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Contracting convex immersed closed plane curves
with fast speed of curvature

Chi-Cheung Poon and Dong-Ho Tsai

We study the contraction of a convex immersed plane curve along
its normal vector direction with speed function 1

αkα, where k > 0
is the curvature of the evolving curve and α > 1 is a constant. We
show that the blow-up rate of the curvature is always of type one
and the rescaled solution will converge to a limit that may or may
not be degenerate.

1. Introduction

Let γt, t ∈ [0, T ), be a family of convex1 closed plane curves given by smooth
immersions Xt = X(·, t) : S1 → R

2, where S1 is the unit circle. The curves
γt are said to evolve (contract) under the kα flow, where α > 1 is a constant,
if we have

(1.1)
∂X

∂t
(u, t) =

1
α

kα(u, t) · N(u, t), ∀(u, t) ∈ S1 × [0, T ).

Here k(·, t) is the curvature of γt and N(·, t) is the unit normal vector of the
curve γt. Throughout this paper the constant α is assumed to be α > 1.2

Here we use the convention that for convex plane curves the curvature k > 0
is positive everywhere and as for the direction of the normal N, we choose
N = (0, 1) at a point with minimum y-coordinate and extend it continuously
to the whole curve.

The purpose of this paper is to look at the evolution under (1.1) of a given
smooth convex immersed closed plane curve γ0 and study its asymptotic
behavior. “Immersed” means that γ0 may have self-intersections.

The case when α = 1 in (1.1) is the well-known curve shortening flow. See
Gage-Hamilton [12] for the convex embedded case (i.e., γ0 is embedded) and
Angenent [5], Angenent-Velázquez [6] for the convex immersed case (i.e., γ0

1When a convex closed curve has self-intersections, convex always means “locally
convex.” It has positive curvature everywhere.

2Since α > 1, for convenience, we call (1.1) fast speed contraction. If 0 < α < 1,
then we call (1.1) slow speed contraction.
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is immersed). The evolution behavior for solutions to equation (1.1) for α ∈
(0, 1), α = 1, α ∈ (1,∞), are quite different. For embedded case with general
α ∈ (0,∞), one can see the nice paper by Andrews [2] and the references
cited therein for the existing research results. One can also see the references
in the book by Chou-Zhu [9]. It provides an excellent and unified account
of many results related to the evolution of plane curves by curvature.

The only results for the immersed case, as far as we know, are those
appeared in [5, 6] (both are for the case α = 1). Other than that, very little
is known. From those elaborate estimates established in [5, 6], one can sense
the difficulty of the problem when α = 1. For α ∈ (0, 1), the behavior of the
flow is more or less analogous to the case α = 1; see [17]. But fortunately
when α > 1, the problem becomes much easier as we only have type one
blow-up of the curvature (see Proposition 1.1 below), but this is not so
when α = 1 or when α ∈ (0, 1).

In addition to the contrast in blow-up behavior, there is also another
interesting difference: when α = 1, if we have type one curvature blow-up,
the limiting rescaled curvature is everywhere positive (described by the so-
called Abresch-Langer functions; see Theorem A in [5]); but for α > 1, the
limiting rescaled curvature is only non-negative. It can be zero somewhere.
See the discussion below.

Let γ0 be a given smooth convex immersed closed plane curve (with
rotation index m ∈ N, m ≥ 1) given by a smooth immersion X0 : S1 → R

2.
Following the arguments of [5, 12, 22], there exists a unique smooth solution
X(u, t) : S1 × [0, T ) → R

2 to the initial value problem

(1.2)

⎧
⎨

⎩

∂X

∂t
(u, t) =

1
α

kα(u, t) · N(u, t), α > 1,

X(u, 0) = X0(u), u ∈ S1

for some short time T > 0, with each γt := X(·, t) representing a smooth
convex immersed closed curve (with the same rotation index m). Moreover,
(1.2) is equivalent to the following scalar PDE for the curvature function
k(θ, t):

(1.3)
⎧
⎨

⎩

∂k

∂t
(θ, t) = k2(θ, t)

[(
1
α

kα

)

θθ

(θ, t) +
(

1
α

kα

)

(θ, t)
]

, (θ, t) ∈ Tm × [0, T ),

k(θ, 0) = k0(θ) > 0, θ ∈ Tm,

where k0(θ) is the curvature of the initial curve γ0. Here the variable θ ∈
Tm = R/2mπZ is the angle of the tangent vector of γt. For each t ∈ [0, T ),
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k(θ, t) is a smooth function defined on Tm, which means that it is defined
over R with period 2mπ, m ≥ 1. One can see [2, 12] or [22] for details of the
equivalence.

By parabolic theory, given a smooth k0(θ) > 0, the smooth solution
k(θ, t) to Equation (1.3) exists on some maximal time interval [0, Tmax)
where

lim
t→Tmax

kmax(t) = ∞, kmax(t) := max
x∈Tm

k(θ, t)

and kmin(t) is increasing on [0, Tmax) due to the maximum principle. It is also
known that kmax(t) is eventually increasing in time. Since α > 1, it implies
Tmax < ∞. If we set v(θ, t) = kα(θ, t), (1.3) becomes the simpler form

(1.4)

⎧
⎨

⎩

∂v

∂t
(θ, t) = vp(θ, t)[vθθ(θ, t) + v(θ, t)], (θ, t) ∈ Tm × [0, Tmax),

v(θ, 0) = v0(θ) := kα
0 (θ) > 0, θ ∈ Tm,

where the exponent p = 1 + 1
α , α > 1, lies in the range p ∈ (1, 2).

From now on we shall focus on the scalar Equation (1.4) as it is easier
to handle than the system (1.2). We note that Equation (1.4) is similar to
Equation (4) in [13]. A lot of estimates and methods of proof established
in [13] are also applicable here. We shall refer to the paper [13] quite often.

If we let R(t) be the unique solution to the ODE

(1.5)
dR

dt
= Rp+1(t), R(Tmax) = ∞,

then R(t) = [p(Tmax − t)]−1/p and similar to p. 155 of [13], one can use
Jensen’s inequality and comparison principle to derive

(1.6)

0 < vmin(t) ≤
(

1
2mπ

∫ mπ

−mπ
v1−p(θ, t)dθ

) 1
1−p

≤R(t) ≤ vmax(t), ∀t ∈ [0, Tmax).

In particular, we have the estimate on the blow up time Tmax:

(1.7)

1
2mπ

(∫ mπ

−mπ
v1−p
0 (θ)dθ

) 1
1−p

≤R(0) =
(

1
pTmax

)1
p

≤ vmax(0), v0(θ) = kα
0 (θ).
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Due to the special form of the equation, we also have the integral identity

(1.8)
∫ mπ

−mπ
v1−p(θ, t)eiθdθ =

∫ mπ

−mπ
v1−p
0 (θ)eiθdθ = 0, ∀t ∈ [0, Tmax)

where eiθ = cos θ + i sin θ and the second equality holds since γ0 is a closed
curve.

We next define the following terminology:

Definition 1.1. Let v(θ, t) be the solution to (1.4) on [0, Tmax). If there
exists a constant C, independent of time, such that

(1.9) 0 < vmax(t) ≤ CR(t), ∀t ∈ [0, Tmax)

then we say v(θ, t) has type one blow-up. Otherwise we say it has type two
blow-up.

A type two blow-up is definitely much more complicated than type one
blow-up. Fortunately we have the following:

Proposition 1.1. For solution v(θ, t) to (1.4) which blows up at t = Tmax,
there is a constant C > 0, independent of time, such that

(1.10) vmax(t) ≤ C(Tmax − t)−1/p, ∀t ∈ [0, Tmax).

That is, there is only type one blow-up in (1.4) when p ∈ (1, 2).

Remark 1.1. If p ≥ 2 in Equation (1.4), then estimate (1.10) fails in
general. See [17].

Proof. The proof is similar to the case p ∈ (0, 1), which corresponds to the
expanding of a convex immersed closed curve γ0 ⊂ R

2 with speed 1/(αkα),
α > 1. See Proposition 8 and Remark 9 in [13] for details. �

By (1.10), if we use flow (1.2) to contract a smooth convex immersed
closed curve γ0 ⊂ R

2, then the curvature function k(θ, t) of γt satisfies

(1.11) 0 < kmax(t) ≤ C(Tmax − t)−1/(1+α), ∀t ∈ [0, Tmax).

2. The rescaling

Our next step is to consider the rescaled curvature (or rescaled v) and study
its asymptotic behavior. The type one blow-up (1.10) indicates an obvious
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way of rescaling given by u(θ, t) := v(θ, t)/R(t), t ∈ [0, Tmax), and if we let
τ ∈ [0,∞) be the new time given by t = Tmax(1 − e−pτ ), then the function

(2.12) u(θ, τ) = p1/pT 1/p
max e−τ · v(θ, Tmax(1 − e−pτ )), (θ, τ) ∈Tm × [0,∞)

will be a positive, bounded solution (due to (1.10)) of the rescaled equation

(2.13)

⎧
⎨

⎩

∂u

∂τ
= up(uθθ + u − u1−p), p ∈ (1, 2),

u(θ, 0) = u0(θ) := v0(θ)/R(0) > 0

on Tm × [0,∞), satisfying

(2.14) 0 < umin(τ) ≤ 1 ≤ umax(τ), ∀τ ∈ [0,∞).

We note that Propositions 5–7, Lemma 10, Corollary 11 and Proposition
12 in [13] are all valid here for solution v(θ, t) to (1.4) and for solution u(θ, τ)
to (2.13). In particular, we have the following uniform gradient estimate:

(2.15) |uθ(θ, τ)| ≤ C, ∀(θ, τ) ∈ Tm × [0,∞),

where C is a constant depending only on γ0 and p.
We now can conclude the following:

Proposition 2.1. For any sequence τn → ∞, there is a subsequence, which
we also call it τn, so that u(θ, τn) converges uniformly on Tm to a Lipschitz
function w(θ) ≥ 0, which is 2mπ-periodic over R and satisfies

(2.16) 0 ≤ min
θ∈Tm

w(θ) ≤ 1 ≤ max
θ∈Tm

w(θ).

Moreover, over the open set Ω+ = {θ ∈ R : w(θ) > 0}, w(θ) is smooth and
satisfies the ODE

(2.17) w′′(θ) + w(θ) − w1−p(θ) = 0, ∀θ ∈ Ω+.

Remark 2.1. Since p ∈ (1, 2), in case Ω+ is a proper subset of R, then
w′′(θ) blows up at the boundary of Ω+. This is different from the case p ∈
(0, 1).

Remark 2.2. By regularity theory, u(θ, τn) actually converges (passing to
a further subsequence if necessary) in C∞(I) to w(θ) as n → ∞, where I is
any compact subset of Ω+. The reason is that, roughly speaking, Equation
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(2.13) is uniformly parabolic on I along the sequence of time τn. We shall
need this result in the proof of Theorem 3.1. Also see Section 6 for details.

Proof. It suffices to show that w(θ) is smooth and satisfies the ODE (2.17) on
Ω+.For any interval [a, b] ⊂ Ω+ and any test function ϕ ∈ C∞

0 [a, b], similar
to the proof of Proposition 14 in [13], we have

(2.18)
∫ b

a
[w(θ)φ′′(θ) + w(θ)φ(θ) − w1−p(θ)φ(θ)]dθ = 0.

Hence w(θ) solves the ODE (2.17) in weak sense over the open set Ω+ (note
that since |uθ(θ, τ)| is uniformly bounded, the function w ∈ W 1,2(Tm)). Since
w(x) > 0 in Ω+, by regularity theory we actually have w(x) ∈ C∞(Ω+). �

For convenience we introduce the following terminology: we say the limit
w(θ) is non-degenerate if w(θ) > 0 everywhere over R. Otherwise we call it
degenerate. The reason for this terminology is that PDE (2.13) will degener-
ate eventually if w(θ) is degenerate. When w(θ) is non-degenerate, it gives
rise to a self-similar solution (or call it homothetic solution). Such solutions
are similar to the Abresch-Langer functions in curve shortening flow (α = 1).
We also know that, in curve shortening flow, degenerate limit cannot happen
in type one blow-up.

The next step is to show that we actually have the convergence of u(θ, τ)
to the limit function w(θ) as τ → ∞, not just along a sequence of times
τn ↗ ∞. We need one more property of u which will be used very often.

