
communications in

analysis and geometry

Volume 17, Number 4, 755–776, 2009

3-manifolds in Euclidean space from a contact
viewpoint

Ana Claudia Nabarro and Maŕıa del Carmen Romero-Fuster

We study the geometry of 3-manifolds generically embedded in R
n

by means of the analysis of the singularities of the distance-squared
and height functions on them. We describe the local structure of the
discriminant (associated to the distribution of asymptotic direc-
tions), the ridges and the flat ridges.

1. Introduction

The study of the contacts of a submanifold of Euclidean space with objects,
such as the hyperspheres and hyperplanes, that are invariant through the
action of the Euclidean group provides a useful information on its extrinsic
geometry, which leads to interesting global results [6, 28]. The main tool
in this study is the analysis of the singularities of the distance squared
and height functions on the submanifold. The generic singularities of the
family of distance squared functions were initially studied by Porteous [22],
who determined the relations between the singular set, the catastrophe map
and the bifurcation set of this family with, respectively, the normal bundle,
the normal exponential map and the focal set of the submanifold. He also
introduced the concepts of ribs and ridges in connection with special contacts
of the submanifold with its focal hyperspheres. These sets have a special
interest from the viewpoint of applications in Image Analysis [3, 7, 9, 10]. A
detailed study for surfaces in 3-space can be found in [23] and for surfaces
in 4-space in [18].

On the other hand, the generic singularities of height functions on hyper-
surfaces were analyzed by Bruce [4] and Romero Fuster [24]. The corre-
sponding study for surfaces in R

4 and R
5 can be, respectively, found in [14]

and [17]. The concept of flat ridge of submanifolds with codimension 2 was
introduced in [27] as the natural analogue of the ridges for the contacts
with hyperplanes. In the case of a hypersurface, they can be seen as the
intersection of the ridge and the parabolic sets. Other properties concerning
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submanifolds in n-space and their contacts with hyperplanes, in particular
on the behavior of the binormal and asymptotic directions, can be found
in [15,16,26].

The generic behavior of height functions on 3-manifolds in R
4 was treated

with detail in [20], where a duality relation with the singularities of projec-
tions of M onto hyperplanes was also described. An initial approach to the
study of 3-manifolds in R

5 can be found in [13]. Apart from these, there
is not much information on the generic extrinsic geometry of 3-manifolds
which, being richer and more complicated than that of surfaces, deserves
a special attention. In particular, the ridges and flat ridges on 3-manifolds
form surfaces with possible singularities. In this paper, we shall concentrate
our attention in the study of 3-manifolds immersed in R

n. The main tool for
the study of a 3-manifold M embedded in codimension higher than one relies
on the consideration of the normal Gauss map Γ on the canal hypersurface
CM and the analysis of the generic singularities of the restrictions of the
natural projection η : CM → M to different subsets of the singular set of Γ.
Sections 2 and 3 contain some preliminaries on singularities and contacts.
Section 4 is devoted to the canal hypersurface, its Gauss map and their
connections with the height functions singularities. In Section 5 we describe
the generic local behavior of the discriminant surface that separates regions
with different number of asymptotic directions. The generic structure of the
flat ridges is studied in Section 6. Finally, in Section 7, we use the fact that
stereographic projection provides a link between the contacts of submani-
folds of codimension k with hyperspheres in R

n and those of submanifolds of
codimension k + 1 with hyperplanes in R

(n+1) (see [25,29]) in order to obtain
conclusions on the generic behavior of the ridges. We observe that the meth-
ods developed here for 3-manifolds can be naturally generalized to higher
dimensions.

2. Contacts and singularities

Let Xi, Yi (i = 1, 2) be submanifolds of R
n with dimX1 = dimX2 and

dim Y1 = dimY2. We say that the contact of X1 and Y1 at y1 is of the
same type as the contact of X2 and Y2 at y2 if there is a diffeomorphism
germ Φ : (Rn, y1) → (Rn, y2) such that Φ(X1) = X2 and Φ(Y1) = Y2. In this
case we write K(X1, Y1; y1) = K(X2, Y2; y2). Since this is a local concept,
it is clear that R

n can be replaced by any manifold in this definition.
Montaldi [19] gives the following characterization of the notion in terms
of Mather’s contact equivalence (K-equivalence):
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Theorem 2.1. Let Mi, Ni (i = 1, 2) be submanifolds of R
n with dim M1 =

dim M2 and dim N1 = dimN2. Let fi : (Mi, xi) → (Rn, yi) be immersion
germs and gi : (Rn, yi) → (Rr, 0) be submersion germs with (Ni, yi) =
(g−1

i (0), yi). Then K(M1, N1; y1) = K(M2, N2; y2) if and only if g1 ◦ f1 and
g2 ◦ f2 are K-equivalent.

Therefore, given two submanifolds M and N of R
n, with a common

point p, an immersion germ f : (M, x) → (Rn, p) and a submersion germ
g : (Rn, p) → (Rr, 0), such that N = g−1(0), the contact of M ≡ f(M) and
N at p is completely determined by the K-singularity type of the germ
(g ◦ f, x) (see [8] for details on K-equivalence).

When N is a hypersurface, we have r = 1, and the function germ (g ◦
f, x) has a degenerate singularity if and only if its Hessian, H(g ◦ f)(x), is
a degenerate quadratic form. In such a case, the tangent directions lying in
the kernel of this quadratic form are called contact directions for M and
N at p.

Since our study is of local character, we shall consider in what follows
that the submanifold M is given by the image on an embedding
f : R

m → R
n.

