm to the fixed point. We use the following adap-
tation of Theorem 1.1 to show that a fixed point is asymptotically stable.

Theorem 1.2 (Statement of the Asymptotic Stability Theorem).
Suppose that the hypotheses of Theorem 1.1 are satisfied. As before, let
x̂ ∈ Uα be a fixed point of Equation (1.2). Suppose also that sup{�(λ) : λ ∈
σ} ≤ −δ for some δ > 0. Then for all α ∈ (0, 1), there are constants Cα > 0
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independent of x̂ and constants ω > 0 and d̂ ∈ (0, d0] such that one has

‖	x(t) − x̂‖X1 ≤ Cα

t1−α
e−ωt‖	x(0) − x̂‖Xα

,

for all solutions 	x(t) with 	x(0) ∈ B(Xα, x̂, d) and all times t ≥ 0 such that
the solution 	x(t) remains in B(Xα, x̂, d).

Remark 1.1. One can also use the theory of semigroups to prove a slightly
less general result. In [15], Lunardi shows exponential convergence to a fixed
point for quasilinear parabolic PDE for solutions having initial data in a
X1-neighborhood of the fixed point. The analysis is slightly less complicated
than that of Simonett and has the advantage that it can be extended to
fully nonlinear PDE, as in Chapter 9 of [14].

2. Linearizing the Flow

We would like to consider the stability of the Ricci Yang–Mills flow at a
fixed point. On a surface, we claim that the equation for the metric preserves
conformal classes. Clearly Rij = R

2 gij . Additionally, we have the following
characterization of F k

i Fkj .

Lemma 2.1. For an U(1)-bundle over a surface, F k
i Fkj = 1

2 |F |2gij.

Proof. Let Ωij := F k
i Fkj . Ω is a symmetric two-tensor, so we can choose an

orthonormal basis such that this tensor is diagonalized i.e.,

Ω =
(

λ1 0
0 λ2

)
.

Using the fact that F is trace-free, one easily sees that λ1 = λ2.
In this basis, one can then show that |Ω|2 = 2λ2

1 and |F |4 = 4λ2
1. Note

that this implies that the quantity Ω̊ = Ω − 1
2 |F |2gij = 0 because

|Ω̊|2 = |Ω|2 − |F |2trg(Ω) + 1
2 |F |4 = |Ω|2 − 1

2 |F |4.

�

So in the case of an U(1)-bundle over a surface, the first Ricci Yang–Mills
flow equation is a conformal flow. Let g = euh, where h is a fixed constant
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curvature metric, and recall that Rg = 2(−Δgu + Rhe−u). The Ricci Yang–
Mills flow equations can then be written as

∂tu = Δgu − Rhe−u + 1
2 |F |2,(2.1a)

∂ta = −d�F.(2.1b)

Note that the equation for a is not quite parabolic; the right-hand side is
comprised of “one-half” of the laplacian. We remedy this by using a one-
parameter family of diffeomorphisms.

Lemma 2.2. Equation (2.1) is equivalent to a parabolic flow via pullback
by diffeomorphisms.

Proof. We choose a vector field W k = gij(Γk
ij − Γ̃k

ij) for k = 1, 2, where Γ̃ is
the Christoffel symbol with respect to the fixed background metric h. Note
that if gij = euhij on a surface, then W k = 0. Additionally, let W 3 = −d�a. If
h is the metric on our principal bundle in the Kaluza–Klein ansatz satisfying
Equation (2.1), then φ∗

t h satisfies

∂tu = Δgu − Rhe−u + 1
2 |F |2,(2.2a)

∂ta = −d�F − dd�a,(2.2b)

where φt is the one-parameter family of diffeomorphisms generated by W .
We will call this flow GRYM, and we will choose to work with these equations
as they are parabolic. �

We would like to do stability analysis of the fixed points of our flow,
which should be the natural geometric limit of the Ricci Yang–Mills flow;
namely, we want them to be Einstein Yang–Mills metrics. An Einstein Yang–
Mills metric (g, a) is one such that g is Einstein and d�Fa = 0. In order to
make this work, we must consider a normalized version of Equations (2.1)
which we will call NGRYM. We have

