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Topological and differentiable sphere theorems for
complete submanifolds

Hong-Wei Xu and En-Tao Zhao

We investigate topological and differentiable structures of sub-
manifolds under extrinsic restrictions. We first obtain a topolog-
ical sphere theorem for compact submanifolds in a Riemannian
manifold. Secondly, we prove an optimal differentiable sphere the-
orem for 4-dimensional complete submanifolds in a space form,
which provides a partial solution of the smooth Poincaré conjec-
ture. Finally, we prove some new differentiable sphere theorems for
n-dimensional submanifolds in a Riemannian manifold.

1. Introduction

It seems very interesting to investigate curvature and topology of submani-
folds in a Riemannian manifold. In contrast to the usual sphere theorems
in Riemannian geometry, our results on topological and differentiable struc-
tures of submanifolds are obtained by imposing certain conditions on the
second fundamental form.

Let M be an n-dimensional complete manifold isometrically immersed in
a Riemannian manifold Nn+p with codimension p. Denote by H and S the
mean curvature and squared length of the second fundamental form of M ,
respectively. Using nonexistence for stable currents on compact submanifolds
of a sphere and the generalized Poincaré conjecture for dimension n(≥ 5)
proved by Smale [1], Lawson and Simons [2] obtained the following striking
sphere theorem in 1970s.

Theorem A. Let Mn be an n-dimensional oriented compact submanifold
in the unit sphere Sn+p. Then

(i) if n �= 3, 4 and S < 2
√

n − 1, then M is homeomorphic to a sphere;

(ii) if n = 3, 4 and S < n − 1, then M is a homotopy sphere.

When n �= 3, 4, the following example shows that Lawson and Simons’
pinching constant in Theorem A is optimal.
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Example 1.1. Set

M = Sn−1
(

1√
1 + λ2

)
× S1

(
λ√

1 + λ2

)
⊂ Sn+1,

where

λ =
nH +

√
n2H2 + 4(n − 1)
2(n − 1)

, H =

√
n(n − 1)1/2 − 2(n − 1)

n
.

Then M is an n-torus in Sn+1(⊂ Sn+p). Moreover, M is a compact subman-
ifold in Sn+p with constant mean curvature H, whose squared length of the
second fundamental form satisfies S = 2

√
n − 1.

In 1997, Shiohama and Xu [4] proved the following topological sphere
theorem for complete submanifolds in space forms by using the vanishing
theorem for stable currents due to Lawson, Simons [2] and Xin [3].

Theorem B. Let Mn be an n-dimensional oriented complete submanifold
in a simply connected space form Fn+p(c) with non-negative constant cur-
vature c. Set

α(n, H, c) = nc +
n3

2(n − 1)
H2 − n(n − 2)

2(n − 1)

√
n2H4 + 4(n − 1)cH2.

If S satisfies supM (S − α(n, H, c)) < 0, then

(i) when n �= 3, M is homeomorphic to an n-dimensional sphere;

(ii) when n = 3, M is diffeomorphic to a 3-dimensional spherical space
form.

From the following example, we see that the pinching condition in Theorem
B is optimal.

Example 1.2. Let M = Sn−1(1/(1 + λ2)) × S1(λ/(
√

1 + λ2)) ⊂ Sn+1 for
c = 1, and M = Sn−1((n − 1)/nH) × R1 ⊂ Rn+1 for c = 0. Here λ is as in
Example 1.1 and H is a non-negative constant for the case c = 1, and H is
a positive constant for the case c = 0. Then M is an n-dimensional Clifford
torus or generalized cylinder in Fn+1(c). Moreover, M is a complete sub-
manifold in Fn+p(c) with constant mean curvature H, whose squared length
of the second fundamental form satisfies S = α(n, H, c).
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Notice that

inf
H≥0

α(n, H, 1) = 2
√

n − 1,

we have the following consequence of Theorem B, which is an extension of
Lawson–Simons’ sphere theorem.

Theorem C. Let Mn be an n-dimensional oriented complete submanifold
in Sn+p. If S satisfies supM S < 2

√
n − 1, then

(i) when n �= 3, M is homeomorphic to a sphere;

(ii) when n = 3, M is diffeomorphic to a spherical space form.

Let UM denote the unit tangent bundle over M and UxM its fiber over
x ∈ M . In [5], Gauchman proved that if M is a closed minimal submanifold
and ‖h(u, u)‖2 < 1

3 for any u ∈ UxM at any point x ∈ M , where h denotes
the second fundamental form of M , then M must be totally geodesic. The
pinching constant 1

3 is optimal in the sense that there are minimal submani-
folds with ‖h(u, u)‖2 = 1

3 , which are not totally geodesic. Following Leung’s
homotopy sphere theorem for compact oriented submanifolds in a sphere [6],
Xu and Fang [7] got the following topological sphere theorem for complete
submanifolds in a sphere.

