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Genus-zero two-point hyperplane integrals in
the Gromov–Witten theory

Aleksey Zinger

In this paper, we compute certain two-point integrals over a moduli
space of stable maps into projective space. Computation of one-
point analogs of these integrals constitutes a proof of mirror sym-
metry for genus-zero one-point Gromov–Witten (GW) invariants
of projective hypersurfaces. The integrals computed in this paper
constitute a significant portion in the proof of mirror symmetry
for genus-one GW-invariants completed in a separate paper. These
integrals also provide explicit mirror formulas for genus-zero two-
point GW-invariants of projective hypersurfaces. The approach
described in this paper leads to a reconstruction algorithm for all
genus-zero GW-invariants of projective hypersurfaces.
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1. Introduction

1.1. Background and motivation

The theory of Gromov–Witten (GW) invariants has been greatly influenced
by its interactions with string theory. In particular, the mirror symmetry
principle has led to completely unexpected predictions concerning GW-
invariants of Calabi–Yau manifolds. The original prediction of [4] for the
genus-zero GW-invariants of a quintic three-fold was verified about ten years
ago in a variety of ways in [3, 5, 6, 8, 10]. The 1993 prediction of [2] for the
genus-one GW-invariants of a quintic three-fold is verified in [14], using the
results of this paper.

The proof of the genus-zero mirror symmetry for a projective hyper-
surface X essentially consists of computing certain equivariant integrals on
moduli spaces M0,m(Pn−1, d) of stable degree-d maps from genus-zero curves
with m marked points into P

n−1. While the integrals appearing in Chap-
ters 29 and 30 of [11] are over M0,2(Pn−1, d), the integrands involve only
one marked point. For this reason, such integrals can be easily expressed
in terms of integrals on M0,1(Pn−1, d) and determine genus-zero one-point
GW-invariants of X; see (1.2) below. In this paper, we compute integrals
on M0,2(Pn−1, d) with integrands involving both marked points. These inte-
grals in a sense correspond to arithmetic genus one and indeed consti-
tute a significant portion of the proof of mirror symmetry for genus-one
GW-invariants in [14]. Theorem 1.1 also provides closed mirror formulas
for genus-zero two-point GW-invariants of X, including with descendants.
At the end of Section 1.3, we describe the issue arising for integrals
with more marked points, a potential way of addressing it, and a
reconstruction algorithm for genus-zero GW-invariants of X with
descendants.
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Let U be the universal curve over M0,m(Pn−1, d), with structure map π
and evaluation map ev:

U

π
��

ev ��
P

n−1

M0,m(Pn−1, d).

In other words, the fiber of π over [C, f ] is the curve C with m marked
points, while

ev
(
[C, f ; z]

)
= f(z) if z ∈ C.

If a is a positive integer, the sheaf

π∗ev∗OPn−1(a) −→ M0,m(Pn−1, d)

is locally free. We denote the corresponding vector bundle by V0.1 Its Euler
class, e(V0), relates genus-zero GW-invariants of a degree-a hypersurface in
P

n−1 to genus-zero GW-invariants of P
n−1; see Section 26.1 in [11]. For each

i = 1, . . . , m, there is a well-defined bundle map

ẽvi : V0 −→ ev∗
i OPn−1(a), ẽvi

(
[C, f ; ξ]

)
=
[
ξ(xi(C))

]
,

where xi(C) is the ith marked of C. Since it is surjective, its kernel is again
a vector bundle. Let

V ′
0 = ker ẽv1 −→ M0,m(Pn−1, d) and V ′′

0 = ker ẽv2 −→ M0,m(Pn−1, d),

whenever m ≥ 1 and m ≥ 2, respectively.2

The standard action of the n-torus T on P
n−1 induces T-actions on

M0,m(Pn−1, d), U, V0, V ′
0 and V ′′

0 ; see Sections 3.1 and 3.2 for details on

1The fiber of V0 over a point [C, f ] ∈ M0,m(Pn−1, d) is H0(C; f∗OPn−1(a))/
Aut(C, f).

2In Chapters 29 and 30 of [11], the roles of the marked points 1 and 2 in (1.2)
are switched; the analogs of V0 and V ′

0 over M0,2(Pn, d) are denoted by E0,d and
E′

0,d, respectively.
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equivariant cohomology. In particular, V0, V ′
0 and V ′′

0 have well-defined equiv-
ariant Euler classes

e(V0), e(V ′
0), e(V ′′

0 ) ∈ H∗
T

(
M0,m(Pn−1, d)

)
.

These classes are related by

(1.1) e(V0) = a ev∗
1(x) e(V ′

0) = a ev∗
2(x) e(V ′′

0 ),

where x ∈ H∗
T
(Pn−1) is the equivariant hyperplane class. For each i = 1, 2,

. . . , m, there is also a well-defined equivariant ψ-class,

ψi ∈ H2
T

(
M0,m(Pn−1, d)

)
,

the first chern of the vertical cotangent line bundle of U pull-backed to
M0,m(Pn−1, d) by the section

M0,m(Pn−1, d) −→ U, [C, f ] −→
[
C, f ; xi(C)

]
.

Since M0,m(Pn−1, d) is a smooth stack (orbifold), there is an integration-
along-the-fiber homomorphism

∫

M0,m(Pn−1,d)
: H∗

T

(
M0,m(Pn−1, d)

)
−→ H∗

T
≈ Q[α1, . . . , αn].

For each i = 1, 2, . . . , n, let

φi ∈ H∗
T
(Pn−1) ≈ Q[x, α1, . . . , αn]

/
(x − α1) . . . (x − αn)

be the equivariant Poincare dual of the ith fixed point Pi ∈ P
n−1. Let

Qα ≡ Q(α1, . . . , αn)

denote the field of fractions in α1, . . . , αn. For a = 1, 2, . . . , n, an explicit
algebraic formula for

Z(�, αi, u) ≡ 1 +
∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V ′
0)

� − ψ1
ev∗

1φi

= �
−1

(

� +
∞∑

d=1

ud

∫

M0,1(Pn−1,d)

e(V ′
0)

� − ψ1
ev∗

1φi

)

∈
(
Qα[[�−1]]

)[[
u
]]

(1.2)
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is confirmed in Chapters 29 and 30 of [11]. The equality in (1.2) is a straight-
forward consequence of the string relation for GW-invariants; see Section
26.3 in [11].

One of the ingredients in genus-one localization computations is a two-
pointed version of (1.2):

Z̃(�1, �2, αi, αj , u) ≡ a αi

�1 + �2

∏

k �=i

(αj − αk)(1.3)

+
∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V0)ev∗
1φiev∗

2φj

(�1 − ψ1)(�2 − ψ2)

∈
(
Qα

[[
�

−1
1 , �−1

2
]])[[

u
]]

.

Note that the term of degree zero in u above is symmetric in (�1, αi) and
(�2, αj), just as are the positive-degree terms. In turn, Z̃(�1, �2, αi, αj , u)
can be determined from the power series

Zp(�, αi, u) ≡ αp+1
i +

∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V ′′
0 )ev∗

2x
p+1

� − ψ1
ev∗

1φi(1.4)

∈
(
Qα[[�−1]]

)[[
u
]]

with p = −1, 0, . . . , n − 1. The seemingly unfortunate choice of indexing is
partly motivated by the central role played by the power series Z(�, αi, u)
defined in (1.2) and the simple relation

Z0(�, αi, u) = αiZ(�, αi, u),

which follows from (1.1), along with (3.9), (3.4) and (3.5). As shown in this
paper,

Z̃(�1, �2, αi, αj , u) =
a

�1 + �2

∑

p+q+r=n−1

(−1)rσrZp(�1, αi, u)Zq−1(�2, αj , u),
(1.5)

where σp is the pth elementary symmetric polynomial in α1, . . . , αn; see
Theorem 1.1.

Remark 1. The right-hand side of (1.5) is in fact symmetric in (�1, αi)
and (�2, αj), because

(1.6) Zn−1(�, αi, u) − σ1Zn−2(�, αi, u) + . . . + (−1)nσnZ−1(�, αi, u) = 0.

The reason for this relation is explained in Section 1.3.
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Table 1: Some genus-zero two-point BPS numbers.

Degree BPS curve count through 2 codim-2
d linear subspaces in X7

1 1707797
2 510787745643
3 222548537108926490
4 113635631482486991647224
5 63340724462384110502639024265
6 37325795060717360046547665187418254
7 22857028298936684292245509537579343818647
8 14395953469762596243721601709186933042635134584
9 9263611884884554518268724722981763557936573405648178
10 6062677702410680024315392235188823274104219383883410807999

Remark 2. We will see in Section 1.2 that the power series Zp(�, αi, u)
can be represented by elements of Qα(�)[[u]]. Relation (1.5) might then sug-
gest that the corresponding element of Qα(�1, �2)[[u]] representing Z̃(�1, �2,
αi, αj , u) has a simple pole at �1 = −�2. In fact, there is no pole at �1 = −�2,
except in degree zero. This is immediate from the localization formula (3.9);
see also Section 3.2.

The power series (1.4) encode genus-zero two-point GW-invariants of a
degree-a hypersurface in P

n−1 with constraints coming from P
n−1. Thus,

Theorem 1.1 provides mirror formulas for such invariants; the coefficients
C̃

(r)
p,q are “purely equivariant” and are irrelevant for this purpose. In Table 1,

we give the first ten genus-zero two-point BPS numbers, defined from
GW-invariants by Equation (2) in [7], for the degree-7 hypersurface in P

6.
These numbers are integers as predicted by Conjecture 1 in [7]. In fact, we
have used the first statement of Theorem 1.1, along with a computer pro-
gram, to confirm this conjecture for all degree-d two-point BPS counts in a
degree-n hypersurface Xn in P

n−1 with n ≤ 10 and d ≤ 20.
The explicit expressions of Section 29.1 in [11] for the power series

Z(�, αi, u) have very different forms for a < n and a = n. The a = n case
is the most interesting one and corresponds to Calabi–Yau hypersurfaces.
As the power series Z(�, αi, u) are central to our computation of Zp(�, α, u)
and Z̃(�1, �2, αi, αj , u), for the purposes of the explicit expressions preceding
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Theorem 1.1 in the next subsection we consider only the case a = n.3 This
is also the case used in [14].

1.2. Main theorem

The essence of mirror symmetric predictions for GW invariants is that these
invariants (and relatedly Z(�, αi, u)) can be expressed in terms of certain
hypergeometric series. In this subsection, we define these series and then
express Z(�, αi, u), Zp(�, αi, u) and Z̃(�1, �2, αi, αj , u) in terms of them.

Let n be a positive integer. For each q = 0, 1, . . ., define I0,q(t) by

(1.7)
∞∑

q=0

I0,q(t)wq ≡ ewt
∞∑

d=0

edt

∏r=nd
r=1 (nw + r)
∏r=d

r=1(w + r)n
.

