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Examples of hypersurfaces flowing by curvature
in a Riemannian manifold

ROBERT GULLIVER AND GUOYI XU

This paper gives some examples of hypersurfaces ¢ (M") evolving
in time with speed determined by functions of the normal curva-
tures in an (n + 1)-dimensional hyperbolic manifold; we emphasize
the case of flow by harmonic mean curvature. The examples con-
verge to a totally geodesic submanifold of any dimension from 1
to n, and include cases which exist for infinite time. Convergence
to a point was studied by Andrews, and only occurs in finite time.
For dimension n = 2, the destiny of any harmonic mean curvature
flow is strongly influenced by the genus of the surface M?2.

1. Background

Unless otherwise mentioned, all Riemannian manifolds in this article are
connected and complete. Let M™ be a smooth, connected, orientable com-
pact manifold of dimension n > 2, without boundary, and let (N"*1, %) be
a smooth connected Riemannian manifold. o is any sectional curvature of
N7t % is the Riemann tensor of N"T! and V¥ is the Levi-Civita con-
nection corresponding to ¢~V. For a hyperbolic manifold, o = —1. When
an index, such as i, is repeated in one term of an expression, summation
1 < ¢ < n is indicated.

Suppose @g : M™ — N™t1 is a smooth immersion of an oriented mani-
fold M™ into N™!; write ¥ for the induced normal vector to og(M). The
second fundamental form of M is a covariant tensor, which we represent at
each point by a matrix A, where the entry A;; = h;; = <VN ¥, 52 5:; )9~ The

Weingarten tensor is given by the matrix #', whose entry wk hij ¢7*, and
{g’*} is the pointwise inverse matrix of {g]k}.
We seek a solution ¢ : M™ x [0,T) — N™*! to an equation

(1) o (1) =~ ()i ),
(2,0) = po(),
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where F(z,t) = f(AM(# (z,t))) and f is a smooth symmetric function, where
U(x,t) is the outward normal vector to @(M",t). # (x,t) is the Weingarten
matrix of p(M"™,t) in Nt and A\(#) is the set of eigenvalues (A1, ..., \,)
of # . Define ¢¢(z) = ¢(x,t), then (A1,...,\,) are the principal curvatures
of the hypersurface M; £ ¢, (M) C N.

For example, (1.1) becomes mean curvature flow when f(A) =)\
(see [4,8]).

Consider the solution ¢ : M™ x [0,T) — N™"1 of the following equa-
tions:

-1
(1.2) gtgo(a:,t) =— (Z )\i1> Tz, t),
o(x,0) = po(x).

Such a solution ¢(x, ) is harmonic mean curvature flow; f(\) = (32, A7)~
is the harmonic mean of the numbers Ay, ..., \,.

It has been noted that the mean curvature flow of hypersurfaces in a Rie-
mannian (n + 1)-dimensional manifold, n > 2, does not have all the desirable
properties satisfied for n = 1 [3]. For some purposes, harmonic mean curva-
ture flow (1.2) may be the preferred way to extend curve-shortening flow to
n > 2.

Andrews proved the following theorem in [2]:

Theorem 1.1. Let M™ and ¢q be assumed as at the beginning of this paper,
and that the Riemannian manifold (N"*1, g™ satisfies the following condi-
tions:

—Kl S O'N S KQ, ]VNRN\QN S L

for some non-negative constants Ky, Ko and L.
Assume every principal curvature \; of po satisfies the following condi-

tion:
i > VK.

Then there ezists a unique smooth solution to (1.2) on a maximal time inter-
val [0,T), T < oo, and the immersion @, converges uniformly to a round
point p in N1 as t approaches T.

Also, we have the following theorem, to appear in [7]:

Theorem 1.2. Let M™ be a smooth, connected, orientable compact mani-
fold of dimension n > 2, without boundary. Assume N™ 1 is a non-positively
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curved, simply connected smooth manifold, and suppose pg : M™ — N1 js
a smooth immersion of M™. Assume every principal curvature of wo(M) is
positive. Then there exists a unique smooth solution to (1.2) on a mazimal
time interval [0,T), T < oo, and the immersion p; converges uniformly to
a round point p in N1 as t approaches T .