∂tu = Δgu − Rhe−u + 1
2 |F |2 + r − 1

2f,(2.3a)
∂ta = −d∗F − dd∗a,(2.3b)

where r and f are the averages of scalar curvature and bundle curvature,
respectively, i.e. r =

∫
M

RdV∫
dV

and f =
∫

M
|F |2dV∫
dV

. Since M is a surface, r is a
constant in space and time.
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Remark 2.1. NGRYM should be thought of as a certain volume-normal-
izing flow, in that the volume of the base manifold is fixed. Due to the lack
of scale invariance on the right-hand side of Equation (2.2a), this flow is not
quite a rescaling of our original equation. However, there is evidence that a
normalization of this form is useful in proving convergence of the flow [21].
So our results will be applied to this closely related flow.

We claim that an Einstein Yang–Mills manifold is a fixed point of the
flow. To see this, we need the following lemma.

Lemma 2.3. In the case of a U(1)-bundle over a compact surface M , a
Yang–Mills connection has the property that its curvature is a constant times
the volume form i.e., F = λdV , where λ is determined by the Chern number
of the bundle.

Proof. We can write F as F = f(x)dV for some function f . F being the
curvature of a Yang–Mills connection implies that d�F = 0, and since U(1)
is abelian, dF = 0. Thus (dd� + d�d)F = (dd� + d�d)(f(x)dV ) = 0. Since
d(dV ) = d�(dV ) = 0, the above shows that Δf = 0. As M is compact, f
must be a constant λ.

By definition, the Chern number c of a U(1)-bundle is given by

c =
1
2π

∫
M

F.

But now, we have c = 1
2π

∫
M λdV , so λ = 2πc∫

M
dV

. �

Also for an Einstein metric, u = C for some constant C. If we write our
Yang–Mills connection in the Coulomb gauge (d�a = 0), then we see that an
Einstein Yang–Mills metric is a fixed point of the NGRYM.

One can compute the linearization about an Einstein Yang–Mills metric
of the right-hand side of Equation (2.3) in the standard fashion. Let ∂u

∂t

∣∣
t=0 =

v and ∂a
∂t

∣∣
t=0 = b. We use the previous characterization of Einstein Yang–

Mills metrics, as well as the fact that a Yang–Mills connection is a minimizer
of the Yang–Mills functional

∫
|F |2. Let L1(v, b) denote the linearization of

Equation (2.3a) in the direction of (v, b) and L2(v, b) denote that of Equation
(2.3b).
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Lemma 2.4. The linearization of the right-hand side of Equation (2.3) at
an Einstein Yang–Mills metric is

L1(v, b) = Δhv + (Rh − λ2)v + λ〈db, dVh〉,(2.4a)
L2(v, b) = Δdb − λdiv(vdVh).(2.4b)

Here the subscript h denotes quantities measured with respect to the fixed
background metric, and Δd is the Hodge–de Rham Laplacian.

Proof. For details, see [24]. �

Remark 2.2. It should be noted that our analysis strongly relies on
Lemma 3 in the sense that such a characterization of Yang–Mills connec-
tions on U(1)-bundles over surfaces yield a linearized operator that is, among
other properties, self-adjoint (see Lemma 14). In the case of a U(1)-bundle
over a higher dimensional base, the author is not aware of a suitable char-
acterization that would yield a reasonable linearized operator. It would be
very interesting if one could be found.

3. Little Hölder Spaces

In order to use the maximal regularity theory, we use spaces that are suitable
for this context, namely the little Hölder spaces. The little Hölder space hk+α

of functions is defined to be the closure of the C∞ functions with respect
to the ‖ · ‖k+α norm. To be more precise, recall the definition of the Hölder
space Cα of functions:

Cα =

{
f ∈ Cb(I; X) : [f ]Cα(I;X) := sup

t,s∈I

‖f(t) − f(s)‖
|t − s|α < ∞

}
,

where Cb(I; X) is the space of bounded, continuous functions from I into
X. The little Hölder space of functions are then

h
α =

{
f ∈ Cα(I; X) : lim

δ→0
sup
t,s∈I

|t−s|<δ

‖f(t) − f(s)‖
|t − s|α = 0

}
,

h
k+α =

{
f ∈ Ck

b(I; X) : f (k) ∈ h
α(I; X)

}
.

