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Heat trace asymptotics with singular
weight functions

M. van den Berg, P. Gilkey, K. Kirsten and R. Seeley

We study the weighted heat trace asymptotics of an operator of
Laplace type with Dirichlet boundary conditions where the weight
function exhibits radial blowup. We give formulas for the first few
terms in the expansion in terms of geometrical data.

1. Introduction

1.1. Motivation

The asymptotic analysis of the heat trace provides a natural link between
the spectrum of Laplace-type operators D acting on functions on a m dimen-
sional Riemannian manifold M and the underlying geometry of M . For small
time t it links the distribution of the large energy part of the spectrum of
D to local geometric invariants of M and its boundary which show up in its
asymptotic expansion. These invariants play an important in many physical
phenomena, e.g., in quantum statistical mechanics when taking the large
volume limit or in the Casimir effect [9]. Typically the coefficient of the
leading t−m/2 term in the heat trace expansion for small t is determined
by the interior (volume) of M . In many situations a detailed study of the
boundary behaviour of the heat kernel associated with ∂t + D is desirable.
One way of obtaining this information is putting a weight in the evaluation
of the heat trace. In the setting of the heat content of M this corresponds to
giving M a non-uniform specific heat. It is well known that the diagonal ele-
ment at (x, x; t) of the Dirichlet heat kernel associated to e−tD vanishes like
r2 where r = r(x) is the distance to the boundary. This allows the weights
to diverge like r−α, where Re(α) < 3. We will show, using pseudo differen-
tial calculus, that a modified asymptotic series still exists in this case. For
example, if 1 < α < 3 the leading behaviour of the heat trace is t(1−m−α)/2

with a coefficient determined by an integral over the boundary of M .
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1.2. The heat equation

We adopt the Einstein convention and sum over repeated indices. Let M be
a compact smooth Riemannian manifold of dimension m and with smooth
boundary ∂M . Let V be a smooth vector bundle over M and let D be
an operator of Laplace type on the space C∞(V ) of smooth sections to
V . This means that the leading symbol of D is given by the metric tensor
or, equivalently, that we may express in any system of local coordinates
x = (x1, . . . , xm) and relative to any local frame for V the operator D in the
form:

(1.1) D = −
{
gμν Id ∂xμ

∂xν
+ Aν

1∂xν
+ A0

}
.

In Equation (1.1), let 1 ≤ μ, ν ≤ m, let Aν
1 and A0 be smooth endomorphisms

(matrices), and let gμν be the inverse of the metric gμν := g(∂xμ
, ∂xν

). Note
that the Riemannian measure dx on M is given by

dx := gdx1 . . . dxm, where g :=
√

det(gμν).

Thus, for example, the scalar Laplacian ΔM := δd is of Laplace type since

(1.2) ΔM = −
(
gμν∂xν

∂xμ
+ g−1∂xν

{ggμν} ∂xμ

)
.

We shall use the Dirichlet realization of the operator D. For t > 0 and
for φ ∈ L2(V ), the heat equation

(∂t + D)u(x; t) = 0, u(·; t)|∂M = 0, lim
t↓0

u(·; t) = φ(·) in L2(V )

has a solution u = e−tDφ which is smooth in (x; t). The operator e−tD has
a kernel pD(x, x̃; t) which is smooth in (x, x̃; t) such that

u(x; t) =
∫

M
pD(x, x̃; t)φ(x̃)dx̃.

In the case of the scalar Laplacian ΔM , there is a complete orthonormal basis
{φi} for L2(M) where the φi ∈ C∞(M) satisfy φi|∂M = 0 and ΔMφi = λiφi.
The corresponding Dirichlet heat kernel pM := pΔM

is given in terms of the
spectral resolution {φi, λi} via

pM (x, x̃; t) =
∑

i

e−tλiφi(x)φ̄i(x̃).
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1.3. Heat trace asymptotics in the smooth setting

We use the geodesic flow defined by the unit inward normal vector field to
define a diffeomorphism for some ε > 0 between the collar Cε := ∂M × [0, ε]
and a neighbourhood of the boundary in M which identifies ∂M × {0} with
∂M ; the curves r → (y0, r) for r ∈ [0, ε] are then unit speed geodesics per-
pendicular to the boundary and r is the geodesic distance to the boundary.
Let F ∈ C∞(M) be an auxiliary weight function which is used for localiza-
tion. On Cε, expand F in a Taylor series

F (y, r) ∼
∞∑

i=0

Fi(y)ri, where Fi = 1
i!(∂r)iF

∣
∣
r=0 .