In the rest of this paper, except for Section 6, and unless otherwise men-
tioned, we consider harmonic mean curvature flow and let f(\) = (3, A, 1)~
We provide two specific examples of harmonic mean curvature flow for infi-
nite time: in Section 2, with dimension reduction in the limit and in Section
3, with the limit manifold of the same dimension as M. Note, these examples
in Sections 2 and 3 provide barriers for harmonic mean curvature flow in
Riemannian manifolds; further applications will be addressed in [7]. We dis-
cuss the limit behavior of the harmonic mean curvature flow at infinite time
in section 4. Then we treat the special consequences of the Gauss—Bonnet
theorem for two-dimensional surfaces in Section 5, and turn to examples of
more general flows by functions of normal curvatures in Section 6.

2. The dimension-reduction example

In this section, we give an example where ¢; converges to ¢, in the C'°
topology but the dimension of My, = poo(M) is less than the dimension of
My, i.e., there is dimension reduction.

Theorem 2.1. Let N3 be a hyperbolic manifold containing an embedded
closed geodesic My,. Then there is a flow p; : M? — N3 by harmonic mean
curvature, where M? is a torus, which converges to Ms as t — +o0c0. The
flow consists of immersions @, which become embedded for t sufficiently
large.

For example, we may let the ambient manifold N be H3/Z, where
H? is hyperbolic space, represented as the Poincaré half-space ‘(Rg)+ =
{(z,y, 2)|(x,y,2) € R®, 2z > 0} with the metric gf}[ = z%dij (8,5 = 8] = Kro-
necker delta), and the Z action f: Z x H® — H? is defined as

Fk)(x,y, 2) = 2%(x,y, 2).

Recall that f(k) is an isometry of H? for each k € Z.

Now we let N be the quotient manifold of H3 under the Z-action,
with fundamental domain {(z,y,2)|1 < /22 4+ y? + 22 < 2}. Then My, =
the positive z-axis, modulo f(1), is a closed geodesic in N.
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Proof. Let ¢ : S — N be an embedding as the given closed geodesic curve
My, in N. We choose a unit vector field w(x) in (Tytg)*. Then for r > 0,
we define
U(z,0,r) = (z,0) : St x St — N3
by
Q;Z)(‘T7 0, T‘) = ¢T(xv 9) = V(x’ 0, T)a

Where v(,,-) is the unit-speed geodesic in N with y(z,6,0) = ¢o(z) and
dr y(x,0,7) = N(z,0) at r = 0. Here N(z,0) is the unit tangent vector in
T%(I)N , which is perpendicular to T,y and makes the angle 6 with w(x).
Then 1,(S' x S') has two principal curvatures:

A1(r) =tanhr,  Ao(r) = cothr.

In fact, for i = 1,2, A\;(r) is the logarithmic derivative of the length of a
Jacobi field, and hence satisfies the Ricatti equation \(r) + (\i(r))? = 1.

We have constructed a one-parameter family of immersions ¢, : M — N,
—00 < r < 00, with two principal curvatures: A\i(r) = tanhr and Ao(r) =
cothr. It may be observed that 1), is an embedding for r sufficiently small.

Now consider the harmonic mean curvature flow ¢ =94 : M — N,
with initial conditions po = ¥y, 7(0) = 1o, where 7 is some fixed positive
constant. The speed must satisfy

ar _Jovor \ _ Jor(ar)
ot Norot’’/ =N\ ot "

o(x,r) 2\ _ 3@(:6,75)’17
~Cae - Ui

1 B sinh r cosh r
AL+ 051 (sinhr)? 4 (coshr)?

In the first equation, we use the fact 2 8 = ¥/; in the third equation, we use the
definition of 1., where 7 = N(z,6) is the outward normal vector of (M)
at (z,0) € St x St
Solving, we find
1

r(t) = 3 sinh ! (e "sinh2rg) .

Note that r(t) — 0 as t — co. O



Examples of hypersurfaces in a Riemannian manifold 705

3. The no-dimension-reduction example

In this section, we give an example in which M; converges to My, in the C'*°
topology and the dimension of M, is the same as the dimension of My, i.e.,
there is no dimension reduction.

