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Examples of hypersurfaces flowing by curvature
in a Riemannian manifold
Robert Gulliver and Guoyi Xu

This paper gives some examples of hypersurfaces ϕt(Mn) evolving
in time with speed determined by functions of the normal curva-
tures in an (n + 1)-dimensional hyperbolic manifold; we emphasize
the case of flow by harmonic mean curvature. The examples con-
verge to a totally geodesic submanifold of any dimension from 1
to n, and include cases which exist for infinite time. Convergence
to a point was studied by Andrews, and only occurs in finite time.
For dimension n = 2, the destiny of any harmonic mean curvature
flow is strongly influenced by the genus of the surface M2.

1. Background

Unless otherwise mentioned, all Riemannian manifolds in this article are
connected and complete. Let Mn be a smooth, connected, orientable com-
pact manifold of dimension n ≥ 2, without boundary, and let (Nn+1, gN ) be
a smooth connected Riemannian manifold. σN is any sectional curvature of
Nn+1, R is the Riemann tensor of Nn+1 and ∇N is the Levi-Civita con-
nection corresponding to gN . For a hyperbolic manifold, σN ≡ −1. When
an index, such as i, is repeated in one term of an expression, summation
1 ≤ i ≤ n is indicated.

Suppose ϕ0 : Mn → Nn+1 is a smooth immersion of an oriented mani-
fold Mn into Nn+1; write �v for the induced normal vector to ϕ0(M). The
second fundamental form of M is a covariant tensor, which we represent at
each point by a matrix A, where the entry Aij = hij = 〈∇N

∂

∂xi

�v, ∂
∂xj

〉gN . The

Weingarten tensor is given by the matrix W , whose entry ωk
i = hijg

jk, and
{gjk} is the pointwise inverse matrix of {gjk}.

We seek a solution ϕ : Mn × [0, T ) → Nn+1 to an equation

∂

∂t
ϕ(x, t) = −f(λ(W (x, t)))�v(x, t),(1.1)

ϕ(x, 0) = ϕ0(x),
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where F (x, t) = f(λ(W (x, t))) and f is a smooth symmetric function, where
�v(x, t) is the outward normal vector to ϕ(Mn, t). W (x, t) is the Weingarten
matrix of ϕ(Mn, t) in Nn+1 and λ(W ) is the set of eigenvalues (λ1, . . . , λn)
of W . Define ϕt(x) = ϕ(x, t), then (λ1, . . . , λn) are the principal curvatures
of the hypersurface Mt

�= ϕt(M) ⊂ N .
For example, (1.1) becomes mean curvature flow when f(λ) =

∑
i λi

(see [4, 8]).
Consider the solution ϕ : Mn × [0, T ) → Nn+1 of the following equa-

tions:

∂

∂t
ϕ(x, t) = −

(
∑

i

λ−1
i

)−1

�v(x, t),(1.2)

ϕ(x, 0) = ϕ0(x).

Such a solution ϕ(x, t) is harmonic mean curvature flow; f(λ) = (
∑

i λ
−1
i )−1

is the harmonic mean of the numbers λ1, . . . , λn.
It has been noted that the mean curvature flow of hypersurfaces in a Rie-

mannian (n + 1)-dimensional manifold, n ≥ 2, does not have all the desirable
properties satisfied for n = 1 [3]. For some purposes, harmonic mean curva-
ture flow (1.2) may be the preferred way to extend curve-shortening flow to
n ≥ 2.

Andrews proved the following theorem in [2]:

Theorem 1.1. Let Mn and ϕ0 be assumed as at the beginning of this paper,
and that the Riemannian manifold (Nn+1, gN ) satisfies the following condi-
tions:

−K1 ≤ σN ≤ K2, |∇NRN |gN ≤ L

for some non-negative constants K1, K2 and L.
Assume every principal curvature λi of ϕ0 satisfies the following condi-

tion:
λi >

√
K1.

Then there exists a unique smooth solution to (1.2) on a maximal time inter-
val [0, T ), T < ∞, and the immersion ϕt converges uniformly to a round
point p in Nn+1 as t approaches T .

