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On one extremal property of a regular simplex
Vladislav Babenko, Yuliya Babenko, Nataliya Parfinovych,

and Dmytro Skorokhodov

In this paper, we show that the Lp-error of asymmetric linear
approximation of the quadratic function Q(x) =

∑d
j=1 x2

j on sim-
plices in R

d of fixed volume is minimized on regular simplices.

1. Introduction

One important problem in geometry is to study the approximation (in a
specified metric) of smooth convex bodies by various polytopes. For instance,
questions of approximating convex bodies by inscribed or circumscribed
polytopes, by polytopes with fixed number of vertices or faces, by poly-
topes of best approximation, etc. have been studied in this direction. After
some occasional results in the plane, the book of Fejes Toth [27] was the
first to provide a large number of problems, ideas and results on polytopal
approximation in dimensions two and three, concentrating specifically on
extremal properties of regular polytopes. Many extensions have been made
afterwards to higher dimensions, other metrics, etc. (see [7, 8, 16, 17] and
references therein).

On the other hand, the question on approximation of functions, defined
on a polytope, by piecewise linear functions, generated with the help of trian-
gulations, in Lp-metrics is of great importance in approximation theory. The
problems of interpolation, best and best one-sided approximation of func-
tions by linear splines (i.e., piecewise linear functions) have been considered.
The question of finding optimal adaptive triangulations, i.e., triangulations
that depend on the function being approximated (see, for instance, [13,14]),
is of particular interest for applications. In order to construct adaptive tri-
angulations many authors took into account the Hessian of the function (or
curvature of its graph) (see [5, 6, 10,12,18,24]).

Note that the construction of the best (in a specified sense) polytope
for an individual convex body, or construction of the best triangulation
for approximation of a specific individual function, is an extremely difficult
problem. The above-mentioned papers have dealt only with asymptotically
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optimal sequences of polytopes or asymptotically optimal sequences of tri-
angulations.

One possible method to construct an asymptotically optimal sequence
of polytopes or triangulations is as follows. As the first step, we construct
an intermediate approximation of the convex body surface (or the func-
tion, respectively) by piecewise quadratic surface (function), and then solve
the problem of approximating the piecewise quadratic surface (function) by
piecewise linear ones. The latter, in turn (at least for d = 2), is equivalent
to solving the following optimization problem (we shall give its statement
for approximation of functions).

Let a quadratic function Q and a simplex T in R
d of unit volume be

given. We shall consider the best Lp-approximation of function Q by linear
functions defined on T (or the best one-sided approximation, which coincide
with the deviation of interpolant for positively definite Q), and the problem
is to find a simplex T ∗, for which the corresponding error is minimal. (The
known solutions of this problem are listed in Section 3.)

Therefore, in a number of questions of geometry and approximation
theory, it is important to find a simplex of fixed (unit) volume such that
the error of the best approximation of a given quadratic function on this
simplex in a specified metric or the best approximation with constraints
(for instance, one-sided) is minimized.

In approximation theory, there exists a tool to view both the problem
of finding the best approximation without constraints and the problem of
finding the best approximation with constraints “under one umbrella”. The
latter can be viewed as the best approximation in the spaces with asym-
metric norm or so-called (α, β)-approximation (see, for example, [1, 2, 20]),
when positive and negative parts of the difference between function and the
approximant are “weighted” differently. Such type of approximations are of
a separate interest, since they can be considered as the problems of approx-
imation with non-strict constraints (see below for more precise statements),
when constraints are allowed to be violated, but the penalty for the violation
is introduced into the error measure. We think that such a method could
also be interesting for certain geometric problems.

Therefore, the purpose of this paper is to prove the optimality of a reg-
ular simplex in the problem of minimizing (over the simplices unit volume)
the best (α, β)-approximation in Lp-metric of quadratic function
∑d

j=1 x2
j by linear functions. Note that with the help of linear transfor-

mations the solution of this problem allows us to obtain the solution of
analogous optimization problems for an arbitrary positive definite quadratic
form.
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The paper is organized as follows. Section 2 contains definitions, nota-
tions and rigorous statements of the problem we study and closely related
problems. Previous results and the main result of the paper are given in
Section 3. Section 4 is devoted to the proof of the main result.