We analyze here the following two families of functions:

(a) Height functions on M , given by

λ(f) : M × Sn−1 −→ R

(x, v) �−→ 〈f(x), v〉 = fv(x).

The singularities of these functions describe the contacts of M with the
hyperplanes of R

n. We observe that a height function fv has a singularity
at x ∈ M if and only if v is normal to M at x, then the singularity type of
fv at x determines the contact of M with the hyperplane orthogonal to v
passing through x.

(b) Distance squared functions over M , defined as

d : M × R
n −→ R

(x, a) �−→ da(x) = ‖f(x) − a‖2.

This family measures the contacts of M with the hyperspheres of R
n. In

this case we have that x ∈ M is a singular point of a function da if and
only if the vector a − f(x) lies in the normal subspace NxM of M at x. The
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singularity type of da at x determines the contact of M with the hypersphere
with center a passing through x.

It follows from the works of Looijenga [11], or Montaldi [19], that there
is a residual subset E of embeddings of R

m into R
n with the Whitney C∞-

topology such that for any f belonging to it the corresponding families λ
and d are generic families of functions on R

m. For a detailed description of
the term “generic family of functions” we refer to [11] or [30]. This means,
in particular, that these families are topologically stable, and for n ≤ 5,
smoothly stable too. The singularities of the different functions in such a
generic family may have codimension at most n − 1 in the case of height
functions and n in the case of distance squared functions. These are well
known for small enough values of n. For instance, for n ≤ 6, they are all
simple singularities and correspond to the extended list of catastrophe germs
determined by Arnold et al. [1]. A more complete classification, including
all possible singularities up to codimension 14 can be found in [2].

It can be seen that the inverse ϕ : R
n → Sn of the stereographic projec-

tion determines a K-equivalence between the family of the distance squared
functions on an m-manifold M immersed in R

n and the family of height
functions over the m-manifold ϕ(M) ⊂ Sn ⊂ R

n+1 (see [25] or [29]). There-
fore it takes the singularities of a given type of distance squared functions
of a k-codimension submanifold M of R

n into the singularities of the same
type for height functions on the (k + 1)-codimension submanifold ϕ(M) of
R

n+1. It thus follows that the properties associated to the round geome-
try of submanifolds of R

n can be obtained, as a particular case, from those
associated to the flat geometry of submanifolds of R

n+1. We use here this
fact and analyze first the behavior of height functions on 3-manifolds and
then obtain, as a consequence, the corresponding properties related to the
behavior of the distance squared functions on them.

3. Height functions, binormals and asymptotic directions

Consider a 3-manifold M given by the image of an embedding f : M →
R

3+k that lies in the residual subset E of Emb(M, R3+k). As mentioned
above, for f ∈ E , the height functions family of f is a generic family of
functions, which in particular implies that any height function fv on M
has only singularities of codimension less or equal to k + 2. Moreover, those
of corank one (corank(fv) = corank(Hess(fv))) belong to the series {Aj}j≥1,
known as the cuspoids family. We recall that the A-codimension of a singular
germ of type Aj is j − 1 (see [1]).
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Denote by NxM the normal space to M at x. A direction v ∈ NxM is
a degenerate direction if x is singularity of fv more degenerate than Morse,
that is, a singularity of A-codimension at least 1. In such a case, the kernel
of the Hessian quadratic form, Hess(fv)(x), associated to fv at x contains
non-zero vectors. Any direction u ∈ Ker(Hess(fv)(x)) will be called contact
direction associated to v.

A unit vector v ∈ NxM is said to be a binormal direction for M if and
only if fv has a singularity of type Aj , j ≥ k (so the A-codimension of fv is
≥ k − 1) at x. Binormal directions are a particular case of degenerate normal
directions. We call them binormal by analogy in the case of curves in R

3.
The tangent hyperplane orthogonal to a binormal direction is said to be an
osculating hyperplane of M at the considered point. If v ∈ NxM is a binor-
mal vector, the tangent direction determined by the kernel of the Hessian
quadratic form of fv at x is said to be the asymptotic direction associated to
the binormal v at x. The existence of binormal and asymptotic directions has
been studied in [14] for the case of generic surfaces in 4-space, and in [15] for
the generic submanifolds of codimension 2 in Euclidean space. We observe
that in the last case the binormal and the degenerate directions coincide.
An interesting feature of these is the relation between the convexity and
the existence of binormal directions at a given point. Moreover, in a recent
paper [21], Nuño Ballesteros and the second author show that a necessary
and sufficient condition for the vanishing of the normal curvature at a point
p of an m-submanifold of codimension 2 of Euclidean space is the existence
of exactly m mutually orthogonal asymptotic directions at x.

The asymptotic directions were also characterized in [16] in terms of
normal sections of M : Let v be a degenerate direction at a point x of M such
that corank(Hess(fv)(x)) = 1, and let θ be a tangent vector in the kernel of
the quadratic form Hess(fv)(x). We denote by γθ the normal section of the
surface M in the tangent direction θ. That is, γθ is a curve in the (k + 1)-
space Vθ = 〈θ〉 ⊕ NxM , obtained as the intersection of this (k + 1)-space
with M .

Proposition 3.1. Let x ∈ M and v ∈ NqM a degenerate direction for M at
x. Let θ be a tangent direction in Ker(Hess(fv)(x)). Then θ is an asymptotic
direction corresponding to the binormal v if and only if v is the binormal
direction at x for the curve γθ in the (k + 1)-space Vθ.