Henceforth we shall let Tr denote the fibre trace and TrL2 denote the global
L2 trace. We then have:

(1.3) TrL2(F e−tD) =
∫

M
F (x) Tr{pD(x, x; t)}dx.

We note for future reference that on the diagonal, the heat kernel pRm(x, x; t)
for R

m and the heat kernel pH(x, x; t) on the half space H := {x : x1 > 0}
of the scalar Laplacian are given by

(1.4) pRm(x, x; t) = (4πt)−m/2 and pH(x, x; t) = (4πt)−m/2(1 − e−r2/t).

Let dy be the Riemannian measure on the boundary. To simplify future
expressions, we set

I{F} =
∫

M
Fdx and Ibd{F} =

∫

∂M
Fdy.

We will also use the notation I{Fdν}[U ] when it is necessary to specify the
domain of integration U and/or the measure dν.

Theorem 1.1. Let M be a compact smooth Riemannian manifold. Let D
be the Dirichlet realization of an operator of Laplace type. Let F ∈ C∞(M).

(1) There is a complete asymptotic expansion as t ↓ 0 of the form:

TrL2(F e−tD) ∼ t−m/2
∞∑

n=0

tnan(F,D) + t−(m−1)/2
∞∑

�=0

t�/2abd
� (F, D).
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(2) There are local invariants an = an(x,D) defined on M and there are
local invariants abd

�,i = abd
�,i(y, D) defined on ∂M for 0 ≤ i ≤ 
 so that

an(F,D) = I{Fan} and abd
� (F, D) =

�∑

i=0

Ibd{Fia
bd
�,i}.

We refer to [8,13] for a proof of Theorem 1.1 where more general results
are obtained in the context of elliptic operator theory and elliptic boundary
conditions. We shall illustrate these formulas in Theorem 1.2 below. We add
a caution that the notation we have chosen differs slightly from what is
employed elsewhere.

1.4. The Bochner Laplacian

Before discussing the formulas in Theorem 1.1 in further detail, we must
introduce the formalism of the Bochner Laplacian which will permit us to
work in a tensorial and coordinate free fashion. If ∇ is a connection on
V , then we use ∇ and the Levi–Civita connection defined by the metric to
covariantly differentiate tensors of all types. Let ‘;’ denote the components of
multiple covariant differentiation — in particular, φ;μν are the components
of ∇2φ. If E is an auxiliary endomorphism of V , we define the associated
modified Bochner Laplacian by setting

(1.5) D(g,∇, E)φ := −gμνφ;νμ − Eφ.

Let Γμνσ and Γμν
σ be the Christoffel symbols of the Levi–Civita con-

nection on M . We have, adopting the notation of Equations (1.1) and (1.5),
the following (see [7]):

Lemma 1.1. If D is an operator of Laplace type, then there exists a unique
connection ∇ on V and a unique endomorphism E on V so that D =
D(g,∇, E). The associated connection 1-form ω of ∇ = ∇(D) and the asso-
ciated endomorphism E = E(D) are given by:

(1) ωμ = 1
2(gμνA

ν
1 + gσεΓσεμ Id).