2. Notations, definitions and statements of the problems

Let d ∈ N and let R
d be the space of points x = (x1, . . . , xd). Every point

x ∈ R
d determines (and is determined by) the row-vector with coordinates

(x1, . . . , xd), and we shall reserve the notation x for such a vector. The
Euclidean distance between points a,b ∈ R

d is defined as usually by

‖a − b‖2 :=

⎛

⎝
d∑

j=1

(aj − bj)2

⎞

⎠

1/2

.

For a row-vector x, let xt be the column-vector transponent to x. For a
square matrix J, we denote its transponent matrix by Jt.

For a measurable bounded set G ⊂ R
d, let Lp(G), 1 ≤ p ≤ ∞, be the

space of measurable and integrable in the power p (essentially bounded if
p = ∞) and functions f : G → R endowed with the usual norm

‖f‖Lp(G) :=

{(∫
G |f(x)|p dx

) 1
p if 1 ≤ p < ∞,

esssup{|f(x)| : x ∈ G} if p = ∞.

Let f ∈ Lp(G) and let a locally compact subset H ⊂ Lp(G) be given.
Set E(f ; H)Lp(G) to be the best approximation of the function f by H in
the Lp-norm, i.e.,

E(f ; H)Lp(G) := inf{‖f − u‖Lp(G) : u ∈ H}.

In addition, set

(2.1) E±(f ; H)Lp(G) := inf{‖f − u‖Lp(G) : ±u ≤ ±f, u ∈ H}.

Quantity (2.1) is called the best approximation from above (E−(f ; H)Lp(G))
or below (E+(f ; H)Lp(G)) of the function f by the subset H in the Lp-norm.
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The quantities E−(f ; H)Lp(G) and E+(f ; H)Lp(G) are called the best one-
sided approximations. For α, β > 0 and f ∈ Lp(G), let

|f(x)|α,β := αf+(x) + βf−(x),

where g±(x) := max{±g(x); 0}. Define the asymmetric Lp-norm as follows:

‖f‖Lp;α,β(G) := ‖αf+ + βf−‖Lp(G)

=

⎧
⎨

⎩

(∫
G |f(x)|pα,β dx

) 1
p if 1 ≤ p < ∞,

esssup{|f(x)|α,β : x ∈ G} if p = ∞.

Asymmetric norms in connection with various problems in approximation
theory were considered in papers [1, 4, 21] and books [19, 20, 22]. By
E(f ; H)p;α,β denote the best (α, β)-approximation [1, 20] of the function
f by H in the Lp-norm, i.e.,

E(f ; H)Lp;α,β(G) = inf{‖f − u‖Lp;α,β(G) : u ∈ H}.

Note that for α = β = 1, we have E(f ; H)Lp;1,1(G) = E(f ; H)Lp(G). Babenko [1]
proved that the following limit relations hold (see also [20, Theorem 1.4.10]):

(2.2)
lim

β→+∞
E(f ; H)Lp;1,β(G) = E+(f ; H)Lp(G),

lim
α→+∞

E(f ; H)Lp;α,1(G) = E−(f ; H)Lp(G).

This allows us to include the problem of the best unconstrained approxima-
tion and the problem of the best one-sided approximation into the family of
problems of the same type, and consider them from a general point of view
(for more on this motivation, see [2, 3]). Because of the relation

‖f − u‖p
p;1,β = ‖f − u‖p

p + (βp − 1)‖(f − u)−‖p
p, β > 1,

the problem of the best (1, β)-approximation can be considered as the prob-
lem of the best approximation with non-strict constraint f ≤ u. This con-
straint is allowed to be violated, but the penalty

(βp − 1)‖(f − u)−‖p
p

for its violation is introduced into the error measure. In what follows, we
shall allow the value +∞ for α or β, in that case identifying E(f ; H)Lp;α,β(G)
with the corresponding one-sided approximation.
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Let

S1(G) := {g(x) = axt + c : a ∈ R
d, c ∈ R, x ∈ G}.