The binormal and asymptotic directions on generic surfaces in R
5 were

introduced in [17], where it was shown that there exist at least one and at
most five at each point of such surfaces. The number of these directions is
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determined by the number of real roots of certain polynomials and jumps
by two when crossing the discriminant set, which consists of closed regular
curves made of points at which the considered polynomials admit multiple
roots. The generic behavior of the asymptotic lines near the critical points
and the discriminant is described in [26].

4. Flat geometry and canal hypersurfaces

Let M be an m-manifold immersed into R
m+k and let Λ : M × Sm+k−1 →

Sm+k−1 × R be the unfolding associated to the family λ. The singular set
of the unfolding

Λ(f) : M × Sm+k−1 −→ R × Sm+k−1

(x, v) �−→ (fv(x), v),

associated to the family λ(f) is given by

ΣΛ = {(x, v) ∈ M × Sm+k−1 : 〈v, df(x)〉 = 0}.

This can be identified with an ε-tube around M ,

CεM = {x + εv ∈ R
m+k : v ⊥ TxM},

which for a small enough ε ∈ R+ can be seen to be a hypersurface immersed
in R

m+k. This is also known as the canal hypersurface of M in R
m+k. We

denote it by CM and observe that the restriction of the natural projection
π : M × Sm+k−1 → Sm+k−1 to the submanifold ΣΛ ≡ CM can be viewed as
the normal Gauss map Γ : CM → Sm+k−1 on the hypersurface CM . This
map is also known as the generalized normal Gauss map of M . When M is
a hypersurface (k = 1), we have that M and CM are locally diffeomorphic
and hence Γ is locally equivalent to the normal Gauss map on M .

If we denote by hv : CM → R the height function in the direction v over
CM and by I the (k − 1) × (k − 1)-identity matrix, it is not difficult to
check that, in appropriate coordinate systems

Hess(hv)(x, v) =

[
Hess(fv)(x) X

0 I

]
= DΓ(x, v).

The determinant of DΓ(x, v) is the Gauss–Kronnecker curvature func-
tion K of CM at the point (x, v). The singular set ΣΓ = K−1(0) is the
parabolic set of CM . It follows from the above expression that (x, v) ∈ ΣΓ if
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and only if (x, v) is a degenerate singularity of hv, which is in turn equivalent
to saying that x is a degenerate singularity of fv.

We now recall the definition of the Thom–Boardman symbols for a map
H : X → Y [8]: We say that H has a singularity of type Sr at p ∈ X if DH(p)
drops rank by r; i.e., rank DH(x) = min (dim X, dim Y ) −r. We denote by
Sr(H) the singularities of type Sr in X. It is well known that for a generic
map H, the subsets Sr(H) are submanifolds of codimension r2 + er of X,
where e = |dim X − dim Y |. In such a case, we can consider the restriction
H|Sr(H) : Sr(H) → Y . Then we denote by Sr,s(H) the set of points where
this restriction drops rank s. Again, under appropriate genericity conditions
on the jet extensions of H, these subsets are submanifolds of Sr(H) and
then it is possible to define inductively a nested family of submanifolds
Si1,··· ,iq

(H) of X. The points of Si1,··· ,iq
(H) are said to be singularities of H

with Thom–Boardman symbol Σi1,··· ,iq .
As mentioned in Section 2, for any immersion f lying in the residual

set E of immersions of the m-manifold M in R
m+k, the germ of λ(f) at

any point (x, v) is a versal unfolding of the germ of fv at x. It follows from
standard results on stable families [12] that the subsets

Sr(Γ) = {(x, v) ∈ CM : (x, v) is a singularity of corank r of Γ}, r ≥ 1

are submanifolds of CM , and satisfy that codim S1(Γ) = 1 and ∪i≥2Si(Γ) is
a stratified subset of CM with codimension ≥ 3. We observe that, considered
as a smooth map over equidimensional manifolds, Γ is stable over the points
of S1, but it is not stable over the points lying in ∪i≥2Si(Γ). It follows from
the above considerations that

(x, v) ∈ SrΓ ⇔ (x, v) is a singularity of corank r of hv, r = 1, 2, . . .

⇔ x is a singularity of corank r of fv, r = 1, 2, . . . .

In order to simplify the notation, we shall denote S1,1 = S12 , S1,1,1 = S13

and so on. We have,

S1k
(Γ) = {(x, v) ∈ CM : (x, v) is a singularity of corank 1 of Γ|S1k−1 (Γ)}

= {(x, v) ∈ CM : (x, v) is a singularity of type Ak+1 of fv}.

Observe that given (x, v) ∈ S1k
(Γ), there is a unique principal asymp-

totic direction ±u(x, v) ∈ T(x,v)CM , and thus we can write,

S1k
(Γ) = {(x, v) ∈ S1k−1(Γ) : u(x, v) ∈ T(x,v)S1k−1(Γ)}.
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Then, since the normal direction to S1(Γ) in CM is given by grad K(x, v),
we have that (x, v) ∈ S12(Γ) if and only if K2(x, v) = 〈u(x, v), grad K(x, v)〉 =
0. Analogously, given (x, v) ∈ S12(Γ), we have that (x, v) ∈ S13(Γ) if and
only if K3(x, v) = 〈u(x, v), grad K2〉 = 0, and so on. We inductively define
in this way a set of functions Kj over S1(Γ) that depend on the deriva-
tives of the immersion f at each point and satisfy that (x, v) ∈ S1r

(Γ) if and
only if Kj(x, v) = 0,∀ j = 1, . . . , r, where K1(x, v) = K(x, v). Observe that
these functions are independent, for as j increases their coefficients involve
higher order derivatives of the (generic) embedding f . We can thus view the
r-codimensional submanifold S1r

(Γ) as the set of zeroes of the r implicit
equations Kj(x, v) = 0, j = 1, . . . , r on CM . In particular, we have that
S1k−1(Γ) is an m-dimensional submanifold of CM .