Theorem 3.1. There is a compact surface M? of genus 2, a hyperbolic
manifold N3 diffeomorphic to M x R, a totally geodesic embedding g
M — N and a flow by harmonic mean curvature @; : M — N such that as
t — 400, pi(M) — 1po(M) smoothly.

Proof. Let Q be a regular geodesic octagon in the hyperbolic plane H?2, with
angles 7/2, and thus area 47. Label the edges as

517 0/17 7517 —Qq, 527 0/27 75&7 —Q,

in that order, where the signs indicate orientation. Let Ay be the orientation-
preserving isometry of H?, which maps the oriented geodesic segments aq
to af; A2 maps as to ab; By maps (1 to ] and By maps (2 to (5. The
group G of isometries of H? generated by A, As and Bj also includes Bs.
G is isomorphic to the fundamental group of the compact surface of genus
2. (See [Katok [6], pp. 95-98] for the arithmetic properties of the group G.)

Let ¢ : H?> — H? be an embedding as a totally geodesic surface in H3.
The isometries in G extend in a well-known fashion to isometries of H?3,
leaving the distance from vo(H?) invariant.

Choose a unit normal vector field N to 1ho(H?2). Define (-, r) : H2 — H3
by ¢(x,r) = ¥, (x) = y(z,r) and ¥(x,0) = g(z), where v(x,-) is the unit-
speed geodesic in H? with y(x,0) = z and %’y(w, 0) = N(z).

Then 1),.(H?) is totally umbilic, with normal curvatures A(r) = tanhr. In
fact, A(r) satisfies the Ricatti equation X' (r) + (A(r))? = 1, with the initial
condition A(0) = 0.

Now let the group G act by isometries on H? and on H3. The quotient
H?/G = M? is a compact surface of genus 2, with fundamental domain €,
and the quotient H3/G = N3 is a non-compact hyperbolic manifold diffeo-
morphic to M x R. The group G acting on N preserves each of the hypersur-
faces ¥, (H?). We have constructed a one-parameter family of totally umbilic
embeddings ¢, : M — N, —oo < r < oo, with normal curvatures = tanhr.

Now consider the harmonic mean curvature flow ¢; : M — N, with ini-
tial conditions g = vy, where rg is some fixed positive constant. The speed
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must satisfy

or _Jovor N [oywr) N\ J0vr)
ot Norot’'/) N\ ot V)T ot "

In the first equation, we use the fact %Z =N (x) = ¥. In the third equation,
we use the definition of v,., where ¥ is the outward normal vector of .
Solving, we find

r(t) = sinh ™ (e~/2 sinh rp).
Note that r(t) — 0 as t — oo. O

4. The limit behavior of harmonic mean curvature flow at
infinite time

In this section, we will give a sufficient condition where the harmonic mean
curvature flow will exist forever and discuss the limit behavior. Let ¢ :
M — N be an immersion of M™ into a hyperbolic manifold N"*1.

Definition 4.1. We define the following notation:

. oOF . O*F . oH
Fkl — klpg _ H =
8hkl ’ ahklahm’ k 8&)5’
coi  O°H
V= Rij = Xiojo,

mh T Qwkowr

where 0 appearing as a tensor index represents the normal vector @ of ¢ (M)
in N. For any W : M — R, we define:

L(W) = F¥v,v,W.

Recall from Andrews [2] that .Z is elliptic as long as ¢;(M) remains
locally strictly convex.

Theorem 4.1. If N**! is a hyperbolic manifold, F(z) < % foranyx € M,
then @;(M) remains locally convex and F(xz,t) <L for any v € M, te
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[0, 400), limy_oo F(z,t) =0, and the harmonic mean curvature flow exists
for all t in [0, 400).

Proof. By Andrews [2], using a curvature coordinate system at one point,
we have the following formula:

%ZX(F)+F<F(W2)>+F<F”a(=%>>
(4.1) +ZF— (N + Zii)
1
< 3(, S p—=-F2).
< L(F)+ F( ZA Fy+F (" nF>

Consider the ordinary differential equation (ODE)

£ (oo2r)
ot n
F F .
(0) = mas (a0
Solving the above ODE, we get F(t)2—n?= (F(O) n?)e?t/". Because
0 < F(0) = maxzenm F(2,0) < =, we get hmt_>OO (t) =
By the maximum principle, F(x t) < F(t) < -, for all x e M,te|0,+00),

and therefore lim;_,o, F'(z,t) = 0.
On the other hand, we have the following estimate by the above evolution

equation of F":

%I;>$ +F3< Z)\ ) (F)-F.