The space S1(G) will be the main approximation set in this paper. Let
also T = {t1, . . . , td+1} be the d-dimensional simplex with vertices tj , j =
1, . . . , d + 1. We shall consider the following optimization problem.

Let Q(x) = xxt, and for T ⊂ R
d, set

σp;α,β;d(T ) :=
E(Q; S1(T ))Lp;α,β(T )

|T |1+ 1
p

,

where |T | stands for the d-dimensional volume of the simplex T . The purpose
of this paper is to solve

Problem 1. Find

(2.3) σp;α,β;d := inf
T

σp;α,β;d(T )

and describe all simplices T , for which the infimum in the right-hand part
of (2.3) is achieved.

A solution to Problem 1 will allow to solve the following related prob-
lems.

Problem 2. Find

(2.4) σp;d := inf
T

E(Q; S1(T ))Lp(T )

|T |1+ 1
p

and describe all simplices T , for which the infimum in the right-hand part
of (2.4) is achieved.

Problem 3. Find

(2.5) σ±
p;d := inf

T

E±(Q; S1(T ))Lp(T )

|T |1+ 1
p

and describe all simplices T , for which the infimum in the right-hand part
of (2.5) is achieved.
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3. History and the main result

Note that the quantity E+(Q; S1(T ))Lp(T ) coincides with the error of linear
interpolation of the quadratic function Q(x) at the vertices of the simplex T ,
and the quantity E−(Q; S1(T ))Lp(T ) coincides with the error of tangential
interpolation of Q(x) on the simplex T . In view of formulas (2.2), we have

σ+
p;d = lim

β→+∞
σp;1,β;d and σ−

p;d = lim
α→+∞

σp;α,1;d.

The quantity σ+
p;d has been considered for d = 2 in connection with the

problem of finding the best triangulation �N consisting of N triangles of
the set G ⊂ R

2, provided that the Lp-error of interpolation at the vertices
of �N of convex function f is minimized.

The first attempt to find σ+
p;d is due to D’Azevedo and Simpson [12], who

computed σ+
∞;2. To the best of our knowledge, the progress on this problem

can be outlined as follows:

(1) d = 2, p = ∞ [12];

(2) d ≥ 2, p = ∞ [26];

(3) d = 3, p = 2 [9];

(4) d = 2, p = 1 [7];

(5) d = 2, p = 2 [25];

(6) d ≥ 2, p ∈ N [10];

(7) d = 2, p ∈ (0,∞) [6];

(8) d ≥ 2, p ∈ (1,∞) [11].

Remark 3.1. Note that σ+
p;d for d = 2 and p ∈ (1,∞) was independently

found by Chen [11] and Babenko, et al. [6].

Remark 3.2. By Lp-error in the case p ∈ (0, 1), we understand the follow-
ing expression:

E(f ; H)Lp(G) := inf

{(∫

G
|f(x) − u(x)|p dx

) 1
p

: u ∈ H

}

.

Remark 3.3. Infimum in Problem 3 is achieved only on regular simplices.
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To the best of our knowledge, Problem 2 was solved only in the case
d = 2, p = 2 and α = β = 1 by Nadler [23,24]. In the next section, we shall
give the solution of Problem 1 for all α, β > 0, 1 ≤ p ≤ ∞ and d ∈ N.

Let T0 be a regular simplex of unit volume in R
d. The main result of our

paper is the following:

Theorem 3.1. Let α, β > 0, d ∈ N and 1 ≤ p ≤ ∞. Then

σp;α,β;d = σp;α,β;d(T0).

In view of (2.2) we obtain the following statements.

Corollary 3.1. Let d ∈ N and 1 ≤ p ≤ ∞. Then

σp;d =
E(Q; S1(T0))Lp(T0)

|T0|1+ 1
p

.

Corollary 3.2. Let d ∈ N and 1 ≤ p ≤ ∞. Then

σ±
p;d =

E±(Q; S1(T0))Lp(T0)

|T0|1+ 1
p

.

Recall that E+(Q; S1(T0)) is the error of linear interpolation of
function Q.

The next section is devoted to the proof of this theorem.