Consider the natural projection η : CM → M and denote by ηj its
restriction to S1j

(Γ). For j = k − 1, we get the map ηk−1 : S1k−1(Γ) → M
between equidimensional manifolds. We can characterize the asymptotic
directions of M in terms of the principal asymptotic directions of the hyper-
surface CM as follows.

Proposition 4.1. Given (x, v) ∈ S1k−1(Γ), the linear map

D(x,v)ηk−1 : T(x,v)S1(k−1)(Γ) → TxM

takes the unique principal asymptotic direction of CM at (x, v) to the asymp-
totic direction of M associated to v at x.

Proof. This follows easily from the equality

DΓ(x, v) =

[
Hess(fv)(x) X

0 I

]
. �

It follows that given a point x ∈ M , the asymptotic directions at x come
from the images of the principal asymptotic directions at all the points of
the fibre η−1

k−1(x) in CM . Then the total number of asymptotic (or binormal)
directions at x is given by the cardinality of η−1

k−1(x). This may vary from
one point to another in M . In fact, we define the discriminant set of M as
Δ = ηk−1(Σηk−1). Generically, this subset has codimension one in M and
separates regions with different number of binormal/asymptotic directions.
It has been shown in [15] that the maximum number of binormal directions
at a point of an m-manifold immersed in R

m+2 is m. It can be shown that for
submanifolds immersed in higher codimensions, this number may increase,
but it is always finite, so the map ηk−1 : S1(k−1)(Γ) → M is finite-to-one.
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In the following sections we study the generic behavior of the restrictions
of the map η to the submanifolds S1r

, r ≥ k − 1. For this purpose, we shall
consider several algebraic subsets given by implicit equations over S2+k ×
Jq(M, R3+k). In order to apply the Thom’s Transversality Theorem [8] in
each case, we use the fact that these equations determine semialgebraic
subsets in convenient jet spaces Jq(M, R3+k). This can be seen as follows:
Consider the algebraic subset

W = {(v, jqf(x)) ∈ S2+k × Jq(M, R3+k) : (v, x) ∈ S1(k−1)(Γ)},

and let π : W → Jq(M, R3+k) be the natural projection. Then, given any
algebraic subset S of codimension r (defined by r independent implicit equa-
tions) in W, its image π(S) has codimension ≥ r in Jq(M, R3+k). Moreover,
provided π is finite-to-one, we have that codim(S) = codim π(S)). We now
observe that since ηk−1 is finite-to-one so must be π.

5. Generic structure of discriminant sets

We have characterized the 3-manifold S1k−1(Γ) by k − 1 implicit equations
Ki(x, v) = 0 on CM , with K1(x, v) = detDΓ(x, v) and

Ki(x, v) = 〈u(x, v), grad Ki−1(x, v)〉, 2 ≤ i ≤ k − 1,

where u(x, v) is the asymptotic principal direction of CM at (x, v). In order
to describe the generic local structure of Δ in M we need to analyze the
generic singularities of the map ηk−1 : S1k−1(Γ) → M . This is a map between
3-manifolds. We recall that the stable singularities between 3-manifolds may
be one of the following types (see [8, p. 191]): S1 (fold), S12 (cusp) and S13

(swallowtail).

Theorem 5.1. For a generic embedding f : M → R
3+k, k ≥ 2, the map

ηk−1 : S1k−1(Γ) → M is locally stable. That is, it may only have fold singu-
larities on a surface, cusp singularities on a curve and isolated swallowtail
points. Moreover, for k = 2, ηk−1 does not have swallowtail points.

Proof. (i) Given η : CM → M , we observe that Ker Dη(x, v) is the tangent
space to the fiber Fx = η−1(x) of CM over x and has dimension k − 1.
Clearly Ker Dηk−1(x, v) = KerDη(x, v) ∩ T(x,v)S1k−1(Γ) . Then we have:

(1) We have that (x, v) ∈ S1(ηk−1) if and only if KerDη(x, v) ∩
T(x,v)S1k−1(Γ) has dimension exactly 1. But this means that
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dim(T(x,v)S1k−1(Γ) + T(x,v)Fx) = k + 1. Or equivalently, in terms of
normal spaces (in CM), this implies

dim(N(x,v)S1k−1(Γ) + N(x,v)Fx) = k + 1.

We have seen that S1k−1(Γ) is given by Ki(x, v) = 0, 1 ≤ i ≤ k − 1,
so N(x,v)S1k−1(Γ) is generated by the vectors gradKi. On the other
hand, N(x,v)Fx = TxM is generated by fx1 , fx2 and fx3 . If we consider
the matrix L = [fx1 , fx2 , fx3 , grad K1, . . . , grad Kk−1], whose entries
correspond to vectors in the (2 + k)-dimensional space T(x,v)CM , the
above condition is equivalent to asking that det L = 0. This determines
an equation in terms of the derivatives of the embedding of order lesser
or equal to (k + 1). In fact, this condition defines an algebraic subset,
S1, of codimension 1 in the jet space S2+k × Jk+1(M, R3+k).

(2) We then have that (x, v) ∈ S12(ηk−1) if and only if KerDη(x, v) ∩
T(x,v)S1(ηk−1) has dimension exactly 1. As above, this is equivalent to,

dim(N(x,v)S1(ηk−1) + TxM) = k + 1.