Each I0,q(t) is a degree-q polynomial in t with coefficients that are power
series in et. For example,

I0(t) = 1 +
∞∑

d=1

edt (nd)!
(d!)n

, I1(t) = tI0(t) +
∞∑

d=1

edt

(
(nd)!
(d!)n

nd∑

r=d+1

n

r

)
.(1.8)

For p, q ∈ Z
+ with q ≥ p, let

(1.9) Ip,q(t) =
d

dt

(
Ip−1,q(t)

Ip−1,p−1(t)

)
.

It is straightforward to check that each of the “diagonal” terms Ip,p(t)
is a power series in et with constant term 1, whenever it is defined; see [13],
for example. Thus, the division in (1.9) is well-defined for all p. Let

(1.10) T =
I0,1(t)
I0,0(t)

.

By (1.8), the map t −→ T is a change of variables; it will be called the
mirror map. If p ∈ Z̄

+ and Y(�, x, et) is a power series in et with coefficients

3In other words, one may to choose set a = n for the rest of the paper. However,
the statements of Lemmas 1.1 and 1.2 and their proofs are valid for all a. Therefore,
the proofs of (1.5) and (1.6) are valid as well. The same is the case with Theorem 1.1
if the power series Y−1 and Y are chosen appropriately.
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that are functions of a complex variable � and possibly some other variable
x, let

(1.11) D
pY(�, x, t) = e−xt/�

{
�

Ip,p(t)
d

dt

}
. . .
{

�

I1,1(t)
d

dt

}(
ext/�Y(�, x, et)

)
.

We define

Y(�, x, et) = I0,0(t)−1x

∞∑

d=0

edt

∏r=nd
r=1 (nx + r�)

∏r=d
r=1
∏k=n

k=1 (x − αk + r�)

∈ Qα(�, x)
[[

et
]]/ k=n∏

k=1

(x − αk).

Expanding ext/�Y(�, x, et) as a power series in �
−1, we obtain

(1.12) ext/�Y(�, x, et) = x

∞∑

q=0

( r=q∑

r=0

C
(r)
0,q (t)xq−r

)
�

−q,

where C
(r)
0,q (t) is a degree-r symmetric polynomial in α1, . . . , αn with coeffi-

cients in Q[t][[et]]. For example,

C
(0)
0,q (t) = I0,q(t)

/
I0,0(t), C

(1)
0,1 (t) = σ1I0,0(t)−1

∞∑

d=1

edt

(
(nd)!
(d!)n

n∑

r=1

1
r

)
.(1.13)

The main conclusion of Section 30.4 in [11] is that the power series
Z(�, αi, e

T ) defined in (1.2) is the evaluation of

Z(�, x, eT ) = e(t−T )x/�e−C
(1)
0,1(t)/�Y(�, x, et) ∈ Qα(�, x)

[[
et
]]/ k=n∏

k=1

(x − αk)

(1.14)

at x = αi, if T and t are related by the mirror map (1.10).
The power series Zp(�, αi, u) and Z̃(�1, �2, αi, αj , u) defined in (1.4)

and (1.3), respectively, are also evaluations of certain power series

Zp(�, x, u) ∈ Qα(�, x)
[[

u
]]/ k=n∏

k=1

(x − αk)
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and

Z̃(�1, �2, x1, x2, u) ∈ Qα(�1, �2, x1, x2)
[[

u
]]/ k=n∏

k=1

(x1 − αk)(x2 − αk)

that have a mirror transform shape analogous to (1.14). Let

D
−1Y(�, x, et) ≡

∞∑

d=0

edt

∏nd−1
r=0 (nx + r�)

∏r=d
r=1
∏k=n

k=1 (x − αk + r�)
(1.15)

∈ Qα(�, x)
[[

et
]]/ k=n∏

k=1

(x − αk).

Theorem 1.1. There exist C̃
(r)
p,q ∈ Qα

[
[et]
]
, with p ≥ r ≥ 1 and p − r ≥ q ≥

0, such that the coefficients of the powers of et in C̃
(r)
p,q are degree-r symmetric

polynomials and the power series defined in (1.4) are given by

(1.16) Zp(�, x, eT ) = e(t−T )x/�e−C
(1)
0,1(t)/�Yp(�, x, et),

where

Yp(�, x, et) ≡ D
pY(�, x, et) +

r=p∑

r=1

p−r∑

q=0

C̃(r)
p,q (et)�p−r−q

D
qY(�, x, et),

if T and t are related by the mirror map (1.10). Furthermore, the power
series defined in (1.3) are given by

Z̃(�1, �2, x1, x2, u) =
a

�1 + �2

∑

p+q+r=n−1

(−1)rσrZp(�1, x1, u)Zq−1(�2, x2, u).
(1.17)

Remark. We note that by (1.16) and (1.17)

Z̃(�1, �2, x1, x2, e
T ) = e(t−T )(x1/�1+x2/�2)e−C

(1)
0,1(t)(�−1

1 +�
−1
2 )Ỹ(�1, �2, x1, x2, e

t),

where

Ỹ(�1, �2, x1, x2, u) ≡ a

�1 + �2

∑

p+q+r=n−1

(−1)rσrYp(�1, x1, u)Yq−1(�2, x2, u).

In other words, Z̃ is the same transform of Ỹ in both (x1, �1) and (�2, x2)
as Z and Zp are of Y and Yp in (�, x).



964 Aleksey Zinger

The only relevant property of the power series C̃
(r)
p,q for the purposes of the

genus-one localization computations in [14] is that the et-coefficients of C̃
(r)
p,q

lie in the ideal generated by σ1, . . . , σn−1 if p ≤ n − 1. This is automatic in
the case of Theorem 1.1, since each of these coefficients is a symmetric poly-
nomial in α1, . . . , αn of a positive degree r ≤ n − 1. The author’s approach
in [14] suggests that these coefficients are likely to be irrelevant in many
other localization computations as well. Nevertheless, they are described
inductively in this paper in the process of proving the first statement of
Theorem 1.1.

1.3. Outline of the proof

The proof of (1.14) in Chapter 30 of [11] essentially consists of showing that

(S1) Y(�, x, u) and Z(�, x, u) satisfy a certain recursion on the u-degree;

(S2) Y(�, x, u) and Z(�, x, u) satisfy a certain self-polynomiality condition
(SPC);

(S3) the two sides of (1.14), viewed as power series in �
−1, agree mod �

−2;

(S4) if Y (�, x, u) satisfies the recursion and the SPC, so do certain trans-
forms of Y (�, x, u);

(S5) if Y (�, x, u) satisfies the recursion and the SPC, it is determined by
its “mod �

−2 part”.

For the purposes of these statements, in particular (S3) and (S5), we
assume that

Y(�, x, u),Z(�, x, u), Y (�, x, u) ∈ Qα(�, x)
[[

u
]]/ k=n∏

k=1

(x − αk).

For example, (S5) means

Y (�, αi, u) ∼= Ȳ (�, αi, u) (mod �
−2) ∀ i = 1, 2, . . . , n

=⇒ Y (�, αi, u) = Ȳ (�, αi, u) ∀ i = 1, 2, . . . , n.

The proof of (1.16) in this paper essentially consists of showing that

(M1) Yp(�, x, u) and Zp(�, x, u) satisfy recursion (2.13);

(M2)
(
Y(�, x, u),Yp(�, x, u)

)
and

(
Z(�, x, u),Zp(�, x, u)

)
satisfy the mutual

polynomiality condition (MPC) of Lemma 2.2;
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(M3) the two sides of (1.16), viewed as power series in �
−1, agree mod �

−1;

(M4) if Z(�, x, u) satisfies (2.13) and the MPC with respect to Y (�, x, u),
the transforms of Z(�, x, u) of Lemma 2.3 satisfy (2.13) and the MPC
with respect to appropriate transforms of Y (�, x, u);

(M5) if the u-constant term of Y (�, x, u) is independent of � and nonzero
and Z(�, x, u) satisfies (2.13) and the MPC with respect to Y (�, x, u),
it is determined by its “mod �

−1 part”; see Proposition 2.1.

Statements (M3) and (M5) should be interpreted analogously to (S3)
and (S5). In other words, the equalities are modulo

∏k=n
k=1 (x − αk), or equiv-

alently after the evaluation at each x = αi. Similarly, the requirement on the
degree-zero term in Y (�, x, u) in (M5) means that it is nonzero even after
the evaluation at each x = αi.

The claims of (M1) and (M2) concerning Zp(�, x, u) are special cases of
Lemmas 1.1 and 1.2 below, since

∫

M0,2(Pn−1,d)

e(V ′′
0 )ev∗

2η

� − ψ1
ev∗

1φi(1.18)

= �

∫

M0,3(Pn−1,d)

e(V ′′
0 )ev∗

2η

� − ψ1
ev∗

1φi ∀ η ∈ H∗
T
(Pn−1), d ∈ Z

+,

by the string relation; see Section 26.3 in [11].

Lemma 1.1. For all m ≥ 3, ηj ∈ H∗
T
(Pn−1) and βj ∈ Z̄

+, the power series
Zη,β(�, x, u) defined by

(1.19) Zη,β(�, x, u) ≡
∞∑

d=0

ud

(∫

M0,m(Pn−1,d)

e(V ′′
0 )ev∗

1φi

� − ψ1

j=m∏

j=2

(
ψ

βj

j ev∗
jηj

)
)

satisfies the recursion (2.13).

Lemma 1.2. For all m ≥ 3, ηj ∈ H∗
T
(Pn−1) and βj ∈ Z̄

+, the power series
�

m−2Zη,β(�, x, u), with Zη,β(�, x, u) as in Lemma 1.1, satisfies the polyno-
mial condition of Lemma 2.1 with respect to Z(�, x, u).

Our proof of Lemma 1.1 is practically identical to the proof in Sec-
tion 30.1 of [11] that Z(�, x, u) satisfies a certain recursion on the u-degree.4

4However, the coefficients Cj
i (d) in (2.13) are “shifts by one” of the coefficients

in the recursion for Z(�, x, u).
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The proof of Lemma 1.2 is similar to the proof in Section 30.2 of [11]
that Z(�, x, u) satisfies the SPC. However, there are differences in how
the key idea for the setup used in [11] is utilized. An explanation of the
modifications and a complete justification of their appropriateness are not
very simple to state. In order to avoid any confusion, we thus give a full
account in Sections 3.3 and 3.4. As it requires most of what constitutes
the proof of the recursivity relation (2.13), we give a proof of the latter in
Section 3.2.

We are now able to justify (1.6). By (1.4),

(1.20) Zp(�, x, u) ∼= xp+1 (mod �
−1).5

Along with (M5), these three properties of Zp(�, x, u) imply (1.6), since
∑

p+r=n

(−1)rσrZp−1(�, x, u) ≡
∑

p+r=n

(−1)rσrx
p (mod �

−1)

=
k=n∏

k=1

(x − αk).