(2) E = A0 − gμν(∂xν
ωμ + ωμων − ωσΓμν

σ).
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1.5. Formulae for the heat trace asymptotics in the
smooth setting

Let indices i, j, k, l range from 1 to m and index a local orthonormal
frame {e1, . . . , em} for the tangent bundle of M . Let Rijkl be the compo-
nents of the Riemann curvature tensor; our sign convention is chosen so
that R1221 = +1 on the sphere of radius 1 in R

3. On the collar Cε, we
normalize the choice of the local frame by requiring that em = ∂r is the
inward unit geodesic normal. We let indices a, b, c, d range from 1 through
m − 1 and index the restricted orthonormal frame {e1, . . . , em−1} for the
tangent bundle of the boundary. Let Lab := g(∇ea

eb, em) be the components
of the second fundamental form. The scalar invariant Laa is the unnor-
malized mean curvature (i.e. the geodesic curvature) and will play a cen-
tral role in our investigation. One has the following formulae; note that
F2 = 1

2F;mm:

Theorem 1.2. Let M be a compact smooth Riemannian manifold. Let D
be the Dirichlet realization of an operator of Laplace type. Let F ∈ C∞(M).

(1) a0(F,D) = (4π)−m/2I{Tr(F Id)}.
(2) a1(F,D) = 1

6(4π)−m/2I{Tr(6FE + FRijji Id)}.

(3) abd
0 (F,D) = −1

4(4π)−(m−1)/2Ibd{Tr(F0 Id)}.

(4) abd
1 (F,D) = 1

6(4π)−m/2Ibd{Tr(2F0Laa Id −3F1 Id)}.

(5) abd
2 (F,D) = − 1

384(4π)−(m−1)/2Ibd{Tr(F0(96E + [16Rijji − 8Ramma

+7LaaLbb − 10LabLab] Id) − 30F1Laa Id +48F2 Id)}.

Formulas for the invariants an(F,D) and abd
� (F, D) are known for n, 
 =

2, 3, 4, 5. We refer to [9] for further details as the literature is vast and beyond
the scope of the present paper to survey.

1.6. Singular weight functions

Fix α ∈ C. Let F be a smooth function on the interior of M such that
Frα ∈ C∞(Cε); the parameter α controls the growth (if Re(α) > 0) or decay
(if Re(α) < 0) of F near the boundary, assuming that Frα does not vanish
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identically on the boundary. We may expand F |Cε
in a modified Taylor

series:

F (y, r) ∼
∞∑

i=0

Fi(y)ri−α, where Fi(y) = 1
i!(∂r)i(rαF )

∣
∣
r=0 .

1.7. Geometry near the boundary

The Riemannian measure is in general not product near the boundary, i.e.,
dx �= drdy, and this plays an important role in our development. Let indices
σ,  range from 1 to m − 1 and index the coordinate frame {∂y1 , . . . , ∂ym−1}
for the tangent bundle of the boundary. One may express the metric on the
collar Cε in the form:

ds2
M = gσ	(y, r)dyσ ◦ dy	 + dr2.

Fix y0 ∈ ∂M and choose the local coordinates so that gσ	(y0, 0) = δσ	. Then
we have that:

Lσ	 = g(∂r,∇∂xσ
∂x�

) = Γσ	
m = −1

2∂rgσ	,

gM (y0, r) =
√

det {Id +∂rgσ	(y0, 0) · r + O(r2)} = 1 − rLaa(y0) + O(r2),

dx = (1 − rLaa)drdy + O(r2).

(1.6)

Example 1.1. Let x1 = ζ cos θ and x2 = ζ sin θ be the usual polar coordi-
nates on the unit disk in R

2. One then has that ds2 = dζ2 + ζ2dθ2 so dx =
ζdθdζ. The geodesic distance to the boundary circle is given by r = 1 − ζ;
thus gθθ = (1 − r)2 and Laa = 1 so dx = (1 − r)drdy.

1.8. Regularization

Before discussing the asymptotic expansion of the heat trace in the singular
case, we must first discuss regularization; an analogous regularization was
required when discussing the heat content for singular initial temperatures
in [4]. Let H be smooth on the interior of M with Hrα ∈ C∞(Cε). Then

dx = (1 − rLaa)drdy + O(r2),

Hdx = {H0r
−α + (H1 − H0Laa)r1−α}drdy + O(r2−αdrdy).
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For Re(α) < 3, define

IReg{H} := I{Hdx}[M − Cε]

+ I
{
Hdx −

[
H0r

−α + (H1 − H0Laa)r1−α
]
drdy

}
[Cε]

+ Ibd{H0} ×

⎧
⎪⎨

⎪⎩

ε1−α

1 − α
if α �= 1,

ln(ε) if α = 1.

