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Orientability in Yang-Mills theory over
nonorientable surfaces

NaNn-Kuo Ho, CHIu-CHU MELISSA Liu AND DANIEL RAMRAS

The first two authors have constructed a gauge-equivariant Morse
stratification on the space of connections on a principal U(n)-
bundle over a connected, closed, nonorientable surface ¥X. This
space can be identified with the real locus of the space of con-
nections on the pullback of this bundle over the orientable double
cover of Y. In this context, the normal bundles to the Morse strata
are real vector bundles. We show that these bundles, and their
associated homotopy orbit bundles, are orientable for any n when
Y is not homeomorphic to the Klein bottle, and for n < 3 when
> is the Klein bottle. We also derive similar orientability results
when the structure group is SU(n).

1. Introduction

Consider a finite stratification {.A,} of a manifold S. If each stratum A, is
a locally closed submanifold of S with codimension d,,, and the index set is
partially ordered so that for any A,

A)\C U‘Al‘

2N

holds, then {A,} is called a Morse stratification. A Morse stratification gives
a Morse polynomial M;(S; K) =) t% P,(Ay; K), where P,(—; K) denotes
the Poincaré polynomial with coefficients in the field K. The Morse inequal-
ities state that there exists a polynomial Rk (t) with nonnegative coefficients
such that

M(S; K) = P,(S;K) + (1+t)Rk(t).
Under fairly general conditions, the Morse inequalities hold for K = Z,. If,
moreover, the normal bundle N, to each stratum A, is orientable, then these
Morse inequalities hold for any coefficient field K.

Atiyah and Bott studied the moduli space of flat G-connections over
a Riemann surface via this Morse theoretical approach when the structure
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group G is compact and connected. One of their main results is the compu-
tation of the G-equivariant Poincaré series Ptg(Aﬂat; K) for the space Agas
of flat connections on a principal bundle over a Riemann surface, where G
is the gauge group. They used the Yang—Mills functional, which is invariant
under the action of the gauge group, as a Morse-type function and con-
structed a gauge equivariant Morse stratification {.A,} on the space A of all
connections on a principal bundle over a Riemann surface. The space Agat
of flat connections sits inside of the unique open stratum Ay and is a defor-
mation retract of Ay via the Yang—Mills flow [5, 22]. Thus, Agat and Ags
are homotopy equivalent, and Ptg (Agat; K) = Ptg(.Ass; K). With this Morse
stratification, one can write down the G-equivariant Morse series of the space
A of all connections,

MF(A;K) =Y 1% PP (Ay; K),

nel

and the G-equivariant Morse inequalities
M{ (A K) = P (A K) + (1+ DRk (1),

where d,, is the codimension of the stratum A, I is the index set of the
stratification and Rg(t) is a power series with nonnegative coefficients. In
their construction, the normal bundles N, are complex vector bundles, thus
orientable, so K can be any field. In order to compute the G-equivariant
Poincaré series PY (Ags; K), one needs four ingredients: PY (A; K), d,,, Ry (t)
and PY(A,; K) for all A, # As. Since the space A of all connections over
a Riemann surface is an infinite-dimensional complex affine space and thus
contractible, P (A; K) is just P;(BG; K), the Poincaré series of the classify-
ing space of G. As for PZ(A,), Atiyah and Bott found reduction formulas [1,
Proposition 7.12] that reduce the question to smaller groups. The Morse
index d,, can be computed by Riemann-Roch (see [1, Equation (7.15)]).
Most importantly, they showed that this stratification is G-equivariantly
perfect [1, Theorem 7.14], i.e., Rx(t) =0, and

P(BG; K) = P(A; K) = > 1% PY(Ay; K).
nel

In the end, this method produces a recursive formula for Ptg (Ass; K).
The first two authors defined a Yang—Mills functional on the space of
connections over any nonorientable surface ¥ in [12]. Using this Yang—Mills
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functional, they constructed a G-equivariant Morse stratification on the
space of connections over Y. To be precise, consider the orientable double
cover 7:% — %, and let P = 7*P over ¥ denote the pullback of a prin-
cipal bundle P over ¥. The nontrivial deck transformation of ¥ induces
an involution on the space A of connections of P whose fixed point set is
exactly the space A of connections of P. Ho and Liu define the Yang—Mills
functional L on A to be the restriction of the Yang—Mills functional L on
the fixed point set of A. The absolute minimum of L is zero, achieved by
flat connections on P. The gradient flow of L defines a G-equivariant Morse
stratification {A4,} on A. Indeed, the Morse stratification {A,} is just the
intersection of A with the Morse stratification {.,Zl#} This procedure also
tells us that the normal bundle N, to each stratum A, in A is the fixed
locus of the normal bundle N to each stratum .A# in A, which is com-
plex (we will discuss in detail the various involutions on vector bundles in
Section 3). In other words, the normal bundle N, to each Morse stratum
A, is a G-equivariant real vector bundle and hence is not automatically
orientable.
The G-equivariant Morse series of this stratification {A,} is

MP(AK) =) t% PP (Au K).

nel

Since the Yang—Mills strata admit gauge-invariant tubular neighborhoods
(see [23] for a construction), one can use the stratification to obtain the
G-equivariant Morse inequalities

M{(A; K) = PE(A K) + (1 + ) Ri ().

A priori, we cannot assume orientability of the normal bundles N, so
the Morse inequalities holds only for K = Z,. To compute the Poincaré
series Ptg(.Ass; K), we again need four ingredients: Ptg (A; K), d,, Ri(t) and
PY(Au; K) for all A, # Ag. Reduction formulas for PZ(A,; K) and a for-
mula for d,, were given in [12, 13]. On the other hand, the computation
of PY(A; K) is rather difficult when K = Zy due to the existence of two-
torsion elements in integral cohomology (see [12, Section 5.3; 13, Section
2] for more details) and one is encouraged to consider rational coefficients.
Hence we need to establish orientability of the normal bundles.

Let Xpc denote the homotopy orbit space EG xg X. Then (N,) hg 18
also a real vector bundle over (A,) hge 10 this paper, we fix the structure
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group of the principal bundle P to be the unitary group U(n) or the special
unitary group SU(n). Our main result is:

Theorem 1.1. Suppose that either (i) x(X) =0 (so that ¥ is homeomor-
phic to the Klein bottle) and n <3, or (ii) x(X) # 0 and n is any positive
integer. Then (Ny),g is an orientable vector bundle over (Ay),q for all p.
As a consequence, N, is an orientable vector bundle over A, for all .

In [14], the first two authors discuss how far this stratification is from
being perfect, i.e., what the power series Ry (t) looks like. They define
the notion of antiperfection, which leads to some conjectural formulas for
Ptg (Ass; K )

Thomas Baird [4] has recently proven the formula conjectured in [14] for
the G-equivariant Poincaré series of the space of flat U(3)-connections over
a nonorientable surface. His argument relies on Yang—Mills theory, and in
particular uses our orientability results. Thus Baird’s work may be viewed
as a concrete application of the results in this paper.

2. Preliminaries

Let Y be a Riemann surface. Let Pg’k denote the degree k principal U(n)-
bundle on 3. Let p : U(n) — GL(n,C) be the fundamental representation,
and let E = P™* x p C" be the associated complex vector bundle over 3.
Then F is a rank n, degree k complex vector bundle equipped with a Her-
mitian metric h, and the unitary frame bundle U(F,h) of the Hermitian
vector bundle (E, h) is isomorphic to Pg’k as a C* principal U(n)-bundle.

2.1. Hermitian, (0,1)-, and (1, 0)-connections

Let A(sz’k) be the space of U(n)-connections on Pg ’k, which can be iden-
tified with A(E, h), the space of Hermitian connections on (E,h) (connec-
tions on E which are compatible with the Hermitian structure h, cf. [26,
p.76]) . It is a complex affine space whose vector space of translations is
Q% (ad Pg’k), where the complex structure is given by the Hodge star % (cf.
[1]). Let C(E) denote the space of (0, 1)-connections 0 : Q%(E) — Q2(B),
and let C'(E) denote the space of (1,0)-connections O : Q%(E) — QE’O(E).
Recall that a (0,1)-connection (resp. (1,0)-connection) defines a holomor-
phic (resp. anti-holomorphic) structure on £ if and only if 9> = 0 (resp. 92 =
0) (cf. [7, Section 2.2.2]); now Q%’Q =0 (resp. Qg’o =0) since dim¢ ¥ =1,
so the integrability condition 9% = 0 (resp. 9? = 0) holds automatically. The
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local holomorphic (resp. anti-holomorphic) sections are solutions to ds = 0
(resp. ds = 0). C(E) and C'(E) are complex affine spaces whose vector spaces
of translations are Q%I(End(E)) and Qli’o(End(E))7 respectively (cf. [1]).

Given a Hermitian connection V : QOE(E) — QIE(E), let V' : Q%(E) —
Q%’O(E) and V”: Q%(E) —>Q%’1(E) be the (1,0) and (0,1) parts of V.
Then V — V" and V +— V' define isomorphisms j : A(Pg’k) — C(E) and
i A(Pé1 kY 5 C'(E) of real affine spaces. Their differentials

e n,k 0,1 .1 .0l n,k 1,0
Ju Qi(adPi ) — Q5 (EndE), 75 : Qi(adPi ) — Qg (EndE),

are complex linear and conjugate linear, respectively. More explicitly, j.
and j. are C°(X,R)-linear, so they are induced by real vector bundle
maps j : T4 ® ad P — (T%)"! @ EndE and j' : T ® ad PL* — (T3)0 ®
EndE, respectively. Given any point 2 € 3, let dz = dx + idy be a local basis
of (T%)," and let X,Y € u(n). Then X + Y € gl(n, C), and

j(Xdx +Ydy) = 3(X +iY)dz, j'(Xdz+Ydy)=1(X —iY)dz.

The complex structure on (Ti* ® ad Pg k)x is given by the Hodge star:
*(Xdx + Ydy) = —Ydx + Xdy. It is straightforward to check that j is com-
plex linear and ;' is conjugate linear.

Civen a (0, 1)-connection d on a Hermitian vector bundle (E, h) over %,
there is a unique connection V on F which is compatible with i and such that
V" = 0 (see, e.g., [26, p.78]). We denote this canonical Hermitian connection
by V} 5. The map j'oj~': C(E) = C'(E) is given by 0 — (V,, 5)', where
(Vy.5) is the (1,0)-part of V, 5.

Let EV be the complex dual of E (see, e.g., [20, pp.168-169]). Then EV
is a rank n, degree —k complex vector bundle equipped with a Hermitian
metric Y induced by h. More explicitly, if {e1,...,e,} is a local orthonor-
mal frame of the Hermitian vector bundle (FE,h), then its dual coframe
{e{,...,e’} is a local orthonormal frame of the Hermitian vector bun-
dle (EV,hY). The map v+ h(-,v) defines a conjugate linear bundle map
E — EY which induces an isomorphism I, : (E,h) = (EV,hY) of Hermitian
vector bundles. We have U(EV,hV) 2 U(E, h) & Pg’k.