The last expression above vanishes at x = αi for all i = 1, 2, . . . , n.
We will check by a direct computation that

Y−1(�, x, u) ≡ D
−1Y(�, x, u)

satisfies (2.13) and the MPC with respect to Y(�, x, u); see Section 2.3.
By (1.15),

Y−1(�, x, u) ∼= 1 (mod �
−1).

Thus, the p = −1 case of (1.16) follows from (1.20), (M4) and (M5).
We could also verify directly that Y0(�, x, u) satisfies (2.13) and the MPC

with respect to Y(�, x, u). Fortunately, this is an immediate consequence of
parts (i) and (ii) of Lemma 2.3, since

Y0(�, x, et) =
1

I0,0(t)

{
x + �

d

dt

}
Y−1(�, x, et).

Thus, Y0(�, x, u) satisfies the two properties because Y−1(�, x, u) does. On
the other hand, by (1.12) and (1.13),

Y0(�, x, u) = xY(�, x, u) ∼= x (mod �
−1).

5Such identities will be taken to mean that the two sides are equal if x is replaced
with αi for every i = 1, 2, . . . , n.
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Thus, the p = 0 case of (1.16) also follows from (1.20), (M4) and (M5).
The differentiation transform (i) of Lemma 2.3 is the only one of the

five “admissible” transforms that has no analog in Chapter 30 of [11].6

The admissibility of this transform, along with that of (ii) of Lemma 2.3,
implies that Yp(�, x, u) defined by the second equation in (1.16) satisfies
recursion (2.13) and the MPC of Lemma 2.2 with respect to Y(�, x, u), no
matter what the coefficients C̃

(r)
p,q (u) are. In light of (1.20), the p ≥ 1 cases of

the first equation in (1.16) thus reduce to showing there exist C̃
(r)
p,q (u) such

that

(1.21) Yp(�, x, u) ∼= xp+1 (mod �
−1).

This is proved by induction, using (1.12) and (1.13); see Section 2.3.
The proof of (1.17) follows the same principle. By the string relation

and (1.1),

Z̃(�1, �2, αi, αj , x2, u)

=
�1�2

�1 + �2

∞∑

d=0

∫

M0,3(Pn−1,d)

e(V ′′
0 )

(�1 − ψ1)(�2 − ψ2)
ev∗

1φiev∗
2(ax φj).

Thus, by Lemmas 1.1 and 1.2, (�1 + �2)Z̃(�1, �2, x1, x2, u) satisfies recur-
sion (2.13) and the MPC of Lemma 2.2 with respect to Z(�, x, u) for (�, x) =
(�1, x1) and x2 = αj fixed. By symmetry, it also satisfies the two properties
for (�, x) = (�2, x2) and x1 = αi fixed. It is then sufficient to compare the
two sides of (1.17) multiplied by �1 + �2 modulo �

−1
1 :

(
�1 + �2

)
Z̃(�1, �2, αi, αj , u)

∼= aαi

∑

p+q+r=n−1

(−1)rσrα
p
i α

q
j +

∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V0)ev∗
1φiev∗

2φj

�2 − ψ2
,

a
∑

p+q+r=n−1

(−1)rσrZp(�1, αi, u)Zq−1(�2, αj , u)

∼= a
∑

p+q+r=n−1

(−1)rσrα
p+1
i Zq−1(�2, αj , u).

6The multiplication by �, i.e., transform (iii), is not explicitly mentioned in Chap-
ter 30 of [11], but its admissibility is nearly immediate from the relevant definitions.
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In order to see that the two resulting expressions are equal, we compare
them modulo �

−1
2 :

a
∑

p+q+r=n−1

(−1)rσrα
p+1
i αq

j +
∞∑

d=1

ud

∫

M0,2(Pn−1,d)

e(V0)ev∗
1φiev∗

2φj

�2 − ψ2

∼= a
∑

p+q+r=n−1

(−1)rσrα
p+1
i αq

j ,

a
∑

p+q+r=n−1

(−1)rσrα
p+1
i Zq−1(�2, αj , u) ∼= a

∑

p+q+r=n−1

(−1)rσrα
p+1
i αq

j .

From this we conclude that the two sides of (1.17) multiplied by �1 + �2
modulo �

−1
1 are equal. Therefore, the two sides (1.17) are equal by (M5).

Central to this paper are the use of the transforms Dp in conjunction with
part (i) of Lemma 2.3 and a desymmetrization of the approach of Chapter 30
of [11] to obtain an explicit closed formula for the integrals in (1.3). The
transforms Dp, combined with transforms (ii) and (iii) of Lemma 2.3, make
it possible to construct a power series Ỹ(�, x, u), satisfying recursion (2.13)
and the MPC with respect to Y(�, x, u), that agrees with a pre-specified
α-symmetric element of Qα[�]

[[
u
]]

modulo �
−1. On the other hand, for

the purposes of (M5), it is sufficient to assume that the coefficient of each
power of u in Y and Z is a sum of a power series in �

−1 and a polynomial
in �.7 Using (M5) and the last two parts of Lemma 2.3, a variety of inte-
grals on M0,m(Pn, d) involving e(V0) and products of 1/(�j − ψj) can be
reduced to integrals involving e(V0) and powers ψ-classes, with each expo-
nent bounded by m − 3.

For example, suppose one would like to compute

Z̃(3)(�1, �2, �3, αi1 , αi2 , αi3 , u)(1.22)

≡
∞∑

d=0

ud

∫

M0,3(Pn−1,d)

e(V0)ev∗
1φi1ev∗

2φi2ev∗
3φi3

(�1 − ψ1)(�2 − ψ2)(�3 − ψ3)
,

these integrals may be useful for localization computations in (arithmetic)
genus two. By Lemmas 1.1 and 1.2 and part (iii) of Lemma 2.3, �1�2�3Z̃(3)

satisfies the recursion and the MPC with respect to Z for each (�, x) =

7The same is the case with (S5). In fact, the condition on the middle term of the
recursion used Chapter 30 of [11] can also be relaxed as in Definition 2.1.
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(�s, xs). Thus, Z̃(3) can be reconstructed8 from “mod �
−1
3 ” part of

�1�2�3Z̃(3),

�1�2�3Z̃(3)(�1, �2, �3, αi1 , αi2 , αi3 , u)(1.23)

∼= �1�2

∞∑

d=0

ud

∫

M0,3(Pn−1,d)

e(V0)ev∗
1φi1ev∗

2φi2ev∗
3φi3

(�1 − ψ1)(�2 − ψ2)
,

once one computes

Z̃p(�1, �2, αi1 , αi2 , u) ≡
∞∑

d=0

ud

∫

M0,3(Pn−1,d)

e(V0)ev∗
1φi1ev∗

2φi2ev∗
3x

p

(�1 − ψ1)(�2 − ψ2)
.

Similarly, �1�2Z̃p can be reconstructed from its “mod �
−1
2 ” part, if one

can compute

Zpq(�1, αi1 , u) ≡
∞∑

d=0

ud

∫

M0,3(Pn−1,d)

e(V0)ev∗
1φi1ev∗

2x
pev∗

3x
q

�1 − ψ1
.

Unfortunately, the “mod �
−1
1 part” of Zpq(�1, x, u) is not simple.

The above approach does, nevertheless, lead to a reconstruction theorem
for e(V0)-twisted GW-invariants of P

n−1, or equivalently for GW-invariants
of projective hypersurfaces. The theorem arising here is different from [9, 12]
for example, as the reduction is made to GW-invariants with low powers of
ψ-classes and without increasing the number of marked points. Furthermore,
in may be possible to get a handle on the “components” of the “mod �

−1
1

part” of Zpq, i.e.,
∫

M0,3(Pn−1,d)
ev∗

1x
pev∗

2x
qev∗

3x
r,

and Zpq itself through the approach of Sections 2.4 and 2.5 in [14]. Along
with (2.13), this approach leads to an explicit, but complicated, recursion
for Zpq (or the components of its “mod �

−1
1 part”).

8From (1.23) and φi3 =
∏

k �=i3
(x − αi3), one obtains

�1�2�3Z̃(3)(�1, �2, �3, x1, x2, x3, u)

= �1�2

∑

p+q+r=n−1

(−1)rσrZ̃p(�1, �2, x1, x2, u)Zq(�3, x3, u).
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2. Algebraic observations

2.1. On rigidity of certain polynomial conditions

This subsection describes the extent of rigidity of power series with coeffi-
cients in rational functions that satisfy a certain recursion and a polynomi-
ality condition. It is the analog of Section 30.3 in [11].

Denote by Z̄
+ the set of nonnegative integers and by [n], whenever n ∈

Z̄
+, the set of positive number not exceeding n:

Z̄
+ =

{
0, 1, 2, . . . ,

}
, [n] =

{
1, 2, . . . , n

}
.

Whenever f is a function of w (and possibly of other variables) which is
holomorphic at w = 0 (for a dense subspace of the other variables) and
s ∈ Z̄

+, let

(2.1) Ds
wf =

1
s!

{
d

dw

}s

f(w)
∣
∣
∣
w=0

.

This is a function of the other variables if there are any.
Let Q̃α be any field extension of Qα, possibly Qα itself. Given

Y ≡ Y (�, x, u), Z ≡ Z(�, x, u) ∈ Q̃α(�, x)
[[

u
]]

,

we define

ΦY,Z ≡ ΦY,Z(�, u, z) ∈ Q̃α(�)
[[

u, z
]]

by

ΦY,Z(�, u, z) =
i=n∑

i=1

eαiz

∏
k �=i(αi − αk)

Y
(
�, αi, ue�z

)
Z(−�, αi, u).(2.2)

Lemma 2.1. If Y, Z ∈ Q̃α(�, x)[[u]], there exists a unique collection

(
EY,Z;d ≡ EY,Z;d(�, Ω)

)
d∈Z̄+ ⊂ Q̃α(�)[Ω]

such that the Ω-degree of EY,Z;d is at most (d + 1)n − 1 for every d ∈ Z̄
+

and

(2.3) ΦY,Z(�, u, z) =
∞∑

d=0

ud

(
1

2πi

∮
eΩz EY,Z;d(�, Ω)
∏k=n

k=1
∏r=d

r=0(Ω − αk − r�)
dΩ
)

,
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where each path integral is taken over a simple closed loop in C enclosing all
points Ω = αk + r� with k = 1, . . . , n and r = 0, 1, . . . , d. The equality holds
for a dense collection of complex parameters �.

Proof. It can be assumed that

αk + r� �= αk′ + r′
� ∀ k, k′ ∈ [n], r, r′ ∈ Z̄

+, (r, k) �= (r′, k′).

Note that for every i = 1, . . . , n and d′ = 0, 1, . . . , d,

r=d′−1∏

r=0

(αi + d′
� − αi − r�)

r=d∏

r=d′+1

(αi + d′
� − αi − r�)

r=d∏

r=0

∏

k �=i

(αi + d′
� − αk − r�)

= d′!�d′
(d − d′)!(−�)d−d′

( r=d′∏

r=1

∏

k �=i

(αi − αk + r�)
)(∏

k �=i

(αi − αk)
)

( r=d−d′∏

r=1

∏

k �=i

(αi − αk − r�)
)

=
(∏

k �=i

(αi − αk)
)

Qd′(�, αi) Qd−d′(−�, αi),

where

(2.4) Qd(�, x) ≡
r=d∏

r=1

k=n∏

k=1

(x − αk + r�) ∀ d ∈ Z̄
+.