Now we observe that S1(ηk−1) is given by the implicit equations,

F1(x, v) = 0 and Ki(x, v) = 0,

1 ≤ i ≤ k − 1, where we denote F1(x, v) = det L(x, v), and hence the
linear subspace N(x,v)S1(ηk−1) is generated by the vectors
{grad Ki(x, v)}k−1

i=1 and grad F1(x, v). Then the above condition is
equivalent to asking that the (k + 3) × (k + 2)-matrix

L1 = [gradK1(x, v), . . . , grad Kk−1(x, v), grad F1(x, v), fx1 , fx2 , fx3 ]

has rank k + 1. Since we are assuming already that (x, v) ∈ S1(ηk−1),
we have that this only adds one equation to the above one. Therefore,
this determines an algebraic subset, S2, of codimension 2 in the jet
space S2+k × Jk+2(M, R3+k).

(3) We get analogously that (x, v) ∈ S13(ηk−1) if and only if

dim(N(x,v)S12(ηk−1) + TxM) = k + 1.

It can be seen, in a similar way than in (1) and (2) above, that this
condition determines an algebraic subset, S3, of codimension 3 in the
jet space S2+k × Jk+3(M, R3+k).
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(4) Moreover, S14(ηk−1) = ∅ because it is impossible Ker Dη(x, v) ∩
T(x,v)S13(ηk−1) to have dimension 1 since S13(ηk−1) has dimension
zero.

(5) Finally, we observe that (x, v) ∈ S2(ηk−1) if and only if KerDη(x, v) ∩
T(x,v)S1k−1(Γ) has dimension exactly 2. In the case k = 2 we have that
dim Ker Dη(x, v) = 1. Hence we must have that S2(ηk−1) = ∅. Suppose
now that k ≥ 3. By using analogous arguments as above, we have that
(x, v) ∈ S2(ηk−1) if and only if dim (T(x,v)S1k−1(Γ) + T(x,v)Fx) = (k −
1) + 3 − 2 = k. But this is equivalent to asking that dim (N(x,v)Fx +
N(x,v)S1k−1(Γ)) = k. Which means that the rank of the subset of (k +
2) vectors {gradK1(x, v), . . . , gradKk−1(x, v), fx1 , fx2 , fx3} in T(x,v)
CM must be k. This determines four independent conditions on the
derivatives of order less or equal to (k + 1) of the embedding and
thus defines an algebraic subset, S4, of codimension 4 in the jet space
S2+k × Jk+1(M, R3+k).

It is now a straightforward consequence of the Thom’s Transversality
Theorem [8] that there is a residual subset E1 ⊂ E of Emb(M, R3+k) for
which the map ηk−1 : S1k−1(Γ) → M only has fold singularities over a sur-
face in M , cusp singularities along a curve and perhaps isolated swallowtail
points.

We now prove that for k = 2 the subset S13(η1) is empty. Suppose that
there exists a point (p, v̄) ∈ S13(η1). By an appropriate change of coordi-
nates we can put p = 0, fxi

(0) = 0 and v̄ = (0, 1). We now look for all (0, v)
such that (0, v) ∈ S13(η1). It follows from our construction that if (0, v) ∈
S1(Γ), then (0, v) satisfies the implicit equation K1(x, v) = 0. Moreover, we
can also take v ∈ NpM , v = (0, 0, 0, v4, v5) with v5 = 1. Then K̄1(x, v4) =
K1(x, v4, 1) = det (DΓ(x, v4, 1)) is a non-homogeneous polynomial of degree
3 in the variable v4, with null constant term because by hypothesis (0, v̄) is
a solution of K1(0, v) = 0.

We analyze now the remaining implicit equations, Fi(0, v4) = 0, 1 ≤ i ≤
3, that define S13(η1). Consider the 4 × 5-matrix L = [fx1 , fx2 , fx3 , gradK1],

evaluated at (0, v4, 1). Since we are assuming that v5 = 1, then
∂K1

∂v5
= 0

and the last column of L is null. Let L̄ be the matrix obtained by elim-
ination of the last column in L. This has corank 1 provided F1(0, v4) =

det(L̄) = 0. Note that in (0, v4, 1), we have det(L̄) = det(I3)
∂K1(0, v)

∂v4
, and

hence F1(0, v4) =
∂K1(0, v)

∂v4
.



766 Ana Claudia Nabarro and Maŕıa del Carmen Romero-Fuster

Consider the matrices L1 = [L, gradF1], L2 = [L1, gradF2], from which
we respectively define L̄1, L̄2 by elimination of the (null) last column. Then
we have that L̄2 has corank 3 provided F1(0, v4) = F2(0, v4) = F3(0, v4) = 0,

where F2(0, v4) =
∂F1(0, v4)

∂v4
and F3(0, v4) =

∂F2(0, v4)
∂v4

.

We can locally write, in a neighborhood of (0, v̄),

K1(x, v4, 1) = K̄1(x, v4) =
∂K̄1(0, 0)

∂v4
v4 +

∂2K̄1(0, 0)
∂v2

4
v2
4 +

∂3K̄1(0, 0)
∂v3

4
v3
4,

which has vanishing constant term, since (0, v̄) is solution. Besides, the con-
dition (0, v̄) ∈ S13(η1) means that

F1(0, v4) = F2(0, v4) = F3(0, v4) = 0

and by the previous calculations these are equivalent to

∂j−1K̄1(0, 0)

∂vj−1
4

= 0, 2 ≤ j ≤ 4.