A (0, 1)-connection d on E induces a (0, 1)-connection " on EV and a
(1,0)-connection ¥ on EV. This gives a map ji : C(E) — C'(EV). The map
v+ h(-,v) defines an isomorphism E = EV of C° complex vector bundles,
which induces an isomorphism js : C'(E) — C'(EV) of complex affine spaces.
It is straightforward to check that j' o j=! = j; ' 041 : C(E) — C'(E).
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2.2. Gauge groups

Let GL(E) be the frame bundle of the complex vector bundle E. Let U(E, h)
be the unitary frame bundle of the Hermitian vector bundle (F, k) as in the
previous subsection. Then GL(E) is a principal GL(n,C)-bundle over 3,
and U(FE, h) is a principal U(n)-bundle over 3. Let Aut(E) be the (infinite-
dimensional) group of complex vector bundle isomorphisms F — F, and
let Aut(E, h) be the (infinite-dimensional) group of Hermitian bundle iso-
morphisms (E,h) — (E,h). (See [1, Section 2] for details.) Then Aut(E)
=~ Aut GL(E) and Aut(E,h) =2 AutU(FE,h); Aut(E,h) is a subgroup of
Aut(E).

Aut(E) actson C(E) by u-0 = uodou~t and Aut(E, h) acts on A(FE, h)
by u-V = wuo V ou~!. More explicitly, relative to a local orthonormal frame,
a (0,1)-connection on E is of the form

3_:50+B,

where Jy is the usual Cauchy-Riemann operator and B is a gl(n, C)-valued
(0, 1)-form; a unitary connection is of the form

V=dtA,

where d is the usual exterior derivative and A is an u(n)-valued 1-form. An
element v in the gauge group Aut(E) is locally a GL(n, C)-valued function,
and acts on the form B by

(2.1) B+ uBu™! — (Jou)u~,

an element v in the gauge group Aut(FE, h) is locally a U(n)-valued function,
and acts on the form A by

(2.2) A= uAut — (du)u™t.

In particular, if u € GL(n,C) (resp. U(n)) is a constant gauge transforma-
tion, then it acts on B (resp. A) by B +— uBu~! (resp. A +— uAu™").
Given u € Aut(E) and z € Y, uy : By — E, is a complex linear iso-
morphism for all z € ¥. The dual of u, is a complex linear isomorphism
(uz)Y : (Ez)Y — (Ez)Y = (EY)s. It induces a complex linear isomorphism

(ug)V i (Ex)Y = (Ep)Y = (EV),.
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Define uV € Aut(EY) by (uV), = (uz)Y. Then u — u" defines a group homo-
morphism Aut(E) — Aut(EVY). The isomorphism I : £ = EV allows us to
identify Aut(E) with Aut(EY). We let I}, : Aut(E) — Aut(EV) be this h-
dependent identification, and let ¢p, : Aut(E) — Aut(E) be defined by u —
I,(uY). Then ¢y, can be described explicitly as follows. Let v € Aut(E), and
let A € GL(n,C) be the matrix of u, : F, — E, with respect to an orthonor-
mal basis of (E,, h;). Then ¢p(u), = (A*)~1. Note that ¢p : Aut(E) —
Aut(E) is an involution, and the fixed locus Aut(E)?" = Aut(E, h).

3. Involution

Let ¥ be a closed nonorientable surface, and let 7 : ¥ — ¥ be its orientable
double cover. Then ¥ is a Riemann surface, and the nontrivial deck trans-
formation is an anti-holomorphic, anti-symplectic involution 7 : ¥ — ¥ such
that mroT = .

3.1. The action of 7 on holomorphic structures

There is an anti-holomorphic, anti-symplectic map 74 : A(E,h) = A(T*E,
7*h) given by V — 7*V. Note that T*Pg’k %Pg’_k, so A(T*E,T*h) =
A(Pg’_k). We have

(V) = (V) (V) = (),
so there are maps
™ :C(E) = C(*E), C(T*E)—=C/(E), 0+~ 170,
™ :C'(E) = C(T*E), C'(7"E)—=C(E), 0~ 1%,

such that 7* o 7* is the identity map.

Define 7¢:=jorgo0j t=71"0j40j51:C(E)— C(t*E). Then 7¢ is
given by 9 — 7*(V}, 5). In the rest of this subsection, we study the effect of
7c on the Harder—Narasimhan filtration.

Let &€ denote E equipped with a (0, 1)-connection (holomorphic struc-
ture), so that £ can be viewed as a point in C(E). Let

0=&c& Cc---Ccé =€

be the Harder-Narasimhan filtration, so £;/£;_1 is semi-stable. For j =
1,...,r, set

Dj = gj/gj_l, n; = rank@ Dj, kj = deg Dj.
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The Atiyah—Bott type of £ is

k k
where M >.o> L
niy Ny

IR 7...777...77
ni ni ny ny

By we = (BB,

ni Ny

Recall that rankc £ = n and deg £ = k. Let

Y ) ) ) ) Y
niy niy Ny Ty ni Ty
nq Uz
T T
E n; =n, E k‘j =k s
j=1 j=1

and for p € I, let C, ={€ € C(E) | u(€) = p}. The Harder-Narasimhan

strata of C(E) are {C,, | p € I, .} (cf. [1, Section 7]).

Using the isomorphism I}, : E = EV defined in Section 2.1, we may iden-
tify C(7*E) with C(7*EV). Then 7¢ : C(E) — C(7*EV) is given by £ +— 7%V,
where &,EV, 7€V are holomorphic vector bundles over %, while £V is an

anti-holomorphic vector bundle over 3.
For j =0,...,r, define a holomorphic subbundle (£Y)_; of €Y by

((EV)_j)I ={ae&|al) =0We (&)}

Then (£Y)_; = (£/€;)". The Harder-Narasimhan filtration of £ € C(EVY)
is given by

0=(EY)r C(E )y C--C(EV)1C(E)0=E".

Notice that
(EV) =i/ () —(i41) = (Ein1/E)Y = (Diy1)".
For j = 1, e, Ty set 7‘[]' = (gv)—(r—j)/(gv)—(r—j-i-l)' Then

Hj = (Dry1-j)", rankeH; =npy1-j, degHj = —kry1-j.

Hence the Atiyah-Bott type of £V is

kr k‘T kl kl ]fr kl
M:(_7’.”,_7"_.’_7’.”,_7>’ where — — > .- > ——,
ny Ny ni ni Ny niy

| -
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For j=0,...,r, define a holomorphic subbundle 7¢(€)_; of 7¢(€) =
7EV by 1¢(€)—; = 7*(€V)_;. The Harder-Narasimhan filtration of 7¢(&)
is given by

0="1c(E)—r C1e(E)_(r—1) C--- C7c(E)o = T1c(E).
For j=1,...,r, let K; = 7¢(E)_(r—j)/7c(E)—(r—j+1)- Then
Kj = 7H; = 7%(Dri1—5)" = 7¢(Dri1—j),

and
rank(c ’Cj = Ny41—5, deg ]Cj = —kr+1_j.

The Atiyah-Bott type of 7¢(€) is

po (o ke ko hy

yee ey Sy sy
Ty ny ni ni

g
Uz U5

From the above discussion, we conclude:

Lemma 3.1. Let 7¢ : C(E) — C(T*E) 2 C(*EV) be defined as above, and
define ¢ : Aut(E) — Aut(7*E) by u— 7*¢p(u), where ¢p, is defined as in
Section 2.2. Define 1o : I, — I, —i, by

<k1 kl k}r k‘r) ( kr k:r kl ]{31)

Ty Ty T, — | T, T, T, — ],

n1 ny Ny Ny Ny Ny ny n1
ny :74: n ny

Then

1. 7¢ : C(E) — C(7*E) = C(r*EV) maps C,, bijectively to Cr,,)-

2. 7¢ is equivariant with respect to the Aut(E)-action on C(E) and
Aut(r*E)-action on C(T*E), i.e.,

te(u-0) = 1c(u) - 17¢(9), u€ Aut(E), 0¢cC(E).
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3.2. The degree zero case

Let P — ¥ be a principal U(n)-bundle, and let P = 7*P be the pull back
principal U(n)-bundle on ¥. We first review some facts about P (see
[12, Section 3.2] for details). The pull back bundle P = P? V> $ % Un) is
topologically trivial. We wish to describe an involution 7 : P — P which is
U (n)-equivariant, covers the involution 7 : > — %, and satisfies P = P/TS.
Fixing a trivialization P = 3 x U(n), any such involution must be given
by 7s : B x U(n) = X x U(n), (z,h) — (r(x), s(x)h), for some C> map s :
> — U(n) satisfying s(7(z)) = s(z) !

The topological type of a principal U(n)-bundle P — ¥ is classified by
c1(P) € HX(X;Z) = 7/27. Let Pe" and PL~ denote the principal U(n)-
bundles on ¥ with ¢; =0 and ¢; =1 in Z/2Z, respectively. Let 7. be the
involution on P” ' = 53 x U(n) defined by a constant map s(z) = e € U(n).
We must have €2 = I,,, so det e = 1. Then PTL O/T€ = P” Fifdete = £1. We
choose e+ to be the diagonal matrix dlag(jzl, 1,...,1), and define 7% = Tes-
Then Pg’O/TjE = Pg’i.

Let E = Pg’o x,C" 2% x C", where p : U(n) — GL(n, C) is the funda-
mental representation. Then 7% induces an involution 7% : E 2~ % x C" —
E =% x C" given by (z,v) — (7(z), exv). The two involutions 7+, 7~ give
two isomorphisms 7" E 22 F| which induce isomorphisms

A(E,h) =2 A(T*E,7%h), C(E)=C(T*E), Aut(F)=Aut(t*E).
Therefore, we have involutions
Tj t A(E,h) = A(E,h), 715 :C(E)—C(E), 75 :Aut(E)— Aut(E),

and 75 : C(E) — C(E) is Aut(E)-equivariant with respect to the Aut(E)-
action on C(E). We have

A(PEE) = A(B,h)4 =~ C(BE)<,  Aut(P2) = Aut(E,h)e

where Aut(E, h) C Aut(E) is the group of unitary gauge transformations of
the Hermitian vector bundle (F, h). The following two equivariant pairs are
isomorphic:

(A(Pg’i),Aut(Pg’i)) S (C(E)Tci L Aut(E, h) ) .
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3.3. SU(n)-connections

Let Q% — X be a principal SU(n)-bundle. Then Q% is topologically trivial.
We fix a trivialization Q% = ¥ x SU(n), which allows us to identify the space
A(Q%) of connections on Q% with the vector space of su(n)-valued 1-forms
on Y. Let PP 22 % x U(n) be the trivial U(n)-bundle on X, as before. The
short exact sequence of vector spaces

0 — su(n) — u(n) S u(l) — 1
induces a short exact sequence of infinite-dimensional vector spaces
0— AQE) — APE) B APLT) > 0.

The Yang—Mills functional on A(Q%) is the restriction of the Yang-Mills
functional on A(Pg"). The Morse stratifications on A(Py'™) and on A(QR)
are given by

AP = A AQ1) = | A,

nel pnel

where A}, = A, N A(Q%,) is nonempty for any p € I. Given p € I such that
Ay # Ass, let Ny, (resp. N)) be the normal bundle of A, (resp. Aj) in
A(PET) (resp. A(QR)). Let ¢, : Aj, = A, be the inclusion. Then Nj, =
t;Ny. Therefore, if N, is an orientable real vector bundle over A, then
N}, is an orientable real vector bundle over Aj,.

The short exact sequence of Lie groups

det

1—=SUn) —-U(n) = U(1) =1
induces a short exact sequence of infinite-dimensional gauge groups
1 — Map(X,SU(n)) — Map(X,U(n)) — Map(X,U(1)) — 1

or equivalently,

(3.2) 1 — Aut(Q%) — Aut(Pr™) — Aut(Py™) — 1.
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In particular, G’ := Aut(Qg) is a subgroup of G := Aut(Pa"); indeed G’ is
a closed, normal subgroup of G. We have the following diagram:

EQ Xgr N;L —_— EQ Xgr N# —_— Eg Xg NM

l ! !