We can extend this definition to the space of one-forms on a compact man-
ifold. Let M be a compact Riemannian manifold. Fix a background metric
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ĝ and a finite atlas {Uυ}1≤υ≤Υ of coordinate charts covering M. For each
k ∈ N and α ∈ (0, 1], let hk+α denote the little Hölder space of one-forms
with norm ‖·‖k+α derived from

‖a‖0+α := max
1≤i≤n
1≤υ≤Υ

sup
x,y∈Uυ

|ai(x) − ai(y)|
(dĝ(x, y))α

.

We state a few facts about these spaces.

Lemma 3.1. For j < k and 0 < β < α < 1, hk+α ↪→ hj+β, and this inclu-
sion is continuous and dense.

Lemma 3.2. For j ≤ k ∈ N, 0 < β < α < 1, and 0 < θ < 1, if

θ(k + α) + (1 − θ)(j + β)

is not an integer, then there is a Banach space isomorphism

(3.1) (hj+β, hk+α)θ
∼= h

(θk+(1−θ)j)+(θα+(1−θ)β),

and there exists C < ∞ such that for all η ∈ hk+α

(3.2) ‖η‖(hj+β ,hk+α)θ
≤ C‖η‖1−θ

hj+β
‖η‖θ

hk+α
.

Namely, these spaces form a continuous interpolation method.

Let DA(θ) be the continuous interpolation spaces. We can show that
for certain choices of D(A) and X these in fact are the little Hölder spaces.
Suppose A is given by

⎧⎪⎪⎨
⎪⎪⎩

D(A) =
{

u ∈
⋂
p≥1

W 2,p
loc : u, Au ∈ C(Rn)

}
,

A : D(A) �→ C(Rn)

Proposition 3.1. Let 0 < θ < 1. Then

DA(θ) = h
2θ if θ �= 1

2 .

Proof. See the proof of Theorem 3.1.12 in [14]. �
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4. Application of the Center Manifold Theorem to
the NGRYM

We would like to show that we can apply Theorems 1.1 and 1.2 to NGRYM.
In order to put our analysis into this framework, we need to define appro-
priate spaces.

Fix 0 < δ < ε < 1. We would like the consider the following hierarchy of
Banach spaces:

X1 ⊂ E1 ⊂ X0 ⊂ E0,

where

X1 = {(u, a) : u ∈ h
2+ε, a ∈ h

2+ε},

E1 = {(u, a) : u ∈ h
2+δ, a ∈ h

2+δ},

X0 = {(u, a) : u ∈ h
ε, a ∈ h

ε},

E0 = {(u, a) : u ∈ h
δ, a ∈ h

δ}.

Note that in the notation above, we mean (u, a) ∈ h·(M) × h·(Ω1(M)). We
would like to check that Assumption (1) holds. That is, we want to show
that X0 = (E0, E1)θ and X1 = (E0, E1)1+θ. Clearly, the product of inter-
polation spaces is also an interpolation space. Note that if θ = ε−δ

2 , then
h2+ε = (h2+δ, hδ)1+θ and hε = (h2+δ, hδ)θ by Lemma 3.2.

Let Xβ = (X0, X1)β and Xα = (X0, X1)α for fixed 1
2 ≤ β < α < 1. We

would like to check that E1 ↪→ Xβ ↪→ E0 is a continuous and dense inclu-
sion and that the interpolation inequality holds. This will fulfill Assumption
(2) of Theorem 1.1. Note that X0 and X1 can be gotten from interpolating
between E0 and E1. If θ = ε−δ

2 , then by Lemma 3.2,

(4.1) X0 = (E0, E1)θ,

(4.2) X1 = (E0, E1)1+θ.