Lemma 2.1. For any θ0 ∈ Tm, there is a τ0 > 0 so that uθ(θ0, τ) does not
change sign for all τ > τ0, i.e., the limit limτ→∞ sgn(uθ(θ0, τ)) exists, where
by definition

(2.19) sgn(ξ) = 1 if ξ > 0; sgn(ξ) = 0 if ξ = 0; sgn(ξ) = −1 if ξ < 0.

Moreover, if limτ→∞ sgn(uθ(θ0, τ)) = 0, then u(θ0, τ) is symmetric with
respect to θ0.

Proof. This is a consequence of Theorem C in p. 267 of [19]. �

3. The convergence

To prove the full convergence of u(θ, τ) as τ → ∞, we shall rely on the
result of Lemma 2.1. We first need to study more on the solution behavior
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of the ODE (2.17). Let w(θ) be the function from Proposition 2.1 and set
M = maxθ∈R w(θ) ≥ 1, � = minθ∈R w(θ) ≤ 1. We know that whenever w(θ)
is positive, it must satisfy ODE (2.17). In view of this, if M ∈ [1, γ), where
γ = [2/(2 − p)]1/p > 1, p ∈ (1, 2), then on the maximal connected open inter-
val I ⊂ Ω+ where M is attained we have

(3.20)
(w′(θ))2

2
+

w2(θ)
2

− 1
2 − p

w2−p(θ) =
M2

2
− 1

2 − p
M2−p for all θ ∈ I.

From it we can see that w(θ) is actually a C2 positive entire solution of the
ODE (2.17) over R when M ∈ [1, γ). When M = 1, w(θ) ≡ 1 everywhere;
when M ∈ (1, γ), we have � ∈ (0, 1) with F (M) = F (�), where F (s) is the
function given by

(3.21) F (s) =
s2

2
− 1

2 − p
s2−p, s ∈ (0,∞), F (0) = F (γ) = 0.

When M ∈ [γ,∞), the limit w(θ) attains zero somewhere. Assume
w(0) = M . If M = γ, w(θ) is a symmetric bump over I = [−π/p, π/p] descri-
bed by (3.24) below with w(θ) = w′(θ) = 0 at θ = ±π/p. If M > γ, w(θ)
still looks like a symmetric bump but is supported on a smaller interval
I = (−β, β) with w′(β−) = −w′((−β)+) < 0, β ∈ (π/2, π/p). The value of
w′(β−) is related to the maximum M via the identity

(3.22)
(w′(β−))2

2
=

M2

2
− 1

2 − p
M2−p > 0, M ∈ [γ,∞).

Finally, we see that as M → ∞, w′(β−) → −∞ and the interval I = (−β, β)
shrinks to (−π/2, π/2). See [23] for details.

Another important property is that if w is a positive entire solution of
(2.17) over R, its minimal period is a monotone function of its maximum
value M . See [3].

We also note that if w1 and w2 are two different positive entire solutions
of (2.17) over R with different periods, one can find a point θ∗ ∈ R such that

(3.23) w′
1(θ∗)w′

2(θ∗) < 0.

In case w1 and w2 are two different positive entire solutions of (2.17) but
only differ by a translation, (3.23) still holds. Finally, if at any θ ∈ R we
have w1(θ) = w2(θ), then the difference (w′

1(θ))
2 − (w′

2(θ))
2 is a constant

independent of θ due to (3.20).



30 Chi-Cheung Poon and Dong-Ho Tsai

We are now ready to prove the following full convergence:

Theorem 3.1. As τ → ∞, u(θ, τ) converges uniformly on Tm to a Lipschitz
function w(θ) ≥ 0, which is 2mπ-periodic over R (as described in Proposi-
tion 2.1).

Proof. We prove by contradiction. By Proposition 2.1 there is a sequence
τn → ∞ so that u(θ, τn) converges uniformly on Tm to a Lipschitz func-
tion w(θ) ≥ 0. Let M = maxθ∈R w(θ). Assume there exists another sequence
sn → ∞ so that u(θ, sn) converges uniformly to a different Lipschitz func-
tion w̄(θ) and let M̄ = maxθ∈R w̄(θ). In case M �= M̄, say M < M̄, then
similar to the continuity result observed in p. 167 of [13] for p ∈ (0, 1), for
p ∈ (1, 2) we also have the following result: for any M̃ ∈ (M, M̄), there exists
a sequence rn → ∞ so that u(θ, rn) converges uniformly to some Lipschitz
function w̃(θ) with maxθ∈R w̃(θ) = M̃, and it is smooth and satisfies the
ODE (2.17) whenever it is positive.

Since either M ∈ [1, γ) or M ∈ [γ,∞), and the same for M̄, there are
several cases to discuss. Note that although w(θ) is different from w̄(θ), it
may be possible to have M = M̄ .

Case 1: M ∈ [1, γ) and M̄ ∈ [1, γ).

For M = 1we have w(θ) ≡ 1, hence M̄ ∈ (1, γ). By the above continuity
result, one can find two sequences going to infinity such that the corre-
sponding limits w1, w2 of u are two different entire positive solutions of the
ODE (2.17) over R with different maximum values (or equivalently, different
periods). Moreover, there is a point θ∗ ∈ R such that (3.23) holds. It will con-
tradict Lemma 2.1 (see Remark 2.2 also). Similarly for M ∈ (1, γ), M̄ = 1.

For M ∈ (1, γ) and M̄ ∈ (1, γ) with M �= M̄, by the same reason as in
the above sign consideration, it is impossible to happen. If M = M̄, then
since they are both entire positive solutions of the ODE (2.17), uniqueness
implies that they only differ by a translation, i.e., w̄(θ) = w(θ + θ0) for some
θ0 ∈ R. But if w(θ) and w̄(θ) does not coincide, one can find some point θ∗
with w′(θ∗)w̄′(θ∗) < 0. Again this contradicts Lemma 2.1.

Case 2: M ∈ [1, γ) and M̄ ∈ [γ,∞) (or M ∈ [γ,∞) and M̄ ∈ [1, γ)).

In this case, one can also find two sequences going to infinity such that
the corresponding limits w1, w2 of u are two different entire positive solu-
tions of the ODE (2.17) over R with different maximum values. The same
discussions as in Case 1 exclude this case.

As a result of the above, we only have to consider the case where both
M and M̄ ∈ [γ,∞).
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Case 3A: M = M̄ = γ.

Without loss of generality, we may assume that w(θ) attains its maxi-
mum γ at θ = 0. In such a case, over the domain [−π/p, π/p], w(θ) is given
explicitly by (see Section 3 in [13] also)

(3.24) w(θ) =
[

2
2 − p

cos2
(p

2
θ
)] 1

p

, θ ∈ [−π/p, π/p].

One can check that w(±π/p) = w′(±π/p) = 0. However w′′(θ) blows up at
θ = ±π/p.

On other maximal connected open interval I where w > 0 on I, it also
looks like the bump given by (3.24); otherwise we have maxθ∈I w(θ) ∈ (1, γ),
which will force w(θ) to be entire and positive over R. Thus w(θ) is composed
of one or several bumps of the form (3.24), joined together by zero function.
The same for w̄(θ).

Since w(θ) is different from w̄(θ), due to Lemma 2.1 there must be some
interval J of the form J = [θ0 − π/p, θ0 + π/p] for some θ0 such that w(θ) is
a symmetric bump over J but w̄(θ) ≡ 0 on J . We have limn→∞ u(θ0, τn) = γ
and limn→∞ u(θ0, sn) = 0. By continuity argument, for any M̃ ∈ (0, γ), there
exists a sequence rn → ∞ so that limn→∞ u(θ0, rn) = M̃ . We can choose
M̃ ∈ (1, γ) and so u(θ, rn) converges uniformly to a function w̃(θ) with
w̃(θ0) = M̃ , where by Lemma 2.1 again, we have w̃′(θ) ≥ 0 on the left-hand
side of θ = θ0 and w̃′(θ) ≤ 0 on the right-hand side. Hence w̃(θ0) = M̃ ∈
(1, γ) must be a local maximum. Again this will imply w̃(θ) to be entire and
positive over R. By Case 2 it will yield a contradiction.

Case 3B: M = γ and M̄ > γ (or M > γ, M̄ = γ).

According to the above observation, in this case, without loss of gener-
ality, we may assume the existence of three sequences of time τ1n, τ2n, τ3n

such that along them u(θ, ·) converges uniformly to three different bumps
(all centered at θ = 0, with maximum at θ = 0 ) w1, w2, w3 with maximum
values M1 = γ, M2 ∈ (M1, M3), M3 = M̄ > γ. They are supported on closed
intervals I1, I2, I3 with I1 ⊃ I2 ⊃ I3, where I1 = [−π/p, π/p]. That is, the
higher the maximum, the smaller the support. By Lemma 2.1, w2 = 0 on
I1 − I2, w3 = 0 on I1 − I3.

For simplicity, we write Ii = [−αi, αi], i = 1, 2, 3, where α1 = π/p > α2
> α3 > 0. By uniqueness, any two of these three functions intersect in a
transversal way. Let η > 0 be small and let I∗

1 = [−α2 − η, α2 + η]. We have
I2 ⊂ I∗

1 ⊂ I1. Over I∗
1 , we have w1(θ) ≥ ε > 0 for some ε > 0, and by para-

bolic regularity theory, u(θ, τ1n) converges to w1(θ) in C1 over I∗
1 . Also any
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two of these three functions have exactly two transversal intersection points
on I∗

1 , symmetric with respect to the y-axis. In the following picture, we
choose p = 1.5 and w1(θ) is the bump function given by (3.24).

We shall consider the intersection of w1(θ) with a small translation of
w2(θ). For fixed |θ0| < η, consider the function w2(θ − θ0), where θ ∈ I∗

1 =
[−α2 − η, α2 + η]. Then

{
w2(θ − θ0) > 0 in the interior of I2 + θ0 = [−α2 + θ0, α2 + θ0],
w2(θ − θ0) = 0 on I∗

1 − (I2 + θ0).

As η > 0 is small, we see that for any |θ0| < η, w1(θ) and w2(θ − θ0) still
have exactly two transversal intersection points on I∗

1 . We also note that,
by continuity, there exists some number λ > 0, independent of |θ0| < η, such
that if a translation w2(θ − θ0) intersects w1(θ) at some θ = θ∗, then

(3.25) |w′
1(θ∗) − w′

2(θ∗ − θ0)| ≥ λ > 0.

Since u(θ, τ1n) converges to w1(θ) in C1 over I∗
1 , and for any |θ0| < η,

w1(θ) and w2(θ − θ0) has exactly two intersection points (transversal in an
uniform way due to (3.25)) on I∗

1 , there exists a large number N , independent
of |θ0| < η, such that u(θ, τ1n) − w2(θ − θ0) has exactly two simple zeros over
I∗
1 for all n ≥ N and all |θ0| < η.

Note that on I2 both u(θ, τ) and w2(θ) are solutions to the PDE

(3.26)
∂u

∂τ
= up(uθθ + u − u1−p), τ ∈ [0,∞).
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Their difference u(θ, τ) − w2(θ) is positive (hence non-zero) on the boundary
of I2 for all time. By Angenent’s result (see [5, pp. 607, 609]), the number of
zeros of u(θ, τ) − w2(θ), even counted with multiplicity, is non-increasing in
time τ ∈ [0,∞) over I2. Moreover since w2(θ − θ0) is also a solution to (3.26)
on I2 + θ0, the number of zeros of u(θ, τ) − w2(θ − θ0) is non-increasing in
time τ ∈ [0,∞) over I2 + θ0. Because w2(θ − θ0) = 0 on I∗

1 − (I2 + θ0) and
u > 0 on I∗

1 − (I2 + θ0), we conclude that for any |θ0| < η, the number of
zeros of u(θ, τ) − w2(θ − θ0) is non-increasing in time τ ∈ [0,∞) over I∗

1 .
On the other hand, along the sequence of times τ1N , τ1N+1, τ1N+2, . . ., we
know that u(θ, ·) − w2(θ − θ0) has two simple zeros over I∗

1 for all |θ0| < η.
Hence there exists some time T > 0 (for example one can choose T = τ1N ),
independent of |θ0| < η, so that the function u(θ, τ) − w2(θ − θ0) has exactly
two simple zeros over I∗

1 for all τ > T and all |θ0| < η.
Since u(0, τ3n) converges to w3(0) = M3 > M2, there are infinitely many

τ so that
max
θ∈I∗

1

u(θ, τ) > max
θ∈I∗

1

w2 = M2.

Similarly, since u(0, τ1n) converges to w1(0) = M1 < M2, there are infinitely
many τ so that

max
θ∈I∗

1

u(θ, τ) < max
θ∈I∗

1

w2 = M2.