By the Residue Theorem,

1
2πi

∮
eΩz EY,Z;d(�, Ω)
∏r=d

r=0
∏k=n

k=1 (Ω − αk − r�)
dΩ

=
d′=d∑

d′=0

i=n∑

i=1

e(αi+d′
�)z EY,Z;d(�, αi + d′

�)
(∏

k �=i(αi − αk)
)
Qd′(�, αi) Qd−d′(−�, αi)

=
d′=d∑

d′=0

i=n∑

i=1

(
eαiz

∏
k �=i(αi − αk)

)(
(e�z)d′

Qd′(�, αi)Qd−d′(−�, αi)

)

EY,Z;d(�, αi + d′
�).

(2.5)
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On the other hand, since Y, Z ∈ Q̃α(�, x)[[u]],

(2.6) Y (�, x, u) =
∞∑

d=0

NY ;d(�, αi)
Qd(�, αi)

ud and Z(�, x, u) =
∞∑

d=0

NZ;d(�, αi)
Qd(�, αi)

ud

for unique NY ;d, NZ;d ∈ Q̃α(�, x). By (2.2) and (2.6),

ΦY,Z(�, u, z) =
∞∑

d=0

d′=d∑

d′=0

i=n∑

i=1

eαiz

∏
k �=i(αi − αk)

(
NY ;d′(�, αi)
Qd′(�, αi)

)
(ue�z)d′

(
NZ;d−d′(−�, αi)
Qd−d′(−�, αi)

)
ud−d′

=
∞∑

d=0

ud

(
d′=d∑

d′=0

i=n∑

i=1

eαiz

∏
k �=i(αi − αk)

(
(e�z)d′

Qd′(�, αi)Qd−d′(−�, αi)

)

× NY ;d′(�, αi)NZ;d−d′(−�, αi)

)

.

(2.7)

By (2.5) and (2.7), (2.3) is satisfied if and only if

EY,Z;d(�, αi + d′
�) = NY ;d′(�, αi) · NZ;d−d′(−�, αi)(2.8)

∀ i = 1, . . . , n, d′ = 0, . . . , d.

For a dense collection of complex parameters �, there exists a unique
polynomial

EY,Z;d(�, Ω) ∈ Q̃α(�)[Ω]

of Ω-degree at most (d + 1)n − 1 that satisfies (2.8). �

Lemma 2.2. If Y, Z ∈ Q̃α(�, x)[[u]] and (EY,Z;d)d∈Z̄+ ⊂ Q̃α(�)[Ω] are as in
Lemma 2.1, then

ΦY,Z ∈ Q̃α[�]
[[

u, z
]]

⇐⇒ EY,Z;d ∈ Q̃α[�, Ω] ∀ d ∈ Z̄
+

⇐⇒ EZ,Y ;d ∈ Q̃α[�, Ω] ∀ d ∈ Z̄
+

⇐⇒ ΦZ,Y ∈ Q̃α[�]
[[

u, z
]]

.

(2.9)
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Proof. The equivalence of the two middle statements in (2.9) follows from
(2.8), which implies that

EZ,Y ;d(�, Ω) = EY,Z;d(−�, Ω − d�).

On the other hand, by the Residue Theorem on S2,

1
2πi

∮
ΩkdΩ

∏r=d
r=0
∏k=n

k=1 (Ω − αk − r�)
=

⎧
⎪⎨

⎪⎩

0 if k < (d + 1)n − 1,

1 if k = (d + 1)n − 1,

Rd
k−(d+1)n+1(�) if k > (d + 1)n − 1,

(2.10)

where Rd
s ∈ Qα[�] is given by

Rd
s(�) = Ds

w

(
1

∏r=d
r=0
∏k=n

k=1 (1 − (αk + r�)w)

)
∀ s ∈ Z̄

+.

The path integral in (2.10) is again taken over a simple closed loop
enclosing all points Ω = αk + r� with r ≤ d. Write

ΦY,Z(�, u, z) =
∞∑

d=0

∞∑

q=0

1
q!

Fd,q(�)zqud

EY,Z;d(�, Ω) =
(d+1)n−1∑

s=0

fd,s(�)Ωs.

(2.11)

By (2.3), (2.10) and (2.11),

Fd,q(�) =
(d+1)n−1∑

s=0

1
2πi

∮
fd,s(�) Ωq+sdΩ

∏r=d
r=0
∏k=n

k=1 (Ω − αk − r�)

=
(d+1)n−1∑

s=max(0,(d+1)n−1−q)

Rd
q+s−(d+1)n+1(�) fd,s(α; �).

(2.12)

Since Rd
s ∈ Qα[�], it follows that Fd,q ∈ Q̃α[�] if fd,s ∈ Q̃α[�] for all s. Con-

versely, since Rd
0(�) = 1,

Fd,0, . . . , Fd,(d+1)n−1 ∈ Q̃α[�] =⇒ fd,(d+1)n−1, . . . , fd,0 ∈ Q̃α[�].

These observations imply the two remaining statements of Lemma 2.2. �
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Definition 2.1. For i, j ∈ [n] with i �= j and d ∈ Z
+, let

Cj
i (d) =

∏nd−1
r=0 (nαi + r(αj − αi)/d

)

d
∏r=d

r=1
∏k=n

k=1
(r,k) �=(d,j)

(αi − αk + r(αj − αi)/d
) ∈ Qα.

We will call Z ∈ Q̃α(�, x)[[u]] C-recursive if

Z(�, αi, u) =
∞∑

d=0

( r=Nd∑

r=−Nd

Zr
i;d�

−r

)
ud(2.13)

+
∞∑

d=1

∑

j �=i

1
� − αj−αi

d

Cj
i (d)udZ

(
(αj − αi)/d, αj , u

)

for every i ∈ [n] and for some Nd ∈ Z and Zr
i;d ∈ Q̃α.9

Proposition 2.1. Suppose

Y, Z ∈ Q̃α(�, x)[[u]] ⊂ Q̃α(x)
[[

�
−1, u

]]
+ Q̃α(x)[�]

[[
u
]]

are such that Z is C-recursive, ΦY,Z ∈ Q̃α[�][[u, z]], and for every i ∈ [n]

Y (�, αi, fi) ≡ fi (mod u)

for some fi ∈ Q̃
∗
α. Then,

Z(�, αi, u) ≡ 0 (mod �
−1) ∀ i ∈ [n] =⇒ Z(�, αi, u) = 0 ∀ i ∈ [n].

Remark 1. Suppose

Z(�, αi, u) =
∞∑

d=0

( ∞∑

r=−Nd

Z̃r
i;d�

−r

)
ud

for some Z̃r
i;d ∈ Q̃α. In the statement of Proposition 2.1 and throughout the

rest of the paper,

Z(�, αi, u) ≡
∞∑

d=0

( a−1∑

r=−Nd

Z̃r
i;d�

−r

)
ud (mod �

−a),

i.e., we drop �
−a and higher powers of �

−1, instead of higher powers of �.

9Recursion (30.11) in [11] is a renormalization of recursion (2.13) with a slightly
different coefficient Cj

i (d).
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Remark 2. In contrast to the situation in [11, Chapter 30], the assump-
tions of Proposition 2.1, i.e., recursivity and �-polynomiality with respect
to Y , are both linear conditions on Z. Consequently, the �

−1-term of Z
(�, αi, u) is no longer necessary to determine Z.

Proof. Suppose d ≥ 0 and we have shown that

(2.14) Z(�, αi, u) ≡ 0 (mod ud) ∀ i = 1, . . . , n.

With notation as in (2.13) and by the last assumption on Z(�, αi, u), it
follows that

(2.15) Z(�, αi, u) ≡ ud
r=Nd∑

r=1

Zr
i;d�

−r (mod ud+1) ∀ i = 1, . . . , n.

If NY ;d′ , NZ;d′ ∈ Q̃α(�, x) are as in the proof of Lemma 2.1,

NY ;0(�, αi) = fi, NZ;d′(�, αi) =

⎧
⎪⎨

⎪⎩

0 if d′ < d

Qd(�, αi)
r=Nd∑

r=1

Zr
i;d�

−r if d′ = d,
(2.16)

by (2.6), (2.14) and (2.15). Since

EZ,Y ;d(�, αi + d′
�) = 0 ∀ d′ = 0, 1, . . . , d − 1, i = 1, . . . , n

by (2.8) and (2.16) and EZ,Y ;d ∈ Q̃α[�, Ω] by Lemma 2.2,

EZ,Y ;d(�, Ω) =
( d−1∏

d′=0

j=n∏

j=1

(
Ω − αj − d′

�
)
)

· Rd(�, Ω)

for some Rd ∈ Q̃α[�, Ω]. Thus,

EZ,Y ;d(�, αi + d�) =
( d−1∏

d′=0

k=n∏

k=1

(
(αi + d�) − αk − d′

�
)
)

· Rd(�, αi + d�)

(2.17)

= �
dR̃d(�)
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for some R̃d ∈ Q̃α[�]. On the other hand, by (2.8) and (2.16)

EZ,Y ;d(�, αi + d�) = NZ;d(�, αi) · fi(2.18)

= fi ·
(

d!�d
r=d∏

r=1

∏

k �=i

(αi − αk + r�)
) r=Nd∑

r=1

Zr
i;d�

−r

= fi ·
(

d!
r=d∏

r=1

∏

k �=i

(αi − αk + r�)
) r=Nd∑

r=1

Zr
i;d�

d−r.

By (2.17) and (2.18),

Zr
i;d = 0 ∀ r = 1, . . . , Nd, i = 1, . . . , n.

Along with (2.15), this implies that (2.14) holds with d replaced by d + 1. �

2.2. Admissible transforms

This subsection is the analog of the beginning of Section 30.4 in [11]. We
describe transforms of Y, Z ∈ Q̃α(�, x) that preserve the polynomiality prop-
erty of Lemma 2.2 and the recursivity property of Definition 2.1. The state-
ment of Lemma 2.3 is followed by complete proofs. The first of the five
transforms below has no analog in [11].

