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Heat trace asymptotics with singular
weight functions

M. vAN DEN BERG, P. GILKEY, K. KIRSTEN AND R. SEELEY

We study the weighted heat trace asymptotics of an operator of
Laplace type with Dirichlet boundary conditions where the weight
function exhibits radial blowup. We give formulas for the first few
terms in the expansion in terms of geometrical data.

1. Introduction
1.1. Motivation

The asymptotic analysis of the heat trace provides a natural link between
the spectrum of Laplace-type operators D acting on functions on a m dimen-
sional Riemannian manifold M and the underlying geometry of M. For small
time ¢ it links the distribution of the large energy part of the spectrum of
D to local geometric invariants of M and its boundary which show up in its
asymptotic expansion. These invariants play an important in many physical
phenomena, e.g., in quantum statistical mechanics when taking the large
volume limit or in the Casimir effect [9]. Typically the coefficient of the
leading ¢~™/2 term in the heat trace expansion for small ¢ is determined
by the interior (volume) of M. In many situations a detailed study of the
boundary behaviour of the heat kernel associated with 0; + D is desirable.
One way of obtaining this information is putting a weight in the evaluation
of the heat trace. In the setting of the heat content of M this corresponds to
giving M a non-uniform specific heat. It is well known that the diagonal ele-
ment at (z,x;t) of the Dirichlet heat kernel associated to e~*P vanishes like
r? where r = r(z) is the distance to the boundary. This allows the weights
to diverge like 7=, where Re(a) < 3. We will show, using pseudo differen-
tial calculus, that a modified asymptotic series still exists in this case. For
example, if 1 < a < 3 the leading behaviour of the heat trace is t1-m=—a)/2
with a coefficient determined by an integral over the boundary of M.
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1.2. The heat equation

We adopt the Finstein convention and sum over repeated indices. Let M be
a compact smooth Riemannian manifold of dimension m and with smooth
boundary OM. Let V be a smooth vector bundle over M and let D be
an operator of Laplace type on the space C°°(V) of smooth sections to
V. This means that the leading symbol of D is given by the metric tensor
or, equivalently, that we may express in any system of local coordinates

xr = (x',...,2™) and relative to any local frame for V the operator D in the
form:
(1.1) D =—{g"1d0,,0,, + A{0s, + Ao} .

In Equation (1.1),let 1 < p, v < m,let AY and Ag be smooth endomorphisms
(matrices), and let g"” be the inverse of the metric g, := g(0,,, 0., ). Note
that the Riemannian measure dxr on M is given by

dr = gdz'...dx™, where g:=/det(gu).
Thus, for example, the scalar Laplacian Ays := dd is of Laplace type since
(1.2) Ay = — (905,05, + 9 0x, {99} 0s,) -

We shall use the Dirichlet realization of the operator D. For t > 0 and
for ¢ € L?(V), the heat equation

(9 + Dyu(;t) =0, ulst)loar =0, Lmu(st) = ¢() in L(V)

has a solution v = e *P¢ which is smooth in (x;t). The operator e~P has
a kernel pp(z, Z;t) which is smooth in (z,Z;t) such that

u(w;t) = /Mpp(w,ﬂ?;t)qﬁ(f)d@-

In the case of the scalar Laplacian Ay, there is a complete orthonormal basis
{¢;} for L?(M) where the ¢; € C*°(M) satisfy ¢;|ons = 0 and Aprgi = Ny
The corresponding Dirichlet heat kernel pys := pa,, is given in terms of the
spectral resolution {¢;, i} via

py(w, T5t) = Zefﬂi@(ﬂ?)&i(f)-
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1.3. Heat trace asymptotics in the smooth setting

We use the geodesic flow defined by the unit inward normal vector field to
define a diffeomorphism for some £ > 0 between the collar C. := OM x [0, ¢]
and a neighbourhood of the boundary in M which identifies OM x {0} with
OM; the curves r — (yo,r) for r € [0, ] are then unit speed geodesics per-
pendicular to the boundary and r is the geodesic distance to the boundary.
Let F € C°°(M) be an auxiliary weight function which is used for localiza-
tion. On C., expand F' in a Taylor series

F(y,r) ~ ZFi(y)ri, where F; = %(&)iFLﬂ:O.
=0

Henceforth we shall let Tr denote the fibre trace and Trz> denote the global
L? trace. We then have:

(1.3) Trpz(Fe 'P) = /M F(x) Tr{pp(x, z;t) }dz.

We note for future reference that on the diagonal, the heat kernel pg= (x, x; t)
for R™ and the heat kernel py(z,x;t) on the half space H := {z : 1 > 0}
of the scalar Laplacian are given by

(1.4) pre(,z:t) = (Art) ™2 and  py(z,z;t) = (drt) ™21 —e /Y.

Let dy be the Riemannian measure on the boundary. To simplify future
expressions, we set

I{F} = /MFd:c and I'YF} = /a Mde.

We will also use the notation Z{ F'dv}[U] when it is necessary to specify the
domain of integration U and/or the measure dv.

Theorem 1.1. Let M be a compact smooth Riemannian manifold. Let D
be the Dirichlet realization of an operator of Laplace type. Let F € C*°(M).

(1) There is a complete asymptotic expansion ast | 0 of the form:

o0 [e.@]
Trp2(Fe ™) ~ t7™/2 Y "7, (F, D)+t~ M= 1D2 N "4 2a}d(F, D).
n=0 =0
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(2) There are local invariants a, = an(x, D) defined on M and there are
local invariants a% = a%(y, D) defined on OM for 0 <i < ¢ so that

¢
an(F, D) = I{Fa,} and af’(F,D) =" T"{Fa}l}.
=0

We refer to [8,13] for a proof of Theorem 1.1 where more general results
are obtained in the context of elliptic operator theory and elliptic boundary
conditions. We shall illustrate these formulas in Theorem 1.2 below. We add
a caution that the notation we have chosen differs slightly from what is
employed elsewhere.

1.4. The Bochner Laplacian

Before discussing the formulas in Theorem 1.1 in further detail, we must
introduce the formalism of the Bochner Laplacian which will permit us to
work in a tensorial and coordinate free fashion. If V is a connection on
V', then we use V and the Levi-Civita connection defined by the metric to
covariantly differentiate tensors of all types. Let ‘;” denote the components of
multiple covariant differentiation — in particular, ¢.,, are the components
of V2¢. If E is an auxiliary endomorphism of V, we define the associated
modified Bochner Laplacian by setting

(15) D(g> Va E)d) = _guygb;l/,u - E¢

Let I'yys and I',,7 be the Christoffel symbols of the Levi-Civita con-
nection on M. We have, adopting the notation of Equations (1.1) and (1.5),
the following (see [7]):

Lemma 1.1. IfD is an operator of Laplace type, then there exists a unique
connection V. on V and a unique endomorphism E on V so that D =
D(g,V, E). The associated connection 1-form w of V. = V(D) and the asso-
ciated endomorphism E = E(D) are given by:

(1) w, = %(9#1/‘411/ + 97T 5, 1d).

(2) E= Ay — g"(0z,wp + wpwy — wol' 7).
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1.5. Formulae for the heat trace asymptotics in the
smooth setting

Let indices 4, j, k, [ range from 1 to m and index a local orthonormal
frame {eq,...,en} for the tangent bundle of M. Let R;ji be the compo-
nents of the Riemann curvature tensor; our sign convention is chosen so
that Ri221 = +1 on the sphere of radius 1 in R3. On the collar C., we
normalize the choice of the local frame by requiring that e, = 0, is the
inward unit geodesic normal. We let indices a, b, ¢, d range from 1 through
m — 1 and index the restricted orthonormal frame {ei,...,en_1} for the
tangent bundle of the boundary. Let Ly, := g(Ve, ey, €,) be the components
of the second fundamental form. The scalar invariant L., is the unnor-
malized mean curvature (i.e. the geodesic curvature) and will play a cen-
tral role in our investigation. One has the following formulae; note that
Fy = %Emm

Theorem 1.2. Let M be a compact smooth Riemannian manifold. Let D
be the Dirichlet realization of an operator of Laplace type. Let F € C*°(M).
(1) ao(F,D) = (4m)""*I{Tx(F1d)}.