EG Xgr .A;A — EG Xgr AH — EG Xg A/“
which can be identified with

(Nung —— (Npwg —— (Ny)ng

! | l

(A g —— (Adhg —— (Au)ng,

where
(Nwhg = g (Nag) s (Nag = ¢, (Nung) -

Therefore, if (N,,)5g is an orientable vector bundle over (A)xg then (N, )ng:
is an orientable vector bundle over (A}, )ng:-

From the above discussion, if Theorem 1.1 holds for U(n) then it holds
for SU(n). In the remainder of this paper, we prove Theorem 1.1 for U(n).

4. Reduction

Let ¥ denote a closed, nonorientable surface. In this section, we reduce
the question of orientability for normal bundles of Morse strata in A(Pe™)
to the question of orientability for certain real vector bundles V,, ; over
the representation varieties associated to central Yang—Mills connections
on Pg’k.

The reduction will pass through a variety of gauge-theoretical spaces,
most of which are not CW complexes. Hence one needs to be careful in
applying the usual bundle-theoretical arguments. In the end, however, we
will show that the normal bundle to each Morse stratum A,, when con-
sidered equivariantly as a bundle over (A,),q, is pulled back under a weak
equivalence from a bundle over the homotopy orbit space (N,,/Go) h(ny (here
N, denotes the set of type p Yang—Mills connections). These representa-
tion varieties are analytical sets [12], and their homotopy orbit spaces are
triangulable by results of Illman [11]. The fact that the normal bundle is
pulled back from a bundle over a CW complex will allow us to use standard
bundle-theoretical arguments. At the end of this section we will summarize
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the arguments to follow, so as to make the overall strategy of the reduction
clear and the proof rigorous.

4.1. Reduction to Levi subgroups

On the stratum C,, where p is as in Equation (3.1), we will proceed to reduce
the U(n)-gauge group to a Levi subgroup corresponding to U(ni) X - - X
U(n,). Our arguments follow [1, Section 7] closely.

Let F,, denote the space of all C filtrations of type p. The Harder—
Narasimhan filtration provides a continuous map p:Cy,— F,. Let E, € F,
be a fixed C* filtration of E and let B, = p~1(E,). We choose splittings of
the filtration £, to obtain a direct sum decomposmon E0 Di&®---d D,
of E, and let BO C B,, be the space of complex structures compatlble with
the direct sum decomposmon E0 The inclusion BO — B, splits the fibration
B, — BO, which has a vector space as fiber. Hence thls inclusion is a weak
equlvalence. Since C,, is the extension of the Aut(E,)-space B, to a Aut(E)-
space, we have a homeomorphism of homotopy orbit spaces (C,,), Aut(E)
(Bu)hau(s,) Thus

1%

= (BN)hAut(El) (B )hAut(EO) = HCSS hAut(D)
7j=1

(C)naus(r)

Let N, — C, be the normal bundle of C,, in C(E). Given & € 62 C Cy,
£ is a direct sum of holomorphic subbundles Dy, ..., D,, and

(N,)e = @Hl(f},ﬂom(Di,Dj)).

The Harder-Narasimhan filtration is again a continuous map p : C; () —
Fro(n)- We have 7°E,, € F ). Let By () = p~1(7*E,) and let Bgo(u) be the
space of complex structures compatible with the direct sum decomposition
T*(EB) =7"D1@®---®7*D,. Then T(BO) BQO(M)
Given a holomorphic vector bundle V — X, let O(V) be the sheaf of local

holomorphic sections on V. Then for i = 0,1,
(4.1) HA(S,V) = H'(S,00V)) = H' ({Ua}, 0(V)),

where H Z( ,V) is the Dolbeault cohomology of the holomorphic vector
bundle V, H (X, 0V )) is the sheaf cohomology of the sheaf O(V), and
H({Uy},O(V)) is the Cech cohomology with coefficient in the sheaf O(V)
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for a good cover {U,} of ¥. Let H*(X, V) denote any of the three cohomology
groups in (4.1).

Let NTO(H) — Cry(uy be the normal bundle of C; ) in C(7*E). Then
w(€) =1(D1) & - & 7¢(Dy), and

(N re(e) = P H (iﬂom(Tc(Dj),Tc(Di))> :
1<j
Now, 7% induces an anti-holomorphic map from the holomorphic vec-
tor bundle Hom(D;, D;) to the anti-holomorphic bundle 7*Hom(D;, D;) =

T*’i’-lon’L(Djv,DZv ). So 7 induces an isomorphism of holomorphic vector
bundles

7

= Hom(7¢(D;j), ¢(D;))-

Hom(D;, Dj) = T Hom(D{,D}) = ’Hom(T*Dijv, 7*DY)

Given a local holomorphic section of s of Hom(D;, D;)|y, where U is
an open subset of X, we let 7(s) denote the local holomorphic section of

T*Hom(Di,Dj)) ) defined by 7(s)(z) = s(7(z)). Then 7 defines a conju-

T

gate linear map between Cech complexes associated to Hom(D;, D;) and
m*Hom(D;, D;) = Hom(1c(Dj), 7¢(D;)), and this in turn induces a conju-
gate linear map

T Hl(i,Hom(Di,Dj)) —~ H! (i,HOm(Tc(Dj),Tc(DZ'))) .

The direct sum of these maps (over i < j) is the conjugate linear map
(Nu)g — (NTo(,u)>Tc(5) induced by TC C(E) — C(T*E)

4.2. Degree zero case

We now specialize to the degree zero case (see [12, Section 7| for details).

Let 2§ be a Riemann surface of genus ¢ > 0. Let X{ be the connected
sum of Xf and RP?, and let X5 be the connected sum of ¥ and a Klein
bottle. Any closed connected surface is of the form Ef, where ¢ > 0 and
1=20,1,2. Ef is orientable if and only if ¢ = 0. Define

ey e )ejn’,k;
ni ni ny Ny

I, = {u = (y,uﬁo@))‘v - (

)

n1 zs

k k
ng >0, 2n +ng=n, —1>--~>—r>0},
ny Ny
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. ky Ky kr kr
I”L,:l::{ — S ‘ :(7,...,7,---775""7)6'[/
" n (V TO(V)) v ny ny Ny Ny o
m n,
. k k
' =, ()T =1, s o),
ni [z

where ¢ = 1,2. Then I;?O =I0u ILT UL, To simplify notation, we set

o) = (~1)"

for any u € I9. ) A
We have ¥ = »¢ for some £ >0 and i = 1,2, and X = Eg“"_l. Let £ =
Pg’o X, C" =% x C". The involution 7% : E — F defines an isomorphism

o +
¢* : E — 7*E. We have Tci : C(E) — C(E). Suppose that p € I, and C;°
is nonempty. Then u € 19 U If{i, so p is of the form

po(B, BBk

uw= (r,0,...,0,70(v)), ey e )
N—— ni ni Ny Ny

Mo

) € In’,kv

n1 Uzs

where ng > 0. There exist C'*° subbundles Dy, ..., D, of E such that
1) For i =0,...,r, rankc D; = n;, degD; = k;, where kg = 0.
NE=D1&---&D,&Dy® 7D, & ---®7*Dy.
3) 7% preserves Dy and switches D; with 7*D; for i =1,...,r.
Let
Ey=D1®---®D, ®Dy® 7" D, @ --- & 7Dy,
and define Bg as in Section 4.1. Then Tét acts on Bg by

Di@--- @D, @Dy @D, ©--- DD

to(p

= 7e(Do1) @+ ® 7e(D-y) © 757" (Do) @ 7e(Dy) @ -+ @ 7 (Dr).

Let CSS(Di)iC C(D;) be the semistable stratum. Any element in the fixed
locus (B)™ is of the form

D@D, Dy ® 1e(Dy) ® -+ - 1¢(D1),
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+o(p)

where D; € Cgs(D;) for i =1,...,r, and Dy € Css(Dg)"e . Therefore,

(BY) = Cyy(Dy)e”" x Hcss

Now, Tét acts on

Aut(Eg) = Aut(Dy) x --- x Aut(D,) x Aut(Dg) x Aut(r*D,)
- X Aut(7"Dy)

(ula sy Up, UQy U—rpy - 7u*1)

= (re(umn)y e 1e(usr), 07 (), e (ur), - - e (un)).

To simplify notation, we write G, = Aut(EO) . Then we have
G, = Aut(Dy)e " x HAut

Let A, C A( %) be the equivariant Morse stratum that corresponds

+
to CTC CC(E ) . As in the orientable case, the inclusion ¢ : (82)76i — C¢
induces a weak homotopy equivalence

<(82)T§)hgu - <C;§)h(Aut(E)*Ci )

We now have a sequence of maps (where ~ denotes a weak homotopy equiv-
alence)

12

(o

(Au)hAut(Pg’i) )h(Aut(E,h)*ci)

1

(CSS(DO)TS:H(H)>h( \ iow)) X HCSS(D’i)hAut(Di)’

When p € I,i;i, we do not have the first factor Cgs(Dy).
Let N, be the normal bundle of C,, in C(E). Given

E=D1&--- 0D, &Dy@®7c(D)®---®7¢(D1) € (BB)TCi»
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we have

(Npe = H'(S,End"(E))
= @ H! (i,%om(Di,Dj)> ® @ H! <i,H0m(Tc(Dj)7Tc(Dz‘)>
0<i<j 0<i<j
o @ H' (S Hom(Di, (D))
0<i.j
@ @Hl (ZN],’Hom(Di,Do)) ® @Hl (i,Hom(Do,Tc(Di)D :

>0 >0

By the discussion of Section 4.1, 7 induces conjugate linear maps of
complex vector spaces:

HY(X, Hom(D;, D;)) — HY(Z, Hom(1e(D;), 7e(D;))), and its inverse,
HY(Z, Hom(D;, 7e(D;)) — HY(Z, Hom(Dj, 7 (D)),
HY(Z, Hom(D;, Dy)) — HY(E, Hom(Dy, 7¢(D;))), and its inverse.

Let N, be the normal bundle of A, in A(Pg’i), or equivalently, the
+
normal bundle of Cj¢ in C(E)™ . Then

(4.2)
(N,)e = H'(X,End" (€))7

~ (P o' (E,Hom(D,-,Dj)) ® P H' (i,%om(Di,TC(Dj))>

0<i<j 0<i<j
® @Hl (i,HOm(Di,Tc(Di))>T @ @Hl (f},?—[om(Di,Do)>
>0 >0

+
Let z':(Bg)TCi < C,¢ denote the inclusion map. By (4.2), i*N, =
NE ® NE, where

(NDe = @ H' (S Hom(DDy)) & @ H' (£, Hom(Dy,7¢(Dy)))
0<i<j 0<i<y
o @A <S,7—l0m(Di,D0)> :
>0
(N2)e = ED H' (i,Hom(Di,Tc(Di))>T.

>0
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Note that (Ng)hgu — ((Z’J’B)TCfc >hg is a complex vector bundle, thus an

oriented real vector bundle. Hence Srientability of i*N, is equivalent to
orientability of the real vector bundle

R i _ oW
(N,u)hgp - ((BM) ¢ )hg = (CSS(DO) ¢ )h(Aut(DO)TCiU(“))

X HCSS(D’i)hAut(Di)‘
i=1
We have

NE=@DVi, (Vi)e = H'(S, Hom(Dy, 7e(D)))"-
=1

Let D be a rank n, degree k > 0 complex vector bundle over 3. Let Vo k
be the Aut(D)-equivariant real vector bundle over Cs(D) whose fiber at D
is H'(X, Hom(D, 7c(D))".