Lemma 4.1. There exists C > 0, ρ ∈ (0, 1), and β ∈ (1
2 , 1) such that E1 ↪→

Xβ ↪→ E0 and

‖η‖Xβ
≤ C‖η‖1−ρ

E0
‖η‖ρ

E1
,

for all η ∈ Xβ.
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Proof. Since β ∈ (1
2 , 1), it is clear that the inclusions hold. Using Equations

(4.1) and (4.2), we have

‖η‖Xβ
≤ C‖η‖1−β

X0
‖η‖β

X1

≤ C(‖η‖1−θ
E0

‖η‖θ
E1

)1−β(‖η‖1−(1+θ)
E0

‖η‖1+θ
E1

)β

≤ C‖η‖1−ρ
E0

‖η‖ρ
E1

,

where ρ = θ + β. It remains only to check that ρ ∈ (0, 1). Since 0 < δ < ε <
1, 0 < θ < 1

2 , we simply choose β to be in (1
2 , 1 − θ). �

Since we would like to use Theorem 1.1, we want to make our notation
match that of Simonett. In other words, we would like to write Equation
(2.3) as

∂t	x = A(	x)	x.

In a fixed coordinate system, we can write the right-hand side of Equation
(2.3) as

(4.3) A(u, a)(u, a) =
(

a(x, g)ij∂i∂ju + b(x, g, ∂g)k∂ku + c(x, g, da)u
d(x, g)ij∂i∂jak + e(x, g, ∂g)i∂iak − f(x)ak

)
,

where the functions a(x, ·), b(x, ·, ·), c(x, ·, ·), d(x, ·), e(x, ·, ·), f(x) depend
smoothly on x ∈ M . They are analytic functions of their remaining argu-
ments.

We want to show that for all (u, a) in a certain open set, A(u, a) is a
bounded map from X1 to X0. Since X1 is a dense subspace of E1, we have
an extension operator Ã. We will show also that Ã : E1 → E0 is a bounded
operator. For a fixed r > 0, we define the open subsets Uβ ⊂ Xβ and Uα ⊂ Xα

to be
Uβ := {(u, a) : ‖u‖Xβ

> r, ‖a‖Xβ
> r},

Uα := Uβ ∩ Xα.

Lemma 4.2. For (u, a) ∈ Uβ, A(u, a) ∈ L(X1, X0). Also for (u, a) ∈ Uα,
Ã(u, a) ∈ L(E1, E0).

Proof. The proof follows in almost exactly the same way as the proof of
Lemma 3.3 in [6]. �

Let X be a Banach space. A semigroup S(t) ⊂ L(X) is said to be analytic
if t �→ S(t) is an analytic map for all t ∈ (0,∞). Additionally, S(t) is strongly
continuous if t �→ S(t)x is continuous on [0,∞) for all x ∈ X. In order to
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satisfy Assumption (3) and to show that Ã generates a strongly continuous
analytic semigroup on L(E0), we need the following lemma and definition
from [14].

Lemma 4.3. A : D(A) ⊂ X → X generates a strongly continuous analytic
semigroup if A is sectorial and the domain D(A) is dense in X.

Definition 4.1. A is sectorial if there exist constants ω ∈ R, θ ∈ (π
2 , π),

and M > 0 such that

(i) ρ(A) ⊃ Sθ,ω = {λ ∈ C : λ �= ω, | arg(λ − ω)| < θ},

(ii) ‖R(λ, A)‖L(X) ≤ M
|λ−ω| ,∀λ ∈ Sθ,ω.

We see that we need to show that for (u, a) ∈ Uα, Ã(u, a) is a sectorial
operator in E0. We would like to use the following Proposition from [14].

Proposition 4.1. Let A : D(A) ⊂ X �→ X be a linear operator, and let
α ∈ (0, 1). Define Aα : DA(α + 1) �→ DA(α) by Aαx := Ax. In other words,
Aα is the piece of A defined on DA(α). Then Aα is a sectorial operator in
DA(α).