+ Ibd{H1 − H0Laa} ×

⎧
⎪⎨

⎪⎩

ε2−α

2 − α
if α �= 2,

ln(ε) if α = 2.

(1.7)

This is independent of the parameter ε and agrees with I{H} if Re(α) < 1.
Because the integrand over Cε is O(r2−Re(α)) and Re(2 − α) > −1, IReg is
well defined.

The regularization IReg is a meromorphic function of α with simple poles
at α = 1, 2. At these exceptional values, IReg is defined as the constant term
in the appropriate Laurent expansion, thus dropping the pole. We shall apply
this regularization to functions of the form H(x) = F (x)an(x,D).

1.9. Heat trace asymptotics in the singular setting

The Dirichlet heat kernel satisfies pD(x, (ỹ, r̃), t)|r̃=0 = 0. Since pD is smooth
for t > 0 and Cε is compact, we may use the Taylor series expansion of pD
to derive the estimate:

|pD(x, (ỹ, r̃); t)| ≤ C(t)r̃ on Cε.

A similar estimate holds for |pD((y, r), x̃; t)|. We set x̃ = (y, r) to derive the
estimate on the diagonal:

(1.8) |pD((y, r), (y, r); t)| ≤ C(t)r2 on Cε.

Thus if Re(α) < 3, then Equation (1.3) shows that TrL2(F e−tD) is
convergent.

We shall begin our investigation in Section 2 by establishing the following
result by a direct computation as this motivates our entire investigation; note
that only limited smoothness is required of the boundary in this result. It
has the further advantage of confirming by completely different means some
of the constants that will be computed again in Sections 4 and 5. Let C here
and elsewhere denote Euler’s constant.
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Theorem 1.3. Let M ⊂ R
2 be an open, bounded, and connected planar

set with C2 boundary. Let 0 < ε0 < ε. Set F (x) := F0(y)r−αχ(r) where χ ∈
C∞(Cε) satisfies:

χ(r) =

{
1 if 0 ≤ r ≤ ε0,

0 if ε ≤ r.

(1) If 0 < α < 1 and t ↓ 0, then:

TrL2(F e−tΔM ) =
1

4πt
{I{F} − 1

2
Γ
(

1 − α

2

)
t(1−α)/2Ibd{F0}

+
4 − α

4(3 − α)
Γ
(

2 − α

2

)
t1−α/2Ibd{F0Laa}} + O(1).

(2) If α = 1 and t ↓ 0, then:

TrL2

(
F e−tΔM

)
=

1
4πt

{
IReg{F} − 1

2 ln(t) · Ibd{F0} + C
2 Ibd{F0}

}

+ O(t−1/2).

This result extends to a very general setting. The following Theorem
generalizes Theorem 1.1 to the singular setting where, in contrast to The-
orem 1.3, we assume the boundary is C∞. We also refer to [4] for further
details where an analogous result was proved for the heat content asymp-
totics. In Section 5, we will use the pseudo-differential calculus to show that:

Theorem 1.4. Let M be a compact smooth Riemannian manifold. Let D
be the Dirichlet realization of an operator of Laplace type. Let an = an(x,D)
be the interior local heat trace asymptotics of Theorem 1.1. Fix α ∈ C with
Re(α) < 3. Let F be a smooth function on the interior of M such that Frα ∈
C∞(Cε).

(1) If α �= 1, 2, there is a complete asymptotic expansion as t ↓ 0 of the
form:

TrL2(F e−tD) ∼ t−m/2
∞∑

n=0

tnIReg{Fan} + t−(m−1)/2
∞∑

�=0

t(�−α)/2abd
�,α(F, D).



Heat trace asymptotics 537

(2) If α = 1, 2, there is a complete asymptotic expansion as t ↓ 0 of the
form:

TrL2(F e−tD) ∼ t−m/2
∞∑

n=0

tnIReg{Fan} + t−(m−1)/2
∞∑

�=0

t(�−α)/2abd
�,α(F, D)

+ t−m/2 ln(t)
∞∑

k=0

tk/2ãbd
k,α(F, D).

