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Manifolds with nonnegative isotropic curvature
Harish Seshadri

We prove that if (Mn, g), n ≥ 4, is a compact, orientable, locally
irreducible Riemannian manifold with nonnegative isotropic curva-
ture, then one of the following possibilities hold:
(i) M admits a metric with positive isotropic curvature.
(ii) (M, g) is isometric to a locally symmetric space.
(iii) (M, g) is Kähler and biholomorphic to CP

n
2 .

(iv) (M, g) is quaternionic-Kähler.
This is implied by the following result:
Let (M2n, g) be a compact, locally irreducible Kähler manifold

with nonnegative isotropic curvature. Then either M is biholomor-
phic to CPn or isometric to a compact Hermitian symmetric space.
This answers a question of Micallef and Wang in the affirmative.

The proof is based on the recent work of Brendle and Schoen on
the Ricci flow.

1. Introduction

A Riemannian manifold (M, g) is said to have nonnegative isotropic curva-
ture (NIC) if

R1313 + R1414 + R2323 + R2424 − 2R1234 ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4}.
In the case of strict inequality above, we say that the manifold has pos-

itive isotropic curvature (PIC). This notion was introduced by Micallef and
Moore [10] where they proved that every compact simply connected mani-
fold with PIC is homeomorphic to a sphere. In this paper, we show that the
study of compact manifolds (throughout this paper a “compact manifold”
will mean a compact manifold without boundary) with NIC reduces to the
study of those with PIC. Our main result is the following theorem:

Theorem 1.1. Let (Mn, g), n ≥ 4, be a compact, orientable, locally irre-
ducible Riemannian manifold with NIC, then one of the following holds:

(i) M admits a metric with PIC.
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(ii) (M, g) is locally symmetric.

(iii) (M, g) is Kähler and biholomorphic to CP
n

2 .

(iv) (M, g) is quaternionic-Kähler.

We note that according to a recent work of Brendle [2], compact Einstein
manifolds with NIC are locally symmetric. Since quaternionic-Kähler mani-
folds are Einstein, this result of Brendle implies that case (iv) in Theorem 1.1
is included in case (iii).

A version of Theorem 1.1 was proved in dimension 4 by Micallef and
Wang [11].

Theorem 1.1 is based on the classification of Kähler manifolds with NIC.
We prove the following result which was conjectured by Micallef and Wang
[11].

Theorem 1.2. Let (M2n, g), 2n = dimRM ≥ 4, be a compact, locally irre-
ducible Kähler manifold with NIC. Then either M is biholomorphic to CPn

or isometric to a compact Hermitian symmetric space.

Theorem 1.2 along with the uniqueness (up to scaling) of the Kähler–
Einstein metric on CPn implies the following:

Corollary 1.1. Let (M, g), dimRM ≥ 4, be a compact, locally irreducible
Kähler–Einstein manifold with NIC. Then (M, g) is isometric to a compact
Hermitian symmetric space.

Remarks

(i) It follows immediately from Theorem 1.1 that if (M, g) is a compact,
orientable, locally irreducible Riemannian manifold with NIC and the
dimension of M is odd (which is precisely the case not treated in [11]),
then either M admits a PIC metric or (M, g) is locally symmetric.

(ii) The four cases in Theorem 1.1 are not mutually exclusive. An example
of a metric, satisfying cases (i) and (ii) in Theorem 1.1, is one of
constant positive sectional curvature. The following remark, the proof
of which is in Section 4, states that this is the only metric for which
that happens:

If (M, g) is one of the following: A compact locally symmetric space
of nonconstant sectional curvature, or a compact Kähler manifold or
a positive quaternionic-Kähler manifold, then M does not admit a
metric of PIC.
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(iii) In [11], Micallef and Wang describe the structure of reducible manifolds
with NIC. Combining their result with Theorem 1.1, one can reduce
the study of manifolds with NIC to those with PIC.

(iv) The following result is an easy corollary of the Brendle–Schoen theo-
rems mentioned below. The proof of this remark is at the end of this
paper.

Let (M, g) be a compact Riemannian manifold with NIC everywhere
and PIC at some point. Then M admits a metric with PIC everywhere.