We can then conclude that for (0, v̄) ∈ S13(η1) the polynomial K̄1(0, v4) is
a null polynomial. But this implies that there must be infinite solutions
v ∈ NpM for p = 0, which contradicts the fact that the number of binormals
is always finite on S1(Γ). �

We show in Figure 1 all the possibilities for the generic local structure
of the discriminant.

Remark 5.1. We observe that the proof that S13(η1) is empty can be
extended in a straightforward manner to prove that S1m

(η1) = ∅ for any
m-manifold with codimension 2, that is m ≥ 2 and k = 2. This means that
the last possible stable singularity (see page 191 of [8]) for the projection
η1 between equidimensional manifolds, does not occur. For 3-manifolds, this
fact can also be concluded from Theorem 1 in [13].

Figure 1: Generic local structure of Δ.
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Figure 2: Generic structure of Δ for a 3-manifold in R
5.

By using the multijet version of Thom’s Transversality Theorem [8] we
can also prove that the discriminant Δ is a surface with normal crossings.
The self-intersections of Δ consist of curves of double points, isolated fold-
cusp points and isolated triple points. Moreover, we have,

Corollary 5.1. Given a 3-manifold generically embedded in R
5, the dis-

criminant set Δ has no triple points. Therefore it is a closed surface with
possible singularities along cuspidal edges and closed curves of double points
with isolated singularities at their intersections with the cuspidal edges.

Proof. The discriminant set separates M into open regions with different
number of asymptotic directions. This number jumps by two from one side of
Δ to the other. Then if Δ had a triple point, by looking to its local structure
in a neighborhood of such a point we would have that M should admit at
least five asymptotic directions over some region. But this contradicts the
fact that the maximum number of asymptotic directions on 3-manifolds
immersed in codimension 2 is 3 [15]. �

Figure 2 illustrates the generic structure of the discriminant from the
multilocal viewpoint.

6. Flat ridges

We define the flat ribs of order i in a 3-manifold M embedded in R
3+k, k ≥ 1

as the subset S1i
(Γ), i ≥ 2, in CM . The flat ridge of order i in a 3-manifold

M embedded in R
3+k, k ≥ 1 is the set of points that are singularities of

type Ai, i ≥ k + 1, for some height function. In other words, the projection
through η of the flat rib of order i, i ≥ k + 1. The highest-order flat ridge
points are defined as the singularities of type Ai, i ≥ 3 + k, for some height
function. These are, generically, isolated points.

We have the following characterization of flat ridges in terms of the
normals sections of M .
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Given a curve γ : R → R
k+1, consider its Frenet-Serret frame

{T, N1, . . . , Nk} and the corresponding curvature functions {κ1, . . . , κk}.
We say that a point x = γ(t0) is a flattening of γ, provided κk(t0) = 0.
A flattening x = γ(t0) is said to be degenerate of order r, r > 0, provided
κk(t0) = κ′

k(t0) = · · · = κ
(r)
k (t0) = 0

Proposition 6.1. Let x ∈ M and v ∈ NxM a binormal direction. Let θ
be its corresponding asymptotic direction and γθ the corresponding normal
section of M . Then

(a) x = γθ(0) is a flat ridge of M if and only if x is a flattening of γθ

(as a curve in the (k + 1)-space Vθ).
(b) x = γθ(0) is a flat ridge of order k + r of M if and only if x is a

degenerate flattening of order r of γθ.

Proof. Since θ is the contact direction associated to fv at x, we have that x
is a singularity of type Aj of fv|γθ

if and only if it is a singularity of type
Aj of the height function fv over M . Then the fact that the point x = γθ(0)
is a flattening of γθ if and only if it is a singularity of type Aj , j ≥ k + 1 for
fv|γθ

leads to the required results. �

We can view the flat ridges of order k + r of M as the images by η of
the submanifolds S1k+r−1(Γ) of CM into M . In order to study their local
structure we shall analyze the generic singularities of the maps ηk+r−1 :
S1k+r−1(Γ) → M .

The (3 − r)-manifold S1k+r−1(Γ) is characterized by k + r − 1 implicit
equations on CM :

K1(x, v) = detD(x,v)Γ = 0,

Ki(x, v) = 〈u(x, v), gradKi−1(x, v)〉 = 0, 2 ≤ i ≤ k + r − 1,

where u is the principal asymptotic direction at x associated to v.

Theorem 6.1. For a generic immersion f : M → R
3+k, k ≥ 2, the map

ηk : S1k
(Γ) → M is locally stable.

Proof. The subset S1k
(Γ), given by Ki(x, v) = 0, 1 ≤ i ≤ k, is a regular

surface in the (k + 2)-dimensional manifold CM . Consider the map ηk :
S1k

(Γ) → M . We have that (x, v) ∈ S1(ηk) if and only if T(x,v)S1k
(Γ) is not
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transversal to Dη(x, v) in the (2 + k)-dimensional space T(x,v)CM . Or equiv-
alently, in terms of normal spaces,

dim(N(x,v)S1k
(Γ) + N(x,v)Fx) = k + 1,

where N(x,v)S1k
(Γ) is generated by {gradKi}k

i=1, and N(x,v)Fx = TxM , is
generated by {fx1 , fx2 , fx3}. So we must have

rank{gradK1, . . . , gradKk, fx1 , fx2 , fx3} = k + 1.