Lemma 4.4. For (u, a) ∈ Uα, Ã(u, a) : E1 → E0 is a sectorial operator
on E0.

Proof. In our case, there exists θ ∈ (0, 1) such that X0 = DÃ(θ) and X1 =
DÃ(1 + θ). Thus, by Proposition 4.1, A(u, a) : X1 �→ X0 is a sectorial oper-
ator on X0.

Now let η ∈ E1, and since X1 is densely embedded in E1, let {ηi} ∈ X1
such that ηi → η in E1. Using the notation in Definition 4.1, fix λ ∈ Sθ,ω.
Then we have

‖R(λ, A)ηi‖E0 ≤ c‖R(λ, A)ηi‖X0

≤ M

|γ − ω|‖ηi‖X1 .

Since the resolvent operator is continuous, and A = Ã on the dense set X1,
we can pass to the limit to obtain that Ã(u, a) is sectorial in E0. �

Lemma 4.5. For (u, a) ∈ Uα, Ã(u, a) : E1 → E0 generates an analytic
semigroup on L(E0).
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Proof. This follows from Lemmas 4.3 and 4.4 �

4.1. λ = 0. We would like to compute the spectrum of L at an Einstein
Yang–Mills metric. Since L is self-adjoint, we know that the spectrum is
pure point and that it is contained in R. We first consider the case of a flat
bundle over a constant curvature Riemann surface (λ = 0 in the equations
above). We consider the linearization of Equation (2.3) to be the following
operator:

(4.4) L

(
v
b

)
=

(
Δ + Rh 0

0 Δd

) (
v
b

)
.

First, we would like to compute the spectrum of L.

Lemma 4.6. If Rh ≤ 0, then the L2 spectrum of L is contained in (−∞, 0].
In particular, L is linearly stable.

Proof. We use the natural L2 inner product for product spaces

( (
v
b

)
,

(
w
ρ

) )
L2

=
∫

((v, w) + (b, ρ))dμ.

Then, in the case of Rh ≤ 0, we have

(
L

(
v
b

)
,

(
v
b

) )
L2

=
∫

((Δv, v) + Rh(v, v) + (Δdb, b))dμ

= −‖∇v‖2 + Rh‖v‖2 − ‖db‖2

≤ 0.

We can note that in the case of Rh < 0, the zero eigenvalue of L corresponds
to v = 0 and b harmonic. Thus our center manifold is 2g-dimensional, where
g is the genus of M . For Rh = 0, the zero eigenvalue corresponds to v and b
harmonic. So this center manifold will have dimension 1 + 2 = 3. �

Lemma 4.7. If Rh > 0, then σ(L) ∩ (0,∞) �= ∅. In particular, L is not
linearly stable.

Proof. Since there are no harmonic one-forms over the two-sphere, it is clear
that there are no unstable directions corresponding to pairs of the form (0, b).
Consider pairs of the form (v, 0). Suppose there exists an eigenvalue γ for
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some (v0, 0). In this case, we would have

Δv0 = (γ − 2)v0 = μv0.

The eigenvalues of the laplacian over the n-sphere (having radius 1) are
given by μk = −k(k + n − 1). In our case, we have μ0 = 0, μ1 = −2, . . ., so
the above equation is equivalent to

γ − 2 = μ0,

i.e., γ = 2. Thus we have a positive eigenvalue for L corresponding to the
first eigenvalue of the laplacian. This unstable direction is given by the one-
dimensional space of constant functions. Additionally, we see that γ = 0
can be obtained by the second eigenvalue. This corresponds to the two-
dimensional space of homogeneous hermitian polynomials of degree 1 [2]. �

Remark 4.1. As Knopf has observed in [13], if one is concerned only with
instabilities that are geometrically meaningful, then, up to diffeomorphims,
one needs only deal with perturbations that preserve volume. Along such
perturbations, we see that L is linearly stable.

4.2. λ �= 0. Now we consider the case where our bundle is not flat. In this
case, our operator has the form

(4.5) L

(
v
b

)
=

(
Δv + (Rh − λ2)v λ〈db, dV 〉

−λ div(vdV ) Δdb

)
.