(v) Results analogous to Theorem 1.1 are known (cf. [1,4,12]) for manifolds
with nonnegative curvature operator and manifolds with nonstrictly
quarter-pinched sectional curvature. Even though NIC is implied by
either of these curvature conditions, Theorem 1.1 does not directly
imply the earlier results.

The proofs of Theorems 1.1 and 1.2 are based on the fundamental papers
of Brendle and Schoen [3,4]. According to their work, if g(t) is the solution to
Ricci flow beginning at a metric g with NIC, then g(t) has NIC for all t. More-
over, if Ft denotes the set of orthonormal four-frames on which the isotropic
curvature vanishes, then for t > 0, Ft is invariant under parallel translation
by the Levi-Civita connection of g(t). From this one quickly sees, using the
Berger holonomy theorem, that g(t) is either PIC or g(t) has holonomy in
U(m) or Sp(m)Sp(1), i.e., (M, g(t)) is Kähler or quaternionic-Kähler.

Suppose now that (M, g(t)) is Kähler. If J is the almost complex struc-
ture, then one knows that Ft contains all orthonormal frames of the form
{e, J(e), f, J(f)}, where e and f are real tangent vectors. If these are the
only elements of Ft, then a version of Frankel’s conjecture due to W. Seaman
implies that M is biholomorphic to CPn. On the other hand, if Ft has other
elements, we will show that the holonomy is a proper subgroup of U(n).
Then Berger’s theorem will imply that (M, g(t)) is symmetric.

Finally, by taking a sequence ti → 0, we can draw the same conclusions
(biholomorphic to CPn or locally symmetric or quaternionic-Kähler) about
g = limi→∞ g(ti).

We remark that the Ricci flow was used to study NIC and PIC in [8,11].

2. NIC and the Ricci flow

In this section, we recall the results of Brendle and Schoen. Let (M, h) be a
compact manifold with NIC. Let g(t), t ∈ [0, ε) be the solution to the Ricci
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flow equation
∂g

∂t
= −2Ric, g(0) = h.

For t ∈ (0, ε), let

Ft =
⋃

p∈M

{(e1, e2, e3, e4)|ei ∈ TpM, g(t)(ei, ej) = δij , i, j = 1, . . . , 4}

be the bundle of g(t)-orthonormal four-frames in M . Consider the subset
Ft ⊂ Ft defined by

Ft := {(e1, e2, e3, e4)|R1313 + R1414 + R2323 + R2424 − 2R1234 = 0},

where R denotes the curvature tensor of g(t), i.e., Ft consists of all g(t)-
orthonormal four-frames (e1, e2, e3, e4) at all points of M , where the isotropic
curvature is zero. The two basic results of Brendle and Schoen that we need
are the following: For t ∈ (0, ε),

(i) g(t) has NIC (Section 2 in [3]).

(ii) Ft is invariant under parallel transport by the Levi-Civita connection
of g(t) (Proposition 5 in [4]).

3. Kähler manifolds with NIC

This section is devoted to the proof of Theorem 1.2.
Let (M, g, J), dimRM = 2n, be a compact Kähler manifold with NIC

with J : TM → TM denoting the almost-complex structure. Let g(t) be the
solution to Ricci flow with g(0) = g. We fix a t > 0 and denote g(t) by g and
Ft by F . Note that by choosing t sufficiently small, we can assume that g(t)
is locally irreducible. Otherwise, g = limt→0 g(t) would be locally reducible
(this can be seen by considering holonomy groups).

Moreover, since (M, h) is Kähler, so is (M, g). This follows from

Theorem 3.1 (Hamilton [7]). Let (M, h) be a compact Riemannian
n-manifold. If the restricted holonomy group of g lies in a subgroup of SO(n),
then it continues to do so for t > 0 under the Ricci flow starting at h.

Note that since the restricted holonomy group Hol0 of (M, g) is contained
in U(n) by the above theorem, either (M, g) is a Hermitian symmetric space
or Hol0 = U(n). In the latter case, Hol is contained in the normalizer of Hol0

in SO(2n) (by the orientability of M). This normalizer is precisely U(n), and
hence Hol = U(n). In either case, (M, g) is Kähler.
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It can be easily checked that for any Kähler manifold (M, g, J), four-
frames of the form (v, J(v), w, J(w)) ∈ F , for any v, w ∈ TpM satisfying
g(v, w) = g(v, Jw) = 0.

