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Manifolds admitting both strongly irreducible and
weakly reducible minimal genus Heegaard splittings

TsuvyosHI KOBAYASHI AND YO’AV RIECK

We construct infinitely many manifolds admitting both strongly
irreducible and weakly reducible minimal genus Heegaard split-
tings. Both closed manifolds and manifolds with boundary tori are
constructed.

1. Introduction

The pioneering work of Casson and Gordon [1] shows that a minimal genus
Heegaard splitting of an irreducible, non-Haken three-manifold is necessarily
strongly irreducible; by contrast, Haken [2] showed that a minimal genus
(indeed, any) Heegaard splitting of a composite three-manifold is necessarily
reducible, and hence weakly reducible. The following question of Moriah [9]
is therefore quite natural:

Question 1.1 ([9, Question 1.2]). Can a three-manifold M have both
weakly reducible and strongly irreducible minimal genus Heegaard split-
tings?

We answer this question affirmatively:

Theorem 1.1. There exist infinitely many closed, orientable three-
manifolds of Heegaard genus 3, each admitting both strongly irreducible and
weakly reducible minimal genus Heegaard splittings.

Theorem 1.1 is proved in Section 3. In Remark 3.2 we offer a strategy
to generalize Theorem 1.1 to construct examples of genus g, for each g >
3; it is easy to see that no such examples can exist if g < 3. In Section
4, we give examples of manifolds with one, two or three torus boundary
components, each admitting both strongly irreducible and weakly reducible
minimal genus Heegaard splittings. Moreover, for each manifold with two
boundary components, we construct four minimal genus Heegaard surfaces,
two weakly reducible, one separating the boundary components and one that
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does not, and similarly two strongly irreducible minimal genus Heegaard
surfaces. For a precise statement, see Theorem 4.1.

In an effort to keep this article short, we refer the readers to Section 3
of [7] for definitions and background material. Unless otherwise stated, we
follow the notations of that paper.

2. Preliminaries
2.1. Constructing strongly irreducible Heegaard splittings

In this section, we introduce a method for constructing strongly irreducible
Heegaard splittings using two-bridge link exteriors; this is taken out of [6].

Definition 2.1.

(1) A two-string tangle (B>;t1,t3) is a pair of three-ball B® and two dis-
joint arcs t; and to properly embedded in B3.

(2) A tangle is called two-string trivial tangle if it is homeomorphic (as a
triple) to (D? x [0,1]; {p} x [0,1] : {¢} x [0,1]), where D? is a two-disk
and p and ¢ are two distinct points in int(D?).

For Y C X with dim X =dimY, we denote the frontier of ¥ in X
by Frx(Y). Let (B3;t1,t2) be a two-string trivial tangle. Let H = cl(B?\
(N(t1) UN(t2))) and A; = Frps(N(t;)), i = 1,2. Note that H is a genus two
handlebody, A; and As are annuli in H and the pair {A;, A2} is primitive
in H (see Figure 1), i.e., there exist pairwise disjoint meridian disks Ay,
Ay C H so that

(1) A; N A; is an essential arc in 4; (i = 1,2) and
(2) A1NAy, AonAp =0.

Figure 1: Exterior of a trivial tangle.
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A link L C S2 is called a two-bridge link, if it can be expressed as the
union of two two-string trivial tangles; more precisely, if (S%; L) = (B;t1,t2) U
(B';t),t,), where (B;t1,t2) and (B';t),t,) are two-string trivial tangles,
BNB =90B=0B" and L = (t; Ut}) U (t2Ut}). Note that in this paper
by a two-bridge link we always mean a two-component link, and not a two-
bridge knot.

Let (H,A; U Ay) be as above and (H', A] U A)) be a copy of (H, A1 U
Ay), P =cl(0H \ (A1 U Ay)), and similarly, P’ = cl(0H" \ (A} U A})). Let L
be a two-bridge link. Then we see from the above that there exists a home-
omorphism h : P — P’ such that E(L), the exterior of L, is homeomorphic
to HUy, H and OE(L) = (A; U A}) U (A2 U A)), so that 0A; and 0A] are
meridian curves (i = 1,2). The image of P = P’ in E(L) is called a bridge
sphere.