(2) a1(F, D) = +(4m) "™ *T{Tx(6FE + FR;j;;1d)}.

(3) af(F, D) = —§(4m)~ (= VRTTr(F 1d)}.
(4)
(5)

@

bd F D
4) ab¥(F, D) = L(4m)~™/21% Tr(2F) Lo 1d —3F; 1d) }.
5) a%4(F, D) = — 5t (4m) = (m=V/2T5 L Ty(Fy (96 E + [L6R;j5 — 8 Ramma
+7LaaLpy — 10LgyLap] 1d) — 30F) Lo Id +48F, 1d)}.

Formulas for the invariants a,(F, D) and a}¢(F, D) are known for n, ¢ =
2,3,4,5. We refer to [9] for further details as the literature is vast and beyond
the scope of the present paper to survey.

1.6. Singular weight functions
Fix o € C. Let F be a smooth function on the interior of M such that

Fr® e C*>(C.); the parameter « controls the growth (if Re(a) > 0) or decay
(if Re(a) < 0) of F' near the boundary, assuming that F'r® does not vanish
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identically on the boundary. We may expand F
series:

c. in a modified Taylor

Fly,r) ~ S By, where Fy(y) = 2(0,)'0°F)|,_, -
=0

1.7. Geometry near the boundary

The Riemannian measure is in general not product near the boundary, i.e.,
dzx # drdy, and this plays an important role in our development. Let indices
o, 0 range from 1 to m — 1 and index the coordinate frame {0y,,...,0y, ,}
for the tangent bundle of the boundary. One may express the metric on the
collar C. in the form:

ds%\/l = goo(y, r)dy’ o dy® + dr?.

Fix yo € OM and choose the local coordinates so that gy(o(y0,0) = 65p. Then
we have that:

(1.6)
Lag = g(ara Va% 8:]09) = Fogm = _%87“9(7@7

gM(yOa T) = \/det {Id +argog(y(]a 0) T4+ O(Tz)} =1- TLaa(yO) + O(’I“2),
dx = (1 — rLuq)drdy 4+ O(r?).

Example 1.1. Let x1 = (cosf and xo = (sinf be the usual polar coordi-
nates on the unit disk in R%. One then has that ds? = d¢? + (?df? so dx =
¢dfd(¢. The geodesic distance to the boundary circle is given by r =1 — (;
thus ggg = (1 — )2 and Lyg = 1 so dz = (1 — r)drdy.

1.8. Regularization

Before discussing the asymptotic expansion of the heat trace in the singular
case, we must first discuss regularization; an analogous regularization was
required when discussing the heat content for singular initial temperatures
in [4]. Let H be smooth on the interior of M with Hr* € C*°(C.). Then

dx = (1 — rLgq)drdy + O(rz),
Hdx = {Hor™* + (Hy — HoLaa)r'~*}drdy + O(r*~“drdy).
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For Re(ar) < 3, define

IReg{H} = Z{Hdz}[M — C.]
+7 {de — [Hor_a + (Hy — HoLaa)T’l_a] drdy} [Cc]
cl-a
+I"{Ho} x { 1 —«
In(e) ifa=1.

if a # 1,

62704
if a £ 2,
(1.7) + T H) — HoLgo} x { 2 — 7
In(e) ifa=2.

This is independent of the parameter ¢ and agrees with Z{H} if Re(a) < 1.
Because the integrand over Ce is O(r?>~Re(®) and Re(2 — a) > —1, Treg is
well defined.

The regularization Zgeg is a meromorphic function of o with simple poles
at a = 1,2. At these exceptional values, Tre, is defined as the constant term
in the appropriate Laurent expansion, thus dropping the pole. We shall apply
this regularization to functions of the form H(z) = F(x)ay(x, D).

1.9. Heat trace asymptotics in the singular setting

The Dirichlet heat kernel satisfies pp(x, (§,7),t)|7=0 = 0. Since pp is smooth
for t > 0 and C;. is compact, we may use the Taylor series expansion of pp
to derive the estimate:

lpp(z, (§,7);t)| < C(t)F on C..

A similar estimate holds for |pp((y,r), Z;t)|. We set & = (y,r) to derive the
estimate on the diagonal:

(1.8) po((y,7), (y,7); )] < C(B)r® on C-.

Thus if Re(a) <3, then Equation (1.3) shows that Trr:(Fe™'P) is
convergent.

We shall begin our investigation in Section 2 by establishing the following
result by a direct computation as this motivates our entire investigation; note
that only limited smoothness is required of the boundary in this result. It
has the further advantage of confirming by completely different means some
of the constants that will be computed again in Sections 4 and 5. Let C here
and elsewhere denote Euler’s constant.
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Theorem 1.3. Let M C R? be an open, bounded, and connected planar
set with C% boundary. Let 0 < g9 < €. Set F(z) := Fo(y)r—*x(r) where x €
C>®(C.) satisfies:

x(r) =

0 ife<r.

{1 if 0 < r < e,

(1) If0<a<1andt]O0, then:

l—«

Trpa(Fe™) = {T{F} - 1F< >t(1a)/21bd{Fo}

2
(2) Ifa=1andt |0, then:

Trp: (Fe ') = ypn {ZReg{F} In(t) - T"{Fo} + %Ibd{Fo}}
+ O™,

This result extends to a very general setting. The following Theorem
generalizes Theorem 1.1 to the singular setting where, in contrast to The-
orem 1.3, we assume the boundary is C*°. We also refer to [4] for further
details where an analogous result was proved for the heat content asymp-
totics. In Section 5, we will use the pseudo-differential calculus to show that:

Theorem 1.4. Let M be a compact smooth Riemannian manifold. Let D
be the Dirichlet realization of an operator of Laplace type. Let a,, = a,(x, D)
be the interior local heat trace asymptotics of Theorem 1.1. Fix o € C with
Re(a) < 3. Let F' be a smooth function on the interior of M such that Fr® €
C>=(Ce).

(1) If a # 1,2, there is a complete asymptotic expansion as t | 0 of the
form:

Trps (FetP) ~ /2 Z t"TIReg{Fan} + ¢~ (m=1)/2 Z {E=a)/2gbd 1 (F,D).
n=0 £=0
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(2) If a = 1,2, there is a complete asymptotic expansion as t ] 0 of the
form:

oo oo
Trpe(Fe ™) m t7™2 N "t Ipeg{Fay} + " D/2 Y " 4l-)200d (B, D)
n=0 =0
o)
+ () >t Pap (R, D).
k=0
(3) There exist local invariants aléda ;= algda ;(y,D) on OM, which are holo-
morphic in o« for a # 1,2, so that

4

afa(F D) Zzbd{FaEaz
=0

The invariants sz have simple poles at z = 1,2 and

1
bd _ bd bd
Zoaz_ { Zzz_ P aReSZZOéaf,z,i

if a=1,2.

Z=x

(4) The In(t) coefficients in Assertion (2) are given by

—17%{(Fay)o} if k=2n and a =1,
at (F,D) = ¢ —31"{(Fan)1 — (Fan)oLaa} if k=2n and a =2,
0 if k= 2n + 1.