The analysis of the Ricci flow splits into two cases, depending on the
set F .

Case I. F does not contain any frame of the form (u, J(u), J(v), v).

We claim that (M, g) is biholomorphic to CPn in this case.
For any p ∈ M , let u, v ∈ TpM with g(u, v) = g(u, J(v)) = 0. As men-

tioned above, by the symmetries of the curvature tensor of a Kähler mani-
fold, we have (u, J(u), v, J(v)) ∈ F , i.e.,

0 = R(u, v, u, v) + R(u, J(v), u, J(v)) + R(J(u), v, J(u), v)(3.1)
+ R(J(u), J(v), J(u), J(v)) − 2R(u, J(u), v, J(v))

= 2(R(u, v, u, v) + R(u, J(v), u, J(v) − R(u, J(u), v, J(v))).

Since (u, J(u), J(v), v) /∈ F , we have

0 < R(u, J(v), u, J(v)) + R(u, v, u, v) + R(J(u), J(v), J(u), J(v))(3.2)
+ R(J(u), v, J(u), v) − 2R(u, J(u), J(v), v)

= 2(R(u, v, u, v) + R(u, J(v), u, J(v) + R(u, J(u), v, J(v))).

Adding (3.1) and (3.2), we get

R(u, v, u, v) + R(u, J(v), u, J(v)) > 0(3.3)

for every p ∈ M and u, v ∈ TpM with g(u, v) = g(u, J(v)) = 0. This condi-
tion, sometimes referred to as orthogonal bisectional curvature in the litera-
ture, is precisely condition (∗∗) in [16, p. 846].

We now state a version of the Frankel conjecture, following [11,14]:
If (M2n, g) is a compact locally irreducible Kähler manifold with NIC

satisfying (3.3), then M is biholomorphic to CPn.

Proof. The proof is the same as in the paper of Seaman [14] except for some
minor changes. For the sake of completeness, we outline it by emphasizing
the parts where the curvature assumptions are used. Note that the sign
convention for the curvature tensor in [11, 14] is the opposite of what we
follow. Seaman’s version of the Frankel conjecture, Theorem B of [14], asserts
the following:

If (M2n, g) is a compact Kähler manifold with NIC satisfying (3.4), then
M is biholomorphic to CPn
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where (3.4) is the condition that

Rikik + Rilil + Rjkjk + Rjljl > 0(3.4)

for all orthonormal vectors ei, ej , ek and el. Our main observation, which is
justified in the steps below, is that we can replace (3.4) by (3.3) and local
irreducibility of the metric to obtain the same conclusion.

Seaman’s proof closely follows the proof of the Frankel conjecture for
positive bisectional curvature by Siu and Yau [15]. There are three points
where the curvature assumptions play a role:

(i) To start the proof one needs to know that π2(M) = Z⊕ torsion.
This is done by showing that b2(M) = 1 and π1(M) = {0} and applying the
Hurewicz theorem. A reading of the proof by Seaman shows that (3.4) is
used to prove that b2(M) = 1. In our case, we do not have (3.4), instead we
have local irreducibility of the metric. This will suffice since Theorem 2.1(b)
of Micallef–Wang [11] (note that b2(M) �= 0, since M is Kähler) implies the
following: Let (M2n, g) be a compact, locally irreducible Riemannian mani-
fold with NIC and b2(M) �= 0. Then b2(M) = 1 and M is simply connected.

As shown below the only curvature assumptions needed in steps (ii) and
(iii) are NIC and positive orthogonal bisectional curvature (3.3).