Also, we have the following theorem, to appear in [7]:

Theorem 1.2. Let Mn be a smooth, connected, orientable compact mani-
fold of dimension n ≥ 2, without boundary. Assume Nn+1 is a non-positively
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curved, simply connected smooth manifold, and suppose ϕ0 : Mn → Nn+1 is
a smooth immersion of Mn. Assume every principal curvature of ϕ0(M) is
positive. Then there exists a unique smooth solution to (1.2) on a maximal
time interval [0, T ), T < ∞, and the immersion ϕt converges uniformly to
a round point p in Nn+1 as t approaches T .

In the rest of this paper, except for Section 6, and unless otherwise men-
tioned, we consider harmonic mean curvature flow and let f(λ) = (

∑
i λ

−1
i )−1.

We provide two specific examples of harmonic mean curvature flow for infi-
nite time: in Section 2, with dimension reduction in the limit and in Section
3, with the limit manifold of the same dimension as M . Note, these examples
in Sections 2 and 3 provide barriers for harmonic mean curvature flow in
Riemannian manifolds; further applications will be addressed in [7]. We dis-
cuss the limit behavior of the harmonic mean curvature flow at infinite time
in section 4. Then we treat the special consequences of the Gauss–Bonnet
theorem for two-dimensional surfaces in Section 5, and turn to examples of
more general flows by functions of normal curvatures in Section 6.

2. The dimension-reduction example

In this section, we give an example where ϕt converges to ϕ∞ in the C∞

topology but the dimension of M∞ = ϕ∞(M) is less than the dimension of
Mt, i.e., there is dimension reduction.

Theorem 2.1. Let N3 be a hyperbolic manifold containing an embedded
closed geodesic M∞. Then there is a flow ϕt : M2 → N3 by harmonic mean
curvature, where M2 is a torus, which converges to M∞ as t → +∞. The
flow consists of immersions ϕt, which become embedded for t sufficiently
large.

For example, we may let the ambient manifold N be H3/Z, where
H3 is hyperbolic space, represented as the Poincaré half-space (R3)+ =
{(x, y, z)|(x, y, z) ∈ R

3, z > 0} with the metric gN
ij = 1

z2 δij (δij = δj
i = Kro-

necker delta), and the Z action f : Z × H3 → H3 is defined as

f(k)(x, y, z) = 2k(x, y, z).

Recall that f(k) is an isometry of H3 for each k ∈ Z.
Now we let N be the quotient manifold of H3 under the Z-action,

with fundamental domain {(x, y, z)| 1 ≤
√

x2 + y2 + z2 ≤ 2}. Then M∞ =
the positive z-axis, modulo f(1), is a closed geodesic in N .
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Proof. Let ψ0 : S
1 → N be an embedding as the given closed geodesic curve

M∞ in N . We choose a unit vector field w(x) in (Txψ0)⊥. Then for r > 0,
we define

ψ(x, θ, r) = ψr(x, θ) : S
1 × S

1 → N3

by

ψ(x, θ, r) = ψr(x, θ) = γ(x, θ, r),

where γ(x, θ, ·) is the unit-speed geodesic in N with γ(x, θ, 0) = ψ0(x) and
d
drγ(x, θ, r) = �N(x, θ) at r = 0. Here �N(x, θ) is the unit tangent vector in
Tψ0(x)N

3, which is perpendicular to Txψ0 and makes the angle θ with w(x).
Then ψr(S1 × S

1) has two principal curvatures:

λ1(r) ≡ tanh r, λ2(r) ≡ coth r.

In fact, for i = 1, 2, λi(r) is the logarithmic derivative of the length of a
Jacobi field, and hence satisfies the Ricatti equation λ′

i(r) + (λi(r))2 = 1.
We have constructed a one-parameter family of immersions ψr : M → N ,

−∞ < r < ∞, with two principal curvatures: λ1(r) ≡ tanh r and λ2(r) ≡
coth r. It may be observed that ψr is an embedding for r sufficiently small.

Now consider the harmonic mean curvature flow ϕt = ψr(t) : M → N ,
with initial conditions ϕ0 = ψr0 , r(0) = r0, where r0 is some fixed positive
constant. The speed must satisfy

∂r

∂t
=

〈
∂γ

∂r

∂r

∂t
,�v

〉

=
〈

∂γ(x, r)
∂t

,�v

〉

=
〈

∂ψ(x, r)
∂t

,�v

〉

=
〈

∂ϕ(x, t)
∂t

,�v

〉

= 〈−F�v,�v〉 = −F (λ1, λ2)

= − 1
λ−1

1 + λ−1
2

= − sinh r cosh r

(sinh r)2 + (cosh r)2
.