Lemma 2.3. Suppose Y, Z ∈ Q̃α(�, x)[[u]] are such that Z is C-recursive
and ΦY,Z ∈ Q̃α[�][[u, z]]. Then,

(i) if u = et, Z̄ ≡
{
x + �

d
dt

}
Z is C-recursive and ΦY,Z̄ ∈ Q̃α[�][[u, z]];

(ii) if f ∈ Q̃α[u], then fZ is C-recursive and ΦY,fZ , ΦfY,Z ∈ Q̃α[�][[u, z]];

(iii) if f ∈ Q̃α[�], then Z̄ ≡ fZ is C-recursive and ΦY,Z̄ ∈ Q̃α[�][[u, z]];

(iv) if f ∈ Q̃α[u], f(0) = 0 and Ȳ = ef/�Y , then Z̄ ≡ ef/�Z is C-recursive
and ΦȲ ,Z̄ ∈ Q̃α[�][[u, z]];

(v) if g ∈ Q[[u]], g(0) = 0,

Ȳ (�, x, u) = exg(u)/�Y
(
�, x, ueg(u)),

and
Z̄(�, x, u) = exg(u)/�Z

(
�, x, ueg(u)),

then Z̄ is C-recursive and ΦȲ ,Z̄ ∈ Q̃α[�][[u, z]].
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Remark. In fact, (ii) and (iii) are special cases of the admissible transform
defined by f ∈ Qα[�][[u]].

(i) The operator
{
αi + �

d
dt

}
preserves the structure of the first term on

the right-hand side of (2.13). The (d, j)-summand in the last term becomes

{
αi + �

d

dt

}( Cj
i (d)ud

� − αj−αi

d

Z
(
(αj − αi)/d, αj , u

)
)

(2.19)

=
Cj

i (d)ud

� − αj−αi

d

{
αi + d� + �

d

dt

}
Z
(
(αj − αi)/d, αj , u

)

=
Cj

i (d)ud

� − αj−αi

d

Z̄
(
(αj − αi)/d, αj , u

)
+ dCj

i (d)udZ
(
(αj − αi)/d, αj , u

)
.

Since the last term in (2.19) does not depend on � and Z is C-recursive, it
follows that Z̄ is also C-recursive. Since

ΦZ̄,Y (�, u, z) =
d

dz
ΦZ,Y (�, u, z)

and ΦY,Z ∈ Q̃α[�][[u, z]], ΦY,Z̄ ∈ Q̃α[�][[u, z]] by the middle equivalence in
Lemma 2.2.

(ii) Since Z is C-recursive and the multiplication by f preserves the
structure of each of the terms in (2.13), fZ is also C-recursive. Since ΦY,fZ =
fΦY,Z and ΦY,Z ∈ Q̃α[�][[u, z]], ΦY,fZ ∈ Q̃α[�][[u, z]]. Similarly, since ΦZ,fY =
fΦZ,Y , ΦfY,Z ∈ Q̃α[�][[u, z]] by Lemma 2.2.

(iii) It is sufficient to assume that f(�) = �. The multiplication by �

preserves the structure of the first term on the right-hand side of (2.13).
The (d, j)-summand in the last term becomes

�
Cj

i (d)ud

� − αj−αi

d

Z
(
(αj − αi)/d, αj , u

)
=

Cj
i (d)ud

� − αj−αi

d

Z̄
(
(αj − αi)/d, αj , u

)

+ Cj
i (d)udZ

(
(αj − αi)/d, αj , u

)
.

(2.20)

Since the last term in (2.20) does not depend on � and Z is C-recursive, it
follows that Z̄ is also C-recursive. Since ΦY,Z̄ = −�ΦY,Z and ΦY,Z ∈ Q̃α[�]
[[u, z]], ΦY,Z̄ ∈ Q̃α[�][[u, z]].

(iv) Since f(0) = 0, i.e., f contains no degree-0 term in u, the multipli-
cation by ef(u)/� preserves the structure of the first term on the right-hand
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side of (2.13). The (d, j)-summand in the last term becomes

ef(u)/�
Cj

i (d)ud

� − αj−αi

d

Z
(
(αj − αi)/d, αj , u

)

=
Cj

i (d)ud

� − αj−αi

d

Z̄
(
(αj − αi)/d, αj , u

)
+
(
ef(u)/� − ef(u)/((αj−αi)/d)

)

× Cj
i (d)ud

� − αj−αi

d

Z
(
(αj − αi)/d, αj , u

)
.

Since Z is C-recursive and

ef(u)/� − ef(u)/((αj−αi)/d)

� − αj−αi

d

∈ Q̃α[�, �−1]
[[

u
]]

,

it follows that Z̄ is C-recursive as well. On the other hand,

ΦȲ ,Z̄(�, u, z) = e(f(ue�z)−f(u))/�ΦY,Z(�, u, z).(2.21)

Since ΦY,Z ∈ Q̃α[�][[u, z]] and
(
f(ue�z) − f(u)

)
/� ∈ Q̃α[�]

[[
u, z
]]

,

(2.21) implies that ΦȲ ,Z̄ ∈ Q̃α[�][[u, z]] as well.
(v) Since g(0) = 0, the operation of replacing u with ueg(u) followed by

multiplication by eαig(u)/� preserves the structure of the first term on the
right-hand side of (2.13). The (d, j)-summand in the last term becomes

eαig(u)/�
Cj

i (d)udedg(u)

� − αj−αi

d

Z
(
(αj − αi)/d, αj , u

)

=
Cj

i (d)ud

� − αj−αi

d

Z̄
(
(αj − αi)/d, αj , u

)

+
(
e(αi/�+d)g(u) − e(αj/((αj−αi)/d))g(u)

) Cj
i (d)ud

� − αj−αi

d

Z
(
(αj − αi)/d, αj , u

)
.

Since Z is C-recursive and

e(αi/�+d)g(u) − e(αj/((αj−αi)/d))g(u)

� − αj−αi

d

=
d

(αi + d�) − αj
edz/(z−αi)

∣
∣
∣
z=αi+d�

z=αj

∈ Qα[�, �−1]
[[

u
]]

,
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it follows that Z̄ is C-recursive as well. On the other hand,

ΦȲ ,Z̄(�, u, z) = ΦY,Z

(
�, ueg(u), z̃

)
,(2.22)

where

z̃ = z +
g(ue�z) − g(u)

�
∈ Q[�, z]

[[
u
]]

.

Since ΦY,Z ∈ Q̃α[�][[u, z]], (2.22) implies that ΦȲ ,Z̄ ∈ Q̃α[�][[u, z]] as
well. �

2.3. Some properties of hypergeometric series

In this subsection we verify the three claim concerning the power series
Yp(�, x, u) made in Section 1.3:

(a) Y−1(�, x, u) satisfies the C-recursivity condition of Definition 2.1;

(b) ΦY,Y−1 ∈ Qα[�][[u, z]];

(c) there exist C̃
(r)
p,q as in Theorem 1.1 such that (1.21) is satisfied.

Proof (a). Note that

Cj
i (d)ud

� − αj−αi

d

Y−1
(
(αj − αi)/d, αj , u

)
= Res

z=
αj−αi

d

{
1

� − z
Y−1(z, αi, u)

}
.

Thus, by the Residue Theorem on S2,
∞∑

d=1

∑

j �=i

Cj
i (d)ud

� − αj−αi

d

Y−1
(
(αj − αi)/d, αj , u

)
(2.23)

= −Resz=�,0,∞

{
1

� − z
Y−1(z, αi, u)

}

= Y−1(�, αi, u) − Resz=0,∞

{
1

� − z
Y−1(z, αi, u)

}
.

On the other hand, if Y−1;d is the degree-d term of Y−1,

Resz=0

{
1

� − z
Y−1;d(z, αi, u)

}
= Dd−1

z

{
1

� − z

∏r=nd−1
r=0 (nαi + rz)

d!
∏r=d

r=1
∏

k �=i(αi − αk + rz)

}

∈ Qα[�−1],

Resz=∞

{
1

� − z
Y−1(z, αi, u)

}
= 1,
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where Dd
z is as in (2.1). Thus, (2.23) implies that Y−1 satisfies recursion

(2.13).

(b). Let

R(�, x, u) =
∞∑

d=0

ud

∏r=nd
r=1 (nx + r�)

∏r=d
r=1
∏k=n

k=1 (x − αk + r�)
.

By (ii) of Lemma 2.3, it is sufficient to show that ΦR,Y−1 ∈ Qα[�][[u, z]]. Note
that

eαiz

∏

k �=i

(αi − αk)
R
(
�, αi, ue�z

)
Y−1(−�, αi, u)

= Resx=αi

{
exz

k=n∏

k=1
(x − αk)

R
(
�, x, ue�z

)
Y−1(−�, x, u)

}

.

Thus, by the Residue Theorem on S2,

ΦR,Y−1(�, u, z) = −Resx=∞

{
exz

k=n∏

k=1
(x − αk)

R
(
�, x, ue�z

)
Y−1(−�, x, u)

}

=
∞∑

p=0

zn−1+p

(n − 1 + p)!
Dp

w

{
1

∏

k �=i

(1 − αkw)

( ∞∑

d=0

uded�z

∏r=nd
r=1 (n + r�w)

∏r=d
r=1
∏k=n

k=1 (1 − (αk − r�)w)

)

×
( ∞∑

d=0

ud

∏r=nd−1
r=0 (n − r�w)

∏r=d
r=1
∏k=n

k=1 (1 − (αk + r�)w)

)}

.

The pth summand above is polynomial in �. Thus, ΦR,Y−1 ∈ Qα[�][[u, z]].

(c). Suppose p ∈ Z
+, and we have constructed power series

Y0,Y1, . . . ,Yp−1 ∈ Qα(�, x)
[[

et
]]

,
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satisfying the second equation in (1.16) and (1.21), so that

(2.24) ext/� Yp−1(�, x, et) = xp +
∞∑

q=1

( p−1+q∑

r=0

C
(r)
p−1,q(t) xp+q−r

)
�

−q,

where C
(r)
p−1,q(t) is a degree-r symmetric polynomial in α1, . . . , αn with coef-

ficients in Q[t][[et]] such that

(2.25) C
(0)
p−1,q(t) = Ip−1,p−1+q(t)

/
Ip−1,p−1(t).

This assumption is satisfied for p = 1 by (1.12) and (1.13). Since Yp−1 ∈
Qα(�, x)[[et]],

C
(0)
p−1,1(t) ∈ t + Qα[[et]], C

(r)
p−1,1(t) ∈ Qα[[et]] ∀ r ≥ 1(2.26)

=⇒ d

dt
C

(r)
p−1,1(t) ∈ Qα[[et]] ∀ r ≥ 0.

Thus,

Yp(�, x, et) ≡ e−xt/�
�

Ip,p(t)
d

dt

(
ext/�Yp−1(�, x, et)

)

− 1
Ip,p(t)

r=p∑

r=1

( d

dt
C

(r)
p−1,1(t)

)
Yp−r(�, x, et) ∈ Qα(�, x)

[
[et]
]
.

(2.27)

By (1.9), (2.24) and (2.25) are satisfied with p replaced by p + 1 and

C(r)
p,q (t) =

1
Ip,p(t)

d

dt
C

(r)
p−1,q+1(t) − 1

Ip,p(t)

min(p,r)∑

s=1

( d

dt
C

(s)
p−1,1(t)

)
C

(r−s)
p−s,q (t).