(ii) Choose a generator a of H2(M, Z) = Z, which is a negative multiple
of the Kähler class, and α be a generator of the free part of π2(M) such that
a(α) = 1. By a result of Kobayashi–Ochiai [9], to show that M is biholo-
morphic to CPn, it is enough to show that c1(M)(α) ≥ n + 1, where c1(M)
denotes the first Chern class of M . By the Sacks–Uhlenbeck theorem [15,
Theorem 5.5], we may represent the free homotopy class of α by

∑k
i=1 fi,

where each fi is harmonic and energy minimizing in its free homotopy class.
One claims that each fi is ± holomorphic. To see this, one needs the complex
formulation of isotropic curvature and the second variation formula for the
energy of minimal surfaces as in the paper of Micallef–Moore [10]. We recall
this below and prove the holomorphicity lemma in detail, following Seaman:

Let (M, g) be a Riemannian manifold. Let E = TM ⊗ C. Extend g to a
symmetric bilinear form (, ) and a Hermitian form 〈〈, 〉〉 on E. For p ∈ M ,
an element v ∈ Ep is said to be isotropic if (v, v) = 0. A two-plane P ⊂ Ep

is isotropic, if every element of P is isotropic. It can be checked that {v, w}
spans an isotropic two-plane if and only if v and w are linearly independent
and

(v, v) = (w, w) = (v, w) = 0.
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Also, SpanC{v, w} is an isotropic two-plane if and only if there exist orthonor-
mal vectors e1, e2, e3 and e4 in TpM such that

v =
‖v‖√

2
(e1 +

√
−1e2), w =

‖w‖√
2

(e3 +
√

−1e4),

where the norm is with respect to 〈〈, 〉〉.
Let

R :
∧2

Ep →
∧2

Ep

denote the complex linear extension of the curvature operator. If v, w,
e1, . . . , e4 are as above, then it can be checked that

(3.5) 4〈〈R(v ∧ w), v ∧ w〉〉 = ‖v‖2‖w‖2 Riso(e1, e2, e3, e4),

where for any tangent vectors X, Y, Z, W

Riso(X, Y, Z, W ) := R(X, Z, X, Z) + R(X, W, X, W ) + R(Y, Z, Y, Z)
+ R(Y, W, Y, W ) − 2R(X, Y, Z, W ).

The assumption in case I is that

Riso(X, J(X), J(Y ), Y ) > 0

for any orthonormal frame (X, J(X), J(Y ), Y ).
Let f : S2 → M be a smooth immersion. Consider F = f∗(E) = f∗TM ⊗

C. We pull-back g, (, ) and 〈〈, 〉〉 and denote them by the same symbols. F
also carries the pull-back of the Levi-Civita connection on M , extended com-
plex linearly. This connection is Hermitian with respect to 〈〈, 〉〉. It is well
known that a Hermitian bundle V on a Riemann surface Σ with a Hermitian
connection ∇ can be endowed with a holomorphic structure ∂, in which a
section s of V is holomorphic if and only if

∇ ∂

∂z̄
s = 0

in any local holomorphic coordinate z on Σ.
Consider S2 as C ∪ {∞} and let Z be the holomorphic vector field, which

is ∂
∂z on C and 0 at ∞. If f is a harmonic map, then f∗Z is a holomorphic

isotropic section of F , where f∗ : TS2 ⊗ C → F . If, in addition, f is stable
and (M, g) has NIC, then it follows from the stability inequality of Micallef
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and Moore that

(3.6) 〈〈R(s ∧ f∗Z), s ∧ f∗Z〉〉 = 0

for any holomorphic section s of F such that s and f∗Z span an isotropic
two-plane.

Now we can prove that a harmonic map into a Kähler manifold with
NIC and positive orthogonal bisectional curvature has to be ± holomorphic,
i.e., J ◦ f∗(Z) = ±

√
−1f∗(Z). �

Proof. Let S = {x ∈ S2|(f∗Z)x = 0}. Then S is a finite set. Take p ∈ S2 \ S.
Let w = (f∗Z)p and Fp = f∗TpM ⊗ C as before. We can write Fp =

F
(1,0)
p ⊕ F

(0,1)
p , where F

(1,0)
p , and F

(0,1)
p are the eigenspaces of J for the

eigenvalues
√

−1 and −
√

−1, respectively.
It is enough to prove that w is an eigenvector of J . Suppose not. Now

w and J(w) span an isotropic two-plane. Also, we can write w = w′ + w′′ as
the sum of nonzero (1, 0) and (0, 1) parts. Since w is also isotropic, we can
find orthonormal e1, e2 ∈ f∗TpM such that g(e1, J(e2)) = 0 and

√
2

w′

‖w′‖ = e1 −
√

−1 J(e1),
√

2
w′′

‖w′′‖ = e2 +
√

−1 J(e2).