Theorem D. Let Mn be an n-dimensional oriented complete submanifold
in the unit sphere Sn+p. If

‖h(u, u)‖2 < 1
3 , ∀u ∈ UM,

then M is homeomorphic to an n-sphere. In particular, if M is a sub-
manifold with parallel mean curvature, then M is congruent to the sphere
Sn(1/

√
1 + H2).

The purpose of this paper is to prove some new pinching theorems for
submanifolds in a Riemannian manifold. In particular, we obtain the follow-
ing.

Theorem 1.1. Let Mn be an n(≥ 4)-dimensional oriented complete sub-
manifold in the unit sphere Sn+p. Then

(i) if n = 4, 5, 6 and supM S < 2
√

n − 1, then M is diffeomorphic to the
standard unit n-sphere Sn;
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(ii) if n ≥ 7 and S < 2
√

2, then M is diffeomorphic to the standard unit
n-sphere Sn.

When n = 4, 5, 6, the pinching constant 2
√

n − 1 in Theorem 1.1 is opti-
mal.

Theorem 1.2. Let Mn be an n-dimensional oriented complete submanifold
in the unit sphere Sn+p. If

‖h(u, u)‖2 < 1
3 , ∀u ∈ UM,

then M is diffeomorphic to Sn.

It should be emphasized that Theorems 1.1 and 1.2 are differentiable
sphere theorems for complete submanifolds without assumption that M is
simply connected, which improve Theorems C and D.

Our paper is organized as follows. Some notations and several lemmas
are prepared in Section 2. In Section 3, we obtain a topological sphere the-
orem for compact submanifolds in a Riemannian manifold. In Section 4, we
prove an optimal differentiable sphere theorem for 4-dimensional complete
submanifolds in a space form, which provides a partial solution of the smooth
Poincaré conjecture. Finally, we prove some new differentiable pinching the-
orems for submanifolds in a Riemannian manifold, and complete the proof
of Theorems 1.1 and 1.2.

2. Some useful lemmas

Let Mn be an n(≥ 4)-dimensional Riemannian manifold. In 1988, using
minimal surface techniques, Micallef and Moore [8] investigated relations
between curvature and topology of a manifold, and proved the topological
sphere theorem for point-wise 1/4-pinched manifolds. Further more, they
proved the famous topological sphere theorem for compact and simply con-
nected manifolds with positive isotropic curvature.

Recall that the Riemannian curvature operator at p ∈ M is the self-
adjoint linear endmorphism Rm : ∧2TpM −→ ∧2TpM defined by

〈Rm(X ∧ Y ), (Z ∧ W )〉 = 〈R(X, Y )W, Z〉

for X, Y, Z, W ∈ TpM . Here 〈 , 〉 is the Riemannian metric, TpM denotes
the tangent space at p, and R is the Riemannian curvature tensor of M .
The Riemannian metric 〈 , 〉 can be extended either to a complex bilinear
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form ( , ) or a Hermitian inner product 〈〈 , 〉〉 on TpM ⊗ C. We extend the
curvature operator to a complex linear map on ∧2TpM ⊗ C, also denoted
by Rm.

For each two-plane σ ⊆ TpM ⊗ C, we can define the complex sectional
curvature K(σ) by

K(σ) =
〈〈Rm(X ∧ Y ), X ∧ Y 〉〉

‖X ∧ Y ‖2 ,

where {X, Y } is a basis for σ. A two-plane σ is called totally isotropic if
(Z, Z) = 0 for any Z ∈ σ. We say that M has positive isotropic curvature
if K(σ) > 0 for all totally isotropic two-planes at any point in M . It was
shown in [8] that M has positive isotropic curvature if and only if for every
orthonormal four-frame {e1, e2, e3, e4} at any point in M the inequality for
curvature tensor of M

R1313 + R1414 + R2323 + R2424 − 2R1234 > 0

holds, where Rijkl = 〈R(ei, ej)el, ek〉, {e1, e2, . . . , en} is a local orthonormal
frame of M .

In [8], Micallef and Moore proved that any n(≥ 4)-dimensional com-
pact and simply connected manifold with positive isotropic curvature must
be homeomorphic to a sphere. Moreover, they observed that any n(≥ 4)-
manifold with point-wise 1/4-pinched curvature must have positive isotropic
curvature. In 1991, Chen [9] showed that a point-wise 1/4-pinched 4-manifold
is diffeomorphic to a spherical space form. Recently, Brendle and Schoen
[10, 11] proved a remarkable differentiable pinching theorem for point-wise
1/4-pinched Riemannian manifolds by developing the theory and techniques
of Ricci flow [22–24]. More recently, Brendle [12] obtained the following
useful result.