4. Proof of the main result

Let α, β > 0 be fixed throughout this section. Note that the value of the
quantity E(Q; S1(T ))Lp;α,β(T ) is independent of translations of the simplex
T and its volume. For simplices T , T ′ ⊂ R

d, we shall write T = T ′ if there
exists a motion F of the space R

d such that F (T ) = T ′, and we shall write
T 
= T ′ otherwise.

The proof of the main theorem consists of two parts contained in the
following two lemmas.

Lemma 4.1. Let T be an arbitrary d-dimensional simplex of unit volume.
Then there exists a constant C > 0, independent of T , such that

σp;α,β;d(T ) ≥ C(diam T )2.
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Lemma 4.2. If T , T 
= T0, is a simplex of unit volume in R
d then there

exists a simplex T ∗ ⊂ R
d of unit volume such that

σp;α,β;d(T ) > σp;α,β;d(T ∗).

Indeed, in view of Lemma 4.1, there exists an optimal d-dimensional
simplex T ′ of unit volume such that σp;α,β;d = σp;α,β;d(T ′). Then, Lemma 4.2
gives T ′ = T0.

Proof of Lemma 4.1. Let Td := T = {t1, t2, . . . , td+1} be a simplex of unit
volume. Assume that ‖t1 − t2‖2 = diam Td. In addition, for j = 1, . . . , d − 1,
let Tj = {t1, t2, . . . , tj+1} be a simplex in R

j .
First, let us consider the case 1 ≤ p < ∞. For j = 2, . . . , d, by hj denoting

the length of the height from the vertex tj of the simplex Tj to the simplex
Tj−1. For every a = (a1, . . . , ad) ∈ R

d, let a′ = (a1, . . . , ad−1). Then,

σp
p;α,β;d(Td) = inf

a∈Rd, c∈R

∫

Td

|xxt − axt − c|pα,β dx

= inf
a∈Rd, c∈R

∫ hd

0

∫

u

hd
Td−1

|u2 + yyt − adu − a′yt − c|pα,β dydu

≥
∫ hd

0

(
u

hd

)2p+(d−1)

σp
p;α,β;d−1(Td−1) du

=
hd

2p + d
σp

p;α,β;d−1(Td−1).

Proceeding by induction on d, we verify that

σp
p;α,β;d(Td) ≥ h2h3 . . . hd

(2p + 2)(2p + 3) · · · (2p + d)
σp

p;α,β;1(T1)

≥ Cp · h2h3 . . . hd

d!
· (diam Td)2p+1 = Cp(diam Td)2p,

where Υ is some positive constant independent of the simplex Td.
Let us turn to the case p = ∞. In this case, we obtain

σ∞;α,β;d(Td) ≥ σ∞;α,β;1(T1)

= inf
k∈R,c∈R

sup
u∈[0,diam Td]

|u2 − ku − c|α,β ≥ Υ(diam Td)2.

�
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Proof of Lemma 4.2. Let T = {w1,w2, t1, . . . , td−1} 
= T0 be a simplex of
unit volume. Without loss of generality, we may assume that ‖w1 − t1‖2 
=
‖w2 − t1‖2. Clearly, we can always choose the coordinate system in R

d so
that the vertices of T have the following coordinates:

w1 = (−δ, 0, 0, . . . , 0), w2 = (δ, 0, 0, . . . , 0),

where δ := 1
2‖w1 − w2‖2, and the remaining vectors t1, t2, . . . , td−1 have the

following coordinates:

t1 =: ( b1 a1,1 0 0 . . . 0 0 ),
t2 =: ( b2 a1,2 a2,2 0 . . . 0 0 ),
t3 =: ( b3 a1,3 a2,3 a3,3 . . . 0 0 ),
...

...
...

...
...

...
...

td−2 =: ( bd−2 a1,d−2 a2,d−2 a3,d−2 . . . ad−2,d−2 0 ),
td−1 =: ( bd−1 a1,d−1 a2,d−1 a3,d−1 . . . ad−2,d−1 ad−1,d−1 ).

Note that in view of our assumption, b1 
= 0. In addition, it can be easily
seen that aj,j 
= 0 for all j = 1, . . . , d − 1.