In the first equation, we use the fact ∂γ
∂r = �v; in the third equation, we use the

definition of ψr, where �v = �N(x, θ) is the outward normal vector of ψr(M)
at (x, θ) ∈ S

1 × S
1.

Solving, we find

r(t) =
1
2

sinh−1 (
e−t sinh 2r0

)
.

Note that r(t) → 0 as t → ∞. �
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3. The no-dimension-reduction example

In this section, we give an example in which Mt converges to M∞ in the C∞

topology and the dimension of M∞ is the same as the dimension of Mt, i.e.,
there is no dimension reduction.

Theorem 3.1. There is a compact surface M2 of genus 2, a hyperbolic
manifold N3 diffeomorphic to M × R, a totally geodesic embedding ψ0 :
M → N and a flow by harmonic mean curvature ϕt : M → N such that as
t → +∞, ϕt(M) → ψ0(M) smoothly.

Proof. Let Ω be a regular geodesic octagon in the hyperbolic plane H2, with
angles π/2, and thus area 4π. Label the edges as

β1, α
′
1,−β′

1,−α1, β2, α
′
2,−β′

2,−α2,

in that order, where the signs indicate orientation. Let A1 be the orientation-
preserving isometry of H2, which maps the oriented geodesic segments α1
to α′

1; A2 maps α2 to α′
2; B1 maps β1 to β′

1 and B2 maps β2 to β′
2. The

group G of isometries of H2 generated by A1, A2 and B1 also includes B2.
G is isomorphic to the fundamental group of the compact surface of genus
2. (See [Katok [6], pp. 95–98] for the arithmetic properties of the group G.)

Let ψ0 : H2 → H3 be an embedding as a totally geodesic surface in H3.
The isometries in G extend in a well-known fashion to isometries of H3,
leaving the distance from ψ0(H2) invariant.

Choose a unit normal vector field �N to ψ0(H2). Define ψ(·, r) : H2 → H3

by ψ(x, r) = ψr(x) = γ(x, r) and ψ(x, 0) = ψ0(x), where γ(x, ·) is the unit-
speed geodesic in H3 with γ(x, 0) = x and ∂

∂rγ(x, 0) = �N(x).
Then ψr(H2) is totally umbilic, with normal curvatures λ(r) ≡ tanh r. In

fact, λ(r) satisfies the Ricatti equation λ′(r) + (λ(r))2 = 1, with the initial
condition λ(0) = 0.

Now let the group G act by isometries on H2 and on H3. The quotient
H2/G = M2 is a compact surface of genus 2, with fundamental domain Ω,
and the quotient H3/G = N3 is a non-compact hyperbolic manifold diffeo-
morphic to M × R. The group G acting on N preserves each of the hypersur-
faces ψr(H2). We have constructed a one-parameter family of totally umbilic
embeddings ψr : M → N , −∞ < r < ∞, with normal curvatures ≡ tanh r.

Now consider the harmonic mean curvature flow ϕt : M → N , with ini-
tial conditions ϕ0 = ψr0 , where r0 is some fixed positive constant. The speed
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must satisfy

∂r

∂t
=

〈
∂γ

∂r

∂r

∂t
,�v

〉

=
〈

∂γ(x, r)
∂t

,�v

〉

=
〈

∂ψ(x, r)
∂t

,�v

〉

=
〈

∂ϕ(x, t)
∂t

,�v

〉

= 〈−F �v,�v〉 = −F (λ1, λ2)

= − 1
λ−1

1 + λ−1
2

= −1
2

tanh r.

In the first equation, we use the fact ∂γ
∂r = �N(x) = �v. In the third equation,

we use the definition of ψr, where �v is the outward normal vector of ψr.
Solving, we find

r(t) = sinh−1(e−t/2 sinh r0).

Note that r(t) → 0 as t → ∞. �

4. The limit behavior of harmonic mean curvature flow at
infinite time

In this section, we will give a sufficient condition where the harmonic mean
curvature flow will exist forever and discuss the limit behavior. Let ϕt :
M → N be an immersion of Mn into a hyperbolic manifold Nn+1.

Definition 4.1. We define the following notation:

Ḟ kl =
∂F

∂hkl
, F̈ kl,pq =

∂2F

∂hkl∂hpq
, Ḣ i

k =
∂H

∂ωk
i

,

Ḧs,i
r,k =

∂2H

∂ωk
i ∂ωr

s

, Rij = Ri0j0,

where 0 appearing as a tensor index represents the normal vector �v of ϕ(M)
in N . For any W : M → R, we define:

L (W ) = Ḟ kl∇k∇lW.