In particular, Yp satisfies (1.21). By (2.27), the coefficients C̃
(r)
p,q are

inductively defined by

C̃(r)
p,q (et) = Ip,p(t)−1

(2.28)

(
d

dt
C̃

(r)
p−1,q + Iq,q(t)C̃

(r)
p−1,q−1(e

t) −
r−1∑

s=1

(
d

dt
C

(s)
p−1,1

)
C̃

(q−s)
p−s,q

)

,

where C̃
(r)
p−1,p−r ≡ −C

(r)
p−1,1, C̃

(r)
p−1,−1 ≡ 0, C̃

(r)
p′,q ≡ 0 ∀ r ≤ 0.
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Thus, by (2.26) and inductive assumptions, C̃
(r)
p,q ∈ Qα[[et]] is a degree-r

symmetric polynomial in α1, . . . , αn with coefficients in Qα[[et]], as required.
�

3. Localization computations

3.1. Equivariant cohomology

In Section 3.2, we apply the classical localization theorem (3.9) with the
standard action of the n-torus T on P

n−1 and on M0,m(Pn−1, d) to verify
Lemma 1.1. In Section 3.3, we apply (3.9) with an action of the (n + 1)-torus

T̃ ≡ T × T
1

on P
n−1 × P

1 and on a subspace of M0,m(P1 × P
n−1, (1, d)) to verify Lemma

1.2. The aim of this subsection is to review the basics of equivariant cohomol-
ogy and to set notation. Throughout this subsection, G denotes an m-torus,
either (C∗)m or (S1)m.

The m-torus G acts freely on EG = (C∞)m − 0 (or (S∞)m):
(
eiθ1 , . . . , eiθm

)
· (z1, . . . , zm) =

(
eiθ1z1, . . . , e

iθmzm

)
.

Thus, the classifying space for G and its group cohomology are given by

BG ≡ EG/G = (P∞)m and H∗
G ≡ H∗(BG; Q) = Q[α1, . . . , αm],

where αi = π∗
i c1(γ∗) if

πi : (P∞)m −→ P
∞ and γ −→ P

∞

are the projection onto the ith component and the tautological line bundle,
respectively. Denote by H∗

G the field of fractions of H∗
G:

H∗
G = Qα ≡ Q(α1, . . . , αm).

A representation ρ of G, i.e., a linear action of G on C
k, induces a vector

bundle over BG:
Vρ ≡ EG ×G C

k.

If ρ is one dimensional, we will call

c1(V ∗
ρ ) = −c1(Vρ) ∈ H∗

G ⊂ H∗
G
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the weight of ρ. For example, αi is the weight of representation

(3.1) πi : G −→ C
∗,

(
eiθ1 , . . . , eiθm

)
· z = eiθiz.

More generally, if a representation ρ of G on C
k splits into one-dimensional

representations with weights β1, . . . , βk, we will call β1, . . . , βk the weights
of ρ. In such a case,

(3.2) e(V ∗
ρ ) = β1 · . . . · βk.

We will call the representation ρ of T on C
n with weights α1, . . . , αn the

standard representation of T.
If G acts on a topological space M , let

H∗
G(M) ≡ H∗(BG; Q), where BM = EG ×G M,

be the equivariant cohomology of M . The projection map BM −→ BG
induces an action of H∗

G on H∗
G(M). Let

H∗
G(M) = H∗

G(M) ⊗H∗
G

H∗
G.

If the G-action on M lifts to an action on a (complex) vector bundle V −→
M , then

BV ≡ EG ×G V

is a vector bundle over BM . Let

e(V ) ≡ e(BV ) ∈ H∗
G(M) ⊂ H∗

G(M)

denote the equivariant Euler class of V .
The standard action of T on P

n−1 is the action induced by the standard
action ρ of T on C

n:
(
eiθ1 , . . . , eiθn

)
· [z1, . . . , zn] =

[
eiθ1z1, . . . , e

iθnzn

]
.

Since BP
n−1 = PVρ,

H∗
T
(Pn−1) ≡ H∗(

PVρ; Q
)

= Q[x, α1, . . . , αn]
/(

xn + c1(Vρ)xn−1 + . . . + cn(Vρ)
)
,

where x = c1(γ̃∗) and γ̃ −→ PVρ is the tautological line bundle. Since

c(Vρ) = (1 − α1) . . . (1 − αn),
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it follows that

(3.3) H∗
T
(Pn−1) = Q[x, α1, . . . , αn]

/
(x − α1) . . . (x − αn)

and

H∗
T
(Pn−1) = Qα[x]

/
(x − α1) . . . (x − αn).

The standard action of T on P
n−1 has n-fixed points:

P1 = [1, 0, . . . , 0], P2 = [0, 1, 0, . . . , 0], . . . Pn = [0, . . . , 0, 1].

For each i = 1, 2, . . . , n, let

(3.4) φi =
∏

k �=i

(x − αk) ∈ H∗
T
(Pn−1).

By Equation (3.10) below, φi is the equivariant Poincare dual of Pi.
We also note that γ̃|BPi

= Vπi
, where πi is as in (3.1). Thus, the restriction

map on the equivariant cohomology induced by the inclusion Pi −→ P
n−1 is

given by

H∗
T
(Pn−1) = Q[x, α1, . . . , αn]

/ k=n∏

k=1

(x − αk) −→ H∗
T
(Pi) = Q[α1, . . . , αn],

(3.5)

x −→ αi.

By (3.5),

(3.6) η = 0 ∈ H∗
T
(Pn−1) ⇐⇒ η|Pi

= 0 ∈ H∗
T

∀ i = 1, 2, . . . , n.

The tautological line bundle γn−1 −→ P
n−1 is a subbundle of P

n−1 ×
C

n preserved by the diagonal action of T. Thus, the action of T on P
n−1

naturally lifts to an action on γn−1 and

(3.7) e
(
γ∗

n−1
)∣∣

Pi
= αi ∀i = 1, 2, . . . , n.

Via the exact sequence

0 −→ γ∗
n−1 ⊗ γn−1 −→ γ∗

n−1 ⊗
(
P

n−1 × C
n
)

−→ TP
n−1 −→ 0
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of vector bundles on P
n−1, T also lifts to an action on TP

n−1. By (3.2)
and (3.7),

(3.8) e
(
TP

n−1)∣∣
Pi

=
∏

k �=i

(αi − αk) = φi|Pi
∀ i = 1, 2, . . . , n.

If G acts smoothly on a smooth compact oriented manifold M , there is
a well-defined integration-along-the-fiber homomorphism

∫

M
: H∗

G(M) −→ H∗
G

for the fiber bundle BM −→ BG. The classical localization theorem of [1]
relates it to integration along the fixed locus of the G-action. The latter
is a union of smooth compact orientable manifolds F and G acts on the
normal bundle NF of each F . Once an orientation of F is chosen, there is
a well-defined integration-along-the-fiber homomorphism

∫

F
: H∗

G(F ) −→ H∗
G.

The localization theorem states that

(3.9)
∫

M
ψ =

∑

F

∫

F

ψ|F
e(NF )

∈ H∗
G ∀ ψ ∈ H∗

G(M),

where the sum is taken over all components F of the fixed locus of G. Part
of the statement of (3.9) is that e(NF ) is invertible in H∗

G(F ). In the case
of the standard action of T on P

n−1, (3.9) implies that

(3.10) η|Pi
=
∫

Pn−1

ηφi ∈ HT ∀ η ∈ H∗
T
(Pn−1), i = 1, 2, . . . , n;

see also (3.8).
Finally, if f : M −→ M ′ is a G-equivariant map between two compact

oriented manifolds, there is a well-defined pushforward homomorphism

f∗ : H∗
G(M) −→ H∗

G(M ′).

It is characterized by the property that

(3.11)
∫

M ′
(f∗η) ψ =

∫

M
η (f∗ψ) ∀ η ∈ H∗

G(M), ψ ∈ H∗
G(M ′).
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The homomorphism
∫
M of the previous paragraph corresponds to M ′ being

a point. It is immediate from (3.11) that

(3.12) f∗
(
η (f∗ψ)

)
= (f∗η) ψ ∀ η ∈ H∗

G(M), ψ ∈ H∗
G(M ′).

3.2. Proof of Lemma 1.1

The standard T-action on P
n−1 (as well as any other action) induces T-

actions on moduli spaces of stable maps M0,m(Pn−1, d) by composition on
the right:

g · [C, f ] = [C, g ◦ f ] ∀ g ∈ T, [C, f ] ∈ M0,m(Pn−1, d).

All evaluation maps

evi : M0,m(Pn−1, d) −→ P
n−1, [C, y1, . . . , yk, f ] −→ f(yi),

are T-equivariant. Via the natural lift of the T-action to γ∗
n−1 −→ P

n−1

described in Section 3.1, the T-action on M0,m(Pn−1, d) lifts to T-actions on
the vector bundles V0, V ′

0 and V ′′
0 , as well as on the universal tangent line

bundles.
As described in detail in [11, Section 27.3], the fixed loci of the T-action

on M0,m(Pn−1, d) are indexed by decorated graphs that have no loops. A
graph consists of a set Ver of vertices and a collection Edg of edges, i.e., of
two-element subsets of Ver. A loop in a graph (Ver, Edg) is a subset of Edg
of the form

{
{v1, v2}, {v2, v3}, . . . , {vN , v1}

}
, v1, . . . , vN ∈ Ver, N ≥ 1.

Neither of the three graphs in Figure 1 has a loop. A decorated graph is a
tuple

(3.13) Γ =
(
Ver, Edg;μ, d, η

)
,

where (Ver, Edg) is a graph and

μ : Ver −→ [n], d : Edg −→ Z
+, and η : [m] −→ Ver

are maps such that

(3.14) μ(v1) �= μ(v2) if {v1, v2} ∈ Edg.
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Figure 1: Two graphs of type Ai(j; d) ⊂ Ai and a graph of type Bi.

In Figure 1, the values of the map μ on some of the vertices are indicated
by letters next to those vertices. Similarly, the value of the map d on one
of the edges is indicated by a letter next to the edge. The three elements of
the set [m] = [3] are shown in bold face. They are linked by line segments
to their images under η. By (3.14), no two consecutive vertex labels are the
same and thus j �= i.

The fixed locus ZΓ of M0,m(Pn−1, d) corresponding to a decorated graph
Γ consists of the stable maps f from a genus-zero nodal curve Cf with
m marked points into P

n−1 that satisfy the following conditions. The com-
ponents of Cf on which the map f is not constant are rational and correspond
to the edges of Γ. Furthermore, if e = {v1, v2} is an edge, the restriction of
f to the component Cf,e corresponding to e is a degree-d(e) cover of the line

P
1
μ(v1),μ(v2) ⊂ P

n−1

passing through the fixed points Pμ(v1) and Pμ(v2). The map u|Cf,e
is ramified

only over Pμ(v1) and Pμ(v2). In particular, f |Cf,e
is unique up to isomorphism.

The remaining, contracted, components of Cf are indexed by the vertices
v ∈ Ver such that

val(v) ≡
∣
∣{v′ ∈ Ver: {v, v′} ∈ Edg}

∣
∣+
∣
∣{i ∈ [m] : η(i) = v}

∣
∣ ≥ 3.