By continuity, there is an infinite sequence ξn → ∞ so that

(3.27) max
θ∈I∗

1

u(θ, ξn) = M2, ∀n.

By choosing subsequence if necessary, we may also assume that u(θ, ξn)
converges to a Lipschitz function v(θ) uniformly on I∗

1 , with maxθ∈I∗
1
v(θ) =

M2. From the above discussion, v(θ) must have a local maximum at θ = 0
and is a solution of the ODE (2.17) as long as v(θ) > 0. As v(0) = M2, we
actually have v(θ) = w2(θ) for θ ∈ I2.

By (3.27) and the fact that u(θ, ξn) converges to w2(θ) uniformly on
I∗
1 , continuity argument implies the existence of some time s > T so that

over the interval I∗
1 , u(θ, s) has a maximum at some θ = θ0 with |θ0| < η,

and u(θ0, s) = M2. Hence over I∗
1 , u(θ, s) − w2(θ − θ0) has a double zero

at θ = θ0, |θ0| < η, and time s > T , contradicting to the above observa-
tion (by definition, a function f(θ) has a double zero at θ0 means that
f(θ0) = f ′(θ0) = 0).

Case 3C: M > γ and M̄ > γ.

This case can be argued in ways similar to Case 3B. We omit it.
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The proof of Theorem 3.1 is now complete. �

4. Converging to a degenerate limit

As the blow-up rate is always of type one, a remaining question is whether
the limit w(θ) is degenerate or not. In this section, we show the existence of
an initial curve so that the limit w(θ) is degenerate, i.e., w(θ) = 0 somewhere.
Geometrically, it means that when we blow down the curvature by rescaling,
the non-blow-up part of the curvature goes into the region where w(θ) = 0.

We provide two methods. The first one is simple, based on a method
similar to that in p. 630 of [5]. We consider the contraction of a symmetric
cardioid-like curve (with rotation index m = 2) and see that its blow-up set
is a proper subset of Tm (now m = 2). The second one is more complicated,
based on period and energy considerations. In this approach, we need to
assume that the rotation index m ∈ N is large enough. However, the second
method can allow the initial data to be non-symmetric (see Remark 4.6).

Our first convergence result is:

Lemma 4.1. Let m ≥ 2, m ∈ N, and let θ∗ be any number satisfying

(4.28)
π

2
< θ∗ ≤ π.

Then there exists a positive symmetric initial data v0(θ), θ ∈ Tm, of (1.4)
satisfying

(4.29)
∫ mπ

−mπ
v1−p
0 (θ)eiθdθ = 0, eiθ = cos θ + i sin θ

such that the corresponding rescaled solution u(θ, τ) converges uniformly
to a 2mπ-periodic Lipschitz function w(θ) ≥ 0. Moreover w(θ) is a bump-
like function, symmetric with respect to θ = 0, with support contained in
(−θ∗, θ∗).

Remark 4.1. Since p ∈ (1, 2), we also have π/2 < π/p < π. Hence if one
choose θ∗ such that π/2 < θ∗ ≤ π/p < π, then w(θ) in the above lemma
cannot be given by (3.24). On the other hand, if π/2 < π/p < θ∗ ≤ π, then
w(θ) may be given by (3.24).

Remark 4.2. The degeneracy of w(θ) clearly holds if the positive periodic
initial data v0(θ), θ ∈ Tm, does not satisfy the integral condition (4.29) (say
the real part is non-zero). This means that v1−p

0 (θ) does not represent the
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radius of curvature of a convex immersed closed plane curve. By (1.8) we
have

(4.30)
∫ mπ

−mπ
v1−p(θ, t) cos θdθ =

∫ mπ

−mπ
v1−p
0 (θ) cos θdθ �= 0

for all t ∈ [0, Tmax). Thus it is impossible to have limt→Tmax v(θ, t) = ∞ for
all θ ∈ Tm and we must have w(θ) = 0 somewhere.

Proof. We shall prove the result for m = 2. For m > 2 the proof is the same.
Let v0(θ) be a positive symmetric function satisfying v0(θ) = v0(−θ), θ ∈
[−2π, 2π] and v′

0(θ) < 0 for θ ∈ (0, 2π), v′
0(0) = v′

0(2π) = 0 (both are simple
zeros of v′

0(θ)), so that

(4.31)
∫ θ∗

0
v1−p
0 (θ) cos θdθ < 0, θ∗ ∈ (π/2, π], p ∈ (1, 2).

In addition, we also require v0(θ) to satisfy (4.29) (with m = 2). Geometri-
cally, v1−p

0 (θ) represents the radius of curvature of a symmetric cardioid-like
closed curve γ0 (we assume that the point with tangent angle θ = 0 is the
origin) such that at the point with tangent angle θ = θ∗ its x-coordinate
is negative. Such a curve is symmetric with respect to the y-axis with two
vertices, one at the origin, the other lying on negative y-axis. The existence
of such a function v0(θ) can therefore be asserted.

Let v(θ, t) be the solution of (1.4) with the above v0(θ) as initial data.
By symmetry we have

(4.32)

{
v(θ, t) = v(−θ, t), θ ∈ [−2π, 2π],
vθ(θ, t) < 0 for θ ∈ (0, 2π); vθ(0, t) = vθ(2π, t) = 0,

which means that the closure of the blow-up set for v(θ, t) must have the
form [−β, β] for some β > π/2. Moreover, the limit function w(θ) is non-
increasing on [0, 2π]. Straightforward computation gives

d

dt

(
1

1 − p

∫ θ∗

0
v1−p(θ, t) cos θdθ

)

(4.33)

= v(θ∗, t) sin θ∗ + vθ(θ∗, t) cos θ∗ > 0, θ∗ ∈ (π/2, π].

Hence
∫ θ∗

0
v1−p(θ, t) cos θdθ, p ∈ (1, 2)
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is strictly decreasing in time and is negative for all t ∈ [0, Tmax), where Tmax
is the blow-up time of v(θ, t). However, if v(θ, t) → ∞ as t → Tmax for all
θ ∈ [0, θ∗], then

(4.34)
∫ θ∗

0
v1−p(θ, t) cos θdθ → 0 as t → Tmax, p ∈ (1, 2),

which gives a contradiction. Thus the blowup set of v(θ, t) is a subset of
(−θ∗, θ∗). This implies that the set {θ : w(θ) > 0} is contained in (−θ∗, θ∗).

�

Remark 4.3. In the above proof, if the closure of the blow-up set is given
by [−β, β] for some β ∈ (π/2, θ∗), then by v1−p

min (t) cos θ ≤ v1−p(θ, t) cos θ < 0
for θ ∈ [β, θ∗], t ∈ [0, Tmax), we have

∫ β

0
v1−p(θ, t) cos θdθ + v1−p

min (t)
∫ θ∗

β
cos θdθ

≤
∫ θ∗

0
v1−p(θ, t) cos θdθ <

∫ θ∗

0
v1−p
0 (θ) cos θdθ < 0,

which gives

lim
t→Tmax

(v1−p
min (t)

∫ θ∗

β
cos θdθ) ≤

∫ θ∗

0
v1−p
0 (θ) cos θdθ < 0

and (note that vmin(t) is increasing on [0, Tmax)) we have the following upper
bound on vmin(t):

(4.35) lim
t→Tmax

vmin(t) ≤
( ∫ θ∗

β cos θdθ
∫ θ∗
0 v1−p

0 (θ) cos θdθ

) 1
p−1

.

Remark 4.4. The symmetry condition of the initial data is needed in the
proof (see (4.32)).

To prove the second result, we need to make use of the following known
result (see [3, 23]):

Lemma 4.2. For p ∈ (0, 2), if w(θ) is an entire positive non-constant peri-
odic solution of the ODE

(4.36) w′′(θ) + w(θ) − w1−p(θ) = 0, θ ∈ R,
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then the (minimal) period T of w(θ) satisfies
{

T ∈ (2π/
√

p, 2π/p) if p ∈ (0, 1); T ∈ (2π/p, 2π/
√

p) if p ∈ (1, 2),
T = 2π if p = 1.

In such a case, maxR w(θ) ∈ (1, γ), where γ = [2/(2 − p)]1/p > 1.

The second result is:

Lemma 4.3. If the rotation index m ∈ N is large enough, then there exists
a positive symmetric initial data v0(θ), θ ∈ Tm, of (1.4) satisfying (4.29)
such that the corresponding rescaled solution u(θ, τ) converges uniformly to
a 2mπ-periodic Lipschitz function w(θ) ≥ 0. Moreover w(θ) is a bump-like
function, symmetric with respect to θ = 0, with support given by [−β, β] ⊂
[−mπ, mπ], where β ∈ (π/2, π/p].

Remark 4.5. In the above lemma, w(θ) may or may not be given by (3.24).
Since w′′(±β) blows up, u(θ, τ) cannot have bounded uθθθ(θ, τ) in Tm ×
[0,∞). Moreover, if β ∈ (π/2, π/p), then w′(θ) has a jump discontinuity at
θ = ±β. It implies that u(θ, τ) cannot have bounded uθθ(θ, τ) in Tm × [0,∞).
Conversely if uθθ(θ, τ) is uniformly bounded on Tm × [0,∞), then w(θ) must
be given by (3.24).

Proof. The proof is similar to the case for p ∈ (0, 1) (see Proposition 27
in [13]). We only sketch some of the key points.

Let v0(θ) be a positive symmetric function satisfying v0(θ) = v0(−θ), θ ∈
Tm = [−mπ, mπ] and v′

0(θ) < 0 for θ ∈ (0, mπ), v′
0(0) = v′

0(mπ) = 0 (both
are simple zeros of v′

0(θ)). We also require it to satisfy (4.29). The solution
v(θ, t) of (1.4) with the above initial data will satisfy (4.32) (with 2 replaced
by m) for all t ∈ [0, Tmax). The rescaled bounded solution u(θ, τ) also satisfies
(4.32) and it makes the Lyapunov functional

E(u(·, τ)) =
∫ mπ

−mπ

(

u2
θ − u2 +

2
2 − p

u2−p

)

dθ, p ∈ (1, 2)

decreasing in τ ∈ [0,∞). If the rotation index m ∈ N is large enough, one
can also adjust v0(θ) to satisfy the additional property

(4.37) E(u(·, 0)) < E(1) = 2mπ

(
2

2 − p
− 1

)

, where u(θ, 0) =
v0(θ)
R(0)

.
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In doing so, the limit w(θ) ≥ 0 cannot be the constant w ≡ 1 (it is the
only positive entire constant solution to the ODE (4.36)). Moreover, w(θ) is
also symmetric (with respect to θ = 0) and non-increasing on (0, mπ) due
to (4.32). Now if w(θ) is positive everywhere on Tm, it will be an entire
non-constant periodic solution to (4.36), which will force it to satisfy

w′(θ) < 0 for θ ∈ (0, mπ); w′(0) = w′(mπ) = 0.

On the other hand by Lemma 4.2 its period is at most 2π/
√

p. We will
obtain a contradiction if m is large enough and so w(θ) cannot be positive
everywhere on Tm. �

Remark 4.6. The advantage of the above method of proof is two-fold:
First, its proof is valid for both p ∈ (0, 1) and p ∈ (1, 2) (on the other hand,
the method of proof in Lemma 4.1 is valid only for p ∈ (1, 2), for example,
(4.34) fails for p ∈ (0, 1)). Second, we can also find a non-symmetric initial
data v0(θ) such that if m ∈ N is large enough, then the limit function w(θ) ≥
0 is degenerate on Tm. The symmetry condition plays no role in (4.37) (just
take a small non-symmetric perturbation of v0(θ)). One simply choose the
positive periodic function v0(θ) on [−mπ, mπ] to satisfy

⎧
⎨

⎩

v′
0(θ) > 0 for θ ∈ (−mπ, 0); v′

0(θ) < 0 for θ ∈ (0, mπ),

v′
0(θ) = 0 at θ = 0,±mπ (both are simple zeros of v′

0(θ)).

We also require v0(θ) to satisfy the energy condition E(u0) < E(1) and con-
dition (4.29). Under the evolution, u(θ, τ) is positive and bounded. Since
the number of zeros of uθ(·, τ) is non-increasing in time (see the discussion
in [13]), uθ(θ, τ) = 0 at exactly two points in [−mπ, mπ) (one at global max-
imum point, the other at global minimum point). By energy consideration,
the limit function w(θ) of u(θ, τ) cannot be w ≡ 1. By Lemma 4.2, w(θ)
cannot be positive everywhere on Tm.