Recall from Andrews [2] that L is elliptic as long as ϕt(M) remains
locally strictly convex.

Theorem 4.1. If Nn+1 is a hyperbolic manifold, F (x) < 1
n for any x ∈ M ,

then ϕt(M) remains locally convex and F (x, t) < 1
n for any x ∈ M , t ∈
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[0, +∞), limt→∞ F (x, t) = 0, and the harmonic mean curvature flow exists
for all t in [0, +∞).

Proof. By Andrews [2], using a curvature coordinate system at one point,
we have the following formula:

∂F

∂t
= L (F ) + F < Ḟ , (W 2) > +F < Ḟ ij , (Rij) >

= L (F ) +
∑

i

F
∂f

∂λi
(λ2

i + Rii)(4.1)

≤ L (F ) + F 3(n −
∑

i

λ−2
i ) ≤ L (F ) + F 3

(

n − 1
n

F−2
)

.

Consider the ordinary differential equation (ODE)

∂F̃

∂t
= F̃ 3

(

n − 1
n

F̃−2
)

,

F̃ (0) = max
x∈M

F (x, 0).

Solving the above ODE, we get F̃ (t)−2 − n2 = (F̃ (0)−2 − n2)e2t/n. Because
0 < F̃ (0) = maxx∈Mn F (x, 0) < 1

n , we get limt→∞ F̃ (t) = 0.
By the maximum principle, F (x, t) ≤ F̃ (t) < 1

n , for all x ∈ M , t ∈ [0, +∞),
and therefore limt→∞ F (x, t) = 0.

On the other hand, we have the following estimate by the above evolution
equation of F :

∂F

∂t
≥ L (F ) + F 3

(

−
∑

i

λ−2
i

)

≥ L (F ) − F.

Now consider the ODE

∂F̂

∂t
= −F̂ ,

F̂ (0) = min
x∈M

F (x, 0).

Then by the maximum principle again, we get for all x ∈ M, t ∈ [0, +∞)

F (x, t) ≥ F̂ (t) = min
x∈M

F (x, 0) e−t > 0.

In particular, ϕt(M) remains convex for all t.
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Finally, we have the following estimate of H. By Andrews [2]

∂

∂t
ωr

i = Ḟ kl∇k∇lω
r
i + F̈ kl,pq(∇ihkl)(∇jhpq)gjr

+ Ḟ kl(hmlω
m
k )ωr

i + Ḟ stRsthijg
jr + 2Ḟ pmgtrωq

mRpiqt

− Ḟ pq(gtrωs
i Rpsqt + gtsωr

sRpiqt) + Ḟ pqgtr(∇iRtpq0 − ∇pRqit0).

Now referring to the last five terms above, we define

(I) = Ḣ i
rḞ

kl(hmlω
m
k )ωr

i , (II) = Ḣ i
rḞ

stRsthijg
jr,

(III) = 2Ḣ i
rḞ

pmgtrωq
mRpiqt, (IV) = −Ḣ i

r(Ḟ
pqgtrωs

i Rpsqt + Ḟ pqgtsωr
sRpiqt),

(V) = Ḣ i
rḞ

pqgtr(∇iRtpq0 − ∇pRqit0),

then

∂

∂t
H = Ḣ i

r

(
∂

∂t
ωr

i

)

= Ḣ i
r(Ḟ

kl∇k∇l ω
r
i ) + Ḣ i

rF̈
kl,pq(∇ihkl)(∇jhpq)gjr + (I) + · · · + (V).

Note

Ḟ kl∇k∇lH = Ḟ kl∇k(Ḣ i
r∇lω

r
i ) = Ḟ klḦ i,̃i

r,r̃(∇kω
r̃
ĩ
)(∇lω

r
i ) + Ḟ klḢ i

r∇k∇lω
r
i .

Define

(J) = Ḣ i
rF̈

kl,pq(∇ihkl)(∇jhpq)gjr − Ḟ klḦ i,̃i
r,r̃(∇kω

r̃
ĩ
)(∇lω

r
i ),

we get
∂

∂t
H = L (H) + (J) + (I) + · · · + (V).