The map f takes such a component Cf,v to the fixed point μ(v). Thus,

(3.15) ZΓ ≈ MΓ ≡
∏

v∈Ver

M0,val(v),

where M0,l denotes the moduli space of stable genus-zero curves with l
marked points. For the purposes of this definition, M0,1 and M0,2 are
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one-point spaces. For example, in the case of the last diagram in Figure 1,

ZΓ ≈ MΓ ≡ M0,5 × M3
0,3 × M0,2 × M5

0,1 ≈ M0,5

is a fixed locus10 in M0,3(Pn−1, d) for some d ≥ 9.
We now verify Lemma 1.1. Let

(3.16) ηβ =
j=m∏

j=2

(
ψ

βj

j ev∗
jηj

)
.

Suppose Γ is a decorated graph as in (3.13) that contributes to (1.19), in
the sense of the localization formula (3.9). By (3.4) and (3.5),

ev∗
1φi =

∏

k �=i

(
αμ(η(1)) − αk

)
= δi,μ(η(1))

∏

k �=i

(αi − αk),

where δi,μ(η(1)) is the Kronecker delta function. Thus, by (3.9), Γ does not
contribute to (1.4) unless μ(η(1)) = i, i.e., the marked point 1 of the map
is taken to the point Pi ∈ P

n−1. There are two types of graphs that do (or
may) contribute to (1.4); they will be called Ai-and Bi-types. In a graph of
the Ai-type, the marked point 1 is attached to a vertex v0 ∈ Ver of valence
two which is labeled i. In a graph of the Bi-type, the marked point 1 is
attached to a vertex v0 of valence at 3, which is still labeled i. Examples of
the two types are depicted in Figure 1.

Suppose Γ is a graph of type Bi and

ZΓ ⊂ M0,m(Pn−1, d),

so that Γ contributes to the coefficient of ud in (1.4). In this case, the restric-
tion of ψ1 to ZΓ is the pull-back of a ψ-class from the component M0,val(v0) in
decomposition (3.15). Since the T-action on the corresponding tautological
line bundle is trivial,

ψk
1
∣
∣
ZΓ

= 0 ∀ k ≥ d + m > val(v0) − 3.

Thus, Γ contributes a polynomial in �
−1, of degree at most d + m, to the

coefficient of ud in (1.4). Therefore, the contributions of the loci of type Bi

to (1.4) are accounted for by the middle term in (2.13).

10after dividing by an appropriate automorphism group; see [11, Section 27.3]
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Figure 2: A graph of type A∗
i (j; d0) and its two subgraphs.

A graph Γ as in (3.13) of type Ai has a unique vertex v joined to v0.
Denote by Ai(j; d0) the set of all graphs Γ of type Ai such that μ(v) = j
and d({v0, v}) = d0, i.e., the unique vertex v of Γ joined to v0 is mapped
to Pj ∈ P

n−1 and the edge {v0, v} corresponds to the d0-fold cover of P
1
ij

branched only over Pi and Pj . By (3.14),

(3.17) Ai =
∞⋃

d0=1

⋃

j �=i

Ai(j; d0).

Suppose Γ ∈ Ai(j; d0) and v is the unique vertex joined to v0 by an edge.
We break Γ at v into two graphs:

(i) Γ0 consisting of the vertices v0 and v, the edge {v0, v}, and marked
points 1 and 2 attached to v0 and v, respectively;

(ii) Γc consisting all vertices and edges of Γ, other than the vertex v0 and
the edge {v0, v}, with a new marked point attached to v;

see Figure 2. Let dc denote the degree of Γc, i.e., the sum of all edge labels.
By (3.15),

(3.18) ZΓ ≈ ZΓ0 × ZΓc
.

Denote by π0 and πc the two component projection maps.
By Section 27.4 in [11],

V ′′
0
∣
∣
ZΓ

= π∗
0V ′′

0 ⊕ π∗
cV ′′

0 ,

NZΓ

TPi
Pn−1 = π∗

0

(
NZΓ0

TPi
Pn−1

)
⊕ π∗

c

(
NZΓc

TPj
Pn−1

)
⊕ π∗

0L2 ⊗ π∗
cL1,

(3.19)
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where L2 −→ ZΓ0 and L1 −→ ZΓc
are the tautological tangent line bundles.

Thus, by (3.8),

(3.20)
e(V ′′

0 )ηβ

� − ψ1

∣
∣
∣
ZΓ

= π∗
0

(
e(V ′′

0 )
� − ψ1

)
· π∗

c

(
e(V ′′

0 )ηβ
)
,

ev∗
1φi|ZΓ

e(NZΓ)
= π∗

0

(
ev∗

1φi

e(NZΓ0)

)
· π∗

c

(
ev∗

1φj

e(NZΓ0)

)
· 1
π∗

0c1(L2) − π∗
cψ1

.

By Sections 27.1 and 27.2 in [11], on ZΓ0

e(V ′′
0 ) =

nd0−1∏

r=0

(
nαi + r

αj − αi

d0

)
, ψ1 = c1(L2) =

αj − αi

d0
,

e(NZΓ0) = (−1)d0

r=d0∏

r=1

(
r
αj − αi

d0

)2 r=d0∏

r=0

∏

k �=i,j

(
αi − αk + r

αj − αi

d0

)
.

(3.21)

Thus, using (3.8) and taking into the account the automorphism group, Zd0 ,
we obtain

(3.22)
∫

ZΓ0

e(V ′′
0 )ev∗

1φi

(� − ψ1)e(NZΓ0)
=

1
� − αj−αi

d0

Cj
i (d0).

By (3.18), (3.21) and (3.22), the contribution of Γ to (1.19) is

ud0+dc

∫

ZΓ

e(V ′′
0 )ev∗

1φiη
β

� − ψ1

∣
∣
∣
ZΓ

1
e(NZΓ)

=
Cj

i (d0)ud0

� − αj−αi

d0

·
({

udc

∫

ZΓ

e(V ′′
0 )ev∗

1φjη
β

� − ψ1

1
e(NZΓc

)

}∣∣
∣
∣
�=

αj−αi

d0

)

.

(3.23)

We next sum (3.23) over Γ ∈ Ai(j; d0). This is the same as summing the
expression in the curly brackets over all m-pointed graphs with the marked
point 1 attached to a vertex v labeled j, i.e., all graphs of types Aj and Bj .
By the localization formula (3.9), the sum of the terms in the curly brackets
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over all such graphs Γc is Zη,β(�, αj , u). Thus,

∑

Γ∈Ai(j;d0)

ud0+dc

∫

ZΓ

e(V ′′
0 )ev∗

1φiη
β

� − ψ1

∣
∣
∣
ZΓ

1
e(NZΓ)

=
Cj

i (d0)ud0

� − αj−αi

d0

· Zη,β

(
(αj − αi)/d0, αj , u

)
.

(3.24)

We conclude that Zη,β(�, x, u) is C-recursive in the sense of Definition 2.1:

• the middle term in (2.13) consists of the contributions from the graphs
of type Bi;

• the (d0, j)-summand in (2.13) consists of the contributions from the
graphs of type Ai(j; d0).

3.3. Proof of Lemma 1.2

In this subsection we deduce Lemma 1.2 from Lemma 3.1, which is proved
in the next subsection. The argument, in this subsection and the next one, is
a modification on the proof of self-polynomiality of Z in Section 30.2 of [11].

We will denote the weight of the standard action of the one-torus T
1 on

C by �. Thus, by Section 3.1,

H∗
T1 ≈ Q[�], H∗

˜T
≈ Q[�, α1, . . . , αn] =⇒ H∗

˜T
≈ Qα(�).

Throughout this subsection, V = C ⊕ C will denote the representation of T
1

with the weights 0 and −�. The induced action on PV has two fixed points:

q1 ≡ [1, 0], q2 ≡ [0, 1].

Let γ1 −→ PV be the tautological line bundle. Then,

(3.25) e(γ∗
1)
∣
∣
q1

= 0, e(γ∗
1)
∣
∣
q2

= −�, e(Tq1PV ) = �, e(Tq2PV ) = −�.

For each d ∈ Z̄
+, the action of T̃ on C

n ⊗ SymdV ∗ induces an action on

Xd ≡ P
(
C

n ⊗ SymdV ∗).

It has (d + 1)n fixed points:

Pi(r) ≡
[
P̃i ⊗ ud−rvr

]
, i ∈ [n], r ∈ {0} ∪ [d],
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if (u, v) are the standard coordinates on V and P̃i ∈ C
n is the ith coordinate

vector (so that [P̃i] = Pi ∈ P
n−1). Let

Ω ≡ e(γ∗) ∈ H∗
˜T

(
Xd

)

denote the equivariant hyperplane class.
For all i ∈ [n] and r ∈ {0} ∪ [d],

(3.26)

Ω|Pi(r) = αi + r�, e(TPi(r)Xd) =

{
s=d∏

s=0

k=n∏

k=1
(s,k) �=(r,i)

(Ω − αk − r�)

}∣
∣
∣
∣
Ω=αi+r�

.11

Since

BXd = P
(
B(Cn ⊗ SymdV ∗)

)
−→ BT̃

and

c
(
B(Cn ⊗ SymdV ∗)

)
=

s=d∏

s=0

k=n∏

k=1

(
1 − (αk + s�)

)
∈ H∗(BT̃),12

the T̃-equivariant cohomology of Xd is given by

H∗
T̃

(
Xd

)
≡ H∗(BXd

)
= H∗(BT̃

)[
Ω
]/ s=d∏

s=0

k=n∏

k=1

(
Ω − (αk + s�)

)

≈ Q
[
Ω, �, α1, . . . , α

]/ s=d∏

s=0

k=n∏

k=1

(
Ω − αk − s�

)

⊂ Qα[�, Ω]
/ s=d∏

s=0

k=n∏

k=1

(
Ω − αs − r�

)
.

(3.27)

There is a natural T̃-equivariant morphism

Θ: M0,m

(
PV × P

n−1, (1, d)
)

−→ Xd.

11The weight (i.e., negative first chern class) of the T̃-action on the line Pi(r) ⊂
C

n ⊗ SymdV ∗ is αi + r�. The tangent bundle of Xd at Pi(r) is the direct sum of
the lines Pi(r)∗ ⊗ Pk(s) with (k, s) �= (i, r).

12The vector space C
n ⊗ SymdV ∗ is the direct sum of the one-dimensional

representations Pk(s) of T̃.
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A general element of b of M0,m

(
PV × P

n−1, (1, d)
)

determines a map

(f, g) : P
1 −→ (PV, Pn),

up to an automorphism of the domain P
1. Thus, the map

g ◦ f−1 : PV −→ P
n−1

is well-defined and determines an element Θ(b) ∈ Xd. The map Θ extends
continuously over the boundary of M0,m

(
PV × P

n−1, (1, d)
)
.13 We denote

the restriction of Θ to the smooth substack

(3.28)

Xd ≡
{
b ∈ M0,m

(
PV × P

n−1, (1, d)
)
: ev1(b) ∈ q1 × P

n−1, ev2(b) ∈ q2 × P
n−1}

of M0,m

(
PV × P

n−1, (1, d)) by θd, or simply by θ whenever there is no
ambiguity.