Now consider the ODE

OF 4
S
ot ’
F(0) = min
(0) = min F(z,0)

Then by the maximum principle again, we get for all z € Mt € [0, +00)

F(z,t) > F(t) = min F(z,0)e" > 0.
rxeM

In particular, ¢¢(M) remains convex for all ¢.
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Finally, we have the following estimate of H. By Andrews [2]

Py FMN NV wy + FMP (Y ki ) (Vjhpg) g7
+ Fkl(hmlwzn)w: + FSt%sthijgjr + 2Fpmg”w?n<%’piqt
— FPU(g"w! Rpsqt + 97w Bpigr) + FP19" (ViRipgo — VpRyito)-

Now referring to the last five terms above, we define

(1) = HF* (hyywiwr, (1) = HEF" Rghijg’",

(1) = 2H, FP" 6" i Rpigqr, (V) = —HL(FPg" w0 Rpsqr + FP19" 0 Rpigr),
(V) = H;qugtr(vi%tpqo — Vp%qito),

then
= H{(FMV Vi wh) + HEFMPUN 1 ) (Vi) g7 + () 4 -+ + (V).
Note
FMVLVH = PRV (HIV W) = FR (V) (Vi) + EY HIV Viw?
Define
(1) = HLEMP(Fihyg) (Vs hyg) g — FF L (Va?) (Vi)

we get

O H =2 (H)+ (1) + (1) 4+ (V).

It is straightforward to get

M)+ A1) = H[< F,(#?) > +FI%,j0) < nF*H < %H
and
of
(V) = ai)w(vj%jiio — Viijjo) = 0.

Choose a curvature coordinate system around one point; then we could
do the following calculation:

(J) = F¥PUT k) (Vibpg).-
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But, by Lemma 2.22 in [1], we know F' is concave from the fact that f
is concave. So, we get (J) < 0.
Now

(I1) 4 (IV) = 2H FP™ g w8 B — HL(FPUg" wf RBpsqt + FP19"5 W Rpigr)

7 8f m ST m
= 20155035 M0y Hit

i af G of S0

af of
2‘%1"“1’7“ 6)\ — = QP;%prpr ( a)\r> ()\p - )\7")
-2

- (Z A,;l) - Z(—%z‘jij) OV PO RCYEPHE )‘;2)‘;2

k .3

A=Y
<Z)\+A S <Z)\+)\)—2nH

?J
We have the following inequality for H by the above estimates:

OH 1
— < +— | H.
oy L)+ (2n n)H

Now consider the ODE

OH 1\ ~
P _(on+ ) H
ot <n+n> ’

H(0) = max H(z,0).
xeM

Then by the maximum principle again, we get for all x € M, t € [0, +00):

H(z,t) < H(t) = max H(z,0) e®" ) < o0,
zeM

This shows that the harmonic mean curvature flow exists on [0, +00). O
In the rest of this section, we do not assume the ambient manifold N"+1

is a hyperbolic manifold.

Proposition 4.1. Assume N™*1 is a smooth n + 1 > 3 dimensional mani-
fold which is convex at infinity, the maximal existence time of the harmonic
mean curvature flow  : M x [0,T) — N isT = 400, and ast — 400, My =
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©(M,t) converges to a smooth n-dimensional submanifold M, of N in the
C™>-topology; then

max {|F(x,t)|,]VF(:c,t)],]VQF(az,t)\} <C,
€M, te[0,+00)

where C' is a constant depending on My, Nt and M.
Proof. Straightforward from the assumptions. O

Proposition 4.2. Assume N and My — My, are as in the hypotheses of
Proposition 4.1. Then

lim F2du, = 0.
t—o00 Mt

Proof. By Theorem 1.1 in [5], we have the formula (% (Jag, die) = = [u,
FHdpy. Because [, dus — p(Mso) as t — oo, we could find an e-dense set
{tr}32, for any positive constant € > 0 such that

lim t = 00
k—o00

and

lim FHdu, =0.
k—o0 M.,

Then using the inequality H > n’F, we get hmk_mO fM F?du, = 0.