Let N be a (possibly disconnected) orientable, irreducible, 0-irreducible
three-manifold such that ON consists of two tori T} and T and each com-
ponent of N has non-empty boundary (hence, N consists of at most two
components). Suppose that there exists a three-dimensional sub-manifold
R C N such that

(1) each component of R is a handlebody and Fry(R) is incompressible
in N;
(2) T; N R (i = 1,2) consists of an annulus, say 4;, such that
(a) A; is incompressible in N and
(b) A; is O-incompressible in R (i.e., there does not exist a disk properly
embedded in R that intersects A; in an essential arc);

(3) each component of cI(N \ R) = R’ is a handlebody such that T; N R’
(i =1,2) consists of an annulus, say A satisfying
(a) A] is incompressible in N and
(b) Al is O-incompressible in R'.

With notations as above, let M be the three-manifold obtained from
E(L) and N by identifying their boundary by an orientation reversing home-
omorphism ON — 9(E(L)) such that A; (A} resp.) is mapped to A; (A}
resp.). Let V.= HU R C M and similarly V' = H' U R’ C M. Since A; U Az
is primitive in H, H is obtained by attaching a single one-handle to two solid
tori, with Ay a longitudinal annulus on one solid torus and As a longitudi-
nal annulus on the other. Hence, gluing H to R along A; U As is equivalent
to attaching a single one-handle to R, and similarly for H' and R’. We see
that V (V' resp.) is a handlebody obtained from R (R’ resp.) by attaching
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Figure 2: V is obtained from R by attaching a 1-handle.

a one-handle (see Figure 2), and therefore V UV is a Heegaard splitting of
M. For this Heegaard splitting the following holds:

Proposition 2.1. With notations as above, if L is not the trivial link or
the Hopf link, then the Heegaard splitting V U V' is strongly irreducible.

Sketch of proof. Proposition 2.1 is identical to Proposition 3.1 of [6] and the
proof can be found there. For the convenience of the readers, we sketch it
here. Let D C V and D’ C V' be a pair of meridian disks. Minimize the
intersection of D with A; U Ay and the intersection of D’ with A} U A}. By
symmetry, we have the following three cases:

(1) DN (A1 U Ag) and D'N(AjUAL) =0,

(2) DN (AU Ag) and D' N (A} U AY) # 0,

(3) DN (A1 UAy) #0 and D' (A, U AL) #0.

=0
=0

In the first case, D (resp. D') is the meridian disk of the tangle (B;t1,t2)
(resp. (B';t},t})); since L is not the trivial link, D intersects D’ more than
twice. In the second case, D is the meridian disk of the tangles (B;t1,t2).
Consider an outermost disk on D’, say ¢'. Note that &' C H'. If the arc of §’
on A} or Al (say the latter) is inessential, we can surger D’ along the disk
component of A} \ ¢’ to obtain a meridian disk of the tangle (B’;t),t}); the
proof now is the same as the first case. Else, §’ gives a boundary compression
for A} or A}. Again, since L is not the trivial link, we see that |[D’ N D| >
|0’ N D] > 1.

In the third case, we consider outermost disks, § on D, and ¢ on D’.
If the arc of 0 on A; or Ap is inessential, or the arc of ¢’ on A} or A is
inessential, then arguments similar to the above work. Suppose § on A; or
Ay and ¢ on A} or Al are essential. Since L is not the trivial link or the
Hopf link, we see that |D' N D| > [§' N d| > 1. O
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2.2. Spines of amalgamated Heegaard splittings.

A spine of a compression body C' is a graph A embedded in C' so that C'\
(AU O-C) is homeomorphic to 9;C x (—o00,0]. Let C'UC’ be a Heegaard
splitting of a manifold M; a graph I' C M is a spine for C' if there exists an
ambient isotopy of M, so that the image of I' after this isotopy is contained
in C as a spine. Simultaneous spines of C' U C’ are two disjointly embedded
graphs I', IV C M, so that after an ambient isotopy of M, the image of T’
(I resp.) is contained in C' (C” resp.) as a spine.
For the definition of amalgamation of Heegaard splittings, see [10].