Let
π : M0,m

(
PV × P

n−1, (1, d)
)

−→ M0,m

(
P

n−1, d
)

be the natural projection map.

Lemma 3.1. With Zη,β as in Lemma 1.2 and Φ as in (2.2),

(−�)m−2ΦZ,Zη,β
(�, u, z) =

∞∑

d=0

ud

∫

Xd

e(θ∗Ω)zπ∗
(
e(V ′′

0 )
j=m∏

j=2

(
ψ

βj

j ev∗
jηj

)
)

(3.29)

×
j=m∏

j=3

ev∗
j

(
e(γ∗

1)
)
.

Similarly Section 30.2 in [11], this lemma implies that

(−�)m−2ΦZ,Zη,β
(�, u, z) ∈ Qα[�]

[[
u, z
]]

for the following reason. With ηβ as in (3.16), by (3.27)

θd∗

(
π∗(e(V ′′

0 )ηβ
) j=m∏

j=3

ev∗
j

(
e(γ∗

1)
)
)

= EZ,Zη,β ;d(�, Ω)

13For a complete algebraic proof, see Lemma 2.6 in [11].
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for some EZ,Zβ,η;d ∈ Qα[�, Ω] of Ω-degree at most (d + 1)n − 1. Therefore,
by Lemma 3.1, (3.12), (3.9) and (3.26),

(−�)m−2ΦZ,Zη,β
(�, u, z)

=
∞∑

d=0

ud

∫

Xd

eΩzθd∗

(
π∗(e(V ′′

0 )ηβ
) j=m∏

j=3

ev∗
j

(
e(γ∗

1)
)
)

=
∞∑

d=0

ud

∫

Xd

eΩzEZ,Zβ,η;d(�, Ω) =
∞∑

d=0

ud

(
r=d∑

r=0

i=n∑

i=1

eΩzEZ,Zβ,η;d(�, Ω)|Pi(r)

e(TPi(r)Xd)

)

=
∞∑

d=0

ud

(
r=d∑

r=0

i=n∑

i=1

eΩzEZ,Zβ,η;d(�, Ω)
∏s=d

s=0
∏k=n

k=1
(s,k) �=(r,i)

(Ω − αk − s�)

∣
∣
∣
∣
Ω=αi+r�

)

=
∞∑

d=0

ud

(
1

2πi

∮
eΩz EZ,Zβ,η;d(�, Ω)
∏s=r

s=0
∏k=n

k=1 (Ω − αk − s�)
dΩ

)

.

In the last expression, the integral has the same meaning as in Lemma 2.1.
We have thus shown that Zη,β is polynomial with respect to Z, assuming
Lemma 3.1.

3.4. Proof of Lemma 3.1

In this subsection we use the localization formula (3.9) to prove Lemma 3.1.
We show that each fixed locus of the T̃-action on Xd contributing to the right-
hand side of (3.29) corresponds to a pair (Γ1, Γ2) of a graphs, with Γ1 and
Γ2 contributing to Z(�, αi, ue�z) and (−�)m−2Zη,β(−�, αi, u), respectively,
for some i ∈ [n].

Similarly to Section 3.2, the fixed loci of the T̃-action on M0,m

(
PV ×

P
n−1, (d′, d)

)
correspond to decorated graphs Γ with m marked points and

no loops. Each edge should be labeled by a pair of integers, indicating the
degrees of the corresponding maps in PV and in P

n−1. Each vertex should
be labeled either (1, j) or (2, j) for some j ∈ [n], indicating the fixed point,
(q1, Pj) or (q2, Pj), to which the vertex is mapped. No two consecutive vertex
labels are the same, but if two consecutive vertex labels differ in the kth
component, with k = 1, 2, the kth component of the label for edge connecting
them must be nonzero.

The situation for the T̃-action on

Xd ⊂ M0,m

(
PV × P

n−1, (1, d)
)
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is simpler, however. There is a unique edge of positive PV -degree. We draw
it as a thick horizontal line. The first component of all other edge labels must
be 0; so we drop it. The first components of the vertex labels change only
when the thick edge is crossed. Thus, we drop the first components of the
vertex labels as well, with the convention that these components are 1 on
the left side of the thick edge and 2 on the right. In particular, the vertices
to the left of the thick edge (including the left endpoint) lie in q1 × P

n−1

and the vertices to its right lie in q2 × P
n−1. Thus, by (3.28), the marked

point 1 is attached to a vertex to the left of the thick edge and the marked
point 2 is attached to a vertex to the right. Furthermore, by the first identity
in (3.25), such a graph will not contribute to the right-hand side of (3.29)
unless the remaining marked points are also attached to vertices to the right
of the thick edge. Finally, both vertices of the thick edge have the same
(remaining, second) label i ∈ [n]. Let Ai denote the set of graphs as above
so that the two endpoints of the thick edge are labeled i; see Figure 3.

If Γ ∈ Ai, we break it into three sub-graphs:

(i) Γ1 consisting of all vertices and edges of Γ to the left of the thick edge,
including its left vertex v1, and a new marked point 2 attached to v1;

(ii) Γ0 consisting of the thick edge, its two vertices v1 and v2 and new
marked points 1 and 2 attached to v1 and v2, respectively;

(iii) Γ2 consisting of all vertices and edges of Γ to the right of the thick
edge, including its right vertex v2, and a new marked point 1 attached
to v2;

see Figure 4. The fixed locus in Xd corresponding to Γ is then

(3.30) ZΓ ≈ ZΓ1 × ZΓ0 × ZΓ2 .

The middle term is a single point. Let π1, π0 and π2 denote the three
component projection maps. Denote by d1 and d2 be the degrees of Γ1 and

Figure 3: A graph representing a fixed locus in Xd; i �= 1, 3, 4.
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Figure 4: The three sub-graphs of the graph in Figure 3.

Γ2, i.e.,

ZΓ1 ⊂ M0,2(Pn−1, d1), ZΓ2 ⊂ M0,m(Pn−1, d2).

The exceptional case for the first statement is d1 = 0, in which case the
corresponding moduli space does not exist.

Suppose Γ ∈ Ai, d1 and d2 are as above, and d1 > 0. Similarly to (3.19),

π∗V ′′
0
∣
∣
ZΓ

= π∗
1V ′′

0 ⊕ π∗
2V ′′

0 ,

NZΓ

TPi
Pn−1 = π∗

1

(
NZΓ1

TPi
Pn−1

)
⊕ π∗

2

(
NZΓ2

TPi
Pn−1

)
⊕ π∗

1L2 ⊗ π∗
0L1 ⊕ π∗

0L2 ⊗ π∗
2L1,

(3.31)

where NZΓ −→ ZΓ is the normal bundle of ZΓ in Xd and L2 −→ ZΓ1 ,
L1, L2 −→ ZΓ0 and L1 −→ ZΓ2 are the tautological tangent line bundles.
We note that

L1 = Tq1P
1 and L2 = Tq2P

1 on ZΓ0 .

Thus, by (3.31), (3.8) and (3.25),

π∗(e(V ′′
0 )ηβ

) j=m∏

j=3

ev∗
j (e(γ∗))

∣
∣
∣
∣
ZΓ

= π∗
1e(V ′′

0 ) · π∗
2
(
e(V ′′

0 )ηβ(−�)m−2),(3.32)

∏
k �=i(αi − αk)
e(NZΓ)

= π∗
1

(
ev∗

2φi

e(NZΓ0)

)
· π∗

2

(
ev∗

1φi

e(NZΓ0)

)

· 1
� − π∗

1ψ2
· 1
(−�) − π∗

2ψ1
.

The map θ takes the locus ZΓ to a fixed point Pk(r) ∈ Xd. It is immediate
that k = i. By continuity considerations, r = d1. Thus, by the first identity
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in (3.26),

θ∗Ω
∣
∣
ZΓ

= αi + d1�.

Combining (3.30) and (3.32) with this observation, we obtain

∫

ZΓ

e(θ∗Ω)zπ∗(e(V ′′
0 )ηβ

)∏j=m
j=3 ev∗

j (e(γ∗)
)
|ZΓ

e(NZΓ)

(3.33)

= (−�)m−2 eαiz

∏
k �=i(αi − αk)

{

ed1�z

∫

ZΓ1

e(V ′′
0 )ev∗

2φi

� − ψ2

∣
∣
∣
ZΓ1

1
e(NZΓ1)

}

×
{∫

ZΓ2

e(V ′′
0 )ηβ

(−�) − ψ1

∣
∣
∣
ZΓ2

1
e(NZΓ2)

}

.

We note that this identity remains valid for d1 = 0 if we set the term in
the first curly brackets to 1 for d1 = 0.

We now sum up (3.33), multiplied by ud1+d2 , over all Γ ∈ Ai. This is the
same as summing over all pairs (Γ1, Γ2) of graphs such that

(1) Γ1 is a 2-pointed graph of a degree d1 ≥ 0 such that the marked point
2 is attached to the vertex labeled i;

(2) Γ2 is an m-pointed graph of a degree d2 ≥ 0 such that the marked
point 1 is attached to the vertex labeled i.

By the localization formula (3.9),

∑

Γ1

ud1

{

ed1�z

∫

ZΓ1

e(V ′′
0 )ev∗

2φi

� − ψ2

∣
∣
∣
ZΓ1

1
e(NZΓ1)

}

(3.34)

= 1 +
∞∑

d=1

(ue�z)d

∫

M0,2(Pn−1,d)

e(V ′′
0 )

� − ψ2
ev∗

2φi

= 1 +
∞∑

d=1

(ue�z)d

∫

M0,2(Pn−1,d)

e(V ′
0)

� − ψ1
ev∗

1φi

= Z
(
�, αi, ue�z

)
,

∑

Γ2

ud2

{∫

ZΓ2

e(V ′′
0 )ηβev∗

1φi

(−�) − ψ1

∣
∣
∣
ZΓ2

1
e(NZΓ2)

}
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=
∞∑

d=0

ud

∫

M0,m(Pn−1,d)

e(V ′′
0 )ηβev∗

1φi

(−�) − ψ1

= Zη,β

(
− �, αi, u

)
.

Finally, by (3.9), (3.33) and (3.34),

∫

Xd

e(θ∗Ω)zπ∗(e(V ′′
0 )ηβ

) j=m∏

j=3

ev∗
j

(
e(γ∗

1)
)

= (−�)m−2
i=n∑

i=1

eαiz

∏

k �=i

(αi − αk)
Z
(
�, αi, ue�z

)
Zη,β

(
− �, αi, u

)

= (−�)m−2ΦZ,Zη,β
(�, u, z),

as claimed in (3.29).
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