Now to get our conclusion we only need to show 2 5 I} M, F dpy is uniformly
bounded. First, we know from Proposition 4.1 that |F|, |VF| and |V2F| are
uniformly bounded. So, we have

0

< F? dut> = / 2FF, + F?(—FH) dyy
ot \Ju,

:/2F (g(F)+ZZZ;F(gi> ()\124‘%’“)) — F3H dp,
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(where we use equation (4.1))

=1

=1

- / 2nF* + 2F* (Z Aﬁ%) +2FZ(F) — F3H dyy

< C/deut+2/F,,§f(F) dp,

where the first inequality uses the following facts:

M, is always contained in some compact set of N1, since N"*! is con-
vex at infinity, so its sectional curvature is bounded above by some constant
Ko;and HE 1= (30, ) A > n? > 2n.

Next, since we know the volume of M, is always non-increasing and |F|
is uniformly bounded, we get

C F2 thSC:[,
M,

where (1 is some constant depending only on My, N and M.
Since |V2F| is uniformly bounded, we get

Q/F,Z(F) dpy < 2n2/F|V2F]dut < Oy,

where Cs is some constant depending on My, N and M.

By all the above, we get
0
— | [ F*duw ) <C
8t </ Mt) >~ U3,

where Cs is another constant depending on My, N and M.
Therefore,

lim [ F?du, =0. 0

t—00 M,

Corollary 4.1. Assume N and M; — My, are as assumed for Proposi-
tion 4.1. Then we have

t—oo \ xeM

lim (maxF(a;,t)) = 0.
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Proof. By Proposition 4.2, we have

0= lim F2?duy :/ lim F?(z,t) dpo,
M, Mo

t—o0 t—o0
so the corollary follows. O

By the above results, assume N and M; — M, are as in the hypotheses
of Proposition 4.1, we know that F = 0 on the limit surface My, if My is
the smooth limit of the harmonic mean curvature flow, which implies that
det# =0 on M.

5. Classification of harmonic mean curvature
flow on surfaces

In this section, we consider harmonic mean curvature flow for n = 2, where
M? is an orientable surface, N3 is a hyperbolic manifold and the harmonic

mean f(\) = )\); +)‘2 As before, we assume that ¢o(M) is locally strictly

convex.

In the following, we always assume F(z,0) < %, ie., )\1_1 —1—)\2_1
which will guarantee, that the harmonic mean curvature flow exists forever
by Theorem 4.1. Note that, for example, f(A\1,\2) < % for the examples of
Theorems 2.1 and 3.1, and that the horospheres have f(A1,A2) = 1.

We define Cy = 2mx(My) = f M — 1) duy, where the second equatlon
is true for any M; because of the Gausszonnet theorem, where x(My) is
the Euler number of My; K(x,t) = A (z,t) o(x,t), Ai(x,t) and Ao(x,t) are
the principal curvatures at the point x on M; in the ambient hyperbolic
manifold N3, and the Gauss equation, which implies the Gauss curvature
=K-1.

First, define V(¢ f M, 1duy, the area of M;. Then using the formula

0
&dut = —FHd,
we get
dV(t)— 9 4 —/ (~FH)d —/ (-K)d
dt = s, O Ht = : Mt = : Ht

- —/Mt(K — 1) dus — /Mt Ldp, = —Co =V (2).
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Solving the above ODE, we get
V(t) = (V(0) + Cole™ " — Co.

This shows that the area of M; is determined by its genus and the area V' (0)
of the initial surface Mj.

There are three cases: Cy < 0 and Cy = 0 and Cy > 0, corresponding to
the surfaces with genus g > 1 (case I) , g = 1 (case II) and g = 0 (case III),
respectively.

(I) Let us first consider the case Cy = 2mx(My) < 0. In this case, we
have

tl;rélo V(t) =—Cy >0,

which means the limit surface has non-zero volume. We conjecture that
in a hyperbolic manifold N3, the limit surface will be the totally geodesic
surface, if there is one in the homotopy class of M. This behavior is seen
in Theorem 3.1.