Throughout this paper, let
1 1—
Fai= 3T (157)
The boundary invariants for a # 1,2 and for £ = 0, 1,2 are given by:

Theorem 1.5. If a # 1,2, then one has:
(1) af,(F,D) = kg (4m) ™/ 2" Tr(-Fy1d)}.

(2) af?(F,D) = ka1 (4m) 2P Tr(—Fy 1d +5=5 FoLao 1d)}.
(3) abl(F\D) = kiq—o(4m) ™/ 2T Tr(—F, 1d + 52 stopF1Laa1d
+6F0Ramma Id — (oz 7)F0LaaLbed+4(a )FOLabLabId

—gieay FoRijii ld -2 RoE) .
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We remark that we recover Theorem 1.2 by setting & = 0 in Theorem 1.5.
We omit details as the calculation is entirely elementary. The boundary
invariants for a« = 1,2, and for £ = 0, 1,2 are given by:

Theorem 1.6.
(1) When =1,
(a) aby (F, D) = (4m) ™/ 21{Tr($ Fy 1d)}.
(b) a¥ (F, D) = (4m) ™2 T Tr(— Fy 1d 43 FyLoq 1d) }.
(c) ab?,(F,D) = (4m)"™/2T* {Tr (=5 F> 1d +§F1 Lag 1d + 15 Ramma 1d
— 3 LoaLip 1d + 5 Loy Lap 1d + G Ry 1A+ S E) )

(2) Whe
(a)
(b)
(c)

en o =2,

afy(F, D) = (4m)~™/2/mI{Tr(Fy1d)}.

a}%h(F, D) = (4m) =" Tr(§F 1d —[§ + §]FoLaa 1d)}.
abhy(F, D) = (4m) ="/ /mI"{Tr(— 1 Fo 1d + 3 Fy Lo 1d

+Fo(15 Ramma — &5 LaaLvs + 55 LapLab + § Rijji) Id+FE)}.

Here is a brief guide to the remainder of this paper. In Section 2, we will
make a special case calculation to establish Theorem 1.5. A probabilistic
estimate of Lang [10] and of Lerche and Siegmund [11] plays a central role.
In Section 3, we shall use dimensional analysis (scaling arguments) and var-
ious functorial properties to study the heat trace invariants. We will derive
Theorem 1.4 (4) from the asymptotic series in Theorem 1.4 (3); another
derivation will be given subsequently in Section 5. We shall examine the
general form of the invariants and establish the following result.

Lemma 1.2.

(1) There exist universal constants {Rq, kL, k2, k&, K5} so that:
(a) @i (F, D) = (4m) =" 2T Tr(=Fa Fo Id)}

(b) af(F, D) = (4m) T Tr(—Fa-1F1 1d + k3 FoLaa 1d)}.
(c) ab%,(F, D) = (4m) " 2T"{Tr(—FRa—oF21d + K} F1Laa1d
+Fo (k2 Ramma + Kk LaaLvy + 65 LapLap) 1d — o Fo[E + £ R;j5: 1d])}.
(2) If a # 1,2, then ko = ko and k), = %F (%Ta) 2(‘&7:‘1:3).

(3) K1 = %
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In Section 4, we evaluate the remaining universal coeflicients of Lemma
1.2 using the calculus of pseudo-differential operators and complete the proof
of Theorem 1.5 by showing:

Lemma 1.3. Adopt the notation of Lemma 1.2. If o # 1,2, then:

Roo= =T (15%), mh=TRatg T (15%), w =g T (159

We conclude the paper in Section 5 by using the pseudo-differential cal-
culus to establish Theorem 1.4. We have postponed the proof of Theorem 1.4
until this point as much of the needed notation will be established in Sec-
tion 4. We will also complete the proof of Theorem 1.6.

We have chosen to use special case calculations, the functorial method
and the pseudo-differential calculus as our purpose in this paper is at least
in part expository and we wish to illustrate the interplay amongst these
methods. In a subsequent paper, we shall perform a similar analysis for other
elliptic boundary conditions (Robin, transfer, transmittal, etc.); it will be
necessary to restrict to Re(a) < 1 to ensure convergence, and regularization
will not be required in that analysis.

2. Computations in R?2

This section is devoted to the proof of Theorem 1.3, and we shall adopt the
notation of that theorem throughout. As we shall be dealing with different
weights, we drop the notation Z and return to ordinary integrals in this
section to perform a special case calculation in flat space. One has the fol-
lowing estimate of Lang [10] and of Lerche and Siegmund [11] that adjusts
the formula of Equation (1.4) for the heat kernel on a half space to take
into account the curvature of the boundary of M (for related results see
also [3,12]):

Lemma 2.1. Adopt the notation of Theorem 1.3. Let x = (y,r) € C.. As
t}o0,

1 . e
pM(x’x;t):m{l_e "/~ Laa(y)r®t 1/2/

rt—1/2

e—’72dn} +0(1).

Proof of Theorem 1.3 (1). Parametrize the boundary of M by arclength.
There is no higher order correction in R? and the O(r?) term in Equa-
tion (1.6) vanishes. Thus on the collar C., we have

dx = (1 — Lao(y)r)drdy.
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Following Equation (1.4), we let pg(x,x;t) = (47t)~ (1 —e /) be the
Dirichlet heat kernel in the half space r > 0 on the diagonal. We take
0 < a <1 and express:

TI“L2 (Fe_tAM)
_(/’ J/ Fo(u)r=x(r)(1 = Laa(y)r)pas (), (1, 7); t)drdy
oM

AM/“Fb X = Laaly)r)oas (o), (g, 7): t)drdy
=D1+ Dy + D3+ Ds+ Ds

where, motivated by Lemma 2.1, we have:

1

D1 = 47rt ( )d$
D2 = / FO —a _T /tdrdy,
47Tt OM
D3 = Fy(y)r—(1 — 1— Loy —*/tdrd
; MfAM/‘ e X)L~ Laa(w)r)e™ drdy,

b= //FO Laa(y)r'~*e™"/ drdy,
47Tt OM

Ds := /({)M/ Fo(y)r~*x(r)(1 = Lea(y)r){(prr — pr)((y, 1), (y,7); t) }drdy.

A straightforward computation yields:

1 1. _/1-a
Dy=—— .-T—= t—<1+a>/2/ Fo(y)d
2 A 92 < 9 > o0 O(y) Y,

Ds=0 (e—sa/@t)) ,

1 1./2-a
Dy=— T[22 )t /2 Fo(y) Laa (v)dy.
1 4ﬂ2<2> /aM 0(y) Laa(y)dy

—Q

We use Lemma 2.1 to compute Ds. Since Fy(y)r~*x(r) is integrable on Cg,
we have the O(1) in Lemma 2.1 remains O(1) as ¢ | 0. Hence for 0 < a < 1,

2—ay;—1/2 —n?
t dndrd
47Tt \/(9M/ /t 1/2 y)r ¢ nerey

+ /8 ; / / / (y) Loy (y)r> =t~ 26~ dndrdy + O(1)
t 1/2
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1 22—« 2 -«
= . r t=2 [ Fy(y)Laa(y)dy + Ot1=%/2) + O(1
I 1o 3) ( 5 ) /é)M 0(y) Laa(y)dy + O( )+0(1)
1 2—-a 2—-a
= r t—a/Q/ Fo(y)Laa(y)d 1).
I ia_3) ( 5 ) - 0(y)Laa(y)dy + O(1)
We collect terms to complete the proof of Theorem 1.3 (1). O

Remark 2.1. We have chosen to study the region 0 < a < 1. The reason
for this is that F has to be integrable in order to control the O(1) remainder
in Lemma 2.1. If one wishes to obtain just the leading asymptotic behaviour
of Trpz(Fe t») then probabilistic estimates for

(2.1) Ryr(x;t) == (pmr — pa) ((y,7), (y,7)3 1)

along the lines of [1], and analogous to [2], could be used to show that for
1<a<3,

(2.2) /8 y / R(z;t)drdy = O(t~(m=2+)/2) = ¢ | 0.