Remark 4.7. The energy functional E(w) for the limit w(θ) is always pos-
itive (no matter it is degenerate or not). Since there is a negative term in
the integral, this may not be so clear. To see this, on any fixed disjoint
open interval I = (a, b) of the open set Ω+ = {θ ∈ R : w(θ) > 0} we have
w(a) = w(b) = 0 and both w′(a+) and w′(b−) are finite. The energy on
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(a, b) becomes
∫ b

a

(

(w′(θ))2 − w2(θ) +
2

2 − p
w2−p(θ)

)

dθ

= [w(b)w′(b−) − w(a)w′(a+)]

+
∫ b

a

(

−w(θ)[w′′(θ) + w(θ)] +
2

2 − p
w2−p(θ)

)

dθ

=
(

2
2 − p

− 1
)∫ b

a
w2−p(θ)dθ > 0, p ∈ (1, 2).

Summing together over all intervals, we obtain E(w) > 0. In particular, the
initial energy E(u0) for u0(θ) = v0(θ)/R(0) is positive no matter what the
initial condition is.

5. The shape of the degenerate limiting curve

Assume the limit w(θ) is degenerate with

Ω+ = {θ ∈ Tm : w(θ) > 0} = (−β, β) for some β ∈ (π/2, π/p], p ∈ (1, 2).

Geometrically, wp−1(θ) represents the curvature k∞(θ) of the limiting curve
γ∞. Using w(θ) over Ω+, the part of γ∞ with positive curvature is determined
by (up to a translation) the following parametrization (we assume the origin
O = (0, 0) lies on γ∞ with tangent angle θ = 0)

P∞(θ) =
∫ θ

−β
w1−p(s)(cos s, sin s)ds(5.38)

−
∫ 0

−β
w1−p(s)(cos s, sin s)ds, θ ∈ (−β, β).

Outside the interval (−β, β), w(θ) ≡ 0 and formula (5.38) does not make
sense. The endpoints of γ∞ are

P∞(−β) = −
∫ 0

−β
(w′′(s) + w(s))(cos s, sin s)ds

= (−w′(β) cos β, w′(β) sin β + w(0))

and

P∞(β) =
∫ β

0
(w′′(s) + w(s))(cos s, sin s)ds = (w′(β) cos β, w′(β) sin β + w(0)).
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By (3.22), we have w′(β) sin β + w(0) > 0 for any β ∈ (π/2, π/p] and
{

w′(β) cos β > 0 if β ∈ (π/2, π/p),
w′(β) cos β = w′(β) sin β = 0 if β = π/p.

As θ → ±β, w1−p(θ) → ∞. But P∞(θ) has a limiting tangent direction as
θ → ±β. We can attach two rays to make it a complete curve of R

2 with
continuous curvature. Since the turning angle 2β ∈ (π, 2π/p] is greater than
π, the curve γ∞ has a self-intersection as shown in the following pictures:

The above pictures are two possible shapes of the singularity after rescaling.

6. More on regularity estimate of u(θ, τ );
Andrews’s estimate

In Remark 2.2 we point out that u(θ, τn) actually converges in C∞(I) to
w(θ) as n → ∞, where I ⊂⊂ Ω+ and the reason is that along the sequence
τn, the rescaled equation (2.13) is uniformly parabolic. Perhaps this may
not be so convincing because if we want to quote the regularity estimates
in standard parabolic theory, the assumption is usually that equations be
uniformly parabolic for all time, not just along a sequence. Since this is an
important result and we rely on it often in the proof of Theorem 3.1, it is
worthwhile to clarify it.

In below we mention an elegant regularity estimate, Theorem 6.1, which
was actually due to Ben Andrews (except that we filled in some
supplementary details later on). I first learned it and its proof from Andrews
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long time ago (see [4]) when dealing with the case 0 < p < 1 in equation
(2.13). In this range of values for p, equation (2.13) describes the expansion
of a convex immersed closed plane curve γ0 (with u(θ, τ) representing power
of radius of curvature, instead of power of curvature; see [13] for details).
Hence Theorem 6.1 below was originally presented as a result for plane
curves expansion, not contraction. However, a careful look at the long proof
of Theorem 6.1 convinces us that it is actually valid for all p > 0 (we need this
condition in (6.59)). In particular, it is also valid for 1 < p < 2, which is our
case here. Theorem 6.1 will immediately imply the assertions in Remark 2.2.

We first would like to give a motivation for the main estimate (6.51)
below. Consider the one-dimensional porous medium equation (see Evans
PDE [10, p. 180])

(6.39) yt = (yα)xx, y = y(x, t) ≥ 0, where α > 1 is a constant.

It has the following so-called Barenblatt solution (compact supported solu-
tion), given by

(6.40) y(x, t) =
1

t1/(α+1)

(

b − C(α)
x2

t2/(α+1)

) 1
α−1

, t > 0, x ∈ (−∞,∞),

where b > 0 is an arbitrary constant and C(α) = (α − 1)/[2α(α + 1)]. If we
let F = yα, we have

(6.41)
∂F

∂t
= αF 1− 1

α Fxx, F = yα, α > 1.

By a simple rescaling in x, we may assume the equation is

(6.42)
∂F

∂t
= F pFxx, p = 1 − 1

α
∈ (0, 1), α > 1

and if we further let G = F p = yα−1, we get the better-looking equation

(6.43)
∂G

∂t
= GGxx −

(
p − 1

p

)

G2
x, p ∈ (0, 1),

which is similar to Equation (6.49) below, but without the lower order term
p(G2 − G). For convenience we may choose b = 1 and assume C(α) = 1 in
(6.40) and obtain

(6.44) G(x, t) =

⎧
⎨

⎩

1
t(α−1)/(α+1)

(

1 − x2

t2/(α+1)

)

, |x| ≤ t1/(α+1),

0, |x| ≥ t1/(α+1).
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For each t > 0, G(x, t) is smooth and positive on the domain |x| < t1/(α+1)

and

Gmax(t) = sup
R×{t}

G =
1

t(α−1)/(α+1) , α > 1

is decreasing in t ∈ (0,∞) with Gmax(0+) = +∞ (singular initial data). We
can compare the derivatives of G(x, t) with Gmax(t) to get

(6.45)
∣
∣
∣
∣
∂G

∂x
(x, t)

∣
∣
∣
∣ ≤ C

t(α−1)/(α+1)

t1/(α+1)

t2/(α+1) ≤C

√
Gmax(t)

t
, for |x| < t1/(α+1), t > 0

and ∣
∣
∣
∣
∂2G

∂x2 (x, t)
∣
∣
∣
∣ ≤ C

t(α−1)/(α+1)

1
t2/(α+1) =

C

t

and then

(6.46) G(x, t)
∣
∣
∣
∣
∂2G

∂x2 (x, t)
∣
∣
∣
∣ ≤ C

(
Gmax(t)

t

)

, for |x| < t1/(α+1), t > 0.

Since we are in the one-dimensional case, if we go further we get the trivial
estimate

(6.47) Gk−1(x, t)
∣
∣
∣
∣
∂kG

∂xk
(x, t)

∣
∣
∣
∣ = 0, for |x| < t1/(α+1), t > 0, k ≥ 3.

Now let us come back to the solution u(θ, τ) of (2.13). We know that it
is a positive, bounded solution to Equation (2.13) with

(6.48) 0 < umin(τ) ≤ 1 ≤ umax(τ), |uθ(θ, τ)| ≤ max{C, umax(τ)}

for all (θ, τ) ∈ Tm × [0,∞). Here C is a constant depending only on γ0 and p.
Let G(θ, τ) = up(θ, τ), p ∈ (1, 2). We have

(6.49)
∂G

∂τ
= GGθθ −

(
p − 1

p

)

G2
θ + p(G2 − G), p ∈ (1, 2).

We shall derive an estimate similar to the above Barenblatt solution. How-
ever, now we have smooth initial condition and the form of the estimate is
slightly different.

The main result in this section is the following regularity estimate, which
is due to Andrews [4]. Although the computation involved in the proof is
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quite lengthy, it has the merits of being straightforward, elementary and
elegant.

Theorem 6.1 (Andrews [4])3. Let τ0 > 0 be a fixed time. Suppose u :
Tm × [0, τ0] → R

+is a smooth solution of (2.13) with

(6.50) M0 = sup
Tm×[0,τ0]

G(θ, τ) < ∞, G(θ, τ) = up(θ, τ), p ∈ (1, 2).

Then for each k ≥ 1,we have

(6.51)

Gk−1(θ, τ)
∣
∣
∣
∣
∂kG

∂θk
(θ, τ)

∣
∣
∣
∣ = Gk−1(θ, τ)

∣
∣
∣G(k)(θ, τ)

∣
∣
∣ ≤ Ck(p)

⎡

⎣Mk
0 +

(√
M0

τ

)k
⎤

⎦

on Tm × (0, τ0], where Ck (p) is a constant depending only on k and p.

Remark 6.1. See also Theorem II1.9 in p. 349 of Andrews [2] for a similar
regularity estimate.

Remark 6.2. Note that being bounded by Ck(p)

[

Mk
0 +

(√
M0
τ

)k
]

is equiv-

alent to being bounded by Ck(p)
[

M0 +
√

M0
τ

]k

.

Remark 6.3. The nice thing about these estimates is that they give good
control over higher derivatives of G where G is positive, but allows them to
blow up where G approaches zero. According to Remark 4.5, this is possible
to happen.

Remark 6.4. Since u(θ, τ) is positive, smooth and uniformly bounded on
Tm × [0, τ0] for any τ0 > 0, estimate (6.51) can be replaced by

(6.52)

Gk−1(θ, τ)|G(k)(θ, τ)| ≤ C(k, p, u0, M0), ∀(θ, τ) ∈ Tm × [0, τ0], ∀τ0 > 0,

3We point out again that although we have checked the validity of the proof for
the case p > 0 and supply all the necessary details, Theorem 6.1 is still due to Ben
Andrews, not us. Here we thank him a lot for his permission of the proof.
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where u0 is the initial condition in (2.13) and C(k, p, u0, M0) is a constant
depending only on k, p, u0, M0. Equation (6.52) also allows the derivatives
of G to blow up where G approaches zero (as τ0 → ∞).

Proof (Andrews [4]). By (6.48), (6.51) clearly holds for k = 1. However, we
want to give a different proof. In the following three sections, we prove
Theorem 6.1 for k = 1, k = 2, and higher k, respectively.

6.1. Proof of Theorem 6.1 for k = 1

The case k = 1 is slightly different from that for higher k. We want to show
that |Gθ| is uniformly bounded for all t > 0. Compute

(6.53)
∂Gθ

∂τ
= GGθθθ +

(
2 − p

p

)

GθGθθ + p(2G − 1)Gθ.

From this we see that |Gθ| grows at most exponentially, but we want to do
better.

Set

(6.54) a =
1

2 supTm×[0,τ0] G
=

1
2M0

,
1
a

= 2 sup
Tm×[0,τ0]

G = 2M0.

Then 0 < aG < 1/2 on Tm × [0, τ0]. We shall compute the evolution of the
quantity

(6.55) Z(θ, τ) :=
(

Gθ

1 − aG

)

(θ, τ),
1
2

< 1 − aG(θ, τ) < 1.