(IT) When Cjy = 27wy (My) = 0, we have

lim V(t) = —Cy =0,

t—o00

which means the limit surface has zero volume. In fact, we could prove the
following:

Proposition 5.1. If N3 is a hyperbolic manifold, F(z,0) < % foralle € M
and the genus of M = 0, then

lim (max H(z,t)) = 4o00.

t—o0 €M,
Proof. Because fMt(K —1)dp = Cy = 0, we have max,epr, K(x,t) > 1. We
also have limy_, o (maxzenr, F'(z,t)) = 0, using the assumption F(z,0) < %,
by Theorem 4.1. Then for any « € My, t > 0, we have the following:

K(z,t) = H(z,t)F(z,t) < F(z,t)(max H(z,t)).

€M,

Taking the maximum on the both sides of the above inequality, we have

1< K(x,t) < F(x,t H(xz,t)).
< max Kz, ) < (max F(x, ) (max H(z, 1)

So
1

ax H(x,t) > .
zeM, (z,¢) maxgen, F(x,t)
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Taking the limit on both sides, we get

1
li H t)) >
tggo(gé%/}ff (2,2)) 2 limy oo (maxzenr, F(x,t))

= +4o00.

O

The above proposition means that there exists at least one blow-up point
on the limit set; the example of Theorem 2.1 blows up at every point.

(ITI) Finally, when Cy = 2mx(Mp) > 0, we have an interesting geometric
result. In this case, because

V(t) = (V(0) + Co)e™" — Co,

there exists some Tp, 0 < Ty < 00, such that V(Tp) = 0. That means the
harmonic mean curvature flow stops in finite time. But we have already
proved that the flow will exist forever if F' < % So under the assumption
F < %, this surface will not exist.

Remark 5.1. Observe that the non-existence of the initial surfaces in Case
(ITT) above may also be proven by lifting the simply connected surface M
to the universal cover H> of N3 and applying the comparison principle
with shrinking spheres centered at a point: the sphere of radius r has F' =
%cothr > %

6. General geometric flows

In this section, we give examples for a general geometric flow (1.1) in a hyper-
bolic manifold N™*!, which will exist forever or for a computable finite time,
and converge to a given totally geodesic submanifold P* of any codimen-
sion. In this section, we always assume the existence of a totally geodesic
submanifold P¥ in N™*1,

First, by similar methods to those of Sections 2 and 3, we may prove a
theorem for general dimensions and codimensions.

Theorem 6.1. Assume P* is a compact totally geodesic submanifold of
the hyperbolic manifold N™ 1, where 1 < k < n. Let M be diffeomorphic to
the unit sphere bundle of the normal bundle 1. P when k < n; we choose M
to be one of the two connected components of the unit sphere bundle of the
normal bundle 1. P when k =n. Then, we have a flow by harmonic mean
curvature @y : M — N such that as t — 400, (M) — P.
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Proof. We only sketch the proof. We find the second fundamental form
matrix of ¢, (M) with respect to a basis of curvature directions in the fol-

lowing:
w— I tanhr ka(n—k) .
Om—kyxk In—k cothr
Then, we find
or tanhr
1 —=—-F=- .
(6.1) ot k+ (n — k)(tanhr)?

Solving this ODE, we get
(sinh7(t))*(cosh r(t))" % = Ce™,

where C = (sinhrg)*(coshr)"* is a fixed positive constant. This shows
that ¢t := 1,(;) is a solution of harmonic mean curvature flow.
Note that r(t) — 0 as t — +o0. O

Now let M™ be diffeomorphic to (one connected component of) the unit
sphere normal bundle of P* in N+, and let v, : M — N define the hyper-
surface at distance r > 0 from P*. We consider flow by an arbitrary sym-
metric function of the normal curvatures.