Lemma 2.1 [12]. Let (M, g0) be a compact Riemannian manifold of dimen-
sion n ≥ 4. Assume that

(2.1) R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234 > 0

for all orthonormal four frames {e1, e2, e3, e4} and all λ ∈ [−1, 1]. Then the
normalized Ricci flow with initial metric g0

∂

∂t
g(t) = −2Ricg(t) +

2
n

rg(t)g(t),
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exists for all time and converges to a constant curvature metric as t → ∞.
Here rg(t) denotes the mean value of the scalar curvature of g(t).

Inequality (2.1) is closely related to the positivity of the isotropic cur-
vature. In fact, R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234 > 0 holds for
all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [−1, 1] if and only if
M × R has positive isotropic curvature. It follows from Berger’s inequality
that every manifold with point-wise 1/4-pinched sectional curvatures satis-
fies the curvature condition (2.1) in Lemma 2.1. Hence, the differentiable
1/4-pinching theorem is a consequence of Lemma 2.1.

When M is isometrically immersed into a Riemannian manifold Nn+p

with codimension p ≥ 1, we choose a local orthonormal frame field
{e1, . . . , en+p} on Nn+p such that, restricted to M , e1, . . . , en are tangent to
M . Let {ω1, . . . , ωn+p} be the dual frame field of {e1, . . . , en+p}. We shall
make use of the following convention on the range of indices:

1 ≤ A, B, C, · · · ≤ n + p, 1 ≤ i, j, k, · · · ≤ n, n + 1 ≤ α, β, γ, · · · ≤ n + p.

Then we have the Gauss equation

(2.2) Rijkl = Kijkl +
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk),

where KABCD is the Riemannian curvature tensor of Nn+p and h =∑
α,i,j

hα
ij ωi ⊗ ωj ⊗ eα is the second fundamental form of M . Let UM denote

the unit tangent bundle on M and UxM its fiber over x ∈ M . Then UM =⋃
x∈M

UxM , where UxM = {u ∈ TxM ; ‖u‖ = 1}.

Lemma 2.2. Let Mn be a submanifold in a Riemannian manifold Nn+p.
Then

‖h(u, v)‖ ≤ hx

for all unit vectors u, v ∈ UxM at each point x ∈ M , where hx := maxw∈UxM

‖h(w, w)‖.

Proof. If u �= ±v, set y = u+v
‖u+v‖ and z = u−v

‖u−v‖ . Then

h(u, v) = 1
4 [h(u + v, u + v) − h(u − v, u − v)]

= 1
4 [‖u + v‖2h(y, y) − ‖u − v‖2h(z, z)].(2.3)
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Using the triangle inequality we obtain from (2.3)

‖h(u, v)‖ ≤ 1
4hx(‖u + v‖2 + ‖u − v‖2)

≤ hx.(2.4)

If u = ±v, then ‖h(u, v)‖ = ‖h(u, u)‖ ≤ hx. This together with (2.4) com-
pletes the proof of the lemma. �

The following algebraic lemma will be used in the proof of our sphere
theorems.

Lemma 2.3. Let T = (aij)4×4 be a real symmetric matrix. Set
f(a) = a11a33 − (a13)2 + a11a44 − (a14)2 + a22a33 − (a23)2 + a22a44 − (a24)2

−2a13a24 + 2a14a23, where a = (a11, a12, · · · , a44). Then

1
2

(
4∑

i=1

aii

)2

−
4∑

i,j=1

a2
ij ≤ f(a) ≤ 1

4

(
4∑

i=1

aii

)2

.

Proof. Applying the Lagrange multiplier method, we compute the extreme
value of f(a) with constraints

∑
i

aii = A(2.5)

and
∑

i

(aii)2 + 2
∑
i<j

(aij)2 = B,(2.6)

where B =
∑

i,j a2
ij . Consider the function

F = f(a) + m1

⎛
⎝∑

i

(aii)2 + 2
∑
i<j

(aij)2 − B

⎞
⎠ + m2

(∑
i

aii − A

)
,

where m1 and m2 are the Lagrange multipliers. Suppose that f(a) attains
the extreme value at point ȧ = (ȧ11, ȧ12, · · · , ȧ44). Then at ȧ we have

∂F

∂a11
= ȧ33 + ȧ44 + 2m1ȧ11 + m2 = 0,

∂F

∂a22
= ȧ33 + ȧ44 + 2m1ȧ22 + m2 = 0,
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∂F