Proof of Theorem 1.3 (2). Recall from Equation (1.4) the formula for the
heat kernel py on the diagonal for the half space. We decompose

Trp2(Fe '2%) = By + Ey + E3

where we have:
By = / / Fo(y)r™x(r)(1 = Laa(0)r) (par — pr) (7). (v, 1) 1) )drdly,

/ / Fo(y)Laa(y)x(r)(1 — e_rz/t)drdya
47Tt OM

. —1 -2/t
1 : 47Tt /aM/ Fo )(1 [§] )dT‘dy

We apply Equations (2.1) and (2.2) with m = 2 and with a = 1 to see that
E3 = O(t~'/?). Furthermore, Ey = O(t~'/2). The leading term is provided
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by E1. We integrate by parts to see that:

_ﬁ . Fo(y) /OOO ]n(T') {X/("”)(l o efﬁ/t) + X(’I”)szaer2/t} dT‘dy

__t Fo(y){ /0 () (1) dr + /0 ooln(r)?e_rz/tdr}dy

~Ant Jou
+ O(es3/20)

£
L Ry {ln(?)+o+2/ nga)dr}+0(e—6§/(2t)).
€o

T ant 2 Jou

By =

This completes the proof of Theorem 1.3. O

3. The functorial method

We adopt the notation of Theorem 1.4 throughout this section. We begin
our study with the following:

Lemma 3.1. There exist constants 6Za so that
(1) ab®,(F,D) = (4m) ™2 Tr(ef) , Fo 1d)}.
(2) ab (F, D) = (4m) ™21 Tr(e? . F1 1d +¢}  FoLaa 1d)}.
(3) bl (F,D) = (4m) ™/ 2T Tr (Y , F> 1d +&} o F1 Lag 1d
+Fole3 o Rijji + €3 o Ramma + €3 o Laa Lo + €3 o Lap Lap) 1d
+e8 JFOE)}.

Proof. We apply dimensional analysis — we shall suppose that a ¢ Z for
the moment. Let ¢ > 0 define a rescaling g. := c2g. We then have

dx. = c"dzx, dy. = ™ 'dy, D.=c?D,

Te 1= cCr, Op. = ¢ 10y, E .= Uy,

TRegc = C"IReg, I0% = cm 104,
Let anc = an(x, D), ara.c = ar,0(y,De) and arqic = apai(y, Dc) denote
the local heat trace invariants defined by D, on M and on M, respectively.
It is immediate that

(31) TI‘L2 (Fei(tc_Q),D) == TI‘Lz (Feiﬂ)a).
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We expand both sides of Equation (3.1) in an asymptotic expansion:
o0
72N " (¢7) " Ireg { Fan}
n=0
[e%9) ¢
+ (C_2t)_(m_l)/2 Z Ca—ét(f—oz)/Z Zzbd{Fiaf,a,i}
¢=0 i=0

o0
~ /2 Z t"c" IReg{ Fan,c}

n=0

oo 1
(DN 2N om0 T By o)
=0 1=0

Since a ¢ Z, the interior and the boundary terms decouple. We equate terms
in the asymptotic expansions to see that

2n it
ap and  agaic=C" apay-

Gpec=C
Examining relations of this kind is straightforward — they mean that the
local formula a,(x,D) is homogeneous of weighted degree 2n in the jets of
the derivatives of the symbol of D and that the local formula a4 i(y, D) is
homogeneous of weighted degree £ — ¢ in the jets of the derivatives of the
symbol of D. One may use Weyl’s theory of invariants to express a spanning
set for the invariants which arise in this context and complete the proof of
Lemma 3.1 for o ¢ Z. We use analytic continuation to establish Lemma 3.1
when ao = 0, —1,—2,... as well. We refer to [7] for further details concerning
this sort of dimensional analysis.
If a =1, then the argument is rather different. Let ¢, be the width of
the collar C with respect to the rescaled metric. The regularizing term in
Equation (1.7) does not simply rescale. Rather we have:

In(eo) I8 (Fanc)oe} = In(ce)c®e ¢ 1T (Fay,)o}
= ™2 In(c) + In(e) } 2 (Fan)o}.

This yields the modified relation:
TReg.c{Fanet = " " Ireg{Fay,} + In(c)c™ "I (Fay)o}.
A similar argument for o = 2 shows that:

TRegc{Fanc}t = cm*Q"IReg{Fan} + ln(c)cm*Q"Ibd{(Fan)l — (Fan)oLaa}-
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When we use Equation (3.1) to equate coefficients in the asymptotic series,
we have

aft (F,D.) = 'd},(F, D),

which completes the proof of Lemma 3.1 in these exceptional cases. We
compare the terms involving In(c) to obtain additional relations. The left-
hand side in the following equation arises from In(c~2t) and the right-hand
side arises from Z,¢q . when we apply Equation (3.1); if k = 2n, then

~ 2In(e)ilh (F, D) = In()7{(Fan)o}
— 2In(c)a}y(F, D) = In(c)I"{(Fan)1 — (Fan)oLaa}-
There are no corresponding terms if & is odd and thus az; = 0 and az2 = 0

if k is odd. This establishes Theorem 1.4 (4). An alternate proof is given in
Section b. O

We now use the functorial method to establish the following result:

Lemma 3.2.

2 _ 1.0 6 _ .0
(1) E2,04 - Ego,a and 52,01 - EO,O{’
(2) The constants €}, of Lemma 3.1 are dimension free.

0 _ .0 0 _ .0 1 _ 1
(3) El,a - 2’50,04—17 52701 - 50,&—2 and 52,01 - El,a—l'

Proof. Suppose that M = My x My, that gy = gar, + g, that Dy = Dy
+ Dy, and that Fyy = F1F» where F; are defined on M;. We suppose that
Mj is a closed manifold and thus OM = M; x 0M,. We then have:

e—tDM — e—tDIVII e—tDI\/Iz,
TI‘Lz (FMe_tDM) = TI“Lz (Fle_tDMl ) . TI“Lz (Fge_tDM2 )

Equating asymptotic series yields

all?:ia(FMva): Z ak(FbDMl)a?i(F%DMz)a
2t j=t

and hence a corresponding decomposition of the local formulas:

(32) all?,doc,i(y7DM): Z ak(xlﬂle)a?fla,i(y2>DMz) for y:(xlva)'
2k+j=¢

Assertion (1) now follows from Theorem 1.2 (2), from Lemma 3.1, and from
Equation (3.2); the multiplicative constants (47)~™/2 play no role. If we take
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= S and Dy, = —03, then the structures are flat. Thus ag(z, Dy, ) =
1/v4n and ag(x,Dyr,) =0 for k> 1. Thus Equation (3.2) yields in this
special case the following identity from which Assertion (2) follows after
taking into account the multiplicative constants (4m)~"/2:

bd
g0y, Pur) = ﬁazfia,i(ym D).

We prove Assertion (3) by index shifting. Let x(r) be a smooth function
so that x =0 near r =¢. Let F(y,r) = Fy(y)x(r)r—* for Re(a;) < 3. We
apply Theorem 1.4 with o = a1 and with a = a; — 1 to see that:

a’zdoz,j (y7D) = azc—ll,a—l,j—l(yvp) for ] > 1.