The following result will be a direct consequence of Lemma 4.2 (the
g = 0 case) and Theorem 4.2 (the g > 0 case) in Section 4.3 below.

Theorem 4.1. Let D be a rank n, degree k > 0 complex vector bundle
over a Riemann surface of genus g. If n =1 or g # 1 then (mG)hAut(D) —
Css(D)paut(p) is orientable.

Suppose that ¥ is diffeomorphic to the Klein bottle, so that its orientable
double cover ¥ is a Riemann surface of genus g = 1. Note that

1P = {(k,—k) | k € Zso}, IP = {(k,0,—k) |k € Zso}.

The k =0 case corresponds to open strata whose normal bundles are of
rank zero. From the above discussion, when p = (k, —k) or (k,0, —k), where
k > 0, we have

(NS)e = H'(E, Hom(D1,7¢(D1)))7,

where D; is a rank 1, degree k£ holomorphic bundle over Y. Therefore
Theorem 4.1 implies Theorem 1.1, our main orientability theorem.

4.3. Reduction to representation varieties

We consider the following equivariant real vector bundles:

1. The Aut(E)-equivariant vector bundle V,, , — Css(E).
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2. The Aut(E,h)-equivariant vector bundle V,, ; — Cx(E), or equiva-
lently, the G-equivariant vector bundle V,, , — ASS(Pg’k), where G =

Aut(Pg’k) and Ass(Pg’k) is the open Morse stratum.

3. The G-equivariant vector bundle 0 Vi k —>A/;S(Pg’k), where i, j, :
J\/SS(Pg’k) c—)Ass(Pg’k) is the inclusion of the space of central

Yang-Mills connections on Pg k.

The inclusion Aut(E, h) C Aut(E) is a homotopy equivalence; ASS(Pg’k)
is the stable manifold of ./\/SS(Pg’k), and the gradient flow of the Yang-
Mills functional gives a G-equivariant deformation retraction ASS(Pg’k) —
/\/ss(Pg’k ). Therefore (V,, k) nAut(E) = Css(E)paut(E) is orientable if and only
if (i 1 Viok)ng — ./\/'SS(PS )pg is orientable.

We fix a base point xg € ¥, and let ev : G — U(n) be the evaluation
at xo. Then ev is a surjective group homomorphism, and the kernel Go
is the based gauge group. Therefore, Gy is a normal subgroup of G, and
G/Go = U(n). The group Gy acts freely on A/;S(P~ *). Let § be the genus of

Y. The representation variety of central Yang—Mills connections on Pg’k is
given by

XEUM):_x =V € UM | m(V) = e 2V},

where m(al,bl,.. ,ag,bg) = fl[az,bz]. (See [12, Section 6.1] for the
definition of X{J(’M(U (n)), for a general Atiyah-Bott type p.) There is a
homeomorphism

Nas(PE") [Go = X (U(n)) v

The G-equivariant vector bundle i* k,Vn k. over Nyg(P= s ) descends to a U(n)-

equivariant vector bundle V;, ;, over XYM(U (1)) x. Therefore, orientabil-

ity of (i, 1. Vi) WG A/;s(Pg ) ng Will follow from orlentablhty of the bundle

0
(Va, k)hU(n) (XS(](M(U(”)) )hU( )
We will need the followmg femma regarding orientability of equivariant
vector bundles.

Lemma 4.1. Let G be a compact, connected Lie group and let X be a para-
compact G-space. Then a G-equivariant real vector bundle W — X is ori-
entable if and only if the vector bundle EG xg W — EG xg X is orientable.
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Proof. Since W is the restriction of Wy to a fiber of the projection X5 —
BG, the “if” direction is immediate. Now assume W is orientable. Then
det W — X is trivial, and it will suffice to show that

det(EG x¢ W) & EG x¢ (det W) — EG x¢ X

is trivial. Since X is paracompact and G is compact, we may choose a
G-equivariant metric on det W. The set det(W); of length-one vectors in
det(W) = X x R is homeomorphic to X [[ X, so there is a section s : X —
det(W) with image in det(W);.

We claim that s is G-equivariant. Fix z € X, g € G. Since G is con-
nected, there exists a path g from g to e, yielding paths s(g; - z) and
gt - s(x) from s(g-z) and ¢ - s(z) to s(z). By G-invariance of the metric,
these paths lie in det(WW);, so s(¢g-z) and g-s(z) lie in the same path
component of det(W); = X [ X. Since both points are in the fiber over
g -z, we have s(¢g-x) = g - s(x). The map EG x X — EG xg det(WW) given
by (e,z) — [e, s(z)] now factors through EG xg X, giving a nowhere-zero
section of this line bundle. O

Since U(n) is compact and connected, to show that

g,0
Vit = (XEO ) g)hU(n)

is orientable it suffices, by Lemma 4.1, to show that

n’"n

Vk = XI20(U M) e &

is orientable. i

When g = 0, the definition of X%&(U(n))ﬁ7...7ﬁ degenerates (the reader
may wish to compare with the general definition given in [12, Section 6.1])
and we find that X%I(\J/I(U(n))ﬁj__,g is a single point when k is a multiple of
n, and is empty otherwise.

Lemma 4.2.

{VeUmO|V=c2nvV-Tknpy — {11
0,

€7,
¢ 7.

Sl 3=

n’'n

Xoq(Un)e, x = {

So mG—)Xg,’l(\)/[(U(n))ﬁw’& is orientable whenever X%&(U(n))ﬁw.7ﬁ is
nonempty. n n n n

We will prove the following.
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Theorem 4.2. Let k > 0. The real vector bundle V,, j, — X%’I(\)/I(U(n))ﬁ ok
s orientable when n =1 or g > 2. !

We now explain how exactly we deduce Theorem 1.1 from Lemma 4.2,
Theorem 4.2 and the previous results and arguments in this section. We
must be careful due to the fact that many of the maps we have been consid-
ering are only weak homotopy equivalences. In particular, if f: X — Y isa
weak homotopy equivalence and V' — Y is a real vector bundle, orientabil-
ity of f*(V') does not necessarily imply orientability of V' (although by the
Bundle Homotopy Theorem [17, Section 4.9], this implication does hold for
homotopy equivalences).

We need to prove orientability of the normal bundle (N, ),g over (A,)ng.
Letting i : N, — A, denote the inclusion of the critical set, this bundle is
isomorphic to the pullback of the bundle i*((N,)ng) under the retraction
r: A, — N, provided by the Yang-Mills flow (because i and r are homotopy
inverses). Moreover, i*((N,)ng) is the pull back of a bundle W,y over the
representation variety (N,/Go)nu(n) (this reduction to the representation
variety is analogous to the argument in Section 4.3). By the results in [12,
Sections 6, 7], A, /Go is an analytic set, and hence admits a U (n)-equivariant
triangulation [11]. Thus the homotopy orbit space is a CW complex, and to
prove Theorem 1.1 we now just need to prove orientability of the bundle
Whir(n) over the CW complex (N,./Go)nun)-

The various weak equivalences exhibited in this section provide a weak
equivalence

(), = Wi/Godwa:

By a standard CW approximation argument (for example, pull back over the
singular complex of ((Bg)Tci Jhautg ), orientability of the bundle Wy, —
(Nwu/G0)hu(ny is implied by orientability of the pullback of this bundle to
((Bﬁ)Tci)hAutg; note that this pullback is just the restriction of (N,)ng to

((BS)TCi )hautg - Finally, we have seen that orientability of this restricted bun-
dle is implied by Theorem 4.1, which follows from Theorem 4.2. In the
subsequent sections, we will prove Theorem 4.2 by explicitly examining the
restrictions of the bundle V;, ;. (see Theorem 4.2) to loops generating the fun-
damental group of X%’&(U(n))k7_._7ﬁ. Note that X%’I?/I(U(n))gm’g is again an
analytic set, hence triangulablg (hgre we do not need an e&uivgriant trian-
gulation, so the classical result of Lojasiewicz [19] suffices).

Remark 4.1. For the main applications we have in mind (e.g., the Morse
inequalities mentioned in the introduction), it is not strictly necessary to
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prove orientability of the normal bundles to the Yang—Mills strata; one sim-
ply needs Thom isomorphisms describing how each critical set contributes to
the cohomology of the space Apg. We now explain how to deduce these iso-
morphisms without resorting to Illman’s equivariant triangulability results,
or even the nonequivariant result of Lojasiewicz.

The partial ordering on the Yang—Mills strata defined by Atiyah and
Bott [1, Section 7] can be refined to a linear ordering in which the union of
each initial segment is open (see [23] for details). Let A; denote the union
of the strata in some initial segment [ in this ordering (so .4; an open
neighborhood of Ag) and let A, be the next stratum. Then, by excising
the complement of a gauge-invariant tubular neighborhood (see [23]) and
applying the Thom Isomorphism Theorem to the (orientable) normal bundle
(Ny)ng , one obtains isomorphisms

(4.3) HE(Ar U Ay, Ap) = H5(N,, (N),) = HE W (A,),

where (N,), denotes the complement of the zero section and c(u) is the
dimension of N,. The isomorphism between the first and third terms is
what we need in order to compute equivariant cohomology.

Rather than applying the Thom Isomorphism directly to (N),, one
may instead pull back over a CW approximation f: X — (A,),s. Since f
is a weak equivalence and both N, and the complement of its zero section
fiber over A, we have an isomorphism

Hﬁg(f*Nua (f*Nu)o) = HZQ(N;“ (Nu)o)-

To establish an isomorphism between the first and third terms in (4.3), we
need only deduce orientability of f*(N,). This follows from Theorem 4.2
by applying CW approximations throughout the previous argument; in fact
we only need to know that the bundle V,, ; in Theorem 4.2 is orientable
after pulling back over a CW approximation a : K = X%’I?/I(U(n))ﬁ7_._7ﬁ. We
will show in subsequent sections that Vnk is orientable along lgopsn {7}
generating the fundamental group of XS(](’I?/[(U(”))&,...,E- Choosing 7/ : ST —
K such that « o~} ~ ~;, the Bundle Homotopy Theorem [17, Section 4.9]
implies that a*V}, is orientable along the loops 7}, which generate m K.
Since K is a CW complex, this implies (see Remark 6.1) that o*V,,; is
orientable, as desired. In this approach, we do not need to use the fact that
X%’&(U(n))ﬁwwﬁ is triangulable.
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5. Fundamental groups
Our orientability argument requires a calculation of fundamental groups.
Proposition 5.1. For g > 2, the map det induces an isomorphism

m (KU, ) 5 m U Q)) = 22

RS

Proof. We may assume n > 2. We first introduce some notation. Let P™F =
Pg’k; note that det(P™*) = PLF. Let A(m, k) = A(P™*) be the space of
U(m)-connections on P™F let G(m,k) = Aut(P™*) be the gauge group,
and let Go(m, k) C G(m, k) be the base gauge group. Let C(m, k) be the
space of holomorphic structures on E™* the rank m, degree k complex
vector bundle over ¥. Let Cy(m, k) C C(m, k) be the semi-stable stratum.