Lemma 4.8. L : L2(C∞(M)) ⊕ L2(Ω1(M)) → L2(C∞(M)) ⊕ L2(Ω1(M))
is a self-adjoint operator.

Proof. By definition of the L2 inner product, we have

(
L

(
v
b

)
,

(
w
c

) )
L2

=
∫

((Δv, w) + (−λ2 + Rh)(v, w) + (Δdb, c))dμ

+
∫

λ(db, dV )w + (−λ div(vdV ), c)dμ.
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Clearly the first integral is equal to
∫

((v,Δw) + (Rh − λ2)(v, w) +
(b, Δdc))dμ. The second integral becomes

∫
(λ(db, dV )w − λ div(vdV ), c)dμ =

∫
(λ(db, wdV ) + λ(d�(vdV ), c))dμ

=
∫

(λ(b, d�(wdV ) + λ(vdV, dc))dμ

=
∫

(−λ(b, div(wdV )) + λ(dc, dV )v)dμ.

Thus we see that indeed
(

L

(
v
b

)
,

(
w
c

) )
L2

=
( (

v
b

)
, L

(
w
c

) )
L2

, i.e., L is

self-adjoint. �

Lemma 4.9. If Rh ≤ 0, then σ(L) ⊂ (−∞, 0].

Proof. We have the following simple computation:

(
L

(
v
b

)
,

(
v
b

) )
= (Δv, v) + (Rh − λ2)‖v‖2 + (Δdb, b) + 2λ(db, vdV )

= −‖∇v‖2 + (Rh − λ2)‖v‖2 − ‖db‖2 − ‖d�b‖2

+ ‖db‖2 + λ2‖v‖2

≤ 0,

where the second line follows from Cauchy–Schwartz.
We claim that σ(L) contains zero eigenvalues corresponding to ordered

pairs of the form (0, b), where b is harmonic. In particular, b being harmonic
implies that db = 0, so the computation above implies that such pairs yield
a zero eigenvalue. These are, in fact, the only zero eigenvalues. In general,
we have the following estimate:

(
L

(
v
b

)
,

(
v
b

) )
≤ −‖∇v‖2 + (Rh − λ2)‖v‖2 − ‖db‖2 − ‖d�b‖2

+ ‖db‖2 + λ2‖v‖2

= −‖∇v‖2 + Rh‖v‖2 − ‖d�b‖2.
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As long as v is not a constant or d�b �= 0, then
(

L

(
v
b

)
,

(
v
b

) )
< 0. If both

v = C and d∗b = 0 (and db �= 0), then

L

(
v
b

)
=

(
(Rh − λ2)v 0

0 db

)

�= 0
(

v
b

)
.

If v = C and b is harmonic, then clearly there is no zero eigenvalue. �

Lemma 4.10. If Rh > 0, the spectrum of L can be computed in several
cases. If |λ| = 1

2 or 1, then σ(L) ∩ (0,∞) �= ∅. If |λ| > 1, then σ(L) ⊂
(−∞,−δ] for some δ > 0.

Proof. By Lemma 2.3, we see that λ can only attain specific values deter-
mined by the Chern number of the bundle. The U(1)-bundles over S2 are in
one–one correspondence with elements of Z and are determined up to equiv-
alence by their first Chern class. In particular, two bundles are equivalent if
they have n ∈ Z as their Chern number (see, e.g., Chapter 6.1 in [16]). Then
λ = n

2 , again by Lemma 2.3. We first consider the case of |λ| > 1. As above,
we can compute
(

L

(
v
b

)
,

(
v
b

) )
= (Δv, v) + (2 − λ2)‖v‖2 + (Δdb, b) + 2λ(db, vdV )

= −‖∇v‖2 + (2 − λ2)‖v‖2 + α2λ

∫
(db, vdV ) + (1 − α)2λ

×
∫

(db, vdV ) + α

∫
(Δdb, b) + (1 − α)