Assertion (3) now follows. O

Proof of Lemma 1.2. Assertion (1) of Lemma 1.2 follows from Lemma 3.1
and Lemma 3.2 by a suitable relabelling of the coefficients. Assertions (2)
and (3) follow from Theorem 1.3. O

Proof of Theorem 1.6. We now derive Theorem 1.6 from Theorem 1.5 using
Assertion (3) of Theorem 1.4. Certain of the coefficients are regular so the
computation is elementary; we do not need to drop the pole. We simply set
o =1 to compute al{fll and a = 2 to compute agflg and agle

aly(F, D) = ko (dm) ™2 TP Tr(— Fy1d) }
= V7(dm) P TRy 1d)},

a}? (F, D) = ko(4m) "™ * TP Tr(—Fy 1d +3 Fy Laq 1d) }
= VT (47r) 2T Tr(—4Fy 1d +3Fy Lag 1d) },

a5 (F, D) = ko (dm) "™ * TP Tr(— Fy 1d + 5255 Fi Log 1d

2()

75 FoLaa Ly 1d + =55 Fy Lap Loy 1d

+ lFORamma Id — (a—6)

§a-0)
31— a)FORZ]jZ Id — mFOE)}’CV:2
= /(Ar) TP Te(— L By 1d +2 Fy Log Id + 15 Fo Ramma Id

— & FoLaaLy 1d +35Fo Loy Loy Id + £ FoRijj 1d + Fo E) }.
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We compute the remaining coefficients as follows. Let c(a f‘fl, A) be the

coefficient of the monomial Z0#{Tr(A)} in (4m)™/ Qa%(F, D). It follows by
Theorem 1.3 that

af (F,D) = § - (4m) ™/ 2" Tr(Fy1d)}.

We may expand

o— 2(a—3 -+ 2—« —Q
Ka-1 2(a—43) = Ko 2 2(3—%) b= ko1 4T (3%) 2(a1—3)'

It now follows that
(a’lid27F0Laa Id) —_¢C_1

2 27
af%(F, D) = (4m) "2 Te(§ L 1d —(§ + §)FoLaa Id)}

Many of the terms in agfll (F,D) are in fact regular at & = 1. We have:

clabhy, Fold) = =3, e(adh, FiLaa1d) = 3,
c(a5%, Ramma 1d) = 75, ¢(a¥h, Laa Ly 1d) = —
c(abh, LapLap 1d) = 7.

E7

The terms involving R;;;; and E can be written in the form —ﬁaFo(%Rijji Id
+FE). Thus we may use the regularization of —Fj Id in ag‘fl which was already
computed to see

ab (F, D) = (4m)~m/27% {Tr (1R 1d +§F1Laa 1d + 35 Ramma 1d
— 3 LoaLip1d +3 Loy Lap 1d +S Rij5: 1A+ S E) }

This completes the derivation of Theorem 1.6 from Theorem 1.5. O
4. The pseudo-differential calculus
We adopt the following notational conventions. Let & = (aq,..., ) be a

multi-index. We set
dl=a1+ ...+ am, ad=a!x...xa!,
— — 8 ay 8 (6799
@ =l X .oxafr, da:( ) x...x(—) ,
xr __ o o
D% = (—y/=1)lds.

We apologize in advance for the slight notational confusion involved with
using « to control the growth of F' and also to using & as a multi-index.
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We begin our discussion by reviewing the standard pseudo-differential
computation of the resolvent on a closed manifold without boundary and
refer to [5—8,13] for further details. Let D be an operator of Laplace type. We
want to construct the resolvent of D — A for large A where we use Equation
(1.1) to express:

For the symbol o(D)(x, &) of D this means

o(D)(w,8) = Y ag(z)¢%;

o <2

note that for the scalar Laplacian Ay the zeroth term vanishes so a5 = 0 in
this setting. In the evaluation of the heat equation asymptotics homogeneity
properties of symbols are relevant and it turns out that collecting terms
according to

a2(x7£7)‘) =—-A+ Z ao?(x)gaa
|d|=2

aj(2,&,3) = ) aa(x)¢?, j=0,1

|a@l=j

is fruitful. As a result, the symbol o(D — \)(z,&,\) can be written as

[\

o(D = M) (2,60 =Y aj(@,&N).

=0
For the symbol of the resolvent of D — A we make the Ansatz

o0

(41) U((D_A)_l)(m7£>)‘) NZQ—2—l(x7£7>\)'

=0

In view of the formula for the symbol of a product we see that q_o_; is
determined algebraically by

(42) 1= a2(1‘7£7/\)q72(x7£> )‘)7

1 a T
43) 0= > =ld%a;(2,& V)] [Dig-a-i(w,& V)] for k> 1.
k=24 1418

These symbols will play a crucial role in the proof of Theorem 1.4 in Section 5.
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We now specialize to the case where D = Ay is the scalar Laplacian.
For our present considerations we need ¢_s,q_3,q_4. For simplicity we skip
the arguments in the following summary of results — we use in an essen-
tial fashion the fact that Aj,s is scalar. We also use the convention that
repeated indices are summed over. We find (all greek indices will range over

{1,2,...,m}):
q2=a;",
43 =—a3" [ma 2+ (D{as)(vV=1D}g 5)]
g-1=—az" |agg-2 + a1g-s + (D¥ar)(V=1D;q»)

+(DYas)(V=1D}q-s) = 3(D{"az)(Dfa-)] -

For later use it will be advantageous to express the results in terms of ¢",.

We then have

2 3
-3 = —a1qZ9 + ¢339,

_ 2 3 4 5
q—4 = —a0q—_9 +C-43G9" 9 + C—449_9 + C—459_5,

where

C_33=—V —1 (85&2)(65&2),
c_a3 = ai —V—1(Fa1)(5as) — V-1 (Faz)(05ar) — 5(9"a2)(95,a2),
C_44 = —3ai1c_33++v—1 (agaz)(a,fc_;;’g) + (85”“a2)(8§a2)(8ﬁa2),

C_45 = 302_373.
The relevant operator for our considerations is
Ay — A= —¢""0,0, + V"0, — A,

where we have changed notation slightly from that used previously. For the
symbols this gives

a2(x7§7 )‘) = g,ullguéy —A= ’£|2 - )‘7
a1(z,&,\) = V=1"¢, and  ag(z,€,2) =0.

To state results for q_s, q_3 and g_4 for this operator D we will as usual
raise and lower indices using the inverse metric and the metric. Furthermore,
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‘) denotes partial differentiation. One computes easily that:
72($,§,)\): 1€ ‘ )\7
_3($,€, /\) |£‘2 )2 2V 1o# g/.b |€‘2 )3 2\/ gU"/é-z/gUg’y’
4,6 ) = e VG + 19T ks + 200,07 60E — g g ot}
(e {6007 070 €0y + 497,07 0 Eun s

Hos g7 €606 + 207 109" € Esbsts |
(|§|2 { 1297/791159 gupfﬁgaf’yfpgéfr}-

If the manifold has a boundary the expansion (4.1) has to be augmented
by a boundary correction. To formulate the conditions to be satisfied by
the boundary correction we expand about r = 0. We adopt the notation
established in Section 1.7 and expand

dsyy = Goo(y,m)dy” o dy® + dr? on C..

The coordinate y locally parameterizes the boundary, and r is the geodesic
distance to the boundary, so x = (y,r). A tilde above any quantity will indi-
cate that it is to be evaluated at the boundary, that is at » = 0. Furthermore,
we use & = (w, 7).