∂a33
= ȧ11 + ȧ22 + 2m1ȧ33 + m2 = 0,

∂F

∂a44
= ȧ11 + ȧ22 + 2m1ȧ44 + m2 = 0,

∂F

∂a12
= 4m1ȧ12 = 0,

∂F

∂a34
= 4m1ȧ34 = 0,

∂F

∂a13
= −2ȧ13 − 2ȧ24 + 4m1ȧ13 = 0,

∂F

∂a14
= −2ȧ14 + 2ȧ23 + 4m1ȧ14 = 0,

∂F

∂a23
= −2ȧ23 + 2ȧ14 + 4m1ȧ23 = 0,

∂F

∂a24
= −2ȧ24 − 2ȧ13 + 4m1ȧ24 = 0,

∂F

∂m1
=

∑
i

(ȧii)2 + 2
∑
i<j

(ȧij)2 − B = 0,

∂F

∂m2
=

∑
i

ȧii − A = 0.(2.7)

When m1 = 0, from equalities (2.7) we obtain

ȧ11 + ȧ22 = ȧ33 + ȧ44, ȧ13 = −ȧ24, ȧ14 = ȧ23.

Then

f(ȧ) = (ȧ11 + ȧ22)(ȧ33 + ȧ44).

From (2.7) we obtain

ȧ11 + ȧ22 = ȧ33 + ȧ44 =
A

2
.

Hence

f(ȧ) =
A2

4
.(2.8)
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When m1 �= 0, it follows from (2.7) that

ȧ11 = ȧ22, ȧ33 = ȧ44, ȧ12 = 0, ȧ34 = 0, ȧ13 = ȧ24, ȧ14 = −ȧ23.

Combining equalities above we have

f(ȧ) = 4ȧ11ȧ33 − 4(ȧ13)2 − 4(ȧ14)2,∑
i<j

(ȧij)2 = 2(ȧ13)2 + 2(ȧ14)2.

Since B =
∑

i(ȧii)2 + 2
∑

i<j(ȧij)2, it follows that

f(ȧ) = 2(ȧ11 + ȧ33)2 − B.

By (2.7) we have

ȧ11 + ȧ33 =
A

2
.

Hence

f(ȧ) =
A2

2
− B.(2.9)

Denote by fmax and fmin the maximal and minimum values of function
f(a) with constraints (2.5) and (2.6), respectively. It is easy to see that
B ≥ A2

4 . This together with (2.8) and (2.9) implies that

fmax = max
{

A2

4
,
A2

2
− B

}
=

A2

4
,

fmin = min
{

A2

4
,
A2

2
− B

}
=

A2

2
− B.

This proves the lemma. �

3. A topological sphere theorem for compact submanifolds

By using the vanishing theorem for stable currents on compact submani-
folds of a sphere, Lawson and Simons [2] obtained a topological sphere the-
orem for submanifolds in the sphere. Later Shiohama and Xu [4] improved
Lawson–Simons’ sphere theorem. Recently, Fu and Xu [13] proved a vanish-
ing theorem for homology groups of submanifolds in the hyperbolic space
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Hn+p. They also obtained a topological sphere theorem for submanifolds in
Hn+p by using their vanishing theorem. However, if the ambient space is a
general Riemannian manifold, their method does not work. Now we prove a
topological sphere theorem for submanifolds in a Riemannian manifold by
using a different argument.

Theorem 3.1. Let Mn be an n(≥ 4)-dimensional oriented compact sub-
manifold in an (n + p)-dimensional Riemannian manifold Nn+p. Denote by
K(x, π) the sectional curvature of N for tangent 2-plane π ⊂ TxN at point
x ∈ N . Set Kmax(x) := maxπ⊂TxN K(x, π), Kmin(x) := minπ⊂TxN K(x, π).
If

S(x) <
16
3

(Kmin(x) − 1
4
Kmax(x)) +

n2H2(x)
n − 2

,

for any x ∈ M , then M has positive isotropic curvature and πk(M) = 0 for
2 ≤ k ≤ [n/2]. In particular, if M is simply connected, then M is homeo-
morphic to a sphere.