Let

b := (b1, . . . , bd−1)

and

A :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1,1 a1,2 a1,3 . . . a1,d−2 a1,d−1
0 a2,2 a2,3 . . . a2,d−2 a2,d−1
0 0 a3,3 . . . a3,d−2 a3,d−1
...

...
...

. . .
...

...
0 0 0 . . . ad−2,d−2 ad−2,d−1
0 0 0 . . . 0 ad−1,d−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Since the matrix A is non-singular, set

(4.1) y = (y1, . . . , yd−1) := bA−1.

Let I be the identity matrix of size (d − 1) × (d − 1). In addition, set
R := yty + I. It can be easily seen that the matrix R is positive definite.
Therefore, in view of the Cholesky decomposition (a standard technique in
numerical analysis, whose description can be found, for instance, in [15]),
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there exists an upper triangular matrix U = (uk,j)1≤k,j≤d−1 such that

R = UtU.

Moreover, for every j = 1, . . . , d − 1, we have uj,j =
√

Dj

Dj−1
, where

(4.2)

D0 := 1, Dk := det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + y2
1 y1y2 y1y3 . . . y1yk−1 y1yk

y1y2 1 + y2
2 y2y3 . . . y2yk−1 y2yk

y1y3 y2y3 1 + y2
3 . . . y3yk−1 y3yk

...
...

...
. . .

...
...

y1yk−1 y2yk−1 y3yk−1 . . . 1 + y2
k−1 yk−1yk

y1yk y2yk y3yk . . . yk−1yk 1 + y2
k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

for all k = 1, . . . , d − 1. Consequently, uj,j > 0 for every j = 1, . . . , d − 1.
Let Q = (qk,j)1≤k,j≤d−1 be the diagonal matrix such that qj,j = uj,j , j =

1, . . . , d − 1. We define

U := Q−1U.

Then U is the unit upper triangular matrix. Therefore,

R = UtQ2U.

Set

M := UA.

Denote the elements of M by mk,j , i.e., M = (mk,j)1≤k,j≤d−1. Note that for
every j = 1, . . . , d − 1, it follows that mj,j = aj,j .

Let us now consider the simplex T̃ = {w1,w2, t̃1, . . . , t̃d−1}, whose ver-
tices have the following coordinates:

t̃1 := ( 0 a1,1 0 0 . . . 0 0 ),
t̃2 := ( 0 m1,2 a2,2 0 . . . 0 0 ),
t̃3 := ( 0 m1,3 m2,3 a3,3 . . . 0 0 ),
...

...
...

...
...

...
...

t̃d−2 := ( 0 m1,d−2 m2,d−2 m3,d−2 . . . ad−2,d−2 0 ),
t̃d−1 := ( 0 m1,d−1 m2,d−1 m3,d−1 . . . md−2,d−1 ad−1,d−1 ).

Obviously, the volumes of simplices T and T̃ coincide.
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Now we shall construct the linear transformation S : R
d → R

d such that
S(T̃ ) = T . To that end, set

h := bM−1 ∈ R
d−1,

and define the linear transformation S with the help of the matrix

S =

⎛

⎜
⎜
⎜
⎝

1 h
0
...
0

(U)−1

⎞

⎟
⎟
⎟
⎠

.

Note that detS = 1. Then for every a = (a1, a2, . . . , ad) ∈ R
d and c ∈ R, it

follows that

(4.3) L := ‖xxt − axt − c‖Lp;α,β(T ) = ‖vStSvt − aSvt − c‖Lp;α,β(˜T ).

Let us consider the simplex T̂ = {w1,w2, t̂1, . . . , t̂d−1} such that

t̂1 := ( −b1 a1,1 0 0 . . . 0 0 ),
t̂2 := ( −b2 a1,2 a2,2 0 . . . 0 0 ),
t̂3 := ( −b3 a1,3 a2,3 a3,3 . . . 0 0 ),
...

...
...

...
...

...
...

t̂d−2 := ( −bd−2 a1,d−2 a2,d−2 a3,d−2 . . . ad−2,d−2 0 ),
t̂d−1 := ( −bd−1 a1,d−1 a2,d−1 a3,d−1 . . . ad−2,d−1 ad−1,d−1 ).