∫
(Δdb, b)

≤ −‖∇v‖2 + (2 − λ2)‖v‖2 + α(
1
α

‖∇v‖2 +
αλ2

4
‖b‖2)

+ (1 − α)(‖db‖2 + λ2‖v‖2) − 2α‖b‖2

+ (1 − α)(−‖db‖2 − ‖d�b‖2)

≤ (2 − αλ2)‖v‖2 + α(
αλ2

4
− 2)‖b‖2,

where α ∈ (0, 1) is to be chosen later. We also used Cauchy–Schwartz and the
fact that the first eigenvalue of Δd acting on one-forms on S2 is −2. Then we
need to find δ > 0 and α ∈ (0, 1) such that 2 − αλ2 ≤ −δ and α(αλ2

4 − 2) ≤
−δ. This amounts to the bounds 2+δ

α ≤ λ2 ≤ 8
α − 4δ

α2 . It is clear that for
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λ2 > 2, we can choose such an α and a δ small enough to make these bounds
hold. Since λ is quantized, the smallest such value we have to apply these
bounds to is λ2 = 9

4 . In these cases, the spectrum is strictly negative.
Let us now consider the remaining two cases: |λ| = 1

2 and |λ| = 1. In both
of these cases, we can explicitly show the existence of a positive eigenvalue,
corresponding to ordered pairs of the form (v, 0), where v is constant. The
computation is the same as that in the λ = 0 case; we obtain μ = 7

4 for λ = 1
2

and μ = 1 for λ = 1 as eigenvalues for Lλ. �

In the case of Rh ≤ 0, we have zero eigenvalues, so we again have the
existence of a center manifold and can apply Theorem 1.1. For Rh > 0 and
|λ| = 1

2 , 1, we again have unstable directions corresponding to the constant
functions on S2. For Rh > 0 and |λ| > 1, we will be able to apply Theo-
rem 1.2.

5. Stability of the Ricci Yang–Mills Flow

We are finally ready to state the center manifold theorem for the Ricci
Yang–Mills flow over surfaces with Rh ≤ 0.

Theorem 5.1. Let (u, a) be a Yang–Mills connection over a surface with
constant curvature R ≤ 0. Then Xα admits the decomposition

X
s
α ⊕ X

c
α,

where X
c
α corresponds to the algebraic eigenspace of 0. There exists d0 > 0

such that for all d ∈ (0, d0], there is a C∞ manifold Mc
loc that is locally

invariant for solutions of (2.3) as long as they remain in B(Xc
1, (u, a), d).

It is such that T(u,a)Mc
loc

∼= X
c. Mc

loc is a unique local center manifold con-
sisting of Einstein Yang–Mills metrics. Mc

loc is 2g-dimensional for Rh < 0
and three-dimensional for Rh = 0.

There are constants C > 0, ω > 0, and d ∈ (0, d0], such that

‖πs((v, b)) − φ(πc((v, b))‖X1 ≤ Ce−ωt‖πs((v(0), b(0)) − φ(πc((v(0), b(0)))‖Xα

for all solutions (v, b) with (v(0), b(0)) ∈ B(Xα, (u, a), d) and all times t ≥
0 such that the solutions remain in this ball. Here πs and πc denote the
projections onto X

s
α and X

c
α, respectively.

Remark 5.1. In particular, this theorem states that any bundle that solves
NGRYM with (v(0), b(0)) close enough to an Einstein Yang–Mills metric will
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have its conformal factor and connection one-form converge exponentially
fast to those of the Einstein Yang–Mills metric.

Proof. By Theorem 1.1, we obtain the existence of local Cr center manifolds
to which solutions to NGRYM that are sufficiently close to (u, a) converge
exponentially fast, as long as solutions remain in the given neighborhood
of the fixed point. Note that the family of center manifolds Mc

loc(r) are in
fact independent of r and consist precisely of Einstein Yang–Mills connec-
tions. To see why this is so, let (v, b) be an Einstein Yang–Mills connection
sufficiently close to (u, a) that is not contained in Mc

loc. By Theorem 1.1,
(v, b) would converge exponentially fast to the center manifold. But this con-
tradicts the fact that (v, b) is a fixed point. Since the space of Yang–Mills
connections over a Riemann surface is 2g-dimensional, we see that the cen-
ter manifolds consist precisely of such pairs. In the case of Rh = 0, the local
center manifolds again consist of Einstein Yang–Mills metrics, but we allow
the conformal factor to be any constant. So the dimension is 3. The analysis
follows in the same way.