Proof. Suppose {e1, e2, e3, e4} is an orthonormal four-frame. Then we have

R1313 + R1414 + R2323 + R2424 − 2R1234

= K1313 + K1414 + K2323 + K2424 − 2K1234

+
∑
α

[hα
11h

α
33 − (hα

13)
2 + hα

11h
α
44 − (hα

14)
2

+ hα
22h

α
33 − (hα

23)
2 + hα

22h
α
44 − (hα

24)
2 − 2hα

13h
α
24 + 2hα

14h
α
23].(3.1)

It follows from Lemma 2.3 that

∑
α

[
hα

11h
α
33 − (hα

13)
2 + hα

11h
α
44 − (hα

14)
2

+ hα
22h

α
33 − (hα

23)
2 + hα

22h
α
44 − (hα

24)
2 − 2hα

13h
α
24 + 2hα

14h
α
23

]

≥
∑
α

⎡
⎣(

∑4
i=1 hα

ii)
2

2
−

4∑
i,j=1

(hα
ij)

2

⎤
⎦ .(3.2)
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When n = 4, from (3.2) we obtain
∑
α

[
hα

11h
α
33 − (hα

13)
2 + hα

11h
α
44 − (hα

14)
2

+ hα
22h

α
33 − (hα

23)
2 + hα

22h
α
44 − (hα

24)
2 − 2hα

13h
α
24 + 2hα

14h
α
23

]
≥ 8H2 − S.(3.3)

When n ≥ 5, we extend {e1, e2, e3, e4} to be an orthonormal frame
{e1, e2, · · · , en}. Set Sα =

∑n
i,j=1(h

α
ij)

2. Then from (3.2) we obtain
∑
α

[
hα

11h
α
33 − (hα

13)
2 + hα

11h
α
44 − (hα

14)
2

+ hα
22h

α
33 − (hα

23)
2 + hα

22h
α
44 − (hα

24)
2 − 2hα

13h
α
24 + 2hα

14h
α
23

]

≥
∑
α

⎡
⎣(

∑4
i=1 hα

ii)
2

2
−

4∑
i,j=1

(hα
ij)

2

⎤
⎦

≥
∑
α

⎡
⎣(

∑4
i=1 hα

ii)
2

2
+

n∑
i,j=5

(hα
ij)

2 − Sα

⎤
⎦

≥
∑
α

[
(
∑4

i=1 hα
ii)

2

2
+

(
∑n

i=5 hα
ii)

2

n − 4
− Sα

]

≥
∑
α

[
(
∑n

i=1 hα
ii)

2

n − 2
− Sα

]

=
n2

n − 2
H2 − S.(3.4)

By Berger’s inequality we have K1234 ≤ 2
3(Kmax − Kmin). Combining (3.1),

(3.3) and (3.4), we obtain

R1313 + R1414 + R2323 + R2424 − 2R1234

≥ 4Kmin − 4
3(Kmax − Kmin) +

n2

n − 2
H2 − S

≥ 16
3

(Kmin − 1
4
Kmax) +

n2

n − 2
H2 − S

> 0.(3.5)
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From (3.5) we know that M has positive isotropic curvature. By a theorem
due to Micallef and Moore [8], we have πk(M) = 0 for 2 ≤ k ≤ [n/2]. In
particular, if M is simply connected, then M is homeomorphic to a sphere.
This completes the proof of Theorem 3.1. �

If the Ricci curvature of M is positive, then the universal cover of M is
compact. Hence we have following.

Corollary 3.1. Under the same assumption as in Theorem 3.1, if the Ricci
curvature of M is positive and

S(x) <
16
3

(Kmin(x) − 1
4
Kmax(x)) +

n2H2(x)
n − 2

,

for any x ∈ M , then the universal cover of M is homeomorphic to a sphere.

Moreover, from Theorem 3.1 we have

Corollary 3.2. Let Mn be an n(≥ 4)-dimensional oriented compact sub-
manifold in an (n + p)-dimensional pinched Riemannian manifold whose
sectional curvature satisfies b ≤ KM ≤ c. If S < 16

3 (b − 1
4c) + n2H2

n−2 , then M
has positive isotropic curvature and πk(M) = 0 for 2 ≤ k ≤ [n/2]. In parti-
cular, if M is simply connected, then M is homeomorphic to a sphere.

Corollary 3.3. Let Mn be an n(≥ 4)-dimensional oriented compact sub-
manifold in an (n + p)-dimensional point-wise δ(> 1/4)-pinched Rieman-
nian manifold Nn+p. Set Kmax(x) := maxπ⊂TxN K(x, π), where K(x, π) is
the sectional curvature of N for tangent 2-plane π(⊂ TxN) at point x ∈ N .
If S(x) < 16

3 Kmax(x)(δ − 1
4) + n2H2(x)

n−2 , for any x ∈ M , then M has positive
isotropic curvature and πk(M) = 0 for 2 ≤ k ≤ [n/2]. In particular, if M is
simply connected, then M is homeomorphic to a sphere.

Corollary 3.4. Let Mn be an n(≥ 4)-dimensional oriented compact sub-
manifold in an (n + p)-dimensional space form Fn+p(c) of constant cur-
vature c. If S < 4c + n2H2

n−2 , then M has positive isotropic curvature and
πk(M) = 0 for 2 ≤ k ≤ [n/2]. In particular, if M is simply connected, then
M is homeomorphic to a sphere.