Since w ∧ J(w) = −2
√

−1 w′ ∧ w′′, (3.5) gives

〈〈R(w ∧ J(w)), w ∧ J(w)〉〉 = 4〈〈R(w′ ∧ w′′), w′ ∧ w′′〉〉
= ‖w′‖2‖w′′‖2(Riso(e1,−J(e1), e2, J(e2)))

= ‖w′‖2‖w′′‖2(Riso(e1, J(e1), J(e2), e2)) > 0,

which contradicts (3.6). Hence w is an eigenvector for J on the complement
of finitely many points in S2, i.e., f is ± holomorphic on this set. It follows
that f is ± holomorphic on all of S2.

(iii) By (ii), we have

(3.7) α =
k∑

i=1

fi,

where each fi is ± holomorphic. In [16, pp. 853–854], Seaman proves the
following fact:

Let (Mn, g) be a compact Kähler manifold with positive orthogonal
bisectional curvature and let TM denotes the holomorphic tangent bundle of
M . Let f : S2 → M be any nonconstant holomorphic map. By a theorem of
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Grothendieck, f∗TM = L1 ⊕ · · · ⊕ Ln, where the Li’s are holomorphic line
bundles. The claim is that

c1(Li) ≥ 1 ∀i and c1(Li0) ≥ 2 for some i0.

We refer the readers to [14] for a proof.
This result implies that if k = 1 in (3.7) and f1 is holomorphic, then

c1(M)(α) = c1(M)[f∗
1 (S2)] = c1(f∗

1 (TM))[S2] ≥ n + 1. Actually, k = 1
implies that f1 is holomorphic, since c1(M) is a negative multiple of the
Kähler class. In order to show that k = 1, one proves the deformation lemma
[17, Proposition 3, p. 201]. Given this Lemma the proof that k = 1 is iden-
tical to that of Claim 2 of [17, pp. 202–203].

As was observed by Futaki [5], the deformation lemma holds for any
compact Kähler manifold and any holomorphic map f : S2 → M as long as
f∗TM splits as a direct sum of positive line bundles. See [5] or the last part
in [16, p. 854] for a proof. �

Hence we conclude that M is biholomorphic to CPn under the assump-
tions of Case I.

Case II. F contains a frame of the form (u, J(u), J(v), v).

We claim that the restricted holonomy group of (M, g) cannot be the
whole group U(n) ⊂ SO(2n). This will complete the proof of Theorem 1.2
by Berger’s holonomy theorem.

Suppose Hol0(M) = U(n).
The fact that (u, J(u), v, J(v)) and (u, J(u), J(v), v) both belong to F

gives (as in (3.1) and (3.2))

R(u, J(u), v, J(v)) = R(u, J(v), u, J(v)) + R(u, v, u, v)
+ R(J(u), J(v), J(u), J(v)) + R(J(u), v, J(u), v) = 0

which, by the symmetries of Kähler curvature, gives

R(u, J(u), v, J(v)) = R(u, J(v), u, J(v)) + R(u, v, u, v) = 0.(3.8)

We now use the holonomy action of U(n) repeatedly to get a contradic-
tion. First, there is an element of U(n) under which

(3.9) u → 1√
2
(u − J(v)), v → 1√

2
(u + J(v)).

Hence ( 1√
2
(u − J(v)), 1√

2
(J(u) + v), 1√

2
(u + J(v)), 1√

2
(J(u) − v)) ∈ F .
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The equation corresponding to (3.8) is

R

(
1√
2
(u − J(v)),

1√
2
(J(u) + v),

1√
2
(u + J(v)),

1√
2
(J(u) − v)

)
= 0.

This equation gives

R(u − J(v), J(u) + v, u + J(v), J(u) − v)
= R(u, J(u), u, J(u)) + R(u, J(u), u, −v) + R(u, J(u), J(v), J(u))

+ R(u, J(u), J(v),−v) + R(u, v, u, J(u)) + R(u, v, u, −v)
+ R(u, v, J(v), J(u)) + R(u, v, J(v),−v)
+ R(−J(v), J(u), u, J(u)) + R(−J(v), J(u), u, −v)
+ R(−J(v), J(u), J(v), J(u)) + R(−J(v), J(u), J(v),−v)
+ R(−J(v), v, u, J(u)) + R(−J(v), v, u,−v)
+ R(−J(v), v, J(v), J(u)) + R(−J(v), v, J(v),−v) = 0.