Consider the (k + 3) × (k + 2)-matrix B1 = [fx1 , fx2 , fx3 , gradK1, · · · ,
gradKk], in the (2 + k)-dimensional space T(x,v)CM . Since the corank of
B1 must be 2, then there exists a (k + 1) × (k + 2)-sub-matrix B such that
B1 = [B, l1, l2] where we get that (x, v) ∈ S1(ηk) if and only if F1(x, v) =
det(B, l1) = 0 and F2(x, v) = det(B, l2) = 0. Analogously to the proofs of
the previous section, using the Thom’s transversality Theorem, these equa-
tions determine, generically, isolated points in S1k

(Γ). Since S1(ηk) has
dimension zero then ηk : S1(ηk) → M cannot drop rank and we conclude
that S1j

(ηk) = ∅ to j ≥ 2.
We now see that S2(ηk) = ∅ and thus Sj(ηk) = ∅, ∀j ≥ 2. In fact, for

k = 2, CM has dimension 4, and (x, v) ∈ S2(η2) if and only if

dim(T(x,v)S12(Γ) ∩ Ker(Dη(x, v))) = 2.

But this is impossible because dim(Ker(Dη(x, v))) = 1.
For k = 3, (x, v) ∈ S2(η3) if and only if

dim(T(x,v)S13(Γ) ∩ Ker(Dη(x, v))) = 2.

In other words, T(x,v)S13(Γ) = Ker(Dη(x, v)), or equivalently

dim(N(x,v)S13(Γ) + TxM) = 3.

Then the 6 × 5-order matrix L = [fx1 , fx2 , fx3 , gradK1, gradK2, gradK3]
must have corank 3. This gives rise to six independent equations on the
derivatives of the embedding. Therefore we conclude that generically S2 is
empty.

This proof can be extended in a straightforward manner for any
k ≥ 4. �

Corollary 6.1. The flat ridge set of a 3-manifold M generically embedded
in R

3+k, k ≥ 2, is a surface with possible isolated cross-caps and transverse
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self-intersections. Inside this surface, we may have regular immersed curves
corresponding to the (k + 2)-order flat ridge and isolated highest order flat
ridges.

The following provides a characterization of the flat ridges of different
orders in terms of the relative positions with respect to the asymptotic lines.

Proposition 6.1. On a 3-manifold generically embedded in R
3+k, the flat

ridges of order k + 2 are the points at which the flat ridge surface η(S1k
(Γ))

is tangent to some asymptotic line and the highest order flat ridges are the
points at which the flat ridge curve η(S1k+1(Γ)) is tangent to some asymptotic
line.

Proof. We observe that for a generic embedding f : R
3 → R

3+k, the subset
S1k

(Γ) is a surface in the (k + 2)-manifold CM . Then it follows from the
definition of Thom–Boardman singularities that a point (x, v) ∈ S1k

(Γ) lies
in the curve S1k+1(Γ) if and only if the principal asymptotic direction of M at
(x, v) (which is the contact direction associated to the height function hv on
CM at (x, v)) is tangent to the surface S1k

(Γ). Analogously, a point (x, v) ∈
S1k

(Γ) lies in S1k+2(Γ) if and only if the principal asymptotic direction of M
at (x, v) is tangent to the curve S1k+1(Γ). Then the result follows immediately
by taking the corresponding images through η : CM → M into M . �

7. Round geometry on 3-manifolds

The generic singularities of the family d were initially studied by Porteous
[22], who observed that the corresponding catastrophe manifold,

Σ(d) =
{

(g(x), a) ∈ M × R
n| ∂da

∂x
= 0

}

coincides with the normal bundle NM of M in R
n. The restriction of the

projection π : M × R
n → R

n to Σ(d) = NM ⊂ M × R
n, i.e., the catastrophe

map associated to the family d, is the normal exponential map expN of M .
The bifurcation set

B(d) = {a ∈ R
n| ∃ x ∈ R

n−1 where da has a degenerate singularity }

is made of all the centers of hyperspheres having contact of order at least 2
with M in the sense that the contact function-germ da at x has codimension
at least 1, i.e., it is not a Morse function. This subset is classically known as



3-manifolds in Euclidean space from a contact viewpoint 771

focal set of M and the hyperspheres tangent to M whose centers lie in B(d)
are called focal hyperspheres of M .

We remind that when M is a 3-manifold in R
4 and Γ : M → S3 repre-

sents its normal Gauss map, then the eigenvectors of DΓ(x) are the principal
directions of curvature of M at the point x and the corresponding eigenval-
ues, {κi(x)}3

i=1, are the principal curvatures. A curve all of whose tangents
are principal directions is a curvature line. We shall say that a point x ∈ M
is umbilic if the three principal curvatures are equal at x and we call it
pre-umbilic when two of them coincide. It can be seen that the principal
directions are the contact directions corresponding to the distance squared
functions on M , i.e., they are the contact directions of M with its focal
hyperspheres at each point (see [15]). The pre-umbilics are singularities of
corank two of distance-squared functions on M , the umbilics being those of
maximal corank 3. We shall denote by PU the subset of pre-umbilics of M .
For a generic 3-manifold M , the subset M − PU is an open and dense sub-
manifold of M . Provided x ∈ M − PU , we can find exactly three focal hyper-
spheres at it, whose centers are given by ai(x) = f(x) + ri(x)Γ(x), i = 1, 2, 3,
and whose radii are ri(x) = 1/κi(x), i = 1, 2, 3. If some of the principal cur-
vatures vanishes, so x is a parabolic point of M, then the corresponding focal
hypersphere becomes a tangent hyperplane. This can be generalized to the
case of a 3-manifold embedded with higher codimension by saying that a
point is pre-umbilic when it is a singularity of corank 2 of some distance-
squared function da. The point a is the center of a hypersphere with a
special contact (of corank 2) with M , we call it pre-umbilic center. When
the corank is equal to 3 we say that the point is an umbilic and the center a
umbilic center.