4. Differentiable sphere theorems for complete submanifolds

It is not currently known how many differentiable structures there are on
the 4-sphere, beyond that there is at least one. There may be one, a finite
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number, or an infinite number. The claim that there is just one is known
as the smooth Poincaré conjecture. Most mathematicians believe that this
conjecture is false, i.e., there are more than one differentiable structure on
the 4-sphere. In this section, we first prove following theorem.

Theorem 4.1. Let M4 be a 4-dimensional oriented, simply connected and
compact submanifold in the space form F 4+p(c) with constant curvature c.
If S < 4c + 8H2, then M is diffeomorphic to the standard unit 4-sphere S4.

Proof. From Corollary 3.4, we know that M has positive isotropic curvature.
A theorem due to Hamilton [14] says that a 4-dimensional compact simply
connected manifold with positive isotropic curvature is diffeomorphic to S4.
This proves Theorem 4.1. �

The following example shows that Theorem 4.1 is optimal in the case
where c > 0.

Example 4.1. Without loss of generality, we only consider the case c = 1.
Set M = S2(1/

√
1 + μ2) × S2(μ/

√
1 + μ2) ⊂ S5, where μ = H +

√
H2 + 1

and H is a non-negative constant. Then M is a simply connected Clifford
torus in S5(⊂ S4+p). Moreover, M is a compact submanifold in S4+p with
constant mean curvature H, whose squared length of the second fundamental
form satisfies S = 4 + 8H2.

Remark. In fact, it follows from Theorem 3.1 that if M4 ⊂ N4+p is a 4-
dimensional compact and simply connected submanifold satisfying S(x) <
16
3 (Kmin(x) − 1

4Kmax(x)) + 8H2(x) for any x ∈ M , then M is diffeomorphic
to S4.

Now, we prove an optimal differentiable sphere theorem for
4-dimensional complete submanifolds in space forms, which provides a par-
tial solution of the smooth Poincaré conjecture.

Theorem 4.2. Let M4 be a 4-dimensional oriented complete submanifold
in a simply connected space form F 4+p(c) with nonnegative constant curva-
ture c. If supM (S − α(4, H, c)) < 0, then M is diffeomorphic to the standard
unit 4-sphere S4.



578 Hong-Wei Xu and En-Tao Zhao

Proof. Since c ≥ 0, we have

α(n, H, c) = nc +
n3

2(n − 1)
H2 − n(n − 2)

2(n − 1)

√
n2H4 + 4(n − 1)cH2

≤ nc +
n3

2(n − 1)
H2 − n(n − 2)

2(n − 1)

√
n2H4 = nc +

n2

n − 1
H2.

This implies

S < α(4, H, c) ≤ 4c + 8H2.

By Theorem B, M is a topological sphere. This together with Theorem 4.1
implies that M is diffeomorphic to S4. �

It is seen from Example 1.2 that the pinching condition supM (S − α
(4, H, c)) < 0 in Theorem 4.2 is optimal. It seems very difficult to generalize
Theorem 4.2 to higher dimensional cases.

During the past three decades, there are several sphere theorems for
submanifolds (see [2, 4, 6, 13, 15–21], etc.). However, all these results are
either topological sphere theorems for submanifolds, or differentiable sphere
theorems for hypersurfaces. Using Brendle’s convergence result for the nor-
malized Ricci flow, we prove following new differentiable pinching theorems
for submanifolds in higher dimensions and codimensions.

Theorem 4.3. Let Mn be an n(≥ 4)-dimensional oriented compact sub-
manifold in an (n + p)-dimensional point-wise δ(> 1/4)-pinched Rieman-
nian manifold Nn+p. Set Kmax(x) := maxπ⊂TxN K(x, π), where K(x, π) is
the sectional curvature of N for tangent 2-plane π(⊂ TxN) at point x ∈ N .
If S(x) < 8

√
2

3 Kmax(x)(δ − 1
4), for any x ∈ M , then M is diffeomorphic to a

space form. In particular, if M is simply connected, then M is diffeomorphic
to the standard unit n-sphere Sn.

Proof. It is sufficient to show that inequality (2.1) in Lemma 2.1 holds for
all λ ∈ R.

Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. By the
Gauss equation, we have

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

= K1313 + λ2K1414 + K2323 + λ2K2424 − 2λK1234

+
∑
α

[hα
11h

α
33 − (hα

13)
2 + hα

22h
α
33 − (hα

23)
2]
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+ λ2
∑
α

[hα
11h

α
44 − (hα

14)
2 + hα

22h
α
44 − (hα

24)
2]

− 2λ
∑
α

(hα
13h

α
24 − hα

14h
α
23).(4.1)

By Berger’s inequality and Young’s inequality, we have from (4.1)

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

≥ (2 + 2λ2)δKmax − 4
3
|λ|(1 − δ)Kmax

−
∑
α

[√
2

2
(hα

11)
2 +

√
2

4
(hα

33)
2 + (hα

13)
2 +

√
2

2
(hα

22)
2

+
√

2
4

(hα
33)

2 + (hα
23)

2

]

−λ2

{∑
α

[√
2

2
(hα

11)
2 +

√
2

4
(hα

44)
2 + (hα

14)
2 +

√
2

2
(hα

22)
2

+
√

2
4

(hα
44)

2 + (hα
24)

2

]}

−
∑
α

(hα
24)

2 − λ2
∑
α

(hα
13)

2 −
∑
α

(hα
14)

2 − λ2
∑
α

(hα
23)

2

= (2 + 2λ2)δKmax − 4
3
|λ|(1 − δ)Kmax

−
∑
α

[√
2

2
(hα

11)
2 +

√
2

2
(hα

33)
2 + (hα

13)
2 +

√
2

2
(hα

22)
2

+ (hα
23)

2 + (hα
24)

2 + (hα
14)

2

]

− λ2

{∑
α

[√
2

2
(hα

11)
2 +

√
2

2
(hα

44)
2 + (hα

14)
2 +

√
2

2
(hα

22)
2

+ (hα
24)

2 + (hα
13)

2 + (hα
23)

2

]}
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≥ (2 + 2λ2)δKmax − 4
3
|λ|(1 − δ)Kmax −

√
2

2
S − λ2

√
2

2
S

=
√

2
2

(1 + λ2)

[
2
√

2δKmax − 4
√

2
3

|λ|
1 + λ2 (1 − δ)Kmax − S

]

≥
√

2
2

(1 + λ2)

[
8
√

2
3

Kmax(δ − 1
4
) − S

]

> 0.

It follows from Lemma 2.1 that M is diffeomorphic to a space form. In
particular, if M is simply connected, then M is diffeomorphic to Sn. This
completes the proof of Theorem 4.3. �

Consequently, we have the following.

Corollary 4.1. Let Mn be an n(≥ 4)-dimensional oriented compact sub-
manifold in an (n + p)-dimensional δ(> 1

4)-pinched Riemannian manifold
Nn+p whose sectional curvature satisfying δ ≤ KN ≤ 1. If S < 8

√
2

3 (δ − 1
4),

then M is diffeomorphic to a space form. In particular, if M is simply con-
nected, then M is diffeomorphic to the standard unit n-sphere Sn.

Proof of Theorem 1.1. (i) When n = 4, 5, 6, we have

inf
H≥0

α(n, H, 1) = 2
√

n − 1.

It’s well known that there exists unique differentiable structure on Sn,
n = 5, 6. This together with Theorem 4.2 and Theorem C implies that M is
diffeomorphic to a sphere.

(ii) When n ≥ 7, it is seen from Theorem C that M is a topological
sphere. On the other hand, it follows from Corollary 4.1 that M is diffeo-
morphic to a space form. Hence M is diffeomorphic to Sn. This completes
the proof of Theorem 1.1. �

Motivated by Theorem D, we will prove a new differentiable pinching
theorem for complete submanifolds in a point-wise δ-pinched manifold. The
following lemma will be used in the proof of the differentiable pinching
theorem.
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Lemma 4.1. Let Mn be an n(≥ 4)-dimensional submanifold in an (n + p)-
dimensional point-wise δ(> 1/4)-pinched Riemannian manifold. If

‖h(u, u)‖2 < 4
9Kmax

(
δ − 1

4

)
, ∀u ∈ UxM,(4.2)

then inequality (1) is satisfied for all orthonormal four-frames {e1, e2, e3, e4}
and all λ ∈ R.

Proof. For any point x ∈ M , let hx := maxw∈UxM ‖h(w, w)‖. Suppose
{e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R. By the Gauss equa-
tion, we have

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

= K1313 + 〈h(e1, e1), h(e3, e3)〉 − ‖h(e1, e3)‖2

+ λ2[K1414 + 〈h(e1, e1), h(e4, e4)〉 − ‖h(e1, e4)‖2]

+ [K2323 + 〈h(e2, e2), h(e3, e3)〉 − ‖h(e2, e3)‖2]

+ λ2[K2424 + 〈h(e2, e2), h(e4, e4)〉 − ‖h(e2, e4)‖2]

− 2λ[K1234 + 〈h(e1, e3), h(e2, e4)〉 − 〈h(e1, e4), h(e2, e3)〉].(4.3)