The sum of the second, third, fifth and ninth terms on the right side is

R(u, J(u), u, −v) + R(u, J(u), J(v), J(u)) + R(u, v, u, J(u))
+ R(−J(v), J(u), u, J(u)) = 0.

Similarly, the sum of the 8th, 12th, 14th and 15th terms is

R(u, v, J(v),−v) + R(−J(v), J(u), J(v),−v) + R(−J(v), v, u,−v)
+ R(−J(v), v, J(v), J(u)) = 0.

The sum of the 6th, 7th, 10th and 11th terms is

R(u, v, u, −v) + R(u, v, J(v), J(u)) + R(−J(v), J(u), u, −v)
+ R(−J(v), J(u), J(v), J(u)) = −4R(u, v, u, v).

The sum of the 4th and 13th terms is

R(u, J(u), J(v),−v) + R(−J(v), v, u, J(u)) = 0

by (3.8).
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Using these four equations and simplifying the expansion of R(u − J(v),
J(u) + v, u + J(v), J(u) − v), we get

R(u, J(u), u, J(u)) + R(v, J(v), v, J(v)) − 4R(u, v, u, v) = 0.(3.10)

Next, consider the element of U(n) which takes

(3.11) u → 1√
2
(u − v), v → 1√

2
(u + v).

Now the equation corresponding to (3.10) (obtained by substituting −J(v)
for v in (3.10)) is

R(u, J(u), u, J(u)) + R(v, J(v), v, J(v)) − 4R(u, J(v), u, J(v)) = 0.(3.12)

Combining (3.12), (3.10) and (3.8) gives

R(u, v, u, v) = R(u, J(v), u, J(v))
= R(u, J(u), u, J(u)) + R(v, J(v), v, J(v)) = 0.(3.13)

Extend {e1 = u, e2 = v} to an orthonormal basis {e1, J(e1), e2, J(e2), . . . ,
en, J(en)}. By considering the element of U(n) which interchanges u and
ei, J(u) and J(ei) (i ≥ 3) and keep the other elements of the basis fixed,
we see that (ei, J(ei), J(v), v) ∈ F . A similar operation on v shows that
(ei, J(ei), ej , J(ej)) ∈ F , for all 1 ≤ i ≤ n, 1 ≤ j ≤ n, i �= j. The equation
corresponding to (3.13) is

R(ei, ej , ei, ej) = R(ei, J(ej), ei, J(ej))(3.14)
= R(ei, J(ei), ei, J(ei)) + R(ej , J(ej), ej , J(ej)) = 0.

The equation R(ei, J(ei), ei, J(ei)) + R(ej , J(ej), ej , J(ej)) = 0, for all
i �= j, clearly implies that R(ei, J(ei), ei, J(ei)) = 0 for all i. In particular
R(u, J(u), u, J(u)) = 0 . If w is an arbitrary unit vector, then we can find an
element T in U(n) taking u to w. By considering the frame (w, J(w), J(T (v)),
T (v)) ∈ F , we get R(w, J(w), w, J(w)) = 0. Hence the holomorphic sectional
curvature of g, is zero, which implies that g is flat and hence locally reducible.

This contradiction completes the proof of Theorem 1.2. �

4. The classification theorem

We now outline the proof of Theorem 3.2. Let (M, g) be a compact, ori-
entable, locally irreducible manifold of NIC. Let g(t), t ∈ [0, δ) denotes the
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solution to Ricci flow with g(0) = g. By [3], g(t) has NIC. Suppose g(t) does
not have strictly PIC for any t ∈ (0, δ). Then, Ft �= φ for all t ∈ (0, δ). This
implies that Hol0(M, g(t)) �= SO(n) for all such t. Suppose Hol0(M, g(t0)) =
SO(n) for some t0. This assumption along with the invariance of Ft0 under
parallel transport implies that every orthonormal four-frame at every point
would be in Ft0 , i.e., every isotropic curvature at every point would be zero.
As scalar curvature can be expressed as the sum of isotropic curvatures (see
Proposition 4.1 below), this implies that R = 0 for (M, g(t0)). Since the ini-
tial metric g has nonnegative scalar curvature, by the maximum principle for
scalar curvature along the flow, the scalar curvature of (M, g(t)) is identically
zero for all t ∈ [0, t0]. From the evolution equation for R under Ricci flow,