We have

∂

∂τ
(1 − aG) = G(1 − aG)θθ + a

(
p − 1

p

)

G2
θ − ap(G2 − G)

and by the formula

(6.56)
fΔh − hΔf

f2 = Δ
(

h

f

)

+ 2∇(log f) · ∇
(

h

f

)

, f > 0

and

(6.57) Zθ =
Gθθ

1 − aG
+ aZ2, Z =

Gθ

1 − aG
,
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we get

∂

∂τ

(
Gθ

1 − aG

)

=
1

(1 − aG)2
·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − aG)
[

GGθθθ +
(

2 − p

p

)

GθGθθ + p(2G − 1)Gθ

]

− Gθ

[

G(1 − aG)θθ + a

(
p − 1

p

)

G2
θ − ap(G2 − G)

]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

and then

∂

∂τ

(
Gθ

1 − aG

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G

(
Gθ

1 − aG

)

θθ

+ 2G[log(1 − aG)]θ

(
Gθ

1 − aG

)

θ

+
1

1 − aG

[(
2 − p

p

)

GθGθθ + p (2G − 1) Gθ

]

− Gθ

(1 − aG)2

[

a

(
p − 1

p

)

G2
θ − ap(G2 − G)

]

and by (6.57) we obtain

∂Z

∂τ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

GZθθ +
(

2 − p

p
− 2aG

1 − aG

)

GθZθ

−a

p
(1 − aG)Z3 +

[
a

1 − aG

(
G2 − G

)
+ (2G − 1)

]

pZ,

where Z = Gθ/(1 − aG). By the maximum principle, if

(6.58) Z(τ) = max
θ∈Tm

Z(θ, τ) > 0, τ ∈ [0, τ0],

we have

dZ

dτ
≤ −a

p
(1 − aG)Z3 +

[
a

1 − aG

(
G2 − G

)
+ (2G − 1)

]

pZ(6.59)

≤ − a

2p
Z3 +

(
aG

1 − aG
+ 2

)

pGZ, p ∈ (1, 2), p > 0

≤ −C1(p)
M0

Z3 + C2(p)M0Z, a =
1

2M0
, 1 − aG >

1
2
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for some constants C1(p) and C2(p) depending only on p. It follows that

Z(τ) ≤ max

{

C3(p)M0, C4(p)

√
M0

τ

}

(6.60)

≤ C5(p)

(

M0 +

√
M0

τ

)

, ∀τ ∈ (0, τ0]

due to the following lemma (its proof is straightforward; we omit it):

Lemma 6.1. Let M0 = supTm×[0,τ0] G > 0. If Z(τ) > 0 satisfies the differ-
ential inequality

(6.61)
dZ

dτ
≤ −C1(p)

M0
Z3 + C2(p)M0Z, ∀τ ∈ [0, τ0]

then

Z(τ) ≤ max

{

C3(p)M0, C4(p)

√
M0

τ

}

(6.62)

≤ C5(p)

(

M0 +

√
M0

τ

)

, ∀τ ∈ (0, τ0].

Here Ci(p)are constants depending only on p, 1 ≤ i ≤ 5.

Since Z(θ, τ) = Gθ

1−aG , it is comparable to Gθ(θ, τ). This gives the required
estimate of Gθ from above. A similar argument at the minimum point of
Z(θ, τ) (consider z(τ) = minθ∈Tm

Z(θ, τ) and the reverse inequality of (6.61))
gives the estimate of Gθ from below.

The proof for k = 1 is now complete.

6.2. Proof of Theorem 6.1 for k = 2

The case k = 2 is also a little different from that for higher k. Differentiate
equation (6.49) twice to get

∂Gθθ

∂τ
=

[

GGθθθ +
(

2 − p

p

)

GθGθθ + p(2G − 1)Gθ

]

θ

= G(Gθθ)θθ +
2
p
GθGθθθ +

(
2 − p

p

)

G2
θθ + p(2G − 1)Gθθ + 2pG2

θ.
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Compared with (6.55), the idea next is to compute the evolution of the
quantity

(6.63) Z(θ, τ) :=
(

GGθθ

1 − aG2
θ

)

(θ, τ).

Letting

(6.64) Q1 = Gθ, Q2 = GGθθ

and by
{

(Q2)θ = GGθθθ + GθGθθ, (Q2)θθ = GGθθθθ + 2GθGθθθ + G2
θθ,

Gθ(Q2)θ = GGθGθθθ + G2
θGθθ,

we get

∂Q2

∂τ
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G

[

G(Gθθ)θθ +
2
p
GθGθθθ +

(
2 − p

p

)

G2
θθ

+ p(2G − 1)Gθθ + 2pG2
θ

]

+Gθθ

[

GGθθ −
(

p − 1
p

)

G2
θ + p(G2 − G)

]

(6.65)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

G(Q2)θθ − 2Gθ[(Q2)θ − GθGθθ] +
2
p
Gθ[(Q2)θ − GθGθθ]

+ G

(
2 − p

p

)

G2
θθ + pG(2G − 1)Gθθ + 2pGG2

θ

+
[

−
(

p − 1
p

)

G2
θGθθ + p(G2 − G)Gθθ

]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G(Q2)θθ +
(

2
p

− 2
)

Gθ(Q2)θ +
1
G

(
2 − p

p

)

Q2
2

+
1
G

[(

1 − 1
p

)

G2
θ + p(3G2 − 2G)

]

Q2 +
2p

G
G2Q2

1, p ∈ (1, 2).

Let

(6.66) M1(τ) = max
θ∈Tm

|Gθ(θ, τ)| = max
θ∈Tm

|Q1(θ, τ)|, τ ∈ [0, τ0].
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By the estimate already established, we have

(6.67) M1(τ) ≤ C1(p)

(

M0 +

√
M0

τ

)

, M0 = sup
Tm×[0,τ0]

G < ∞.

We have

(6.68)
∂Q2

∂τ
≤ G(Q2)θθ +

(
2
p

− 2
)

Gθ(Q2)θ +
C(p)
G

[
Q2

2 +
(
M2

1 +M2
0
)
Q2+M2

1 M2
0
]

whenever Q2(θ, τ) ≥ 0 on Tm × [0, τ0]. Here C(p) is a constant depending
only on p. Note that G is positive on Tm × [0, τ0]. Hence C(p)

G is well defined.
Similarly, we can compute

∂Q2
1

∂τ
= 2Gθ

[

GGθθθ +
(

2 − p

p

)

GθGθθ + p (2G − 1) Gθ

]

, Q1 = Gθ

(6.69)

= G
(
Q2

1
)

θθ
− 2

G
G2G2

θθ +

[(
2 − p

p

)
2G2

θ

G
GGθθ +

2p
(
2G2 − G

)

G
G2

θ

]

≤ G
(
Q2

1
)

θθ
− 2

G
Q2

2 +
C(p)
G

(
M2

1 Q2 + M2
1 M2

0
)

whenever Q2(θ, τ) ≥ 0.
To obtain a useful estimate at some fixed time s ∈ (0, τ0], we work on

the time interval I = [s/2, s] ⊂ (0, τ0] so that

(6.70) max
I

M1(τ) ≤ C1(p)

(

M0 +
√

2

√
M0

s

)

.

Then choose

(6.71) a =
1

2C2
1

(

M0 +
√

2
√

M0
s

)2 , C1 = C1(p),
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we see that

aQ2
1(θ, τ) =

Q2
1(θ, τ)

2C2
1

(

M0 +
√

2
√

M0
s

)2 ≤ M2
1 (τ)

2C2
1

(

M0 +
√

2
√

M0
s

)2

≤ 1
2

on I = [s/2, s]

and so

(6.72)
1
2

≤ 1 − aQ2
1(θ, τ) ≤ 1, ∀(θ, τ) ∈ Tm × I.

Also note that Z(θ, τ) = Q2/(1 − aQ2
1) ≥ 0 if and only if Q2(θ, τ) ≥ 0. Com-

pute

∂Z

∂τ
=

1
1 − aQ2

1

∂Q2

∂τ
+

aQ2

(1 − aQ2
1)2

∂(Q2
1)

∂τ

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
1 − aQ2

1

{

G(Q2)θθ +
(

2
p

− 2
)

Gθ(Q2)θ

+
C(p)
G

[
Q2

2 + (M2
1 + M2

0 )Q2 + M2
1 M2

0
]
}

+
aQ2

(1 − aQ2
1)2

[

G(Q2
1)θθ − 2

G
Q2

2 +
C(p)
G

(M2
1 Q2 + M2

1 M2
0 )

]

whenever Q2(θ, τ) ≥ 0. Using formula (6.56) again, we get

Zθθ =
(1 − aQ2

1)(Q2)θθ + aQ2(Q2
1)θθ

(1 − aQ2
1)2

+
2a(Q2

1)θ

1 − aQ2
1
Zθ,

Zθ =
(Q2)θ

1 − aQ2
1

+
aQ2(Q2

1)θ

(1 − aQ2
1)2

.

Now

∂Z

∂τ
≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G

(

Zθθ − 2a(Q2
1)θ

1 − aQ2
1
Zθ

)

+
1

1 − aQ2
1

{(
2
p

− 2
)

Gθ(Q2)θ +
C(p)
G

×
[

Q2
2 + (M2

1 + M2
0 )Q2 + M2

1 M2
0

]}

+
aQ2

(1 − aQ2
1)2

[

− 2
G

Q2
2 +

C(p)
G

(M2
1 Q2 + M2

1 M2
0 )

]
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

GZθθ − G
2a(Q2

1)θ

1 − aQ2
1
Zθ +

(
2
p

− 2
)

Gθ

(

Zθ − aQ2(Q2
1)θ

(1 − aQ2
1)2

)

+
1

1 − aQ2
1

{
C(p)
G

[Q2
2 + (M2

1 + M2
0 )Q2 + M2

1 M2
0 ]
}

+
aQ2

(1 − aQ2
1)2

×
[

− 2
G

Q2
2 +

C(p)
G

(M2
1 Q2 + M2

1 M2
0 )

]

= GZθθ +
[(

2
p

− 2
)

Gθ − 4aGθZ

]

Zθ + the rest,

where

the rest =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
(

2
p

− 2
)

Gθ
aQ2(Q2

1)θ

(1 − aQ2
1)2

+
C(p)
G

×
{

Q2
2

1 − aQ2
1

+
(M2

1 + M2
0 )Q2

1 − aQ2
1

+
M2

1 M2
0

1 − aQ2
1

}

− 2
G

aQ2

(1 − aQ2
1)2

Q2
2 +

aQ2

(1 − aQ2
1)2

C(p)
G

(M2
1 Q2 + M2

1 M2
0 )

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−2a

G
(1 − aQ2

1)Z
3 −

(
2
p

− 2
)

Gθ
2aGθ

G
Z2

+
C(p)
G

{
(1 − aQ2

1)Z
2 + (M2

1 + M2
0 )Z + M2

1 M2
0
}

+
C(p)
G

(

aM2
1 Z2 + aM2

0 M2
1

Z

(1 − aQ2
1)

)

≤ −2a

G
(1 − aQ2

1)Z
3 +

C(p)
G

×
[
(1 + aM2

1 )Z2 + (M2
1 + M2

0 + aM2
0 M2

1 )Z + M2
1 M2

0
]
.

We conclude that, on Tm × I = Tm × [s/2, s], whenever Z(θ, τ) ≥ 0, we have
the inequality

(6.73)

∂Z

∂τ
≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

GZθθ +
[(

2
p

− 2
)

Gθ − 4aGθZ

]

Zθ − a

G

(
1 − aQ2

1
)
Z3

− a

G

(
1 − aQ2

1
)
Z3 +

C(p)
G

[(
1 + aM2

1
)
Z2

+
(
M2

1 + M2
0 + aM2

0 M2
1
)
Z + M2

1 M2
0
]
.
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For convenience, let Ψ be the terms in the second line of (6.73), i.e.,

Ψ =
1
G

{
−a

(
1 − aQ2

1
)
Z3 + C(p)

[(
1 + aM2

1
)
Z2(6.74)

+
(
M2

1 + M2
0 + aM2

0 M2
1
)
Z + M2

1 M2
0
]}

.

The sign of it is determined by the terms inside {·}. Observe that aM2
1 (τ) ≤

1/2 for all τ ∈ I, and a/2 ≤ a
(
1 − aQ2

1
)

≤ a for all τ ∈ I. Hence

−a
(
1 − aQ2

1
)
Z3 + C(p)

[(
1 + aM2

1
)
Z2 +

(
M2

1 + M2
0 + aM2

0 M2
1
)
Z + M2

1 M2
0
]

(6.75)

≤ −a

2
Z3 + C(p)

[
Z2 +

(
M2

1 + M2
0
)
Z + M2

1 M2
0
]

(for different constant C(p))

=
(

−1
6
aZ3 + C(p)Z2

)

+
(

−1
6
aZ3 + C(p)

(
M2

1 + M2
0
)
Z

)

+
(

−1
6
aZ3 + C(p)M2

1 M2
0

)

whenever Z(θ, τ) ≥ 0. Here M1 = M1(τ), τ ∈ I.
For now, we can summarize the following: we have

(6.76)

∂Z

∂τ
≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

GZθθ +
[(

2
p

− 2
)

Gθ − 4aGθZ

]

Zθ − a

G

(
1 − aQ2

1
)
Z3

1
G

[

−1
6
aZ3 + C(p)Z2

]

+
1
G

[

−1
6
aZ3 + C(p)

(
M2

1 + M2
0
)
Z

]

+
1
G

[

−1
6
aZ3 + C(p)M2

1 M2
0

]

whenever Z(θ, τ) ≥ 0 on Tm × I.
To proceed further, we need the following lemma (its proof is straight-

forward; we omit it):

Lemma 6.2. Let λ > 0 and b > 0 be two constants. If Z(τ) > 0 is defined
on [0, τ0] satisfying the following:

(6.77) whenever Z(τ) ≥ λ, then
dZ

dτ
≤ −bZ3,
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then we have the estimate

(6.78) Z(τ) ≤ max
{

λ,
1√
2bτ

}

, ∀τ ∈ (0, τ0].