Recall that Trace: u(n) — u(1) is the derivative of the determinant map
det: U(n) — U(1) at the identity. Clearly, it is ad-invariant and it induces a
map ad (P™*) — ad (P*), and thus a map Tr : A(n, k) — A(1, k). The map
Tr sends a Yang-Mills U(n)-connection to a Yang-Mills U(1)-connection.
Since all Yang-Mills U(1)-connection are central, the map Tr descends to
a map

det : XY (U(n))x e — XP(U (1)

(recall that det(exp M) = exp(TrM),VM € u(n)). In other words, we have
a commuting diagram:

T

n’"n

l hol l hol

XPUMm) e 2 s XU ).

n’"n

The determinant map U(n) — U(1) also induces a homomorphism ¢ :
Go(n, k) — Go(1,k), and the map Tr : A(n, k) — A(1, k) is ¢-equivariant. In
particular, the map Tr: Nx  » — N} is ¢-equivariant, and we have a well-
defined map o

‘n

which we may identify up to homotopy with the determinant map

det : XY (U(n) k= XP(U (1)
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Moreover, the Yang—Mills flow provides a gauge-equivariant deformation
retraction from the space Css(m, k) of semi-stable bundles to the critical set
N« [22], so it suffices to show that the map

.....

(5'1) ! (EQO(na k) Xgo(n,k) Css(nv k)) &) T (EQO(lvk) Xgo(l,k) CSS(17k))

is an isomorphism.
We have an induced map of fibration sequences

(5.2) Css(n, k) —— EGo(n, k) Xg,(nk) Css(n, k) —— BGo(n, k)

| | |

Css(la k) - Ego(l, k) X Go(1,k) CSS(L k) - Bg()(L k)7

and we claim that both fibers are simply connected. For n = 1, all criti-
cal connections are minimal, i.e., there is only one stratum and thus the
set of minimal Yang—Mills connections is a deformation retraction of the
total space A(1, k), which is an affine space. Thus, Css(1, k) = A(1, k) is con-
tractible. Since both n and § are at least 2, the complement of Cy(n, k) in
the contractible space A(n, k) may be stratified by submanifolds of (finite)
real codimension at least 2(§ — 1)(n — 1) + 2 > 4. Transversality arguments
(as in [24, Section 4] or [6]) now apply to prove simple connectivity.

Since both 7; and my of Cgs(1, k) and Cgs(n, k) are trivial, we may now
identify the map (5.1) with the map 71 (BGo(n, k)) = m1(BGo(1, k)) induced
by diagram (5.2). By Atiyah and Bott [1, Section 2], we have homotopy
equivalences BGy(m, k) ~ Map?™" (£, BU(m)) for any m, where Map?™"
denotes the subspace of based maps which induce the bundle P"*. Hence
we may identify the map ¢ with the determinant map

(5.3) 7 (Map?™" (S, BU(n))) — m (Map? ™" (S, BU(1))).
The splitting U(1) — U(n) of det : U(n) — U(1) induces a splitting
(5.4) Map, (8, BU(1)) — Map, (3, BU(n))

of the determinant map Map, (%, BU(n)) — Map, (2, BU(1)), and hence
after restricting to components (recall that det(P™%) = P*) we obtain
splittings of the maps (5.3). This implies that the maps (5.3) are surjective.

To prove that the maps (5.3) are also injective, it suffices to show that
their domain and range are isomorphic to Z?9. Note that Y is the mapping
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cone of the attachmg map 7 for its 2—cell, so we have a homotopy cofiber
sequence ST \/2~ S — 3. For any m > 1, applying Map, (—, BU(m)) to
this sequence gives the fibration sequence
(5.5)

Map, (3, BU(m)) — Map, < \ s, BU(m)> —5 Map, (S', BU(m)).

29

We have Map,(Vy; St BU(m)) = (QBU(m))% ~ U(m)?*9 and similarly
Map, (St, BU(m)) ~ U(m), so the fundamental groups of these spaces are

7?9 and Z, respectively. Since the attaching map 7 can be written as a
product of commutators, so can the induced map

S« : mMap, (\/Sl, BU(m)) — m Map, (S, BU(m)).
29

Since these groups are abelian, we see that s, = 0.
Now, a classifying map for P™* gives each space in (5.5) a basepoint,
and the resulting long exact sequence in homotopy is, in part,

mQBU(m) = 0 — m MapE™" (5, BU(m)) = 7% ==% 7.
Hence r, is an isomorphism, which completes the proof. O

6. Symmetric representation varieties

In Section 4, we reduced our main theorem (Theorem 1.1) to the orientability
of a real vector bundle V}, ;, over the representation variety

204i—1,0
Xy (U@m)e e

of the central Yang-Mills U(n)-connection on the orientable double cover
2267171 of the nonorientable surface $¢ (Theorem 4.2). In this section, we
will use Proposition 5.1 to write down:

(i) loops in X%ﬁi_l’O(U(n))ﬁ’wE that generate the fundamental group of
X WU )k, and

(ii) lifts of these loops under the surjective continuous map

i, i
4 2 (U )

gooe

’i _)X2£+1 10(U(n))§ K

AR

from the symmetric representation variety.
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To prove Theorem 4.2, it suffices to examine the orientability of the
restrictions of the pull back bundle W, j = (®%%)*V}, ). to the loops in (ii).
This will be carried out in Section 7.

6.1. Review of symmetric representation varieties

We recall definitions and some properties of symmetric representation
varieties introduced in [12].

Given V = (ay,b1,...,azbp) € Un)*, let m(V) = Hle[ai, b;]. For inte-

gers k,n, where n > 0, we introduce symmetric representation varieties:
k
Zp(Um)s x ={(Vie V! e, -2V/=Tn-L)|V.V' € Um)*,c.c € U(n),
m(V) = e ™R/ o m(V') = e’rmk/”lnc'c},
k
Zom(Um))x e ={(V,d,c,V",d ¢, —2\/—1775.7”) |V, V' e U(n)%,
d,c,d',cd e U(n),m(V)= e_”ﬁk/”lncd'c_ld,
m(vl) —_ eﬁ\/jlk/nfnc/d(cl)_ld/}.
In particular, we have homeomorphisms

2RO = {(Ve, V', s 2/ Tmh) | V, V' € U1,
e, d € U(1),ed = (1)} = U(1)*+,

Zg U = {(Vod,e, V', d' ¢, —2v/=1rk) | V,V' € U(1)¥,
dye,d,c € UQ1), dd' = (—1)F} = U@)%*+3,

Given g € U(n) and V = (a1, by, ..., as,bp) € U(n)%, .
gVg~' = (garg " gbig™", ... gacg™"!, gbeg™").

With this notation, U(n)? acts on Zéfw(U(n)) k

n’

& by
k
(g17 92) ’ (V7 G, Vlv CI) _2\/_7171'5[71)
- - — — k
= (91V91 1791092 1792V/92 1,g2c’gl 1, _2\/_7171-5-[71)7
k
(91,92) - (Vod,e, V' d'. !, ~2v/~Tr 1)

- - - - - - k
=(1Vgyt dgy, g1cg5 b 02V g5t god g5t gac gt Y, —2vV=1m—1y).



Orientability in Yang-Mills theory 929

Define ®%% : U(n)2CH) x u(n) — U(n)2@ =D x u(n) by

Ve, V', X) = (V,ee(V)e 1, X),
2(V,d, e, V', d, ', X) = (V,d tex (Ve Yd, d 7Y, e, X),

where t(ay,b1,...,ap,bp) = (bg,ay,...,b1,a1). Then
oL (Z5 (U())s ) = X2EFEYOWU M) e w.

n’"n

6.2. Maps and vector bundles

In this subsection, ¢ = 1,2, and n, k are positive integers.

Given a rank n, degree k holomorphic vector bundle D over X, 7¢(D) is a
rank n, degree —k holomorphic vector bundle over X, and Hom(D, 7¢(D)) =
DV ® 7¢(D) is a degree —2k, rank n? holomorphic vector bundle over Y. The
map D +— 7¢(D) defines
(6.1) 71 Zyp(U(n)) e

n’"n

The map D — Hom(D, 7¢(D)) defines

(6.2) ¢: Zyn(U(n)e s = Zyy(U(n?) o .

nt AR

The map M — 17¢(MY) = 7*M defines

(6.3) 7 29 (U(n?)) 2 2

n 2 n

There is a map U(n) x U(n) — U(n?) given by (A, B) — A ® B. More
explicitly,

_2k.

Y m

0
—2 — Zyn(U(n?))_2

(A ® B)ij,pq = Aiijqa 1< i7j7p7 q <n.

Note that I, ® I, = I,,2. In particular, when n = 1, this map is the multi-
plication: U(1) x U(1) — U(1), (c1,c2) — cica.
We introduce some notation.

(i) Given A = (A;;) € U(n), let A = (A;;) be the complex conjugate of A.
Then A = (AY)~L

(ii) We define a complex linear involution 7" on C"® C" = C™ by
T(u®v)=v®u for u,v € C". Then T € O(n?) C U(n?). We have

Tij,pq = 5iq5pj7 T=T = T_la (TCT_l)ij,pq - Cji,qp'
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(iii) Define an involution

Jr: Zyn(Um™) o o = Z53(U(n®)) e e

by
(V’cxﬂ d, 4/ —1r— Lﬂ> F%(Lﬁ,T)-(VXC‘//C 4/ 171~ Lﬂ)
(Vd e, V'd,d 4F7rfb1n2> (Ip2,T) - (Vd e,V d, d 4/—1r= Inz)
More explicitly,
fT<Vc‘W(:4vﬁw Lﬁ>
Q%T LTV Tc%f7r%0

fr{V,d,c,V' d d 4/ 17— In2>

A

(Vdd’YVT TdT! Tc%/7rh0

(iv) Given V = (a1,b1,...,a0, b)) and V' = (a},b},...,a), b)) in U(1)%*
define

VV' = (ardy, biby, ... apal, beby) € U(1)%
(v) Given V = (a1,b1,...,a¢,by) and V' = (a},¥],...,ap,b;) in U(n)?
define
VeV =(ad,b@b,... aadb b)) e Un*)*

(vi) Given V = (a1,b1,...,azbs) € U(n)?, define

V= (C_Lla 617 S, Qy, BZ) € U(n)2é
It is straightforward to check that for A, B € U(n),

(6.4) A®B=A®B,

(6.5) T(A® B)T"' =B® A.
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If A, B are diagonal with respect to the standard basis {e; | i = 1,...,n} of
C", then A ® B is diagonal with respect to the basis {e; ® e; | 4,7 =1,...,n}
of C™".

With the above notation, we have the following explicit description of
the maps 7, ¢, 7 in (6.1), (6.2), (6.3), respectlvely

The involution 7 : Z%4 (U(n))x & . — ZS(U(n) &« is given by

PR 20y

k k
(V, c, V' ¢, —2\/—17rIn> — (V’,c’,V,c,2\/—17TIn>, i1 =1,
n n
k k
<V, d,c, V’,d’,c’,—Q\/—lwnIn> — <V’,d',c’,V, d, c,2\/—17rnln>,

1 =2.

The map ¢ : Z5L (U(n))s & — Zot (U(n2))_=

e EEET oy o T

_ 2k is given by
n

k
<V, c, V’,c’,—2\/—17rln>
— <V®V’ R, V' @V,e ®@c,4vV—1n— In2> i=1,
k
<V, d,c,V',d, c,—2v —lﬂ'In)
n

<V®V’d®d’c®c V'oV,d ®@d,¢ @ c, 4v/— 7TIn2> i=2.