We find
o
A=A S Faatun)| D,
k:O : || <2 =
with the notation
m—1
Dg, = (H D;::) Dz,
i=1
Introducing
> jai=j aa(y, ) ([T wf ) Dem for j=0,1,
aj(yvraw7D7'a )\) = m—1 a«. @
2ja=2 aa(y,r) (L2 wi" ) DY — A for j =2,

we define the partial symbol

0o 2

(AM )\ Z]% Z(‘f y,rw Dra)‘)
k=0 r=0
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As it turns out, the symbols

2 o] 1 8
(J)(y,’l"w Dra)\ :Z Z H 7 y,rw DTa/\)
=0 k=

I—k=j

r=0

have suitable homogeneity properties and using these symbols we write

2
o' (Ay — ) = Z a9 (y,r,w, D, \).

j=—o00

We write the symbol of the resolvent as
J((AM - )‘)_1)(3/7 r,Ww,T, )‘)
oo

(4.4) = Z q—2—j(y,m,w, T, \) — eVl Z h—oj(y,r,w,T,\),
j=0 =0

where the second term is the boundary correction. The factor e VI
appears because the operator constructed from these terms is the Op/(h)
n [13], and Op/(h) = Op(he=V~17"). This shows

' (Apy —N)o Zh_g_j(y,r,w, 7,\) =0.
=0

Here o denotes the symbol product on R™~!. Analogously to Equations (4.2)
and (4.3) this equation leads to the differential equations

0 = a(2) (y7 Tv wa DT? )‘)h—Q(y7 T’ L{), T’ )\)7
0= a(2) (y7 r,w, DT‘7 )‘)h_Q_j (y7 W, T, A)

+ Z % [Dg‘a(k)(y,r,w,Dr,A)] [(\/ley)d‘h—%l(vavwﬂ'a )‘)] .

a,k,l<j

J=l+2+|a|—k

For the present considerations we need h_s_; for j =0,1,2, and we have
more explicitly (repeated letters a,b,c,... run over tangential coordinates

(1,2,...,m—1})
0= CL(2) (y7 r,w, D7‘7 )\)h—Q(ya rw,T, A)?
0= CL(2) (yv r,w, Dh )‘)h—3(y7 rw,T, A) + a(l) (y: W, Dra )\)h—2(y7 rw,T, )‘)
+ [ DLa®(y, 1w, D V)] [(VID o2y, w7, 0)|
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0=a® (y,myw, Dpy Nh_g(y, 7y w, 7, A) + a® (y,r,w, Dpy N h_o(y, r,w, T, \)
+ [Dga(l)(y, r,w, Dy, )\)} [(ﬁDy)bh_g(y, raW, T, )\)]
+ 3 [DEa®(y, 7w, Dr V)] [(VEID Yol 70,7, V)|
+aV(y,r,w, Dp, Nh_s(y, r,w, 7, \)
+ [Df,a(z)(y,r,w,DT,)\)} [(\/TIDy)bh_g(y,r,w,T, /\)] .

The relevant equations for a¥ (y,r,w, D,, \), i = 0,1,2 are

a(2) (y7 r,w, Dy, >‘) = a2(y) r,w, Dy, /\)’T‘:U
= gabwawb + Dz - )‘a
a(l) (y7 r,w, D7“7 >‘) = T(arCLQ(ya r,w, D?") )‘))|7“:0 + al (ya r,w, D7"7 )\)|7":0
= rgfibwawb + V=1, + V —IIN)’”DT,
a(O) (y7 r,Ww, DTa )‘) = %T2(83a2(y> r,w, Dra )\))|r=0 + r(aral(ya W, DT» )‘))|7'=0
+ aO(yv r,w, DT? )\)|T:0
= 27“2g“,,brwawb +rv—1 B?Twa +rv-—1 Z)TT,DT +¢.
The differential equations have to be augmented by a growth condition
(4.5) h—o_j(y,r,w,7,A) = 0 as 1 — 00,

and an initial condition corresponding to the Dirichlet boundary condition

(46) h—2—j(ya rWw,T, )‘) |T=0 = (q-2—j (ya rWw,T, )‘) |T=0'

Once the symbols h_5_; have been determined, their contribution to the
asymptotics of the trace of the heat kernel follows from multiple integration.
As before, we suppose r*F € C*°(C.). The contribution reads

o0

l—a—m 1
E t 2 t2/ n:(y, F, Apr)dy
=0 OM 2

with

nz(y,F Ap) = m+1 Z / dw/ ds/o dreV—1s
m—1 —00

j+k=l

(47) X <— dTe_\/?lTF> thfj (yv 777 W, T, —V -1 S)Fk_aFk(y)a
il
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where v is anticlockwise enclosing the poles of h_o_; in the lower half-
plane. The integral with respect to s is the contour integral transforming
the resolvent to the heat kernel; see Section 5. Note that from (4.4) the
contribution to the heat kernel is minus the above.

As will become clear in the following, with A = /|w|? + v/—1 s, we need
integrals of the type

kl]"—/ dw/ ds/ dieV=1s <—/d7'eﬁ”>
Rm—1 ¥

klawwb

X—AJ( - AZ) e

The 7 integration can be done using

(12 + A2)l (1—1)! 2A dA

k k I+k -1
VI T _ WD )T 1 d k—1_—7A
LdTe 5\ A [A e }

So

phe o / dw / ds
Rm 1

_ —1 1 —7
></ dreY— 1s l awa/c\u;, ‘o A (Li)n |:Ak le T‘A:| ]
0

Performing the A-differentiation, different 7-dependent functions would
occur. It is therefore desirable to first perform the 7-integration before per-
forming the A-derivatives explicitly. This is achieved by noting that (z = A
has to be put after the A differentiation has been performed)

. /1 k -1 n+k+1 00 Wb - - -
qiin - WD m [ g, 7 ey Tsast
an.. (n — 1)' Rm—1 —00 AJ

el AR—1 / dift % —7(A+z)
. <2A dA) . L

_ (VDR [ o[ s
= (n 1) Ni+1-a) R"Hdw _Oodse N

1 d\"" At
<2AdA> (A + z)H1-a

z=A
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We can proceed in general by introducing numerical multipliers c¢,,x; accord-

ing to
1 d\"" AR
2A dA (A + z)tt1-o

The s-integration is then performed using

1
= Gkl AT ok

z=A

1,2
e vl

oo V—1s
/ ds e _ 27
o  (Jw2++v—=1s5)8  T(B)

The final w-integrations follow from

~ a,b
_~ab — . a m=1 = _ Gapv’y
C(y) E/ ldwe G wawr+vV—1y"w, _ T2 \/ge e
Rm=

by observing that

Hab 1 r 8 8
dw we,wq, ... wg, e 9 W = < > . C(y )
/]R'ml 7/ _1 ayal ay(lr ( ) y:(]

In particular

e m—1 —
/ dwe ¥ = 773 NG
Rnl—l
_ 2 1 m—1 = ..
/ dw wawpe ™! = 5T 2 V/3Gab,
Rm—l

m—1

= %71‘ 2 \/5 (§ab§0d + ?]acgbd + gadgbc) .

|

/ dw wewpwewqe™
Rmfl

Introducing the numerical multipliers dy;;, according to

2(v/ =R (=) HFHL22D(1 4+ 1 — a)epp
(n—DIT (j+l—2k—a 4 n)

diijn =

)

we obtain the compact-looking answers
kljn —lwl?
Tab... = dkljn/ dw WaWp ... € ] y
an—l

where the last w-integration is performed with the above results.

Note that the numerical multipliers dy,;, are easily determined using an
algebraic computer program. Therefore, all appearing integrals can be very
easily obtained.
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Let us apply this formalism explicitly to the leading orders, and we start
with h_s(y,r,w, 7, A). The relevant differential equation reads

(872’ - A2>h_2(y7 r? w? T’ )\) = 07
which has the general solution
h_o(y,ryw, 7, \) = Ae ™™ 4+ Be™.