Remark 6.5. The lemma remains correct if we replace the interval [0, τ0]
by [0,∞). Also if we replace [0, τ0] by [τ1, τ2], 0 < τ1 < τ2, then (6.78) should
be replaced by

(6.79) Z(τ) ≤ max

{

λ,
1

√
2b(τ − τ1)

}

, ∀τ ∈ (τ1, τ2].

Recall we have

|Gθ(θ, τ)| ≤ C1(p)

(

M0 +

√
M0

τ

)

, (θ, τ) ∈ Tm × (0, τ0]

so in particular on the interval I = [s/2, s], we have

(6.80) |Gθ(θ, τ)| ≤ C1(p)

(

M0 +

√
2M0

s

)

, (θ, τ) ∈ Tm × I.

Let

B1 = C1(p)

(

M0 +

√
2M0

s

)

.

We know

(6.81) M1(τ) ≤ C1(p)

(

M0 +
√

2

√
M0

s

)

= B1, ∀τ ∈ I.

Let Z(τ) = maxθ∈Tm
Z(θ, τ), τ ∈ I. We find that at any time τ ∈ I, if Z(τ)

is so large such that it exceeds the constant λ below

(6.82) λ := C(p) · max

{
1
a
,

(
B2

1 + M2
0

a

)1/2

,

(
B2

1M2
0

a

)1/3
}

,

where C(p) is some large constant depending only on p, then the three terms
in the second and third lines of (6.76) will all become negative. Hence we
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conclude that whenever Z(τ) ≥ λ > 0 on I, then

(6.83)
dZ

dτ
≤ − a

G

(
1 − aQ2

1
)
Z3 ≤ − a

2M0
Z3, τ ∈ I = [s/2, s] .

Now by (6.79), we get

(6.84)

Z(θ, τ) ≤ Z(τ) ≤ C(p) max

{

λ,

√
M0

a
(
τ − s

2

)

}

, ∀(θ, τ) ∈ Tm × (s/2, s].

In particular, at time s, we get

√
M0

a
(
s − s

2

) = C

√
M0

as
= C

√
√
√
√
√2C2

1

(

M0 +
√

2
√

M0
s

)2

M0

s

≤ C(p)

(

M0 +

√
M0

s

)√
M0

s
≤ C(p)

(

M2
0 +

M0

s

)

,

where we have used the inequality ab ≤
(
a2 + b2

)
/2.

As for the three terms in λ, we have

C(p)
a

= C(p)

(

M0 +
√

2

√
M0

s

)2

≤ C(p)
(

M2
0 +

M0

s

)

and

C(p)
(

B2
1 + M2

0
a

)1/2

≤ C(p)

(

M0 +

√
M0

s

)

(B1 + M0)

≤ C(p)
(

M2
0 +

M0

s

)

and finally

C(p)
(

B2
1M2

0
a

)1/3

≤ C(p)

⎡

⎣

(

M0 +

√
M0

s

)2 (

M0 +

√
M0

s

)2

M2
0

⎤

⎦

1/3

≤ C(p)
(

M2
0 +

M0

s

)

.
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Hence we conclude that

(6.85) Z(θ, s) ≤ Z(s) ≤ C(p)
(

M2
0 +

M0

s

)

, ∀(θ, s) ∈ Tm × (0, τ0],

which is equivalent to

(6.86)

Q2(θ, τ) = G(θ, τ)Gθθ(θ, τ) ≤ C(p)
(

M2
0 +

M0

τ

)

, ∀(θ, τ) ∈ Tm × (0, τ0]

whenever Gθθ(θ, τ) ≥ 0. A similar proof gives a lower bound estimate when-
ever Gθθ(θ, τ) ≤ 0. We conclude

(6.87) G(θ, τ)|Gθθ(θ, τ)| ≤ C(p)
(

M2
0 +

M0

τ

)

on Tm × (0, τ0]

and the proof for k = 2 is done.

6.3. Proof of Theorem 6.1 for higher k

We will assume k ≥ 3 from now on and use the induction method. Let

(6.88) Qk(θ, τ) = Gk−1(θ, τ)G(k)(θ, τ), where G(k)(θ, τ) =
∂kG

∂θk
(θ, τ)

and assume we have estimate of the form

|Qj(θ, τ)| = |Gj−1(θ, τ)G(j)(θ, τ)|

≤ Cj(p)

⎡

⎣M j
0 +

(√
M0

τ

)j
⎤

⎦ on Tm × (0, τ0](6.89)

for j = 1, 2, . . . , k − 1, where Cj(p) is a constant depending only on j and p.
Let

(6.90) Mj(τ) = Mj = M j
0 +

(√
M0

τ

)j

, j = 1, 2, 3 . . . .

Note that M0 is a constant but Mj = Mj(τ) is a function of time τ ∈ (0, τ0]
for j = 1, 2, . . .. The evolution equation of Qk can be computed as follows.
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We first recall

(6.91)
∂G

∂τ
= GGθθ −

(
p − 1

p

)

G2
θ + p

(
G2 − G

)
, p ∈ (1, 2)

and

(6.92)
∂G(1)

∂τ
= GG

(1)
θθ +

(
2 − p

p

)

G(1)G
(1)
θ + p(2G − 1)G(1)

and

∂G(2)

∂τ
= GG

(2)
θθ +

2
p
G(1)G

(2)
θ + [C(2, p)G(2)(6.93)

+ p(2G − 1)]G(2) + C(2, p)G(1)G(1),

where C(2, p) is a constant depending only on p (C(2, p) in different terms
may be different). If we differentiate one more time in θ, we get for k = 3:

∂G(3)

∂τ
= GG

(3)
θθ +

(

1 +
2
p

)

G(1)G
(3)
θ(6.94)

+
[
C(3, p)G(2) + p(2G − 1)

]
G(3) + C(3, p)G(1)G(2),

where C(3, p) are constants depending only on p. To get a more clear pattern,
we do k = 4:

∂G(4)

∂τ
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

GG
(4)
θθ + G(1)G

(4)
θ +

(

1 +
2
p

)

G(1)G
(4)
θ

+ [C(4, p)G(2) + p(2G − 1)]G(4)

+ [C(4, p)G(3) + 2pG(1)]G(3) + C(4, p)G(2)G(2) + C(4, p)G(1)G(3)

and simplify it to get

(6.95)

∂G(4)

∂τ
=

⎧
⎪⎨

⎪⎩

GG
(4)
θθ +

(

2 +
2
p

)

G(1)G
(4)
θ + [C(4, p)G(2) + p(2G − 1)]G(4)

+ C(4, p)G(3)G(3) + C(4, p)G(2)G(2) + C(4, p)G(1)G(3).
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Also for k = 5, we get

(6.96)

∂G(5)

∂τ
=

⎧
⎪⎨

⎪⎩

GG
(5)
θθ +

(

3 +
2
p

)

G(1)G
(5)
θ + [C(5, p)G(2) + p(2G − 1)]G(5)

+ C(5, p)G(3)G(4) + C(5, p)G(1)G(4) + C(5, p)G(2)G(3).

Observing the underlined terms in (6.94) to (6.96), we get for

k = 3 : 0 + [CG(1)G(2)],(6.97)

k = 4 : CG(3)G(3) + [CG(1)G(3) + CG(2)G(2)],

k = 5 : CG(3)G(4) + [CG(1)G(4) + CG(2)G(3)],

where C are constants depending only on k and p.
Similarly we obtain for

k = 6 : CG(3)G(5) + CG(4)G(4) + [CG(1)G(5) + CG(2)G(4) + CG(3)G(3)],

k = 7 : CG(3)G(6) + CG(4)G(5) + [CG(1)G(6) + CG(2)G(5) + CG(3)G(4)],

k = 8 : CG(3)G(7) + CG(4)G(6) + CG(5)G(5) + [CG(1)G(7) + CG(2)G(6)

+ CG(3)G(5) + CG(4)G(4)],

k = 9 : CG(3)G(8) + CG(4)G(7) + CG(5)G(6) + [CG(1)G(8) + CG(2)G(7)

+ CG(3)G(6) + CG(4)G(5)]
...

and conclude the general formula

(6.98)

∂G(k)

∂τ
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

GG
(k)
θθ +

(

k − 2 +
2
p

)

G(1)G
(k)
θ + [C(k, p)G(2) + p(2G − 1)]G(k)

+
[k/2−1]∑

j=1

C(k, j, p)G(j+2)G(k−j) +
[k/2]∑

j=1

C̃(k, j, p)G(j)G(k−j),

k ≥ 3

for some constants C(k, j, p) and C̃(k, j, p).
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Remark 6.6. (1) When k = 3, the term
∑[k/2−1]

j=1 C(k, j, p)G(j+2)G(k−j)

disappears in (6.98). (2) From now on we may simply write C(k, j, p) and
C̃(k, j, p) as C, where C may change from terms to terms.

Note that for G(k)(θ, τ) ≥ 0 we have

[C(k, p)G(2) + p(2G − 1)]G(k) =
1
G

[C(k, p)GG(2) + p(2G2 − G)]G(k)

(6.99)

≤ C

G
(M2 + M2

0 )G(k)

and by the induction hypothesis (6.89) we have

[k/2−1]∑

j=1

C(k, j, p)G(j+2)G(k−j)(6.100)

=
1

Gk

[k/2−1]∑

j=1

C(k, j, p) · Gj+1G(j+2) · Gk−j−1G(k−j)

≤ C

Gk

[k/2−1]∑

j=1

Mj+2Mk−j

and

[k/2]∑

j=1

C̃(k, j, p)G(j)G(k−j) =
1

Gk−2

[k/2]∑

j=1

C̃(k, j, p) · Gj−1G(j) · Gk−j−1G(k−j)

(6.101)

≤ C

Gk−2

[k/2]∑

j=1

MjMk−j .

Combined together, we conclude for G(k)(θ, τ) ≥ 0:

(6.102)
∂G(k)

∂τ
≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

GG
(k)
θθ +

(

k − 2 +
2
p

)

G(1)G
(k)
θ +

C

G
(M2 + M2

0 )G(k)

+
C

Gk

[k/2−1]∑

j=1

Mj+2Mk−j +
C

Gk−2

[k/2]∑

j=1

MjMk−j .
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Let Λ denote the terms in the second line of (6.102). We have

Λ ≤ C

Gk

[k/2−1]∑

j=1

Mj+2Mk−j +
C

Gk

[k/2]∑

j=1

(M0Mj)(M0Mk−j)

and by Hölder’s inequality

M0Mj = M0

⎡

⎣M j
0 +

(√
M0

τ

)j
⎤

⎦ ≤ M j+1
0 +

⎡

⎣M0

(√
M0

τ

)j
⎤

⎦

≤ M j+1
0 +

(M0)a

a
+

(√
M0
τ

)jb

b

≤ C

⎡

⎣M j+1
0 +

(√
M0

τ

)j+1
⎤

⎦ = CMj+1,

where a = j + 1, b = j+1
j , 1

a + 1
b = 1. Therefore

Λ ≤ C

Gk

[k/2−1]∑

j=1

Mj+2Mk−j +
C

Gk

[k/2]∑

j=1

Mj+1Mk−j+1(6.103)

≤ C

Gk

∑

0≤i,j≤k; i+j≤k+2

MiMj

and we conclude for G(k)(θ, τ) ≥ 0 the following:

∂G(k)

∂τ
≤ GG

(k)
θθ +

(

k − 2 +
2
p

)

G(1)G
(k)
θ +

C

G
(M2

0 + M2)G(k)(6.104)

+
C

Gk

∑

0≤i,j≤k; i+j≤k+2

MiMj .