Letting ¢ = fT o ¢, we see that ¢ and ¢p define the same map to the
quotient of Z (U(n2))_%7m7_% by U(n?)?. We have
(6.6) T

QST <VY, ¢, V,, C,a —2 \% _17Tk-[n>
n

—<V®V’,(c®c’)T,V®V’,(c®C)T4\/ 1m— In2> i=1,

(6.7)
— k
¢T<‘/7 d7 ) V,,d/,C,, -2 _17rnln>

_ (V@V’,d@d’, (o d)T,Ve V. dod, (c®d)T,4/~Ir" 1n2>
1= 2.



932 Nan-Kuo Ho, Chiu-Chu Melissa Liu & Daniel Ramras

The involution 7 : Zyy (U(n?))_ 2z — Zy3(U(n?))_2x 2 is given
by ! T

_ _ k
(Vc V',d, 4/ —1n— Inz> — <V’,E',V,E,4 —17Tn1n2>, 1=1,
k _ - _
<V,d,c,V’,d’,c’,4\/—17rInz> — <V’,d',c’,V ¢, v —1m— Inz>
n
i=2.

Let Zéf\/[(U(nz))Z% 5 be the fixed locus of 7. Then

R TRESS

or (2 UM, 2 ) € ZHUED) n

ey
3 n n’" n

In particular, when n = 1, we have ¢ = ¢ 'and d = d~!. The involution
71 Zot (U, = Zot (U(1))_y, is given by

(V,e, V', (=Dke, —2v/=1xk) — (V' (=1)*E, V, ¢, 2v/—1xk), i=1,
(Vod,e, V', (=1)*d, ¢, —2v/=1nk) — (V',(=1)kd, ¢, V,d, ¢, 2/ —17k),
i=2.

The map ¢ = ¢r : Zui(U(1)r — Zur(U(1))_ax is given by

(V,e, V', (=1D)ke, —2v/—1rk)
= (VV (=1D)FE, V'V, (=DF av/=1rk), i=1,
(Vod, e, V', (=1)*d, ¢, —2¢/=17k)
= (VV' (=1)*d2 e, V'V, (=1)*d?, @ e, 4v/—17k), i=2.

The involution 7 : th{/{(U(l))_gk — Zﬁ;’l{/[(U(l))_gk is given by

(V,e, V' e,4v/—1mk) — (V' ¢,V ¢, 4v/~17k), i=1,
(V,d,c,V' d,c 4/ —17k) — (V' d,é,V . d, e, 4/ —1mk), i=2.

Definition 6.1. When k >0, let U, — Zyy(U(n?)_2 2 be the

complex vector bundle whose fiber at M is H 1(fl,/\/l), where M is a
polystable holomorphic vector bundle of rank n?, degree —2nk.
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From the discussion in Section 4.1, the involution 7: % — ¥ induces a
conjugate linear map

72 (Unp)aa = HY(E M) = (Unp)iag = H(E, T M).

So the involution 7 on Zﬁ}&(U(nQ))_%7...7_% lifts to an involution 7 on U, 1,

and the fixed locus U;k is a real vector bundle over Zf(’fv[(U(n2))i27k ok

We have

OrUn o = Wk,
rankp W, j, = rankRUik =rankc U, = 2nk + n2(20 +i—2).

Definition 6.2. When k =0, let Uy — Z4 (U(n%))o,. 0 = 25 (U (n?))

be the virtual complex vector bundle whose fiber at M is H HE, M) —
H°(3, M), where M is a polystable holomorphic vector bundle of rank n?,
degree 0.

The involution 7 : ¥ — ¥ induces a conjugate linear map

7 (U = HY(S, M) — HO (S, M) —
UN)2 0y = HY(S, #(M)) — H(S, #(M)).

Zﬁﬁt(U(nQ)) lifts to an involution 7 on UV and the fixed locus (UY™)" is a
virtual real vector bundle over Zégt(U (n?))7 of rank n?(2¢ +i — 2).

6.3. Loops in the symmetric representation variety

Let

04i— l41—
U X T O m)s, e — XU )

geee

be as in Proposition 5.1. In particular, ¥ is the identity map when n = 1.
Given V = (ay,by,...,az,bg) € U(n)?, define

det(V) = (det(ay), det(by), . .., det(ay), det(by)) € U(1)%.
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Then Wo®": Zyy(U(n)x x — Xy " (U(1), =2 U1 s
given by

>y

(6.8)
Vo d (Ve V' ¢, X) = (det(V), det(x(V")), Tr(X)),
(6.9)
Vo "3 (V.d e, V', d' ¢, X) = (det(V), det (V")) det(d) ™, det(ec'), Tr(X)).

In the rest of this subsection, we write ® instead of &%,

Remark 6.1. The following observation will be useful. Let M be a CW
complex, and let & — M be a real vector bundle. Then FE is orientable if and
only if wi(E) = 0, or equivalently, vy N wi(E) = 0 for all v € H{(M;Z/2Z).
(Recall here that orientability is equivalent, over any base, to triviality of the

determinant line bundle, and line bundles over a CW complex X are classified
by wy € HY(X;Z/27) = [X,RP* = K(Z/27,1)].) Now suppose that (M)

is a free abelian group generated by loops 71, ...,7,.. Then the ~; represent
generators for Hy(X;Z/2Z), so E is orientable if and only if [y;] N w1 (E£) =0
for i =1,...,r, or equivalently, E‘v- is orientable for 1 = 1,...,r.

6.3.1. n=1,i=1 When¢=0, X%0(U(1))g,.x consists of a single point.
We may assume £ > 1. For i = 1,...,4, let a;, (;, o, and 3. be loops on %
which generate the fundamental group of Y= Z%K, i.e., the holonomies along
i, Bi, o and Bl are a;, b;, al; and b}, respectively. Let &; : ST — Z@;A(U(l))k
be the loop defined by

~

aizeme, aj=1,j#i bj=a;=0b

g =1,5=1,...,¢
c=c = v—lk, X = -2v/—-1nk.

BN

We define &, 3;, B; similarly. Then ® o d; : S' — X%\’/?(U(l))k is a loop
defined by

ai=eV1 a;i=1,j#i bj=1j=1,...,20, X =—-2/—1rk.
Thus the 44 loops
(6.10) Pod;, Pofy, Poal, Pofl, i=1,...,¢,

generate the fundamental group of X%\’/?(U(l))k = U(1)*.
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To show that Vj j, — X%\’/?(U (1))x is orientable, it suffices to show that
its restriction to each of the 4¢ loops in (6.10) is orientable, or equivalently:

Proposition 6.1. Let ¢ > 1. The restriction of Wy — Zf(’i/I(U(l))k to
each of the following 4¢ loops is orientable:

di’ ﬂiv di, /67{7 1= 1,...,(.

Proof. See Section 7.3. O
6.3.2. n=1, i =2 In this subsection, we assume that ¢ > 0. For i =
1,...,¢, the holonomies along «;, §;, ¢, and ] are a;, b;, a; and b respec-

tively. Let v be the curve from p, to p_, v/ be the curve from p_ to
p+, & be the loop starting at p,, and & be the loop starting at p_ i.e.,
the holonomies along ~,v/,4d,d" are ¢, ¢, d,d’, respectively. The fundamental
group of ¥ = E%ZH is generated by the 4£ + 2 loops

aiaﬁiaagvﬁvgv ’L':].,...,f, 5577/'

In particular, when ¢ = 0, the fundamental group of ¥} = S! x S1 is gener-
ated by d and vv'.
Let a; : St — Zf(’f/l(U(l))k be the loop defined by

a=eVTU a;=1ifj#i, bj=d=b=1j=1,..¢
c=cd =1, d=v=1"""a=v=1"" X=—2y/"Irk.

We define §;, al, B{ similarly.
Let 6 : 8T — Zu2 (U(1))x be the loop defined by

d =V *1k+1e_\/_7197 d, -V 7].k_1e\/_710) Cc = Cl — ]-;
a; = b; :ag- :b; =1,75=1,....¢, X =-2v/-1nk.

Let 7 : S' — Z52(U(1))1 be the loop defined by

c=eVT0 =1, d=T @ =y
aj:bj:a;:bgzl,jzl,...,é, X = -2y -1nk.

Then ®oa; : St — Xz,ﬁl’o(U(l))k is a loop defined by

a; = e\/jlea a; = 1 lf] ¢ {7’?2€+ ]-}a aze+1 = (V _1)_k_1’
bj=1,j=1,...20+1, X=—2y—1rk;
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Pod:S — X%\J/[LO(U(l))k is a loop defined by

aj:bjzl,jzl,...,%,

asepr = (V1) TF VT by =1, X = 2y 1nk;
and ®o7: St — X%ﬁl’O(U(l))k is a loop defined by

aj:bj:]_,jzl,...,Zf,

a4l = (\/—1)_k_1, bopyr1 = e\/jw, X = -2/ —1nk.
Thus the (4¢ + 2) loops

(6.11) Doy, Pofly, Podl, Pofl,i=1,....,0, ®od, Po7F

generate the fundamental group of Xoot"*(U(1))), = U(1)4%+2,

To show that V;; — Xf,ﬁl’o(U(l))k is orientable, it suffices to show
that its restriction to each of the (4¢ + 2) loops in (6.11) is orientable, or
equivalently:

Proposition 6.2. Let ¢ > 0. The restriction of Wi — th%/{(U(l))k to
each of the following (4¢ + 2) loops is orientable:
di) B’U di) 3! /L‘:]-u"'vga 87 5’

Proof. See Section 7.4. 0

6.3.3. n>1,i=1 Let £>1. Let o;, B;, ), (. be defined in Section
6.3.1, so that the holonomies along «;, 3;, o, 0. are a;, b;, a;, b, € U(n),
respectively.

Let ag = diag(eV=19,1,...,1) € U(n). By Goto’s commutator theorem,
——

n—1
the map G? — G defined by (a,b) — [a,b] is surjective if G is semisimple
(cf. [16, Theorem 9.2]). So there exist a,b € SU(n) such that

[a,b] = >™VIH/" ] SU(n).

Let &; : ST — Zf,’;/[(U(n))E r be the loop defined by

n’"n

a;=ag, bi=1I, a

7w/ —1k k
aj:bj:a;:b;-:In for j#i, c=c =e £ I, X:—2\/—17T£In.
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We define f3;, &, 3, similarly. From (6.8) it is clear that the fundamental
group of X%’/?(U (1))x = U(1)* is generated by the following 4¢ loops:

Vodod;, Wobdof;, Vobod, Wobofl, i=1,...,¢L

By Proposition 5.1, the fundamental group of X%%Z)(U(n))i,...,,ﬁ is generated
by the following 4¢ loops: T

(6.12) Dod;, Pofy, Podl, Pofl, i=1,...,10

To show that V,, , — X%\’?(U(n))gw’& is orientable, it suffices to show that
its restriction to each of the 4¢ loops in (6.12) is orientable, or equivalently:

Proposition 6.3. Let £ > 1 and let n > 1. The restriction of the vector
bundle Wn7k—>Z€31{A(U(TL))£7“_75 to each of the following 4¢ loops is
orientable: o

&, Bi, &, B, i=1,...,L
Proof. See Section 7.3. O

6.3.4. n>1,i=2 Let¢{>1. Let oy, B, o, 5., 0, 0, v, 7 be defined as
in Section 6.3.2, so that the holonomies along «;, 3;, o}, 3., 9, ¢', ~, ~ are
a;, b;, a,, b, d, d', ¢, ¢ € U(n), respectively. Define a,b, ap as in Section
6.3.3, so that [a,b] = 2V~ 17k/n]

Let &; : S1 — Zf(’l%/I(U(”))ﬁ,...,ﬁ be the loop defined by

/ /
a; =ag, bij=1, a;,=a, b;=0,

aj=b;j=a;=b;=1I,for j#i, c=c=1I,

T/ —1 v/ —1 k
d=v—1e"5 I, d = —/—1e~5 "1, X=-2v—lr~1I,.
n

We define 3i, &}, 3 similarly.
Let 6 : ST — Zf(’i/{(U(n))ﬁ,...,é be the loop defined by

/TTh */ZTh
ap=b =1, d,=a Vb =b d=+-le = a9, d=—v—1le n ay,

k
c=cd =1, aj:bj:a;-:bg-:ln, ji=2,...,0, X ==2-1n—1I,.
n
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Let 5 : 5" — Zy3(U(n)) . » be the loop defined by

/ / /
ap=by=1,, a;=a, bj=b c=ay, ¢ =I,,
av/—Tk mv/—Tk
d=+v—-le =z I,, d=—v—-1le == I,,

k
aj=bj=a;=b;=1I,j=2,...,{, X= —2\/—17%1”.