It is straightforward to get

(I) + (II) = H[< Ḟ , (W 2) > +Ḟ ijRi0j0] ≤ nF 2H ≤ 1
n

H

and

(V) =
∂f

∂λi
(∇jRjii0 − ∇iRijj0) = 0.

Choose a curvature coordinate system around one point; then we could
do the following calculation:

(J) = F̈ kl,pq(∇ihkl)(∇ihpq).
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But, by Lemma 2.22 in [1], we know F is concave from the fact that f
is concave. So, we get (J) ≤ 0.

Now

(III) + (IV) = 2Ḣ i
rḞ

pmgtrωq
mRpiqt − Ḣ i

r(Ḟ
pqgtrωs

i Rpsqt + Ḟ pqgtsωr
sRpiqt)

= 2δi
r

∂f

∂λp
δm
p δr

t λqδ
m
q Rpiqt

− δi
r

(
∂f

∂λp
δq
pδ

r
t λiδ

s
i Rpsqt +

∂f

∂λp
δq
pδ

s
t λsδ

r
sRpiqt

)

= 2Rprpr
∂f

∂λp
(λp − λr) = 2

∑

p<r

Rprpr

(
∂f

∂λp
− ∂f

∂λr

)

(λp − λr)

=

(
∑

k

λ−1
k

)−2

·
∑

i,j

(−Rijij) · (λi − λj)2(λi + λj) · λ−2
i λ−2

j

≤
∑

i,j

(λi + λj) ·
(

λ−1
i − λ−1

j
∑

k λ−1
k

)2

≤
∑

i,j

(λi + λj) = 2nH.

We have the following inequality for H by the above estimates:

∂H

∂t
≤ L (H) +

(

2n +
1
n

)

H.

Now consider the ODE

∂Ĥ

∂t
=

(

2n +
1
n

)

Ĥ,

Ĥ(0) = max
x∈M

H(x, 0).

Then by the maximum principle again, we get for all x ∈ M, t ∈ [0, +∞):

H(x, t) ≤ Ĥ(t) = max
x∈M

H(x, 0) e(2n+ 1
n
)t < +∞.

This shows that the harmonic mean curvature flow exists on [0, +∞). �
In the rest of this section, we do not assume the ambient manifold Nn+1

is a hyperbolic manifold.

Proposition 4.1. Assume Nn+1 is a smooth n + 1 ≥ 3 dimensional mani-
fold which is convex at infinity, the maximal existence time of the harmonic
mean curvature flow ϕ : M × [0, T ) → N is T = +∞, and as t → +∞, Mt =
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ϕ(M, t) converges to a smooth n-dimensional submanifold M∞ of N in the
C∞-topology; then

max
x∈M, t∈[0,+∞)

{|F (x, t)|, |∇F (x, t)|, |∇2F (x, t)|} ≤ C,

where C is a constant depending on M0, Nn+1 and M∞.

Proof. Straightforward from the assumptions. �

Proposition 4.2. Assume N and Mt → M∞ are as in the hypotheses of
Proposition 4.1. Then

lim
t→∞

∫

Mt

F 2 dμt = 0.

Proof. By Theorem 1.1 in [5], we have the formula ∂
∂t(

∫
Mt

dμt) = −
∫
Mt

FHdμt. Because
∫
Mt

dμt → μ(M∞) as t → ∞, we could find an ε-dense set
{tk}∞

k=1 for any positive constant ε > 0 such that

lim
k→∞

tk = ∞

and

lim
k→∞

∫

Mtk

FH dμtk
= 0.

Then using the inequality H ≥ n2F , we get limk→∞
∫
Mtk

F 2 dμtk
= 0.

Now to get our conclusion we only need to show ∂
∂t

∫
Mt

F 2dμt is uniformly
bounded. First, we know from Proposition 4.1 that |F |, |∇F | and |∇2F | are
uniformly bounded. So, we have

∂

∂t

(∫

Mt

F 2 dμt

)

=
∫

2FFt + F 2(−FH) dμt

=
∫

2F

(

L (F ) +
n∑

i=1

F

(
∂f

∂λi

)

(λ2
i + Rii)

)

− F 3H dμt
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(where we use equation (4.1))

=
∫

2nF 4 + 2F 4

(
n∑

i=1

λ−2
i Rii

)