The asymptotic condition (4.5) on the symbol as r — oo imposes B = 0.
The initial condition h_s|,—¢9 = q_2|r—0 gives

1

T2 4 A%

Putting the information together we have obtained

1 —rA

h_Q(y, r,w,T, A) = me

Performing the relevant integrals, with the notation

/dlz/ dw/ ds/ dreV 1% (—/dreﬁ”) e,
Rm -1 —00 0 v

produces

m-1 297 T(1 — @) m—s
/dIhg(y,F,w,T,—\/—l s) = dooorm = /G = lzr(l(_a)a)wa\/g
2

1—
=l <2a> 7Tm/2\/§.
Taking into account the prefactor in (4.7), this confirms the value of R, in

Lemma 1.2.
In the next order we obtain

(02 — A)h_3(y, 7w, 7, \) = (E+ Up)e ™ + (F + Ug)re ™,

where
. B,«A . g?}bwawb
T2 AY T 24 A
- V1w, 2V-15 0 wawe V1§l wawe
W) ="3e F (T2 +A2)2 2(w) = (T2 + AN
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Note, for later arguments, that U;(w) and Us(w) are odd functions in w.
Furthermore, for the scalar Laplacian at hand b* = ¢*T",.%; thus they contain
only tangential derivatives of the metric.

Using for example the annihilator method, we write down the general
form of the solution to this differential equation as

—rA —rA 2 _—rA A

h73(y7 rw,T, )\) = C1€ + care + c3rie + C4er .

From the asymptotic condition (4.5) we conclude ¢4 = 0. From the initial
condition given in Equation (4.6) we obtain

Vo1t /10T 2V TR0 w2V =1 g8 Twaws
(72 +A2)2 (72 + A2)2 (72 + A2)3 (2 + A2)3

Cc1 =

From the differential equation we derive

Co = *ﬁﬁ(FﬁL U2) — i(E‘{’ Ul),
C3 = —ﬁ(F-ﬁ- UQ).

Collecting the available information, we see
h_s(y,r,w, 7, \) = De”™ + Bre™™ + Crle ™ + O(w),
with

VIl 2V T,
(72 + A2)? (2 + A2)3

~ab T
o drean bV
AN2(T2 + A2%)  2(m2 + A?)
o= _Trwan
4N(T2 4+ A?)

and where O(w) is an odd function in w. Furthermore, O(w) contains only
tangential derivatives of the metric. We next perform the multiple integrals;
note, odd functions in w do not contribute. We obtain

/dlh_g(y, T,w,T,—V—15)
N T ) 1 = _1 _1
=72 /33 Ga 5—d1002 + 7do101 — V' —1d1003 — gdoi21 — gdo211

ma—4) (22—« = _ab~
— T m/2 abz
4(3 o Oé) ( 2 ) m \/gg,’r‘ gab
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This confirms the value of . in Lemma 1.2 after taking into account the
prefactor in (4.7) and the fact that gfﬁ?gab = —g“bgab,r =29% L.

Up to this point the calculation can be considered a warm up for the next
order. We would like to determine the universal coefficients of the geometric
invariants Ramma, LaaLpy and LgpLgp. In terms of the metric the last two
are determined by

Loy = _%gab,r-
Using the Christoffel symbols

T’ = %gil (G e + 9kt — Gjk) 5

and taking into account that with our sign convention the scalar curvature
is given by the contraction g’ kRiij, we may expand the Riemann curvature
tensor in the form:

I ! z ! !
Riji’ =T i — Dir' i+ Tin' Ty — Ty’ T

The normal projection of the Riemann curvature tensor reads

1 1~ac~ 1~bc~ad~ ~
Ramma = —39r Yacyr — 29 YGacrr — 399y GeaJbd
1~ab~cd~ ~ 1 ~ac~
=219 9 Yacr9bdyr — 39 Yac,rr-

The above results suggest a strategy for the calculation. It suffices to consider
the special case where the metric is independent of y. As a consequence, our
answer will have the form

(4'8) (477)_m/2 {Agacgac,rr + B?]abgalf]ac,rgbd,r + Cgabgaigab,rgcd,r} .

This has to be compared with the terms in ag‘fa(F, Ajr) that possibly con-
tribute to these geometric invariants. In detail one can show these terms are
(mod terms with tangential derivatives of the metric)

— %KQR + HiRamma + HiLaaLbb + ﬁgLabLab

~ac~ 1 1,3 ~ab~cd ~ ~ 1 1,4
= gacgac,rr (gﬁa - §I€a) +9"g° Y9ab,rGed,r (ﬂﬁa + Z’fa)
~cd ~

+ Qabg dgac,’rgbd,r (—%Iia + %Hi + %/ﬁ?i) .

So once we know A, B, C, we can deduce

(4.9)
K = —2 (A —

o Ka) mi:4(0—ina), Iii:4(B+%lia—ilii).

=
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In summary, when writing down the differential equation for h_4(y, 7, w, 7, A),
we can neglect all terms that are odd in w as well as all terms that contain
tangential derivatives of the metric. We obtain (up to irrelevant terms)

(82 — A)h_y(y, 7w, 7, A) = Ae ™™ 4 Bre ™ 4 Or2e ™™ + Drde ™,

where
A= V= Tbb" AT + 2v/=1b"§% Atw,wy, b gl wawy i B
(r2+A2)2 (P2 A7) T IA(r21A%) T 2(r2+A7)
R V—=1G%b " Twaws 2v/—1 3% 35 Twawpwewa BhT W wh rir
B — b,rA ,Tbb ! ,rbb I; i) A
= TTEFAT T T (AR (r>-+A2)? T IA(FPFAZ) T 2(r24A%)
C = Gt wawy gabngwawbwcwd 3£~Ifﬁ%’l~7"wawb
2(r2+A2) —  4AZ(r21A2) A(r7+A2) >
g% wawpwewa
D= —"Rran

So the solution has the form, taking into account the asymptotic behaviour
(4.5),
h_y4 (y7 rw,T, )\) = de_rA + ﬁ""e_rA + ’}/7“28_TA + 57“36_TA + 67‘46_TA.

From the initial condition & = q_4(y,r,w, T, \)|r=0 We obtain, up to irrele-
vant terms,

a= ﬁ {—ZDTBTTQ + 57”@ Wawp + ZbT 7% — grrwawb}
+ W { 6brg“b 2wawp + 4% T2wawy, + 259055 Wawbwcwd}

+ (e 2+A2 { 12g“b deawbwcwdT }
From the differential equation we obtain the conditions

A= -2A3+2v, B=—4Avy+ 66,
C=—6Ad+12¢, D = —8eA.