∂R

∂t
= �R + |Ric|2,

it follows that Ric(g) = 0.
Moreover, we have the following:

Proposition 4.1 (Proposition 2.5 of [11]). A metric g with positive (resp.
nonnegative) isotropic curvature has positive (resp. nonnegative) scalar cur-
vature. If the scalar curvature is identically zero, then g must be conformally
flat.

Therefore, g is also conformally flat and hence flat, contradicting local
irreducibility.

Hence, we conclude that Hol0(M, g(t)) is a proper subgroup of SO(n)
for all t ∈ (0, δ). As before, for sufficiently small t, say t < δ1, g(t) will also
be locally irreducible.

Take any t′ ∈ (0, δ1). If (M, g(t′)) is not locally symmetric, then Hol0

would have to be either U(m) or Sp(m)Sp(1), with m equal to n/2 or n/4,
respectively. The other possibilities for Hol0 in the Berger holonomy theorem
can be ruled out, since they would again lead to scalar flatness or local
symmetry.

In case Hol0 = U(m), the full holonomy group Hol = U(m) as well, since
Hol is contained in the normalizer of Hol0 in SO(n) (note that we are assum-
ing the orientability of M here). This normalizer is precisely U(n). Since
Hol = U(m), (M, g(t′)) is Kähler and Theorem 1.2 implies either (M, g) is
biholomorphic to CPn or a symmetric space.

If Hol0 = Sp(m)Sp(1), then again Hol = Sp(m)Sp(1) (note that since
Sp(m)Sp(1) is a maximal subgroup of SO(4n) [6], its normalizer in SO(4n)
is itself). Hence for any t′ ∈ (0, δ1) either (M, g(t′)) is Kähler and biholo-
morphic to CPn or a locally symmetric space or quaternionic-Kähler. By
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taking a sequence ti → 0 as i → ∞ and noting that g(ti) → g in C∞, we
can conclude the same about (M, g). This completes the proof of
Theorem 1.1. �

Proof of Remark (ii). First, by the results of [11] or [14], if (M, h) has
PIC, then H2(M, R) = {0}. Hence M cannot admit a Kähler metric. If M
admitted a positive quaternionic-Kähler metric, then it would be simply
connected and H4(M, R) �= {0}. But since M admits a PIC metric, it would
be homeomorphic to a sphere, a contradiction.

Suppose that there is a locally symmetric metric g on M . Note that M
admits a metric of positive scalar curvature (namely h), (M, g) will have
to be a locally symmetric space of compact type. In particular, (M, g) is
Einstein with positive scalar curvature. By the Bonnet–Myers theorem, M
has finite fundamental group and hence the universal cover M̃ is a com-
pact manifold. The Micallef–Moore theorem applied to (M̃, h̃) implies that
M̃ is homeomorphic to a sphere. For topological reasons, the only locally
symmetric metric on a topological sphere is one of constant positive sec-
tional curvature. Therefore, g̃ (and g) would have to be of constant positive
sectional curvature. �

Proof of Remark (iv). Suppose K iso ≥ 0 on M and K iso(p) > 0 for some
p ∈ M . With notation as earlier, if Ft is not empty, i.e., if g(t) does not have
K iso > 0, then by the invariance under parallel transport of Ft, there is a
four-frame for which K iso = 0 at every point of M . In particular, there is
such a frame at p. Hence we have a time-dependent four-frame (e1(t), e2(t),
e3(t), e4(t)) at p for which K iso = 0. We can choose a sequence of times ti → 0
as i → ∞ for which the corresponding sequence of frames converges to an
orthonormal frame on (M, g). This frame will satisfy K iso = 0 contradicting
K iso > 0 at p. �
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