+ 2FL (F ) − F 3H dμt

≤
∫

2F 4K2

(
n∑

i=1

λ−2
i

)

dμt +
∫

2FL (F ) dμt

≤ C

∫

F 2 dμt + 2
∫

FL (F ) dμt,

where the first inequality uses the following facts:
Mt is always contained in some compact set of Nn+1, since Nn+1 is con-

vex at infinity, so its sectional curvature is bounded above by some constant
K2; and HF−1 = (

∑n
i=1 λi)(

∑n
i=1 λ−1

i ) ≥ n2 ≥ 2n.
Next, since we know the volume of Mt is always non-increasing and |F |

is uniformly bounded, we get

C

∫

Mt

F 2 dμt ≤ C1,

where C1 is some constant depending only on M0, N and M∞.
Since |∇2F | is uniformly bounded, we get

2
∫

FL (F ) dμt ≤ 2n2
∫

F |∇2F | dμt ≤ C2,

where C2 is some constant depending on M0, N and M∞.
By all the above, we get

∂

∂t

(∫

F 2 dμt

)

≤ C3,

where C3 is another constant depending on M0, N and M∞.
Therefore,

lim
t→∞

∫

Mt

F 2 dμt = 0. �

Corollary 4.1. Assume N and Mt → M∞ are as assumed for Proposi-
tion 4.1. Then we have

lim
t→∞

(

max
x∈M

F (x, t)
)

= 0.
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Proof. By Proposition 4.2, we have

0 = lim
t→∞

∫

Mt

F 2 dμt =
∫

M∞

lim
t→∞

F 2(x, t) dμ∞,

so the corollary follows. �

By the above results, assume N and Mt → M∞ are as in the hypotheses
of Proposition 4.1, we know that F ≡ 0 on the limit surface M∞, if M∞ is
the smooth limit of the harmonic mean curvature flow, which implies that
det W = 0 on M∞.

5. Classification of harmonic mean curvature
flow on surfaces

In this section, we consider harmonic mean curvature flow for n = 2, where
M2 is an orientable surface, N3 is a hyperbolic manifold and the harmonic
mean f(λ) = λ1λ2

λ1+λ2
. As before, we assume that ϕ0(M) is locally strictly

convex.
In the following, we always assume F (x, 0) < 1

2 , i.e., λ−1
1 + λ−1

2 > 2,
which will guarantee, that the harmonic mean curvature flow exists forever
by Theorem 4.1. Note that, for example, f(λ1, λ2) < 1

2 for the examples of
Theorems 2.1 and 3.1, and that the horospheres have f(λ1, λ2) ≡ 1

2 .
We define C0 = 2πχ(M0) =

∫
Mt

(K − 1) dμt, where the second equation
is true for any Mt because of the Gauss–Bonnet theorem, where χ(M0) is
the Euler number of M0; K(x, t) = λ1(x, t)λ2(x, t), λ1(x, t) and λ2(x, t) are
the principal curvatures at the point x on Mt in the ambient hyperbolic
manifold N3, and the Gauss equation, which implies the Gauss curvature
= K − 1.

First, define V (t) =
∫
Mt

1 dμt, the area of Mt. Then using the formula

∂

∂t
dμt = −FHdμt,

we get

d

dt
V (t) =

∫

Mt

∂

∂t
dμt =

∫

Mt

(−FH) dμt =
∫

Mt

(−K) dμt

= −
∫

Mt

(K − 1) dμt −
∫

Mt

1 dμt = −C0 − V (t).
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Solving the above ODE, we get

V (t) = (V (0) + C0)e−t − C0.

This shows that the area of Mt is determined by its genus and the area V (0)
of the initial surface M0.

There are three cases: C0 < 0 and C0 = 0 and C0 > 0, corresponding to
the surfaces with genus g > 1 (case I) , g = 1 (case II) and g = 0 (case III),
respectively.

(I) Let us first consider the case C0 = 2πχ(M0) < 0. In this case, we
have

lim
t→∞

V (t) = −C0 > 0,

which means the limit surface has non-zero volume. We conjecture that
in a hyperbolic manifold N3, the limit surface will be the totally geodesic
surface, if there is one in the homotopy class of M0. This behavior is seen
in Theorem 3.1.

(II) When C0 = 2πχ(M0) = 0, we have

lim
t→∞

V (t) = −C0 = 0,

which means the limit surface has zero volume. In fact, we could prove the
following:

Proposition 5.1. If N3 is a hyperbolic manifold, F (x, 0) < 1
2 for all x ∈ M

and the genus of M = 0, then

lim
t→∞

(max
x∈Mt

H(x, t)) = +∞.