This determines the numerical multipliers 3, v, § and € to be

5__§2_lg_l£_lé
= T8AT T 4AT T 4AT T 2A
__3Db 1C 1B
V= 7T8A3 T 4AZT T 4A
§—_1D _1C

1AT T B A

1D
6__§K
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For the Laplacian on the manifold M we have

b= *%g gab,rv

by = abg gab,rgcd,ra

Qe

brgabg,arb =39 b§0d§ab rgcd i)

NI—= N[ =

INJTT = g g gcdrgabr_ %gabga@”?

ac ~bd

gabg,a}br =29"g gab TngT gabgab,rm
~ab

3P5% (Gavfed + Gacvd + Gaadve) = GG GabyrGedr + 25" 5 Gac,r Godr-

Performing the integrations we obtain the contributions (modulo n(m—1)/2

V)
ar = §3Gab,rGedr [— 52003 + Sdooos — 2d2004 + Sdoooa — 3daoos ]
+ 3G Gac,r Gb,r [d2003 — dooos + 4d2ooa + dooos — 6da00s]
+ 7 Gabrr [—d2003 + Sdooos — 2d2004] ,
Br = 35 Gab,rGed,r [128d0151 + & dots1 + £6111123 + rd1122 @dno:a
*7\/5?1611102 - édmn]
+ GG Gac,r God,r [6%610151 + dots1 + @dll% — tdoiz + %dom]
+ §Gabrr [Fdo1s1 — 2doin]

brcd~ 3 1 Ve 1 3
Y1 = "G Gab,r Ged,r {mdmu + g1do241 + Yg—d1213 + 55do201 — Fzdo221

+%d1212 + G%doml]
+ 3°°G“ Gac,r God,r [6*34(10241 + 33dozar + @dlﬂii — tdoza1 + %doml]
+ 5 Gabrr [5d0221 — dozo1]
61 = 3G GabrGear [1o5d0331 — 35d0311]
+ 55 GacrGoa,r [dosst — 13dos11]
+ 3" Gabrr [97d0s1]

= 45 GabrGedr (1550121 + GG Gac,r Godr [ agdosz1] -
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Adding up all terms and simplifying using the functional equation and the
doubling formula for the I'-function, the contribution to the heat kernel
coeflicient reads

(47T)_m/2 {gabQCdgab,rgcd,r 30382(17235)27F (I—Ta)
~ab ~cd ~ ~ do—a? _ ~ab ~ —_
=+ gabnggac,rgbd,rE)(ng;(z_g) )F (lTa) +gabgab,rr (XT—EBF (lTa)} .

This allows us to read off A, B and C from Equations (4.8) and (4.9) and
to conclude:

3 1 4 _ T—8a+ta? 6a—5—a?
Ko = —15(@ = D)Ka, Ky = 16(31'(?‘) Koy Ko = S(a5) o
This completes the proof of Lemma 1.3. U

5. The proof of Theorem 1.4

We adopt the notation of Theorem 1.4. We may suppose that the weighting
function F' is supported in a boundary coordinate neighbourhood U and that
F has the form F' = r~%G with G € Cg,,,,(U). For appropriate functions g
and ¢*? set

Op(q) f(y,r) = //eﬁyw“m”q(y,r,w,ﬂ A f(w, 7)dwdr,

op'(¢"") f(y.r) 1—//eﬁy""qbd(y,r,w,7, M) f(w, 7)dwdr,
dw:= (2m)'""dw and dr:= (27)"tdr.

Thus one has that Op/(¢")) = Op(e=V~=17¢"). In local coordinates (y,r),
we follow the construction in [13] to define the standard parametrix for
(D- X"k

N
Qv =3 {0pla-2 () - 0¥ (8-, () } -

n=0

The g; and q?d are discussed in further detail in Section 4; we refer in partic-
ular to Equations (4.1)—(4.3). Note that the qé-’d here is the h; of Section 4.

We pass to a parametrix Hy for the operator e *P by performing a
contour integration:

1

Hyn(D,t) := /1

N
/re_tAQN(A)d)\ = > {Op(e—2n) = Op' (" ,)};
n=0
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in this expression, e; and ez’-d are the corresponding contour integrals of g;
and q;?d. For another construction of the heat parametrix see [8].

Take ¢ and v with compact support in U, with ¢» = 1 in a neighbourhood
of the support of ¢. Then

Ry=¢ e — Hy] v

has a kernel k(y,r,%/,r';t) which, for sufficiently large N, is C2, O(t’) for
large J (depending on N), and vanishes when r = 0, although not for ' = 0.
To achieve vanishing in both variables, we consider

¢HN(D,t/2)@Z)2HN(D*’t/2)*¢ _ ¢e—tD/2w2(e—tD*/2)*¢
(5-1) — —Ry¢Hy(D*,1/2)"¢ — ¢Hn(D,t/2)¢ Ry — Ry Ry

Here we compute the adjoints with respect to the measure dydr. The remain-
der given by Equation (5.1) has a kernel which is C?, with derivatives O(t”)
for large .J, and vanishes when either »r = 0 or ' = 0. By the pseudo-local
properties of Hy and e P, the same is true of

SHN(D,t/2)Hn(D*,1/2)*6 — g™ Po.

Hence the kernel of this operator is O(r?t”) for large .J and we can deduce
an expansion for Trz:(Fe~'P) from an expansion of Tryz (FHNH3¢), taking
¢ = 1 on the support of F'. The error will be holomorphic in « for Re(«) < 3.
Since Trz:(Fe~'P) is also holomorphic for Re(a) < 3, we may compute our
expansion for Re(a) < 1 and continue analytically.

From the expansion of ¢; in powers of (Jw|?> + 72 — A\)~! (See Section 4)
we obtain the estimates

(5.2) le_o_y| < Cth/2e=ctwl+7")
|eb] < Clw]? + 72 + 1) eIl

for suitably chosen constants C' and c. Set £ = (w, 7). The ¢; and the q?d have
an appropriate homogeneity property [13]. This homogeneity yields that

(54) ej(yaT’ Séut/52) = 82+jej(ya T7€,t), and

(5.5) Xl y,r/s,sé,t/s%) = s*H el (y,r & t).
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Furthermore, the kernel k; of Op(e;)Op(e;)* and the kernel ky of Op(e;)Op’
(ezd*)* on the diagonal are given, respectively, by:

ki(y,ry,mit) = /ej(y,T,&t/Q)ek(yﬂ‘,é,t/Q)d&

(5.6) = (t/2) - (math D)2 / 03y, 1. & Ven(y,r &, 1)dE,
(5.7)
ka(y,r,y, rit) = (¢/2) " (mHHRED/2 / ey, €, 1)edd(y, r(2/6)/2,€,1)de.

There are similar formulas for the kernel of Op/ (e?d)Op(eZ)* and for the
kernel of Op’(e?d)Op’ (e24*)* on the diagonal.

We integrate F'(y, 7)ki(y,r,y,r;t). An expansion of Feje, in powers r
gives terms ¢~ (M +i+tE+4)/2 times a meromorphic function with simple poles
at a =1,2,.... For other «, this gives the interior terms in Theorem 1.4;
the terms with j + k odd vanish because of the parity of e; and ej, in £. For
the terms in Equation (5.7), note that from Equations (5.3) and (5.5), €24
decays exponentially as r — oo so that we may integrate in r from 0 to co.
An expansion of Fe; in powers of r and a change of variable r/ V't — r gives
boundary terms of the form in Theorem 1.4 for o # 1, 2.

This proves Theorem 1.4 for Re(a) < 1 and the rest follows by ana-
lytic continuation. Since for each ¢, the expansion is holomorphic in « for
Re(a) < 3, the residues arising from the interior integrals at v = 1,2 must
be cancelled by residues from the boundary terms. And, since the various
powers of t are linearly independent, the residue of each interior coefficient
must be cancelled by the residue from the corresponding boundary coeffi-
cient. The residue from t"Zreg(Fan) = t"Treg (1 *Gay) is

—t"T{(Fay,)o} at a =1,
—t"T%{(Fay,), + (Fan)oLaa} at a = 2.

l—a

(5.8)

The corresponding boundary term when o« = 1 is t"*(o‘*l)magi’a (F,D). Let
R be the residue of a4 (F,D) at a = 1. Then

2n,«

t" 1
R —t"In(t)R + (const)t" + O(av — 1)

n—(a—1)/2 bd —
t a2n,a(F7 D) a — 1 2

Assertion (2) now follows. Since "R must cancel the residue in Equa-
tion (5.8), we get the In(¢) coefficient in Assertion (4) for aw = 1. The proof
of the rest of Assertion (4) and also of Assertion (3) follows in a similar
fashion. O
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