From (6.9), it is clear that the following 4¢+ 2 loops generate the
fundamental group of X%\ZFLO(U(U)I@ > [J(1)4+2,

Vodod;, Wobdof;, Vobod, Wodofl, i=1,...,¢,
Vodod, WodoF.

By Proposition 5.1, the fundamental group of Xf,ﬁl’o(U(n))%m”g is
generated by the following 4¢ + 2 loops: T

(6.13) dod;, Pofy, Poal, Pofl,i=1,....,0, ®od, Po7.

To show that V,, j, — Xiﬁl’O(U(n))g & is orientable, it suffices to show

that its restriction to each of the (4¢ —17—12) ‘oops in (6.13) is orientable, or
equivalently:

Proposition 6.4. Let { > 1 and let n > 1. The restriction of the vector
bundle W, , — Z%i/[(U(n))ﬁ,_..7ﬁ to each of the following (4¢ + 2) loops is
orientable: T

di? Bia di? Nz{a ’L':L...,K, Sa ﬁ/
Proof. See Section 7.4. O

7. Orientability along loops

Our approach is similar to that in the proof of [9, Proposition 8.1.4]. Let
v:St— Zé;\/[(U(n))ﬁ7_._7£ be any of the loops in Propositions 6.1-6.4. We
need to show that E = fy*Wnk is an orientable real vector bundle over S!.
The fiber of E over § € S! is given by Ey = H'(X, Mg)™, where My is
an S1-family of holomorphic vector bundles over 3. Our strategy is to use
degeneration and normalization of the Riemann surface ¥ to show that F =
Ec @ Eg, where Ec is a complex vector bundle over S!, and Ef is a (pos-
sibly zero, possibly virtual) real vector bundle which we can describe very

explicitly. The explicit description of Ex allows us to compute w;(Eg) = 0.
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7.1. Degeneration of the Riemann surface

We degenerate the smooth Riemann surface ¥ = Eg”ifl to a nodal Riemann
surface C' with three irreducible components C, Cy and C_, where C'y =
Eé, Co = E? and Cjp intersects Cy at a node px. More precisely, consider a
family of Riemann surfaces Xy, where t € I = [0, 1], such that

() S =5 = C.
(ii) ¥y is smooth for 0 < ¢ < 1.
(iii) There is a family of anti-holomorphic involutions 7 : ¥ — f]t, such
that
70(C+) = Cx, 70(p+) =p5, 710(Co) =Co, 71 =T1.

The ¢ = 1 and 2 cases are shown in figures 1 and 2, respectively. In figures 1
and 2, 7:(q+) = ¢, 7e(r+) = rx, 7(e+) = ex. Note that our loops start from
P+, so the loop «; (resp. o)) contains the path from py to g4 (resp. from
p— to g—) and its inverse; the loop 31 (resp. 3]) contains the path from p

at

Figure 1: Degeneration of E{ = 286 .
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Figure 2: Degeneration of ¥ =

20+1
ED .

to 74 (resp. from p_ to r_) and its inverse. In the degeneration ¢ — 0, the
loop e+ shrinks to the point pL, respectively.

In Sections 7.3 and 7.4 we will degenerate the family My together with
the base X to obtain an S L_family of vector bundles Moo — f]o = C. Then
we will reduce the orientability of £ — S! to the orientability of Fy — S!
whose fiber over 6 € St is H(C, Mg o).

7.2. Normalization

Let Cy, Cy, C_ and C be defined as in Section 7.1. The normalization CofC
is a disconnected smooth Riemann surface which can be identified with the
disjoint union of Cy, Cp and C_. There is a normalization map o : C =,
identifying a point on Cy to a point in Cy (which becomes the node py).
We will use the following lemma, to study the orientability of Ey — S*.

Lemma 7.1. Let M — C be a holomorphic vector bundle of rank r. Let
My — Cy, Mo — Cy and M_ — C_ be the restrictions of M to C1, Cy
and C_, respectively. Then we have a long exact sequence of complex vector
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spaces:

(7.1) 00— H(C,M) — H°(Cy, M) & H(Co, Mo) & H*(C_,M_)
—C, @®C, — H'(C,M)
— HY (Cy, My ) ® HY(Co, Mo) @ HY(C_, M_) = 0.

Proof. Let 14 : C4 — C, 19 : Cp — C and ¢— : C_ < C be inclusion maps,
and let v : C' — C be the normalization map. Then

v:0g = 14+0¢, @ 10+0¢, ® 1—+Oc_.

We have a short exact sequence of sheaves on C' (known as the normalization
sequence):

(7.2) 0— Oc = 14+0¢, ® 10+0c, ® 1—+Oc— — Op, & O,_ — 0.

(See, e.g., [15, p.81].) Twisting the normalization sequence (7.2) by M, we
obtain a short exact sequence of sheaves on C"

(7.3) 0= M= 1 My @ Mo @M= OF7 & O — 0.
The long exact sequence of cohomology groups associated to (7.3) is

(7.4)
0— H(C,M) = H*(C, 1 M) @ HY(C, 10.Mp) @ H*(C,1_ o M_)

—C, ®C, — H'(C,M)
— HYC, 14 M) @ HY(C, 10eMo) @ HY(C 1o M_) — 0.

For k£ = 0,1, we have
HYC 143 M) = H¥(Cy, My, H¥(C,10.Mo) = H¥(Co, My).

So (7.4) is equivalent to (7.1). O

7.3. The 1 = 1 case

Proof of Propositions 6.1 and 6.3. We will show that &;ank — St s
orientable, j =1,...,¢. The other loops f;, d},ﬂ; are similar.
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Note that &; W, x = (¢1 0 dj)*UZ,k- We have

—k
d] (0) - <‘/97 e\/jlﬂ—k/QnITu Vla erlwk/2nIn’ —2m _1nIn> )

where Vp, V' € U(n)?". Note that this is also true for the n = 1 case. The loop
proda;: St — Z%;A(U(nQ))fﬁw’fﬂ is given by (see (6.6) for the definition
of ¢r): 7

(7.5)

_ _ k
¢ o 07](0) = <V9 & V/,T, Vo ® V,, T, 47 —1nIn2> .

The loop ¢7 o &;(0) can be viewed as an S'-family of polystable holo-
morphic vector bundles My of rank n?, degree —2kn over the Riemann
surface 3 2 E%g. We now consider holomorphic vector bundles My ; of rank
n?, degree —2kn over ¥, with the following properties:

(i)
(i)

(iii)

(iv)

For 0 <t <1, the holonomies of Mg, over 3, are given by (7.5).
When ¢t = 0, we have

MG,O = Mi(0)7 MG,O = M0(9)7
Cy Co

where M4 (0) is a rank n?, degree —kn polystable holomorphic vector

bundle over Oy = 2§ and My(6) is a rank n?, degree 0 polystable
holomorphic vector bundle over Cy = P*.

The holonomies of M (6) starting from p4 along (o, 51, ..., a4, Be)
are given by

_ k
(Ve @V, 27n/—1n1n2> e X U@«

n’'

and the holonomies of M_ () starting from p_ along (3}, ay, .., B, &})
are given by

_ k
<’C(V9 ®V’),27I‘\/—1nfn2> S Xél(\)/[(U(Tﬁ))_ﬁ _ k.

By (ii), Mo(0) = OE‘,%”Q, since the trivial bundle is the only degree zero
polystable bundle on P!. Thus, M(#) is independent of 6 and will

be denoted by Mjy. The holonomy of Mg along the equator v is
TT = I,2 as expected.
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(v) For all (0,t) € St x I, we have 7'My = My, so there is a conjugate
linear involution 7y ; on H*(X¢, Mg ).

As (0,t) varies, the real vector spaces
{HY (X, Mg)® | (0,t) € S* x I}

form a real vector bundle E over the cylinder S* x I. Let 4; : ST — St x I
be the embedding 6 — (6,t). Then

i1E = (¢r 0 dj>*U+,k = a; Wy

n

The maps ip and ¢; homotopic, so ijF and ¢]E are isomorphic real vector

bundles over S*. Thus &;f .k is orientable if and only if igF is an orientable

real vector bundle over S!.
By Lemma 7.1, we have the following long exact sequence:
(7.6)
0 —HO(C, Mag) — HO(C, My (6)) & HO(Co, Mo) & HO(C—, M (9))

- C @ Cl — H'Y(C,Myy)
— H'(Cy, M (0)) & H'(Co, Mo) & H' (C_, M_(0)) — 0,

where p4 is the node at which Cy and C4 intersect. We have
deg My o= —2nk <0, degM4(0)=—nk <D0,

H(C, Mg,) = H(Cy, M.(0)) = H*(C—, M_(8)) = 0.

By (iv), Mo = OZ™, so HY(Cy, M) = C#"* and H'(Cp, Mo) = 0. The
map H%(Co, My) — (C;i is the evaluation map s+ s(p+). Therefore (7.6)
is reduced to

(7.7) 0—C"” L C8 o CE — H'(C,Mqyp)
— H'(Cy, My (0)) ® H'(C_, M_(0)) — 0,

where j(v) = (v,v). The involution 7y acts on the exact sequence (7.7) in
the following way:

HY(C, M) &5 HY(C, Myp), HY(Cyp, M (0)) &5 HY(C, M_(0)).
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The involution on C#"* and C;‘Z‘z ® (C;‘i"z is independent of 6:
790:CY 5 CY, v,
7p0:C @CY - CV ®CY,  (v,w) — (@, D).
Thus, we have
0= R™ — HY(C, Mg)™° — H'(Cy, M4 (6)) = 0.

We conclude that ijE = Ec © Er, where Ec — S I'is a complex vector
bundle whose fiber at § € S is H(Cy, M, (0)), and Eg — S! is a trivial
real vector bundle of rank n?. Therefore 15 is orientable. O

7.4. The 1 = 2 case

Proof of Propositions 6.2 and 6.4. We will study the orientability of the real
vector bundle

NWyp = (pr o N)* :,k

over S!, where \:S! — Zéi/[(U(n))ﬁ,_..7ﬁ is one of the 4¢ + 2 loops. Note
that A is of the form T

wy/—1 wy—1k k
AO) = <Ve, V_1e™5 " gg, co, V', —v/—Te "5 Go, I, —2m/—11n>,
n

where Vp, Vy € U(n)? and gy, cp are diagonal matrices in U(n). Note that
this is also true when n = 1.
The loop ¢ o X: ST — Zo (U(n?)) 2

..—2x is given by (see (6.7) for
the definition of ¢7): R

(7.8) ¢r o A(0) =<Ve @ V', —go @ gy, (¢p @ I,) T,
_ k
V9 ® V/7 —96 & g0, <69 0y I’I’Z) T7 4m \% _1nIn2) .