On the other hand, we have

∂Gk−1

∂τ
= (k − 1)Gk−2

[

GGθθ −
(

p − 1
p

)

G2
θ + p(G2 − G)

]

and by

(Gk−1)θ = (k − 1)Gk−2Gθ,

(Gk−1)θθ = (k − 1)Gk−2Gθθ + (k − 1)(k − 2)Gk−3G2
θ,
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we obtain

∂Gk−1

∂τ
= G[(Gk−1)θθ − (k − 1)(k − 2)Gk−3G2

θ](6.105)

+ (k − 1)
[

−
(

p − 1
p

)

Gk−2G2
θ + p(Gk − Gk−1)

]

≤ G(Gk−1)θθ + (k − 1)
(

1 − k +
1
p

)

Gk−2G2
θ + (k − 1)pGk

≤ G(Gk−1)θθ + CGk−2(M2
0 + M2

1 ).

Combining (6.104) and (6.105), whenever Qk(θ, τ) = Gk−1(θ, τ)G(k)(θ, τ) ≥
0, we will have

∂Qk

∂τ
= Gk−1 ∂G(k)

∂τ
+ G(k) ∂Gk−1

∂τ
,

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gk−1

⎡

⎣GG
(k)
θθ +

(

k − 2 +
2
p

)

G(1)G
(k)
θ

+
C

G
(M2

0 + M2)G(k) +
C

Gk

∑

0≤i,j≤k; i+j≤k+2

MiMj

⎤

⎦

+ G(k)[G(Gk−1)θθ + CGk−2(M2
0 + M2

1 )].

One then uses

(Qk)θ = Gk−1G
(k)
θ + (Gk−1)θG

(k),

(Qk)θθ = Gk−1G
(k)
θθ + 2(Gk−1)θG

(k)
θ + (Gk−1)θθG

(k)

to convert the above into

∂Qk

∂τ
≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G[(Qk)θθ − 2(Gk−1)θG
(k)
θ ]

+

⎡

⎣Gk−1
(

k − 2 +
2
p

)

GθG
(k)
θ + Gk−1 C

G
(M2

0 + M2)G(k)

+ Gk−1 C

Gk

∑

0≤i,j≤k; i+j≤k+2

MiMj

⎤

⎦

+ G(k)CGk−2(M2
0 + M2

1 ),
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where the underlined terms are

−2G(Gk−1)θG
(k)
θ + Gk−1

(

k − 2 +
2
p

)

GθG
(k)
θ

=
[

−2G(Gk−1)θ + Gk−1
(

k − 2 +
2
p

)

Gθ

]
(Qk)θ − (Gk−1)θG

(k)

Gk−1

=
[

−2(k − 1)Gk−1Gθ + Gk−1
(

k − 2 +
2
p

)

Gθ

]
(Qk)θ − (Gk−1)θG

(k)

Gk−1

=
(

−k +
2
p

)

Gθ(Qk)θ − 1
G

(

−k +
2
p

)

(k − 1)G2
θG

k−1G(k).

Hence we conclude that

∂Qk

∂τ
≤ G(Qk)θθ +

(

−k +
2
p

)

G(1)(Qk)θ(6.106)

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)Qk +
∑

0≤i,j≤k; i+j≤k+2

MiMj

⎤

⎦

at points (θ, τ) where Qk(θ, τ) = Gk−1(θ, τ)G(k)(θ, τ) ≥ 0.

Remark 6.7. One can check that at points (θ, τ) where Qk(θ, τ) = Gk−1

(θ, τ)G(k)(θ, τ) ≤ 0 we have

∂Qk

∂τ
≥ G(Qk)θθ +

(

−k +
2
p

)

G(1)(Qk)θ(6.107)

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)Qk −
∑

0≤i,j≤k; i+j≤k+2

MiMj

⎤

⎦ ,

where now the two terms inside the last brackets are negative.

Replacing k by k − 1 in (6.106) gives

(6.108)

∂Qk−1

∂τ
≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(Qk−1)θθ +
(

1 − k +
2
p

)

G(1)(Qk−1)θ

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)Qk−1 +
∑

0≤i,j≤k−1; i+j≤k+1

MiMj

⎤

⎦
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at points (θ, τ) where Qk−1(θ, τ) ≥ 0. Hence

∂(Q2
k−1)

∂τ
= 2Qk−1

(
∂Qk−1

∂τ

)

≤ 2Qk−1(the RHS of (6.108))

at points (θ, τ) where Qk−1(θ, τ) ≥ 0. Use

(Q2
k−1)θ = 2Qk−1(Qk−1)θ, (Q2

k−1)θθ = 2Qk−1(Qk−1)θθ + 2(Qk−1)2θ

to get

∂(Q2
k−1)

∂τ
≤ 2Qk−1

⎧
⎨

⎩
G(Qk−1)θθ +

(

1 − k +
2
p

)

G(1)(Qk−1)θ

+
C

G
[(M2

0 + M2
1 + M2)Qk−1 +

∑

0≤i,j≤k−1; i+j≤k+1

MiMj ]

⎫
⎬

⎭

≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G(Q2
k−1)θθ − 2G(Qk−1)2θ +

(

1 − k +
2
p

)

G(1)(Q2
k−1)θ

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)M2
k−1 +

∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎤

⎦.

At points (θ, τ) where both Qk−1(θ, τ) ≥ 0 and Qk(θ, τ) ≥ 0, we have

−2G(Qk−1)2θ = −2G(Gk−2G(k−1))2θ = −2G

(
Qk

G
+

(k − 2)GθQk−1

G

)2
(6.109)

≤ − 2
G

Q2
k +

C

G
(GθQk−1)2 +

C

G
|GθQk−1|Qk

≤ − 2
G

Q2
k +

C

G
M2

1 M2
k−1 +

C

G
M1Mk−1Qk

and

(

1 − k +
2
p

)

G(1)(Q2
k−1)θ = CGθQk−1(Qk−1)θ ≤ |C||GθQk−1||(Qk−1)θ|

(6.110)

≤ CM1Mk−1 · 1
G

[|Gk−1G(k)| + (k − 2)|GθQk−1|]

≤ C

G
M1Mk−1Qk +

C

G
M2

1 M2
k−1
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and we conclude

(6.111)

∂(Q2
k−1)

∂τ
≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G(Q2
k−1)θθ − 2

G
Q2

k +
C

G
M1Mk−1Qk

+
C

G

⎛

⎝(M2
0 + M2

1 + M2)M2
k−1 +

∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎞

⎠.

Remark 6.8. Although we have required Qk−1(θ, τ) ≥ 0 in obtaining
(6.111), it still holds without such a requirement. By (6.107), at points (θ, τ)
where Qk−1(θ, τ) ≤ 0 we have

∂Qk−1

∂τ
≥ G(Qk−1)θθ +

(

1 − k +
2
p

)

G(1)(Qk−1)θ

(6.112)

+
C

G

⎛

⎝(M2
0 + M2

1 + M2)Qk−1 −
∑

0≤i,j≤k−1; i+j≤k+1

MiMj

⎞

⎠

and so

∂(Q2
k−1)

∂τ
= 2Qk−1

(
∂Qk−1

∂τ

)

≤ 2Qk−1(the RHS of (6.112))

and we conclude (6.111) again (compare with (6.69)). This observation is
important. Hence we conclude that (6.111) holds at points (θ, τ) where
Qk(θ, τ) ≥ 0.

Similar to (6.63), we let

(6.113) Z(θ, τ) =

(
Qk

1 − aQ2
k−1

)

(θ, τ).

We will derive an evolution inequality at points (θ, τ), where Z(θ, τ) ≥ 0.
Same as before we focus on the time interval τ ∈ [s/2, s], s ∈ [0, τ0]. On this
interval, we have the estimate

(6.114) sup
Tm×[s/2,s]

|Qk−1| ≤ C sup
[s/2,s]

Mk−1(τ),
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where

C sup
[s/2,s]

Mk−1(τ) ≤ C

⎡

⎣Mk−1
0 +

(√
2M0

s

)k−1
⎤

⎦≤ C

⎡

⎣Mk−1
0 +

(√
M0

s

)k−1
⎤

⎦

(6.115)

and so we choose

(6.116) a =
1

2C2

⎡

⎣Mk−1
0 +

(√
M0

s

)k−1
⎤

⎦

2

to get

(6.117)

0 ≤ aQ2
k−1 =

Q2
k−1

2C2

⎡

⎣Mk−1
0 +

(√
M0

s

)k−1
⎤

⎦

2 ≤ 1
2

on Tm × [s/2, s].

Compute

∂Z

∂τ
=

1
1 − aQ2

k−1

∂Qk

∂τ
+

aQk

(1 − aQ2
k−1)

2

∂(Q2
k−1)

∂τ

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1 − aQ2

k−1
·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(Qk)θθ +
(

−k +
2
p

)

G(1)(Qk)θ

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)Qk

+
∑

0≤i,j≤k; i+j≤k+2

MiMj

⎤

⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
aQk

(1 − aQ2
k−1)

2 ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(Q2
k−1)θθ − 2

G
Q2

k +
C

G
M1Mk−1Qk

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)M2
k−1

+
∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎤

⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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whenever Qk(θ, τ) ≥ 0. Use formula (6.56) to get

Zθθ =
(1 − aQ2

k−1)(Qk)θθ + aQk(Q2
k−1)θθ

(1 − aQ2
k−1)

2 +
2a(Q2

k−1)θ

1 − aQ2
k−1

Zθ

and also

Zθ =
(Qk)θ

1 − aQ2
k−1

+
aQk(Q2

k−1)θ

(1 − aQ2
k−1)

2 .

Now

∂Z

∂τ
≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G

(

Zθθ −
2a(Q2

k−1)θ

1 − aQ2
k−1

Zθ

)

+
1

1 − aQ2
k−1

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

−k +
2
p

)

G(1)(Qk)θ

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)Qk

+
∑

0≤i,j≤k; i+j≤k+2

MiMj

⎤

⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
aQk

(1 − aQ2
k−1)

2 ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2
G

Q2
k +

C

G
M1Mk−1Qk

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)M2
k−1

+
∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎤

⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and so

∂Z

∂τ
≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

GZθθ − G
2a(Q2

k−1)θ

1 − aQ2
k−1

Zθ

+
(

−k +
2
p

)

G(1)

[

Zθ −
aQk(Q2

k−1)θ

(1 − aQ2
k−1)

2

]

−2a

G
(1 − aQ2

k−1)Z
3 + the rest
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≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

GZθθ +

[(

−k +
2
p

)

G(1) − 4aGQk−1(Qk−1)θ

1 − aQ2
k−1

]

Zθ − 2a

G
(1 − aQ2

k−1)Z
3

−
(

−k +
2
p

)

G(1) aQk(Q2
k−1)θ

(1 − aQ2
k−1)

2 + the rest,

where

(6.118)

the rest =
1

1 − aQ2
k−1

C

G

⎧
⎨

⎩
(M2

0 + M2
1 + M2)Qk +

∑

0≤i,j≤k; i+j≤k+2

MiMj

⎫
⎬

⎭

+
aQk

(1 − aQ2
k−1)

2

⎧
⎨

⎩

C

G
M1Mk−1Qk +

C

G

⎡

⎣(M2
0 + M2

1 + M2)M2
k−1

+
∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎤

⎦

⎫
⎬

⎭

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C

G

⎡

⎣(M2
0 + M2

1 + M2)Z +
∑

0≤i,j≤k; i+j≤k+2

MiMj

⎤

⎦

+
C

G
aM1Mk−1Z

2 +
C

G

⎡

⎣a(M2
0 + M2

1 + M2)M2
k−1

+ a
∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎤

⎦Z.

On the other hand, by (6.110) we also know

−
(

−k +
2
p

)

G(1) aQk(Q2
k−1)θ

(1 − aQ2
k−1)

2 ≤ aC|G(1)(Q2
k−1)θ|

Qk

(1 − aQ2
k−1)

2(6.119)

≤ a

(
C

G
M1Mk−1Qk +

C

G
M2

1 M2
k−1

)
Qk

(1 − aQ2
k−1)

2

≤ C

G
aM1Mk−1Z

2 +
C

G
aM2

1 M2
k−1Z.
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One can combine (6.119) and (6.118) to get

∂Z

∂τ
≤ GZθθ +

[(

−k +
2
p

)

G(1) − 4aGQk−1(Qk−1)θ

1 − aQ2
k−1

]

Zθ

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2a

G
(1 − aQ2

k−1)Z
3 +

(
C

G
aM1Mk−1Z

2 +
C

G
aM2

1 M2
k−1Z

)

+
C

G

⎡

⎣(M2
0 + M2

1 + M2)Z +
∑

0≤i,j≤k; i+j≤k+2

MiMj

⎤

⎦

+
C

G
aM1Mk−1Z

2 +
C

G

⎡

⎣a(M2
0 + M2

1 + M2)M2
k−1

+ a
∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎤

⎦Z

and use

−2a

G
(1 − aQ2

k−1)Z
3 ≤ − a

G
Z3 on Tm × [s/2, s]

to obtain the final evolution inequality : whenever Qk(θ, τ) ≥ 0, we have

∂Z

∂τ
≤ GZθθ +

[(

−k +
2
p

)

G(1) − 4aGQk−1(Qk−1)θ

1 − aQ2
k−1

]

Zθ(6.120)

− a

2G
Z3 − a

2G
Z3 +

C

G
· Ω

where Ω is a second order polynomial in Z, given by

(6.121)

Ω =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aM1Mk−1Z
2

+

⎡

⎣(M2
0 + M2

1 + M2)(1 + aM2
k−1)

+ a
∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎤

⎦Z

+
∑

0≤i,j≤k; i+j≤k+2

MiMj .