Proposition 2.2. Let My and Ms be manifolds so that OMy and OMs are
connected and homeomorphic. Fori = 1,2, let H; U C; be Heegaard splittings
of M;, where H; is a handlebody and C; a compression body. Let p; (resp.
i) be a spine of H; (resp. C;). Let M be a manifold obtained by gluing M
and My along their boundaries. Let H U H' be the amalgamation of Hy U Cy
and Hy U Cs.

Then there exist simultaneous spines of H U H' so that uy U Xy is con-
tained in a spine of H or H', and us U\ is contained in a spine of the
other.

Proof. We denote the image of OM; in M by F, the image of y; in M by
w; and the image of A\; in M by \;. By transversality, we assume as we may
that A\; N A2 = (). The Heegaard surface that gives amalgamation of H; U Cy
and Ho U (5 is given by tubing F along A into M7 and along A9 into Mo,
see Figure 3 (this figure is based on Schultens’ [10, Figure 3]). Note that the
intersection of F' and the amalgamated Heegaard surface is not transverse.

We may suppose that p1 U A9 is contained in H and pg U A is contained
in H'. By compressing H along the disks cl(int(H) N F), we obtain two
handlebodies. One handlebody is isotopic to H; and so we may take pp as its
spine. The other handlebody contains Ao and admits a deformation retract
onto it; moreover, Ay intersects each disk of cl(int(H) N F') at exactly one

/Q 4l &

A - — A —

O

Figure 3: Amalgamation of Heegaard splittings.
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point and has no other intersections with the boundary of this handlebody.
Since the two handlebodies were obtained from H by compressing along the
disks cl(int(H) N F'), it is easy to construct a spine for H by connecting Ao
to p1. H' is treated similarly; the proposition follows. O

3. Proof of Theorem 1.1

We adopt the notations of Section 2.

Let 31 be the trefoil knot and 4, the figure eight knot. Let L =1y Ul
be a hyperbolic two-bridge link. Denote ON (I;) by T; (i = 1,2).

We note that there exists an essential annulus A in E(3;) such that
the closures of the components of F(3;) \ A are solid tori, say N; and Nj,
where A wraps around Nj longitudinally twice and around N longitudi-
nally three times. Hence, Ny N 0E(31) and N{ N OE(31) are incompressible
and boundary incompressible. On the other hand, we note that 4; is a genus
1 fibered knot. Hence we have the following: let S C E(4;) be a minimal
genus Seifert surface for 4; (note that S is a once punctured torus). Let
Ny = N(S) and Nj = cl(E(41) \ N2). Then Ny (N} resp.) is homeomor-
phic to S x [0,1], where No NOFE(41) (N5NOE(41) resp.) corresponds to
0S5 x [0, 1]. Note that S x [0, 1] is homeomorphic to a genus 2 handlebody,
and 0S5 x [0, 1] is incompressible and d-incompressible in S x [0,1]. Let P
be a bridge sphere in E(L). Then as in Section 2, P separates E(L) into two
genus 2 handlebodies, called H and H'. Finally, let M be a three-manifold
obtained from E(3;) U E(41) and E(L) by identifying their boundaries by a
homeomorphism & : (0E(31) UOE(41)) — OE(L)(=T1 UT3), so that h sat-
isfies the following conditions:

(1) h(N1NOE(31)) = HN Ty, hence h(N{ NIE(31)) = H' NT;.
(2) h(N2 N 8E(41)) = H N T5, hence h(Né N 6E(41)) = H' NTs.

Note that the conditions of Proposition 2.1 are satisfied, and so we see
that M admits a strongly irreducible genus 3 Heegaard splitting. Explic-
itly, the splitting surface is obtained from the bridge sphere P by attach-
ing Frp4,)Na (that is, two once-punctured tori) in E(4;) and A in E(3).
Denote this splitting by V Uy, V/, where V and V' are the handlebodies of
N1 UH U Ny and N{ U H' U NJ, respectively, and ¥ is the splitting surface.

The decomposition E(3;) U E(L) U E(4;) is the torus decomposition for
M. In [4, Theorem]|, a complete list of Heegaard genus 2 three-manifolds
admitting non-trivial torus decomposition is given. By consulting that list,
we see that g(M) > 2. Above we constructed a strongly irreducible genus 3
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Heegaard splitting for M. We conclude that g(M) = 3, and that M admits
a strongly irreducible minimal genus Heegaard splitting.