The loop ¢ o A(6) can be viewed as an S!-family of polystable holomor-
phic vector bundles My of rank n?, degree —2kn over the Riemann surface
= 2(2)“1. We now consider holomorphic vector bundles Mg ; of rank n?,
degree —2kn over ¥, with the following properties:

(i) For 0 <t <1, the holonomies of My, are given by (7.8).
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(ii) When ¢ = 0, we have

My o = M(0), Moy o= Mo(0),

where M (0) is a rank n?, degree —kn polystable holomorphic vector
bundle over Oy = 2§ and My(6) is a rank n?, degree 0 polystable
holomorphic vector bundle over Cy = St x St

(iii) The holonomies of M (0) starting from py along (a1, S, .., o, )
are given by

_ _k,
)

geoey

. k
(Vo V', 2mV/~1-1,2) € Xy (U (n%))

k
n

and the holonomies of M_(6) along (5, ), .., 5],c}) (starting from
p—) are given by

_ k
mw®wwmh%%ge%mWﬁnk .
(iv) The holonomies of My(6) along 4, v, &', 7/ are given by
(7.9) Mo(8) = (=50 ® Jo, (¢o © )T, —go ® go. (co © 1n)T) € Zg (U(n*))".

Therefore, the holomomies of Mg () along the loops §~1, 74" are given
by
002 0 X(6) = (—go ® gp, G ® co) € Xg (U(n?)).

(v) Forall (6,t) € S' x I, we have 77 My, = My, so there is a conjugate
linear involution 7y on H*(X, Mg4).

As (0,t) varies, the real vector spaces
{HY (X, Mg)™ | (0,t) € S* x I}

form a real vector bundle E over the cylinder S' x I. Let 4; : S* — S* x I
be the embedding 6 — (6,t). Then

-3k *TTT *
i1E = (g7 0 AUy ) = N Wi
The maps 7y and 41 are homotopic, so ijF and ] E are isomorphic real vector

bundles over S*. Thus N*W, 1, is orientable if and only if ijE is an orientable
vector bundle over ST.



946 Nan-Kuo Ho, Chiu-Chu Melissa Liu & Daniel Ramras

By Lemma 7.1, we have the following long exact sequence:
(7.10)
0 —=H"(C, Mgo) = H*(Cy, M+ (6)) & H®(Co, Mo (6)) & H*(C_, M_(6))

= Cr @ Cr — H'Y(C, Mgy)
— H'(Cy, M (8)) ® H'(Co, Mo(8)) ® H' (C_, M_(6)) — 0,

where p4 is the node at which Cy and C4 intersect. We have
deg My = —2nk <0, degM4i(f)=—nk<D0,

SO
H®(C, Moy) = H*(Cy, M(0)) = H*(C_, M_(6)) = 0.
Note that the holonomies of My(f) are diagonal, so it is the direct

sum of n? holomorphic line bundles of degree 0. Let L, denote the degree
0 holomorphic line bundle whose holonomies along the loops 6!, v/ are
given by

(a:b) € Xy (U(1)) = U(1)*.
Then
C, (a,b)=(1,1),

]io C 7£a Jil C 7£a -
( 0 7b) < 0 7b) {07 (a’7 b) # (1,1).
Case 1. X = di,ﬁi,di,ﬁl’-.

g0 =co=1In, (—90® gp,Co @ cy) = (—In2, Ip2),
Mo(0) = LE, H(Co, Mo(6)) = 0 = H'(Co, Mo (6)).

Case 2. A =29.
go=1ag, co=1In (—go® go,Cyp® co) = (—tg @ ap, I2),
Mo(0) = £_oraro © L5207 @ £

Case 8. \=7.

g9 =1In, co=uag, (—90® gp,Co®cyp) = (—In>,a9® ap),

Mo(6) = £5070, & L5070, @ £ 2)

H°(Cy, Mo(#)) = 0= H(Co, Mo(8)).

)
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In Cases 1 and 3, (7.10) is reduced to
(1)
0—Cp, ®Cp — H'(C,Mgg) = H' (Cy, M4 (0)) @ H(C_,M_(0)) — 0.

The involution 7y acts on the exact sequence (7.11) in the following way:

70 : Cll ®CY — C ®Cr,  (v,w)— (@,5)  (independent of 6),

HY(C, Mg) 2% HY(C, Myyo), H(Cp, M(0)) <% HY(C, M_(6)).
Thus, we have
0— C¥"* — HY(C, Mg0)™ — H'(C, M4 (6)) — 0.

Therefore i E = E¢, where Ec — S! is a complex vector bundle whose fiber
at 0 € ST is H'(Cy, M (#)) @ C®"*. Therefore i E is orientable.

In Case 2, (7.10) is reduced to

(7.12) 0 —H"(Co, Mo(0)) = C2- @ C — H'(C, Mg,)
—H'(Cy, My (0)) & H' (Co, Mo(0)) & H' (C—, M_(6)) = 0.

Taking fixed points of the involution 7y on (7.12) yields

(7.13) 0 — H°(Co, Mo(0))™° — Cpo — H'(C, Mg)™
— H'(C, M. (8)) @ H' (Co, Mo(8))° — 0,
where C;i and H'(Cy, M ()) are complex vector spaces.

Recall from (7.9) that the holonomies of My(6) along 4, v, &, v are
given by

(—ap ®ag, T, —ag ® ay, T).
Let & : S' — ngt(U(n2))% be the loop defined by

(7.14) 00(0) = (—ap ® ap, T, —ag ® @y, T),

then the loop d can be viewed as the S'-family of the bundles Mg(6). Let
UYT be defined as in Definition 6.2. Then the fiber of (the pull back bundle)
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B3 =% ((UY™)T) at 6 € S* is the virtual vector space
H' (Co, Mo ()™ — H(Co, Mo(0))™".

To show that S*Wnk — S is orientable, it remains to show that the virtual
real vector bundle EY™ — S is orientable. This is true by Lemma 7.2 below.
O

Lemma 7.2. E(‘)’ir is an orientable virtual real vector bundle over S?t.

Proof. We use the notation in the above proof.

Step 1. Recall that T is an involution on C" ® C" = C"* defined by T'(u ®
v) =v®u for u,v € C". The eigenspaces of T are E,; = Sym?(C") and
E_; = A*(C™). We have an orthogonal decomposition

C"eC'"=FE;1 & FE_.
Let Ig,, : E4+1 — E+1 be the identity map. Then
ILo=1Ig, ®Ig,, T=Ig, K ®(-Ig,).
Define x : [0,1] — U(n?) by
x(t) = Ir,, ® (=e¥""g ).

Then

X(0) =T, x(1)=1Ia,  x(t)=x()""=x(-).

Note that ag ® ag is of the form ay ® ay = A; ® Ay, , where A; and Ay
are linear automorphisms on E;; and E_1, respectively. Therefore ag ® ag
and x(t) commute for any § € S* and ¢t € [0, 1].

Step 2. For any t € [0,1] and § € S!, define

(7.15) ot(0) = (—ag @ ag, x(t), —ag @ ag, x(t)).

In particular, Sogﬁ) is given by (7.14). By Step 1, the right-hand side of
(7.15) lies in Zg;lt(U(n2))%. So for each ¢ € [0,1], (7.15) defines a loop 0 :

St— Zg;j(U(n%)%. Let EY" = 6% ((UYr)7) — St. The loops & and &; are
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homotopic, so E§™ is orientable if and only if EY' is orientable.
Step 3. Let D() be the rank n?, degree 0 polystable vector bundle over Cj
whose holonomies along d,,d’,7’ are given by

(7.16) (51(9) = (—ag ® ag, In2, —ag ® ayg, Inz).

The holonomies of D(6) along v,~" are I,,2, so we may degenerate the torus
Cy to a rational nodal curve C’ (see figure 3), and degenerate D(6) to D’(0).

More explicitly, we consider a family of Riemann surface R, where s €
I = [0,1], such that

(i) Ry = Co, Ry =C".
(ii) Rs is a smooth torus for 0 < s < 1.

(iii) There is a family of anti-holomorphic involution oy : Ry — R, such
that oo(p) = p, 01 = 10, 05(8) = 0" and o4(y) =~ if s # 0.

(iv) There is a normalization map v : P! — C’ such that v(q+) = p (see
figure 3). There is an anti-holomorphic involution & : P — P! such
that

vog=ogov, 0(q+)=qs.

In the degeneration s — 0, the loop 77’ shrinks to a point p.
We consider a family of polystable holomorphic vector bundles Dy , of
rank n?, degree 0 over R, with the following properties:

(i) For 0 < s <1, the holonomies of Dy along §,7,d",7 are given by
(7.16), so we have 0Dy s = Dy 5.

(i) When s =0, we have Dy = D'(#), and v*D’'(§) = (’)1?1"2. D'(0) is
obtained by identifying v € (Cf;i with (—ap ® ag)v € (Cgi.

5 s 9+

(o) — ey =

Cy c’ q_

Figure 3: Degeneration of Cy = S* x S*.
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(iii) For all (#,s) € S x I, there is a conjugate linear involution oy s on
H*(Rs,Dys) such that

HY(Ry,Dg 1) — H°(Ry, Dy )"

is the fiber of E}'" at § € S*.

iv e conjugate linear involution oy on 0, Dp,o) induces a conju-
iv) Th jugate li involuti , HY(Ry,Dg) ind j
2
gate linear involution oo on HO(P', OF" ) = C™ (constant sections)
that is given by v — o.

As (0, s) varies, the virtual real vector spaces
s = H' (R, Dys) 7" — H'(Rs, Dy )"

form a virtual real vector bundle EV* over the cylinder S* x I. Let iy : S* —
St x I be the embedding 6 + (6, s). Then

iSEVir — FViI" Z~>{E~vvir — ilir’
where the fiber of FVI* at § € St is
(7.17) (FY™)g = H'(C',D'(6))7° — H°(C',D'(9))7*.

The maps 79 and i; are homotopic, so E}’ir is orientable if and only if FVI*
is orientable.

Step 4. We have a long exact sequence

(7.18)

0 — HO(C', D/ () — HO(P', 08"y = ™ & ¢ = HY(C', D/(6)) = 0

where fp(v) = v + (ap ® ag)v and we used H' (P!, (9]?31"2) = 0. The involution
0p,0 acts on (7.18) by

HO(P!, 08"y = C™ — HO(PY,08™), v 1,
cr - cy , v (ag ® ag).

Therefore

HO (]Pyl7 O%lnz)ge'o _ an
(C;ﬁ)”“ — oV IR @ oV 10/2R2(n~1) gy R(n—1)*
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So we have an exact sequence
(719) 0 H(C', D'(0)) —R™ & By y — HI(C', D'(9))7 —0,

where
E]R,G — e\/jQR D e\/jle/ZRQ(n—l) D R(n—l)z'

To show that FV'' is orientable, it suffices to show that ERrg form an
orientable real vector bundle Eg — S'. Let Lo and L; denote the trivial
and nontrivial real line bundles over S', so that

wi(L;) =j € Z/2Z = H(S',2/2Z), j=0,1.
Then
By = L0 o 0002y (BR) = 0 € 2/22 = HY(SY, 2,)27).
Therefore Eg — S is orientable. O
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