Finally, we would like to check that solutions to NGRYM that start in
a sufficiently small neighborhood of an Einstein Yang–Mills metric actually
stay there. Note that | ∂

∂tv| = |Revh + r + 1
2 |F |2 − 1

2f | ≤ C1e−ω1t for some
C1, ω1 > 0 as long as (v, b) stays in B(Xα, (u, a), d). Also, | ∂

∂tb| = | − d�F −
dd�b| ≤ C2e−ω2t for some C2, ω2 > 0 while (v, b) stays in the ball. Let 0 <
d′ < d small such that for all (v̄, b̄) with initial data (v̄, b̄)(0) ∈ B(Xα,
(u, a), d′),

|v̄(t) − u| ≤ |v̄(t) − v̄(0)| + |v̄(0) − u| < d,

and similarly for b̄. These estimates are independent of time, so we see
that (v, b) remains in B(Xα, (u, a), d). The rest of the theorem follows from
Theorem 1.1. �

Now we consider the case of Rh > 0. In this setting, our stability result
depends on the value of λ. For |λ| ≥ 3

2 , we saw that there exists a δ > 0,
depending on λ such that σ(L) ⊂ (−∞,−δ]. So we obtain the following
theorem.

Theorem 5.2. Let (u, a) be an Einstein Yang–Mills metric over a surface
of constant curvature Rh > 0 with Chern number |c| ≥ 3 and let δ0 ∈ [0, δ).
Then for all α ∈ (0, 1), there are constants Cα independent of (u, a) and
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d̂ ∈ (0, d0] such that, if (ū, ā)(0) ∈ B(Xα, d̂, (u, a)), then

‖(ū, ā)(t) − (u, a)‖X1 ≤ Cα

t1−α
e−δ0t‖(ū, ā)(0) − (u, a)‖Xα

as long as (ū, ā)(t) stays in B(Xα, d̂, (u, a)).

Proof. We begin by noting that (u, a) is a unique fixed point, since we have
fixed a gauge. Then the proof of the theorem follows in the same fashion as
that of Theorem 5.1. �

We would like to use a lemma from [6] to show that the convergence of
NGRYM implies that of NRYM.

Lemma 5.1 (Lemma 3.5,[6]). Let V (t) be a vector field on a Riemannian
manifold (Mn, g(t)), where 0 ≤ t < ∞, and suppose there are constants 0 <
c ≤ C < ∞ such that

sup
x∈MN

|V (x, t)|g(t) ≤ Ce−ct.

Then the diffeomorphisms φt generated by V converge exponentially to a
fixed diffeomorphism φ∞ of M .

Proposition 5.1. Let (u0, a0) be an Einstein Yang–Mills metric with a0
written in the Coulomb gauge. Suppose there exists a neighborhood O of
(u0, a0) measured in the ‖ · ‖2α+ε norm such that for every (ũ0, ã0) ∈ O,
the unique solution (ū, ā) to NGRYM converges to an Einstein Yang–Mills
metric (ū∞, ā∞). Then the unique solution (ũ, ã) to NRYM with initial
data (ũ0, ã0) converges exponentially fast to an Einstein Yang–Mills
metric (ũ∞, ã∞).

Proof. Since F is invariant under gauge transformation, it is clear that ã∞
is Yang–Mills. So we need to show that ã converges to a limit. We have that
ā → ā∞ exponentially fast, so in particular, d�ā → 0 exponentially fast. Thus
our vector field W from Lemma 2.2 converges to 0 exponentially fast. Our
result follows from the previous lemma. �
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