Proof. Because
∫
Mt

(K − 1) dμt = C0 = 0, we have maxx∈Mt
K(x, t) ≥ 1. We

also have limt→∞(maxx∈Mt
F (x, t)) = 0, using the assumption F (x, 0) < 1

2 ,
by Theorem 4.1. Then for any x ∈ Mt, t > 0, we have the following:

K(x, t) = H(x, t)F (x, t) ≤ F (x, t)(max
x∈Mt

H(x, t)).

Taking the maximum on the both sides of the above inequality, we have

1 ≤ max
x∈Mt

K(x, t) ≤ (max
x∈Mt

F (x, t))(max
x∈Mt

H(x, t)).

So

max
x∈Mt

H(x, t) ≥ 1
maxx∈Mt

F (x, t)
.
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Taking the limit on both sides, we get

lim
t→∞

(max
x∈Mt

H(x, t)) ≥ 1
limt→∞(maxx∈Mt

F (x, t))
= +∞.

�

The above proposition means that there exists at least one blow-up point
on the limit set; the example of Theorem 2.1 blows up at every point.

(III) Finally, when C0 = 2πχ(M0) > 0, we have an interesting geometric
result. In this case, because

V (t) = (V (0) + C0)e−t − C0,

there exists some T0, 0 < T0 < +∞, such that V (T0) = 0. That means the
harmonic mean curvature flow stops in finite time. But we have already
proved that the flow will exist forever if F < 1

2 . So under the assumption
F < 1

2 , this surface will not exist.

Remark 5.1. Observe that the non-existence of the initial surfaces in Case
(III) above may also be proven by lifting the simply connected surface M0
to the universal cover H3 of N3 and applying the comparison principle
with shrinking spheres centered at a point: the sphere of radius r has F =
1
2 coth r > 1

2 .

6. General geometric flows

In this section, we give examples for a general geometric flow (1.1) in a hyper-
bolic manifold Nn+1, which will exist forever or for a computable finite time,
and converge to a given totally geodesic submanifold P k of any codimen-
sion. In this section, we always assume the existence of a totally geodesic
submanifold P k in Nn+1.

First, by similar methods to those of Sections 2 and 3, we may prove a
theorem for general dimensions and codimensions.

Theorem 6.1. Assume P k is a compact totally geodesic submanifold of
the hyperbolic manifold Nn+1, where 1 ≤ k ≤ n. Let M be diffeomorphic to
the unit sphere bundle of the normal bundle ⊥ P when k < n; we choose M
to be one of the two connected components of the unit sphere bundle of the
normal bundle ⊥ P when k = n. Then, we have a flow by harmonic mean
curvature ϕt : M → N such that as t → +∞, ϕt(M) → P .
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Proof. We only sketch the proof. We find the second fundamental form
matrix of ψr(M) with respect to a basis of curvature directions in the fol-
lowing:

W =
(

Ik tanh r 0k×(n−k)
0(n−k)×k In−k coth r

)

.

Then, we find

(6.1)
∂r

∂t
= −F = − tanh r

k + (n − k)(tanh r)2
.

Solving this ODE, we get

(sinh r(t))k(cosh r(t))n−k = Ce−t,

where C = (sinh r0)k(cosh r0)n−k is a fixed positive constant. This shows
that ϕt := ψr(t) is a solution of harmonic mean curvature flow.

Note that r(t) → 0 as t → +∞. �

Now let Mn be diffeomorphic to (one connected component of) the unit
sphere normal bundle of P k in Nn+1, and let ψr : M → N define the hyper-
surface at distance r > 0 from P k. We consider flow by an arbitrary sym-
metric function of the normal curvatures.

Theorem 6.2. For the symmetric function f(λ1, . . . , λn), define

h(r) = f(tanh r, . . . , coth r),

where tanh r is repeated k times and coth r is repeated n − k times. Choose
r0 > 0 and define

T0 =
∫ r0

0

1
h(r)

dr, 0 < T0 ≤ +∞.