It can be easily verified that the linear transformation Ŝ : R
d → R

d defined
with the help of the matrix

Ŝ =

⎛

⎜
⎜
⎜
⎝

1 −h
0
...
0

(U)−1

⎞

⎟
⎟
⎟
⎠

transforms the simplex T̃ into the simplex T̂ . Therefore, for â := (−a1,
a2, . . . , ad), we obtain

(4.4) L̂ := ‖xxt − âxt − c‖Lp;α,β(̂T ) = ‖vŜtŜvt − âŜvt − c‖Lp;α,β(˜T ).
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Due to the symmetry of simplices T and T̂ , we obtain L = L̂. Then
from (4.3) and (4.4), we derive that

(4.5) L =
1
2
(L + L̂) ≥

∥
∥
∥
∥

1
2

[
v(StS + ŜtŜ)vt − (aS + âŜ)vt − 2c

]∥∥
∥
∥

Lp;α,β(˜T )
.

Note that

2D := StS + ŜtŜ =
(

1 0 . . . 0
ht

[
(U)−1

]t

)

⎛

⎜
⎜
⎜
⎝

1 h
0
...
0

(U)−1

⎞

⎟
⎟
⎟
⎠

+
(

1 0 . . . 0
−ht

[
(U)−1

]t

)

⎛

⎜
⎜
⎜
⎝

1 −h
0
...
0

(U)−1

⎞

⎟
⎟
⎟
⎠

= 2

⎛

⎜
⎜
⎜
⎝

1 0 . . . 0
0
...
0

hth + [(U)−1]t(U)−1

⎞

⎟
⎟
⎟
⎠

.

Since h = bM−1 = bA−1(U)−1, we have

hth + [(U)−1]t(U)−1 = [(U)−1]t[(A−1)tbtbA−1 + I](U)−1

= [(U)−1]tR(U)−1 = Q2.

Therefore,

D =

⎛

⎜
⎜
⎜
⎝

1 0 . . . 0
0
...
0

Q2

⎞

⎟
⎟
⎟
⎠

,

and D is the diagonal matrix with elements 1, D1,
D2
D1

, . . . , Dd−1

Dd−2
on the main

diagonal (numbers Dj , j = 1, . . . , d − 1, were defined in (4.2)). Let F be
the linear transformation defined with the help of the diagonal matrix F,
having elements D

1
2d

d−1, D
1
2d

d−1 ·
√

1
D1

, D
1
2d

d−1 ·
√

D1
D2

, . . . , D
1
2d

d−1 ·
√

Dd−2

Dd−1
on the

main diagonal. It can be easily seen that detF = 1. Let T ∗ = F−1(T̃ ). Then,
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in view of (4.5),

L ≥ D
1
d

d−1‖zz
t − gzt − c′‖Lp;α,β(T ∗),

where g = 1

2D
1
2d
d−1

(aS + âŜ)F and c′ = c

D
1
2d
d−1

. Consequently,

σp;α,β;d(T ) ≥ D
1
d

d−1σp;α,β;d(T ∗).

Let us show that the assumption ‖w1 − t1‖2 
= ‖w2 − t1‖2 yeilds
Dd−1 > 1. Indeed, since the matrix R is positive definite, it follows that

(4.6) Dd−1 = det (yty + I) = (1 + λ1) · · · (1 + λd−1) ≥ 1,

where λj ≥ 0, j = 1, . . . , d − 1, are the eigenvalues of the matrix yty (the
existence of non-negative eigenvalues is guaranteed by positive semidefinite-
ness and symmetry of yty). Inequality (4.6) becomes an equality if and only
if λj = 0 for all j = 1, . . . , d − 1, or, that is the same, yj = 0 for every j =
1, . . . , d − 1. In view of (4.1) and non-singularity of the matrix A, this yields
that bj = 0 for all j = 1, . . . , d − 1. However, this contradicts the fact that
b1 
= 0, which follows from the assumption ‖w1 − t1‖2 
= ‖w2 − t1‖2. �
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