Remark 6.9. Note that (6.120) has exactly the same form as (6.73).
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On the time interval [s/2, s], at points (θ, τ) where Z(θ, τ) ≥ 0 is so large
that it exceeds the constant

(6.122) λ := C sup
[s/2,s]

max Π,

where C is some large constant and

Π =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M1Mk−1, max
0≤i,j≤k; i+j≤k+2

(a−1MiMj)1/3,

√
(M2

0 + M2
1 + M2)(a−1 + M2

k−1),

max
0≤i,j≤k−1; i+j≤k+1

√
MiMjMk−1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

then we have: (we shall split a
2GZ3 into four a

8GZ3)

(6.123) − a

8G
Z3 +

C

G
(aM1Mk−1Z

2) =
a

G

(

−1
8
Z + CM1Mk−1

)

Z2 ≤ 0

since
Z(θ, τ) ≥ C sup

[s/2,s]
M1Mk−1

and

− a

8G
Z3 +

C

G
((M2

0 + M2
1 + M2)(1 + aM2

k−1))Z(6.124)

=
a

G

[

−1
8
Z2 + C

(

(M2
0 + M2

1 + M2)
(

1
a

+ M2
k−1

))]

Z ≤ 0

since
Z(θ, τ) ≥ C sup

[s/2,s]

√

(M2
0 + M2

1 + M2)(a−1 + M2
k−1).

We also have

− a

8G
Z3 +

C

G

⎛

⎝a
∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎞

⎠Z(6.125)

=
a

G

⎛

⎝−1
8
Z2 + C

∑

0≤i,j≤k−1; i+j≤k+1

MiMjMk−1

⎞

⎠Z ≤ 0

since
Z(θ, τ) ≥ C sup

[s/2,s]
max

0≤i,j≤k−1; i+j≤k+1

√
MiMjMk−1.
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Finally

− a

8G
Z3 +

C

G

∑

0≤i,j≤k; i+j≤k+2

MiMj(6.126)

=
a

G

⎛

⎝−1
8
Z3 +

C

a

∑

0≤i,j≤k; i+j≤k+2

MiMj

⎞

⎠ ≤ 0

since

Z(θ, τ) ≥ C sup
[s/2,s]

max
0≤i,j≤k; i+j≤k+2

(a−1MiMj)1/3.

Now by (6.123) to (6.126), we have

(6.127)
∂Z

∂τ
≤ − a

2G
Z3 ≤ − a

2M0
Z3 on [s/2, s]

whenever at the maximum point (θ, τ) we have Z(θ, τ) ≥ λ.
By (6.79) again, we can infer

(6.128) Z(θ, τ) ≤ C max

{

λ,

√
M0

√
a(τ − s/2)

}

, ∀(θ, τ) ∈ Tm × (s/2, s].

In particular, at time s, we get

(6.129) Z(θ, s) ≤ C max

{

λ,

√
M0

as

}

, ∀θ ∈ Tm.

Now

√
M0

as
≤ C

√
√
√
√
√2C2

⎡

⎣Mk−1
0 +

(√
M0

s

)k−1
⎤

⎦

2
M0

s

(6.130)

= C

⎡

⎣Mk−1
0 +

(√
M0

s

)k−1
⎤

⎦

√
M0

s
≤ C

⎡

⎣Mk
0 +

(√
M0

s

)k
⎤

⎦ ,

where we have used the inequality ak−1b ≤ C(ak + bk) for a, b > 0, k ≥ 2.
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As for the first term in λ, we have

sup
[s/2,s]

M1Mk−1 ≤ C

[

M0 +

(√
M0

s

)]⎡

⎣Mk−1
0 +

(√
M0

s

)k−1
⎤

⎦(6.131)

≤ C

⎡

⎣Mk
0 +

(√
M0

s

)k
⎤

⎦ .

For the second term in λ, for each i, j with 0 ≤ i, j ≤ k, i + j ≤ k + 2, we
have

sup
[s/2,s]

(a−1MiMj)1/3

≤ C

⎛

⎝

⎡

⎣Mk−1
0 +

(√
M0

s

)k−1
⎤

⎦

2⎡

⎣M i
0 +

(√
M0

s

)i
⎤

⎦

⎡

⎣M j
0 +

(√
M0

s

)j
⎤

⎦

⎞

⎠

1/3

≤ C

⎛

⎝

[

M0 +

(√
M0

s

)]2k−2+(i+j)
⎞

⎠

1/3

≤ C

⎛

⎝

[

M0 +

(√
M0

s

)]2k−2+(k+2)
⎞

⎠

1/3

= C

[

M0 +

(√
M0

s

)]k

,

where we have used the equivalence (we have ap + bp < (a + b)p ≤ 2p−1(ap +
bp) for any a > 0, b > 0, 1 < p < ∞)

M i
0 +

(√
M0

s

)i

∼
[

M0 +

(√
M0

s

)]i

and the fact that M0 ≥ 1 (since Gmax(τ) = up
max(τ) ≥ 1 for all time). Hence

we conclude that

(6.132) sup
[s/2,s]

max
0≤i,j≤k; i+j≤k+2

(a−1MiMj)1/3 ≤ C

⎡

⎣Mk
0 +

(√
M0

s

)k
⎤

⎦ .
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For the third term in λ, first note that

(6.133) sup
[s/2,s]

√

(M2
0 + M2

1 + M2) ≤ C

[

M0 +

(√
M0

s

)]

and

(6.134) sup
[s/2,s]

√

(a−1 + M2
k−1) ≤ C

⎡

⎣Mk−1
0 +

(√
M0

s

)k−1
⎤

⎦

and combine (6.133), (6.134) to get

(6.135) sup
[s/2,s]

√

(M2
0 + M2

1 + M2)(a−1 + M2
k−1) ≤ C

⎡

⎣Mk
0 +

(√
M0

s

)k
⎤

⎦ .

Finally for the fourth term in λ, we have for each i, j with 0 ≤ i, j ≤ k −
1, i + j ≤ k + 1, that

(6.136)

sup
[s/2,s]

√
MiMjMk−1 ≤ C

[

M0 +

(√
M0

s

)]i+j+k−1
2

≤ C

⎡

⎣Mk
0 +

(√
M0

s

)k
⎤

⎦

due to the same reason as in obtaining (6.132). Hence

(6.137) sup
[s/2,s]

max
0≤i,j≤k−1; i+j≤k+1

√
MiMjMk−1 ≤ C

⎡

⎣Mk
0 +

(√
M0

s

)k
⎤

⎦ .

Combining (6.129)–(6.132), (6.135) and (6.137), we conclude that

Qk(θ, τ) = Gk−1(θ, τ)G(k)(θ, τ)(6.138)

≤ C(k, p)

⎡

⎣Mk
0 +

(√
M0

τ

)k
⎤

⎦ on Tm × (0, τ0]

at points (θ, τ) where Qk(θ, τ) ≥ 0.
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Similar argument applied to (θ, τ), where Qk(θ, τ) ≤ 0, gives the follow-
ing:

(6.139)

Gk−1(θ, τ)|G(k)(θ, τ)| ≤ C(k, p)

⎡

⎣Mk
0 +

(√
M0

τ

)k
⎤

⎦ on Tm × (0, τ0]

for all k ∈ N. The proof of Theorem 6.1 is now finished. �
An immediate consequence of Theorem 6.1 is the following space-time

estimate of G(θ, τ). We first observe the following:

Lemma 6.3. For any integers i ≥ 0 and j > 0, we have the formula

(6.140) ∂i
θ∂

j
τG =

∑

i1+···+ij+1≤i+2j

C(∂i1
θ G) · · · ·

(
∂

ij+1

θ G
)

.

Proof. For example, by (6.98), for j = 1, i = k, we have

(6.141)

∂G(k)

∂τ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

GG
(k)
θθ +

(

k − 2 +
2
p

)

G(1)G
(k)
θ + [C(k, p)G(2) + p(2G − 1)]G(k)

+
[k/2−1]∑

j=1

C(k, j, p)G(j+2)G(k−j) +
[k/2]∑

j=1

C̃(k, j, p)G(j)G(k−j), k ≥ 3,

which is (6.140).
Note that if we just differentiate τ once, we get combinations of terms

like G(p)G(q). But if we differentiate τ twice, we will get combinations of
terms like G(p)G(q)G(r). This explains why the RHS of (6.140) is (∂i1

θ G) · · ·
·(∂ij+1

θ G). There remains the counting of the total number of space differen-
tiation in G. The total number is at most i + 2j. The general case holds by
tedious induction. We will omit it. �

As a consequence of Theorem 6.1, we can deduce the following space-time
regularity estimate for G:

Theorem 6.2 (Andrews [4]). For any integers i ≥ 0 and j > 0, we have

(6.142) Gi+j−1(θ, τ)|∂i
θ∂

j
τG(θ, τ)| ≤ C(i, j, p)

(

M0 +

√
M0

τ

)i+2j

on Tm × (0, τ0].
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Proof. Let C = C(i, j, p), where C may change from line to line. The proof
of (6.142) is based on formula (6.140). By (6.139) we get

(6.143)

|∂i
θ∂

j
τG|

≤
∑

i1+···+ij+1≤i+2j

C|∂i1
θ G| · · · ·|∂ij+1

θ G|

≤
∑

i1+···+ij+1≤i+2j

CG1−i1

(

M0 +

√
M0

τ

)i1

· · · ·G1−ij+1

(

M0+

√
M0

τ

)ij+1

≤ 1
Gi+j−1

∑

i1+···+ij+1≤i+2j

CGi+j−1 · Gj+1−(i1+····+ij+1)

×
(

M0 +

√
M0

τ

)i1+····+ij+1

=
1

Gi+j−1

∑

i1+···+ij+1≤i+2j

CGi+2j−(i1+····+ij+1)

(

M0 +

√
M0

τ

)i1+····+ij+1

≤ C

Gi+j−1

(

M0 +

√
M0

τ

)i+2j

.

The theorem is proved. �

As a corollary of Theorem 6.1, we can state the following:

Corollary 6.3. As τ → ∞, the solution u(θ, τ) in (2.13) converges uni-
formly on Tm to a Lipschitz function w(θ) ≥ 0, which is 2mπ-periodic over
R (as described in Proposition 2.1). Moreover, on any compact subset I ⊂⊂
Ω+, where Ω+ = {θ ∈ R : w(θ) > 0}, w(θ) is smooth and u(θ, τ) converges
in C∞(I) to w(θ) as τ → ∞. That is

lim
τ→∞

sup
θ∈I

∥
∥
∥
∥
∂ku

∂θk
(θ, τ) − w(k)(θ)

∥
∥
∥
∥ = 0 for any k ∈ N.

Proof. We already know that u(θ, τ) is uniformly bounded and converges
uniformly to w(θ) as τ → ∞. By Arzela–Ascoli theorem, it suffices to show
that for any fixed k ∈ N, |(∂ku/∂θk)(θ, τ)| is uniformly bounded on I ×
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[0,∞). By

|Gθ(θ, τ)| = |pup−1(θ, τ)uθ(θ, τ)|, G = up, θ ∈ I

and that up−1(θ, τ) has positive lower bound on I × [0,∞), |uθ(θ, τ)| must
be uniformly bounded on I × [0,∞). Also by

|Gθθ| = |pup−1uθθ + p(p − 1)up−2u2
θ|

and Theorem 6.1, we know that |Gθθ(θ, τ)| is uniformly bounded on I ×
[0,∞), which will in turn force |uθθ(θ, τ)| to be uniformly bounded. Next by

|Gθθθ| = |pup−1uθθθ + (lower order terms of u, uθ, uθθ)|

we know that |uθθθ(θ, τ)| is uniformly bounded on I × [0,∞).
Keep going and the proof is done. �
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