We claim that the sub-manifold £(3;) U E(L) admits a genus 2 Heegaard
splitting. Since A; is primitive in H and A is primitive in H', Ny UH
and N{ U H' are genus 2 handlebodies. Let A= HNT, and A’ = H' NTh.
Let C =cl(NtUH)\ N(A,H)) and C' = (N{UH') UN(A, H). It is clear
that C' is a genus 2 handlebody. It is easy to see that A’ is primitive in
Nj U H', i.e., there is a meridian disk A’ of N U H’ such that A’N A’ is an
essential arc in A’. This implies that C’ is a genus 2 compression body with
0_C'"=AUA =Ty Denoting 0. C by ¥/, we see that C' Uy, C’ is a genus
2 Heegaard splitting of E(3;) U E(L).

Remark 3.1. For future reference, we note the following: Let « be a core
curve of the solid torus N; and o a core curve of the solid torus Nj. By
construction, « is contained in a spine of the handlebody C' and o’ is con-
tained in a spine of the compression body C’. Similarly, the decomposi-
tion M = CUC', where C = (N, UH)UN(A', H') and C' = cl((N] U H') \
N(A',H'")), gives another (possibly isotopic) genus 2 Heegaard splitting of
E(3;) U E(L) so that o is contained in a spine of the handlebody C' and o
is contained in a spine of the compression body C.

It is well known that F/(4;) admits a genus 2 Heegaard splitting. By amal-
gamating a genus 2 Heegaard splitting for E(4;) with a genus 2 Heegaard
splitting of E(31) U E(L), we obtain a weakly reducible Heegaard splitting
of M; by Schultens [10, Remark 2.7] (see also [7, Lemma 2.7] for a more
general statement) this Heegaard splitting has genus 3. This establishes the
existence of weakly reducible minimal genus Heegaard splittings of M.

This completes the proof of Theorem 1.1.

Remark 3.2. The following is a suggestion for a way to generalize the
results of this paper. Fix g > 3. Let H (resp. H') be a genus ¢ — 1 handlebody
and Ay, Ay C OH (resp. A}, A, C OH') be two primitive annuli. Similar
to the construction above, identify cl(OH \ (A1 U A2)) with cl(0H'\ (Aj U
Ab)). To the resulting manifold, glue F(3;) and E(41) in a way that 0H \
(A1 U Az) union two fibers of E(4;) union an essential annulus of E(3;) gives
a genus g Heegaard splitting, say V U V".

The curve complex distance of a Heegaard splitting was defined by
Hempel [3] and was generalized by several authors to bridge decomposi-
tions; note that H U H' is a genus g — 3, two-bridge decomposition (the link
in question is the core of the attached solid tori when filling H U H' along
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the slope defined by H N H'; see, for example, the proof of Proposition 2.2
of [8], where we defined generalized bridge decomposition in terms of a sur-
face with boundary in the link exterior). It is reasonable to expect that if
the distance of H U H' is large, then V' U V' is strongly irreducible and mini-
mal genus (Tomova’s [11] should be useful here). Similar to the construction
above, one obtains weakly reducible minimal genus Heegaard splittings by
considering the decomposition E(3;) U H U H' and E(4;). This would give
manifolds of genus g, for arbitrary g > 3, admitting both weakly reducible
and strongly irreducible minimal genus Heegaard splittings.

4. Further examples: the bounded case

Throughout this section, let M = E(31) U E(L) U E(41) be any of the man-
ifolds constructed in the previous section. Let V Ux, V' be the strongly irre-
ducible Heegaard splitting constructed there.

Let $* C E(41) be the simple, closed curve given in Figure 4. By Fig-
ure 4(a), /* is contained in a once-punctured torus that is a fiber of the
fibration of E(41) over S1. We may choose this fiber to be a component of
XN E(41)

Remark 4.1. We connect 8* to dF(4;1) by an arc as in Figure 4(b). By
using slideisotopy, we see that the exterior of a regular neighborhood of
(OE(41) together with the one-complex) is a genus 2 handlebody (see, for
example, [5, Figures 5 and 6]). This shows that * is contained in a spine
of a compression body (not handlebody) component of a genus 2 Heegaard
splitting of F(41).