The focal hyperspheres at a point x in a 3-manifold M embedded in
R

3+k, k ≥ 1 are the tangent hyperspheres whose centers lie in the comple-
ment of S1,0(expN) in the singular set of expN (i.e., they lie in the focal set
of M). They define distance-squared functions with a singularity of type A3
or worse. The rib of order i of M is defined as the subset S1i

(expN ), i ≥ 2, of
NM . This, together with the subset Sk≥2(expN ) form the singular part of the
focal set. The ridge of order i in a 3-manifold M embedded in R

3+k, k ≥ 1
is the set of points that are singularities of type Ai, i ≥ k + 2, for some
distance-squared function. In other words, they are the projection through
expN of the rib of order i, i ≥ k + 2. The highest-order ridge points are
defined as the singularities of type Ai, i ≥ 4 + k, for some distance-squared
function. These are, generically, isolated points.

We characterize next the ridge points in terms of the normal sections of
the manifold at a given point.
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We recall that a vertex of a curve α : R → R
1+k is a point t0 ∈ R for

which there is a point a ∈ R
1+k such that the distance-squared function

dα
a : R → R, defined as dα

a (t) = ||α(t) − a||2, has a singularity of type Aj , j ≥
k + 2. The vertices of α are the points at which the focal hypersphere has
higher contact with the curve [5].

Proposition 7.1. Given a 3-manifold M immersed in R
3+k, let x ∈ M and

θ ∈ TxM be a principal direction at x. Denote by αθ the normal section of
M in the direction θ. Then αθ is a curve in the (k + 1)-dimensional subspace
Vθ = 〈θ〉 ⊕ NxM ⊂ TxR

3+k. Then we have that x = αθ(0) is a ridge of M if
and only if x is a vertex of γθ (as a curve in the (k + 1)-space Vθ).

Proof. Observe that θ is the contact direction associated to the distance-
squared function da at x, where a is the focal center corresponding to the
principal direction θ at x. Then we have that x is a singularity of type Aj of
da|αθ

if and only if it is a singularity of type Aj of the function da over M .
Since the point x = αθ(0) is a vertex of αθ if and only if it is a singularity
of type Aj , j ≥ k + 1 for da|αθ

we obtain the required results. �
Consider now the inverse sterographic projection, ϕ : R

2+k → S2+k.
Given any 3-manifold M in R

2+k and a tangent hypersphere S(a) at a
point, centered at a ∈ R

2+k, the map ϕ determines a diffeomorphism onto
S2+k (minus a point), that takes the pair (M, S(a)) onto a pair (M ′, S′), pre-
serving their contact. We can consider M ′ as a 3-manifold in R

3+k. Let H be
the hyperplane determined by the hypersphere S′ in R

3+k. The contact func-
tions of the pairs (M, S(a)) and (M ′, H) are K-equivalent [25]. This implies
that ϕ takes diffeomorphically the ridges of order r of M onto the flat ridges
of order r of M ′ and the pre-inflections of M onto the pre-umbilics of M ′.
Consequently, we get the following results as corollaries of those obtained in
the previous sections.

Corollary 7.1. The ridge sets of a 3-manifold M generically embedded in
R

2+k, k ≥ 2, form a surface with possible isolated cross-caps and transverse
self-intersections. Inside this surface, we may have regular immersed curves
corresponding to the (k + 2)-order ridge set and isolated highest order ridge
points.

We also have the following characterization of the ridges of different
orders in terms of the relative positions with respect to the curvature lines,
which is a natural generalization of the corresponding property for surfaces
in R

3 (see [23]).
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Proposition 7.2. On a 3-manifold generically embedded in R
2+k, k ≥ 2,

the ridges of order k + 2 are the points at which the (k + 1)-order ridge
surface is tangent to some curvature line and the highest order ridges are
the points at which the (k + 2)-order ridge curve is tangent to some curvature
line.

We can summarize the above results as follows:

(a) Generic 3-manifolds in R
4: The ridges form surfaces with isolated

cross-caps and transverse self-intersections. Their intersection with the
parabolic set are the flat ridges. These form regular curves.

(b) Generic 3-manifolds in R
5: The flat ridges of order 3 form surfaces

with isolated cross-caps and transverse self-intersections. The ridges
of order 4 form surfaces with isolated cross-caps and transverse self-
intersections. The corresponding rib points may go to infinity along
regular curves, these are the flat ridges of order 4.

(c) Generic 3-manifolds in R
6: The flat ridges (of order ≥ 4) form a surface

F with isolated cross-caps and transverse self-intersections over which
there are regular curves of flat ridges of order 4 and isolated ridges of
order 6. The ridges of order 5 form surfaces with isolated cross-caps
and transverse self-intersections that intersect F at the curves of flat
ridges of order 4 (corresponding to rib points at infinity).

Acknowledgments

The authors would like to thank J.J. Nuño Ballesteros for helpful comments.
The work of A.C.N. was supported by CAPES, grant BEX3439/05-4. The
work of M.C.R.F. was partially supported by DGCYT and FEDER grant
no. MTM2009-08933. Both authors acknowledge the financial support from
a joint CAPES (Brasil)-MEC (Spain) project between USP and University
of Valencia (grant no. PHB2002-0044-PC).

References

[1] V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko, Singularities of
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