By (4.3) and Lemma 2.2, we have

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

≥ K1313 − 2h2
x + λ2[K1414 − 2h2

x]

+ [K2323 − 2h2
x] + λ2[K2424 − 2h2

x]

− 2|λ|[|K1234| + 2h2
x].(4.4)

This together with (4.2) and Berger’s inequality implies

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

> Kmin − 8
9Kmax

(
δ − 1

4

)
+ λ2 [

Kmin − 8
9Kmax

(
δ − 1

4

)]
+

[
Kmin − 8

9Kmax
(
δ − 1

4

)]
+ λ2 [

Kmin − 8
9Kmax

(
δ − 1

4

)]
− 2|λ|

[2
3(1 − δ)Kmax + 8

9Kmax
(
δ − 1

4

)]
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≥ δKmax − 8
9Kmax

(
δ − 1

4

)
+ λ2 [

δKmax − 8
9Kmax

(
δ − 1

4

)]
+

[
δKmax − 8

9Kmax
(
δ − 1

4

)]
+ λ2 [

δKmax − 8
9Kmax

(
δ − 1

4

)]
− 2|λ|

[2
3(1 − δ)Kmax + 8

9Kmax
(
δ − 1

4

)]
= 1

9(δ + 2)Kmax(2 + 2λ2 − 4|λ|)

≥ 0.

This completes the proof of the lemma. �

Theorem 4.4. Let Mn be an n-dimensional oriented complete submanifold
in an (n + p)-dimensional point-wise δ(> 1/4)-pinched Riemannian mani-
fold Nn+p. Set Kmax(x) := maxπ⊂TxN K(x, π), where K(x, π) is the sec-
tional curvature of N for 2-plane π ⊂ TxN and point x ∈ N . If

‖h(u, u)‖2(x) < 4
9Kmax(x)

(
δ − 1

4

)
, ∀u ∈ UxM, x ∈ M,

where infx∈N Kmax(x) > 0, then M is diffeomorphic to a space form. In
particular, if M is simply connected, then M is diffeomorphic to the standard
unit n-sphere Sn.

Proof. Since ‖h(u, u)‖2 < 4
9

(
δ − 1

4

)
Kmax for any u ∈ UxM , we see from the

Gauss equation that the sectional curvature of M is bounded from below by
δ+2
9 infx∈M Kmax(x) ≥ δ+2

9 infx∈N Kmax(x) > 0. By Myers’ theorem, M is a
compact submanifold. When n = 2, it is easy to see that M is diffeomorphic
to S2 or RP 2. When n = 3, the Hamilton theorem [22] says that M is
diffeomorphic to a spherical space form. When n ≥ 4, by Lemma 2.1 and
Lemma 4.1, we see that M is diffeomorphic to a space form. In particular,
if M is simply connected, then M must be diffeomorphic to the standard
unit n-sphere Sn. This completes the proof of Theorem 4.4. �

Consequently, we have

Corollary 4.2. Let Mn be an n-dimensional oriented complete submanifold
in an (n + p)-dimensional δ(> 1/4)-pinched Riemannian manifold. If

‖h(u, u)‖2 < 4
9

(
δ − 1

4

)
, ∀u ∈ UM,

then M is diffeomorphic to a space form. In particular, if M is simply con-
nected, then M is diffeomorphic to Sn.



Topological and differentiable sphere theorems 583

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. It follows from Theorem D and Theorem 4.4 that M
is diffeomorphic to Sn. This completes the proof of Theorem 1.2. �

Finally, we would like to propose the following conjecture.

Conjecture 4.1. Let Mn be an n(≥ 7)-dimensional oriented complete sub-
manifold in the (n + p)-dimensional unit sphere Sn+p. If supM S < 2

√
n − 1,

then M is diffeomorphic to Sn.

More general, we give the following.

Conjecture 4.2. Let Mn be an n(≥ 7)-dimensional oriented complete sub-
manifold in a simply connected space form Fn+p(c) with non-negative con-
stant curvature c. Set

α(n, H, c) = nc +
n3

2(n − 1)
H2 − n(n − 2)

2(n − 1)

√
n2H4 + 4(n − 1)cH2.

If supM (S − α(n, H, c)) < 0, then M is diffeomorphic to Sn.

Motivated by the topological sphere theorem due to Shiohama and Xu
[19], we propose the following.

Conjecture 4.3. Let Mn be an n-dimensional closed submanifold in a
simply connected space form Fn+p(c) with non-negative constant curvature
c. Then there exists a positive constant Cn depending only on n such that if

∫
M

(S − nH2)n/2dM < Cn,

then M is diffeomorphic to Sn.
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