Let «, o/ be as in Remark 3.1, so that « C V and o/ C V’. Denote

cl(M \ N(a UB*Ud’)) by X. Denote the boundary components of X by
Ty = 0N (), T« = ON(B*) and Ty = ON(«x

By

(@) (b)

Figure 4: 41, /*, and the arc connecting them.
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Lemma 4.1. X admits two genus three weakly reducible Heegaard surfaces,
denoted by F1 and F», so that

(1) Fy separates To, UTp- and To.
(2) Fy separates T, and Toy U T

Proof. By applying Proposition 2.2 to the Heegaard splitting C' U C” (recall
Remark 3.1) and the genus 2 Heegaard splitting of F/(4;) given in Remark 4.1
we obtain a genus 3 Heegaard splitting of M such that the Heegaard sur-
face separates aU 3* and o/, o U 3* is contained in a spine of one of the
handlebodies and ' is contained in a spine of the other handlebody. This
gives F1.

Analogously, by applying Proposition 2.2 to the Heegaard splitting C' U
c (recall Remark 3.1) and the genus 2 Heegaard splitting of E(4;) given in
Remark 4.1 we obtain F5. O

Lemma 4.2. ¢(X) = 3.

Proof. Since M is obtained from X by Dehn filling, we have that g(X) >
g(M) =3. On the other hand, F; is a genus 3 Heegaard surface for X,
showing that g(X) < g(F1) = 3. O

Definition 4.1. Let C be a compression body and aq,...,a, C C simple
closed curves. We say that a, ..., a, are simultaneous cores, if the following
two conditions hold:

(1) There exist mutually disjoint annuli Ay, ..., 4, C C so that one com-
ponent of 0A; is a; and the other is on 0;.C.

(2) There exist mutually disjoint meridian disks Dy, ..., D, C C so that
«; intersects D; transversely at one point and for i # j, oy N Dj = .

Remark 4.2. It is easy to see that a1,...,a, C C are simultaneous cores
if and only if cI(C'\ N(U";«;)) is a compression body.

Recall that 8* C ¥ N E(41). Let B (resp. ') be a curve obtained by
pushing 3* slightly into V' (resp. V).

Lemma 4.3. The curves a, 3 CV and o/, 3 C V' are simultaneous cores.

Proof. Recall the definition of the handlebody H =V N E(L) given in Sec-
tion 2, and let A1 and A be the meridian disks of H shown in Figure 1. Let



646 Tsuyoshi Kobayashi and Yo’av Rieck

Dy, be a meridian disk of the solid torus Ny = V N E(3,) that intersects the
annulus A = ¥ N E(3) essentially. By attaching two copies of Aj to Da, we
obtain a meridian disk for V', denoted by D,, that intersects o once and is
disjoint from S.

Recall that V' N E(41)(= N3) is homeomorphic to S x [0, 1], where S is
a once-punctured torus. We may suppose that [ corresponds to a curve
Bs x {1/2}, where g is an essential curve on S. Let Dg be a vertical disk
in V' N E(4;) that intersects ( once, that is, Dg corresponds to a disk of the
form v x [0,1], where v is an arc properly embedded in S that intersects
Bs transversely once. By attaching two copies of Ay to Dg, we obtain a
meridian disk for V', denoted by Dg, that intersects 3 once and is disjoint
from o It is easy to see that D, N Dg = (.

The annulus Ag = g x [1/2,1] is embedded in V, with one boundary
component § and the other on OV. Let A be an annulus embedded in N;
with one boundary component « and the other on 9 N1, which intersects the
annulus A at three essential arcs. By attaching three copies of A to Aa,
we obtain an annulus A, embedded in V', with one boundary component «
and the other on V. By construction, A, N Ag = 0.

Using Dq, Dg, Aq and Ag, we see that a and 3 are simultaneous cores.
The curves o/ and 3 are treated similarly. O

Theorem 4.1. For ¢ =1,2,3, there exists infinitely many manifolds M;
so that OM; consists of exactly i tori, g(M;) = 3, and each M; admits both
strongly irreducible and weakly reducible minimal genus Heegaard splittings.