Then we may construct a flow

(6.2)
∂

∂t
ϕ(·, t) = f(λ(W (x, t)))�v(x, t)

with initial condition ϕ(·, 0) = ψr0, which exists for time 0 ≤ t ≤ T0 ≤ ∞,
and ϕ(·, t) converges to the totally geodesic k-dimensional submanifold P k

as t → T0.
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Proof. The hypersurface defined by ϕ(·, t) := ψr(t) flows by (6.2) if

∂r

∂t
= −F (x, t) ≡ −h(r)(6.3)

=⇒
∫ r(T0)

r(0)

1
h(r)

dr =
∫ T0

0
−1 dt

=⇒ T0 =
∫ r0

0

1
h(r)

dr.

The conclusion now follows from the proof of Theorem 6.1, replacing equa-
tion (6.1) with equation (6.3). �

Remark 6.1. Note that the flow (6.2) is parabolic if ∂f
∂λi

> 0 (1 ≤ i ≤ n);
parabolic for backwards time if ∂f

∂λi
< 0 (1 ≤ i ≤ n) and is a first-order par-

tial differential equation (PDE) if f is constant.

The following corollary is a generalization of both mean curvature flow
(m = 1, � = 0) and of harmonic mean curvature flow (m = n, � = n − 1).

Corollary 6.1. Assume P k is a compact totally geodesic submanifold of
Nn+1, where 1 ≤ k ≤ n. Let M be diffeomorphic to the unit sphere bundle
of the normal bundle ⊥ P when k < n; M is one of the two components of
the unit sphere bundle of ⊥ P when k = n.

For integers 0 ≤ m, � ≤ n, let Sm and S� be the elementary symmetric
functions of degree m, �, respectively, of the principal curvatures λ1, . . . , λn

of Mt. We have a flow by curvature function

F (x, t) =
Sm(λ1, . . . , λn)
S�(λ1, . . . , λn)

,

for time 0 ≤ t < ∞, such that ϕ(t) : M → N and ϕt(M) → P as t → +∞;
assuming that the integers m, � satisfy |m − (n − k)| < |� − (n − k)|.

Remark 6.2. Theorem 6.2 may also be applied to prove a partial con-
verse of Corollary 6.1: assuming P k and Nn+1 are as in Corollary 6.1, if the
opposite condition |m − (n − k)| ≥ |� − (n − k)| holds, then the same con-
struction yields a flow of hypersurfaces by the curvature function F = Sm

S�
,

which converges to the totally geodesic submanifold P k in finite time T0.
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Proof. In the following, we fix an arbitrary positive constant r(0) = r0. First,
we have

Sm =
n∑

p+q=m
0≤p≤k

0≤q≤n−k

Cp
k(tanh r)p Cq

n−k(coth r)q =
∑

Cp
kCq

n−k(coth r)q−p,

where Cp
k is the combinatorial coefficient k!

p!(k−p)! .
Since coth r ≥ 1, it is easy to see

Sm ∼
{

(coth r)m if m ≤ n − k,

(coth r)2(n−k)−m if m > n − k,

where the notation Sm ∼ (coth r)j means that there exist positive constants
C1 and C2 such that C1(coth r)j ≤ Sm ≤ C2(coth r)j . Here C1 and C2 will
depend only on m, n, k, � and r0.

Similarly, we have

S� ∼
{

(coth r)� if � ≤ n − k,

(coth r)2(n−k)−� if � > n − k.

Therefore,

F =
Sm

S�
∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(coth r)m−� if m, � ≤ n − k,

(coth r)�−m if m, � > n − k,

(coth r)2(n−k)−m−� if � ≤ n − k < m,

(coth r)m+�−2(n−k) if m ≤ n − k < �.

By Theorem 6.2, we obtain that the flow exists forever if and only if the
power of coth r is negative in the asymptotic estimate for F above. That is,
if and only if m and � satisfy one of the following conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m < � if m, � ≤ n − k,

� < m if m, � > n − k,

2(n − k) < m + � if � ≤ n − k < m,

m + � < 2(n − k) if m ≤ n − k < �.

It is straightforward to see the above inequalities are equivalent to the
inequality |m − (n − k)| < |� − (n − k)|, which is our conclusion. �
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Remark 6.3. In particular, the cases k = n, m = 1 and � = 0 are the
first examples we are aware of in the literature of a locally convex com-
pact hypersurface flowing by mean curvature and converging smoothly to
a submanifold in infinite time. In addition, the cases k = n − 1, m = 0 and
� = 1 give examples of (backwards parabolic) inverse mean curvature flow
existing forever and converging to a totally geodesic hypersurface. After
reversing time to obtain parabolicity, this example of − 1

H flow is properly
divergent as t → ∞.
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