Theorem 6.2. For the symmetric function f(A1,...,\,), define
h(r) = f(tanhr, ..., cothr),

where tanh r is repeated k times and cothr is repeated n — k times. Choose
ro > 0 and define

To 1
To = —d Ty < .
0 /0 A r, 0<Th <40

Then we may construct a flow

0

(6.2) a‘ﬁ

(1) = fFAH (2,1))) 0(x, 1)

with initial condition p(-,0) = )y, which exists for time 0 <t <Tjy < oo,
and ¢(-,t) converges to the totally geodesic k-dimensional submanifold P*
ast — Tp.
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Proof. The hypersurface defined by ¢(-,t) := t,(;) flows by (6.2) if

a;« CF(nt) = —h(r)

0

r(To) 1 To

— = / —1dt
r(0) (7") 0

To 1
T = / o
" Jo h(r)

The conclusion now follows from the proof of Theorem 6.1, replacing equa-
tion (6.1) with equation (6.3). O

(6.3)

Remark 6.1. Note that the flow (6.2) is parabolic if 8f >0 (1<i<n);

parabolic for backwards time if a)\f_ <0(1<i<mn) and is a first-order par-
tial differential equation (PDE) if f is constant.

The following corollary is a generalization of both mean curvature flow
(m =1, £=0) and of harmonic mean curvature flow (m =n, { =n —1).

Corollary 6.1. Assume P* is a compact totally geodesic submanifold of
N where 1 < k < n. Let M be diffeomorphic to the unit sphere bundle
of the normal bundle L P when k < n; M is one of the two components of
the unit sphere bundle of 1. P when k = n.

For integers 0 < m, £ <mn, let S, and Sy be the elementary symmetric
functions of degree m, £, respectively, of the principal curvatures \i,..., A
of My. We have a flow by curvature function

S Ay oy An)
Fa,t) = 2 Abe o dn)
( ) Sf()‘lv"'a)\n)
for time 0 <t < oo, such that p(t) : M — N and p¢(M) — P ast — +oo;
assuming that the integers m, ¢ satisfy |m — (n — k)| < [¢ — (n — k)|.

Remark 6.2. Theorem 6.2 may also be applied to prove a partial con-
verse of Corollary 6.1: assuming P¥ and N"*! are as in Corollary 6.1, if the
opposite condition |m — (n — k)| > |¢ — (n — k)| holds, then the same con-
struction yields a flow of hypersurfaces by the curvature function F' = SS—’;},
which converges to the totally geodesic submanifold P¥ in finite time Tj.
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Proof. In the following, we fix an arbitrary positive constant r(0) = r¢. First,
we have

n
Sm = Z Cy(tanhr)? C?_, (cothr)? = Z CyC?, (cothr)i™P,
ptg=m
0<p<k
0<g<n—k

where Cﬁ is the combinatorial coefficient ﬁip)"
Since cothr > 1, it is easy to see

g (cothr)™ if m <n—k,
" (cothr)2(=K)=m if > n — k,

where the notation S,, ~ (cothr)? means that there exist positive constants
C1 and Cy such that Ci(cothr)? < S, < Cy(cothr)/. Here C; and Co will
depend only on m, n, k, £ and r¢.

Similarly, we have

g (cothr)’ if £ <n —k,
‘ (cothr)2(=F)=L if ¢ > n — .

Therefore,

(cothr)™ ¢ if m, ¢ <n —k,

Sim (cothr)=™ if m, ¢ >n — k,
TS ) (cothr)2—Rmm=t i p < | < m,
(cothr)mHe=2=k) if iy < — k < L.

F

By Theorem 6.2, we obtain that the flow exists forever if and only if the
power of coth r is negative in the asymptotic estimate for F' above. That is,
if and only if m and ¢ satisfy one of the following conditions:

m<t ifm,l<n-—Ek,

L<m ifm,f>n—k,
2(n—k)<m++L ifl<n—Fk<m,
m+L<2n—k) ifm<n—Fk</l

It is straightforward to see the above inequalities are equivalent to the
inequality |m — (n — k)| < |¢ — (n — k)|, which is our conclusion. O
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Remark 6.3. In particular, the cases k=n, m =1 and £ =0 are the
first examples we are aware of in the literature of a locally convex com-
pact hypersurface flowing by mean curvature and converging smoothly to
a submanifold in infinite time. In addition, the cases k =n — 1, m = 0 and
¢ =1 give examples of (backwards parabolic) inverse mean curvature flow
existing forever and converging to a totally geodesic hypersurface. After
reversing time to obtain parabolicity, this example of —% flow is properly
divergent as t — oo.
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