Moreover, each manifold My admits four distinct minimal genus Hee-
gaard surfaces, denoted as Fsll’l, F\}\}h, FSQIO, F\%V%, so that the following four
conditions hold:

1) The Heegaard splittings given by FSI and FSI are strongly irreducible.

(1)
2) The Heegaard splittings given by FLY and F2Y are weakly reducible.
WR WR
3) Fai' and Fy separate the two boundary components of M.
SI WR
(4)

4 FS?IO and FV\}% do not separate the boundary components of M.
Before proving Theorem 4.1, we give the following definition.

Definition 4.2. Let Y7 and Y5 be manifolds so that Y7 is obtained from Y5
by Dehn filling (equivalently, Y5 is obtained from Y7 by removing an open
regular neighborhood of a link in it). Note that Ys C Yj.
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Let ¥ C Y5 be any Heegaard surface. Then 35 is a Heegaard surface of
Yi. We say that Yo C Y] is an induced Heegaard surface (or the Heegaard
surface induced by 32).

Let X1 C Y7 be a Heegaard surface. Suppose that X1 C Y5 and that ¥4
is a Heegaard surface of Ys. We say that > C Ys is an induced Heegaard
surface (or the Heegaard surface induced by ¥1.)

The proof of the following lemma is easy and left to the readers:

Lemma 4.4. Let Y] and Ys be as above. If a Heegaard surface Yo of Yo is
weakly reducible, then so is the induced Heegaard surface. On the other hand,
if X1 C Y] is a strongly irreducible Heegaard surface that induces a Heegaard
surface for Ys, then the induced Heegaard surface is strongly irreducible.

Proof of Theorem 4.1. We deal with the cases i = 1, 2 and 3 in increasing
order of difficulty.

For i = 3, let M3 = X. Then by Lemmas 4.1 and 4.2, g(X ) = 3 and X admits
a weakly reducible minimal genus Heegaard splitting.

Note that §* is isotopic to f; hence X is homeomorphic to cl(M \
N(aUda'Up)). By Lemma 4.3 and Remark 4.2, V UV’ induces a genus
3 Heegaard splitting of cl(M \ N(aU o’ U 3)). Since V U V" is strongly irre-
ducible, Lemma 4.4 shows that the induced Heegaard splitting is strongly
irreducible. The case ¢ = 3 follows.

For i =1, let M; =cl(M\ N(«)). Then g(M;) > g(M)=3. Since X is
obtained from M;j by removing an open neighborhood of o/ and *, g(M;) <
g(X) = 3. We see that g(M;) = 3.

Note that M; is obtained by filling two boundary components of X.
Hence the genus 3 weakly reducible Heegaard splittings for X given in
Lemma 4.1 induces genus 3 weakly reducible Heegaard splittings for Mj.

By Lemma 4.3 and Remark 4.2, V U V'’ induces a genus 3 Heegaard split-
ting for M;. As above, the induced Heegaard splitting is strongly irreducible.
The case i = 1 follows.

For i = 2, let My = cl(M \ N(awU *)). Similar to My, it is easy to see that
9(Mz) = 3.

By Lemma 4.4, each of the two genus 3 weakly reducible Heegaard split-
tings given in Lemma 4.1 induces a genus 3 weakly reducible Heegaard
splitting on Ma, one not separating the components of My (corresponding
to Lemma 4.1(1)), and the other separating them (corresponding to Lemma
4.1(2)). These are the surfaces F&}% and F\}v}DL in the theorem.
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Note that 3 (8’ resp.) is isotopic to 3*; hence, My is homeomorphic to
c(M\ N(aUp)) (cl(M\ N(awU 3)) resp.). By Lemma 4.3 and Remark 4.2,
V UV’ induces a Heegaard splitting for cl(M \ N(aUf)) that does not
separate the boundary components of cl(M \ N(a U 3)). The corresponding
Heegaard surface for My is the surface FSQI’O. Similarly, by Lemma 4.3 and
Remark 4.2, V U V' induces a Heegaard splitting for cl(M \ N(a U ') that
separates the boundary components of cl(M \ N(aU /')). The correspond-
ing Heegaard surface for My is the surface Fsll’l. By Lemma 4.4, FSZI’O and
Fgl’l are strongly irreducible. The case i = 2 follows. O
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