(3) There exist local invariants abd
�,α,i = abd

�,α,i(y, D) on ∂M , which are holo-
morphic in α for α �= 1, 2, so that

abd
�,α(F,D) =

�∑

i=0

Ibd{Fia
bd
�,α,i}.

The invariants abd
�,z,i have simple poles at z = 1, 2 and

abd
�,α,i =

{
abd

�,z,i − 1
z − α

Resz=α abd
�,z,i

}∣∣
∣
∣
z=α

if α = 1, 2.

(4) The ln(t) coefficients in Assertion (2) are given by

ãbd
k,α(F,D) =

⎧
⎪⎨

⎪⎩

−1
2Ibd{(Fan)0} if k = 2n and α = 1,

−1
2Ibd{(Fan)1 − (Fan)0Laa} if k = 2n and α = 2,

0 if k = 2n + 1.

Throughout this paper, let

κα := 1
2Γ
(1−α

2

)
.

The boundary invariants for α �= 1, 2 and for 
 = 0, 1, 2 are given by:

Theorem 1.5. If α �= 1, 2, then one has:

(1) abd
0,α(F,D) = κα(4π)−m/2Ibd{Tr(−F0 Id)}.

(2) abd
1,α(F,D) = κα−1(4π)−m/2Ibd{Tr(−F1 Id + α−4

2(α−3)F0Laa Id)}.

(3) abd
2,α(F,D) = κα−2(4π)−m/2Ibd{Tr(−F2 Id + α−5

2(α−4)F1Laa Id

+1
6F0Ramma Id − α−7

8(α−6)F0LaaLbb Id + α−5
4(α−6)F0LabLab Id

− 1
3(1−α)F0Rijji Id − 2

1−αF0E)}.
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We remark that we recover Theorem 1.2 by setting α = 0 in Theorem 1.5.
We omit details as the calculation is entirely elementary. The boundary
invariants for α = 1, 2, and for 
 = 0, 1, 2 are given by:

Theorem 1.6.

(1) When α = 1,

(a) abd
0,1(F,D) = (4π)−m/2Ibd{Tr(C

2 F0 Id)}.

(b) abd
1,1(F,D) = (4π)−m/2

√
π

2 Ibd{Tr(−F1 Id +3
4F0Laa Id)}.

(c) abd
2,1(F,D) = (4π)−m/2Ibd

{
Tr
(
−1

2F2 Id +1
3F1Laa Id + 1

12Ramma Id

− 3
40LaaLbb Id + 1

10LabLab Id + C
12Rijji Id +C

2 E
)}

.

(2) When α = 2,

(a) abd
0,2(F,D) = (4π)−m/2√πIbd{Tr(F0 Id)}.

(b) abd
1,2(F,D) = (4π)−m/2Ibd{Tr(C

2 F1 Id −[C
2 + 1

2 ]F0Laa Id)}.
(c) abd

2,2(F,D) = (4π)−m/2√πIbd{Tr(−1
2F2 Id +3

8F1Laa Id

+F0( 1
12Ramma − 5

64LaaLbb + 3
32LabLab + 1

6Rijji) Id +F0E)}.

Here is a brief guide to the remainder of this paper. In Section 2, we will
make a special case calculation to establish Theorem 1.5. A probabilistic
estimate of Lang [10] and of Lerche and Siegmund [11] plays a central role.
In Section 3, we shall use dimensional analysis (scaling arguments) and var-
ious functorial properties to study the heat trace invariants. We will derive
Theorem 1.4 (4) from the asymptotic series in Theorem 1.4 (3); another
derivation will be given subsequently in Section 5. We shall examine the
general form of the invariants and establish the following result.

Lemma 1.2.

(1) There exist universal constants {κ̄α, κ1
α, κ3

α, κ4
α, κ5

α} so that:
(a) abd

0,α(F,D) = (4π)−m/2Ibd{Tr(−κ̄αF0 Id)}.
(b) abd

1,α(F,D) = (4π)−m/2Ibd{Tr(−κ̄α−1F1 Id +κ1
αF0Laa Id)}.

(c) abd
2,α(F,D) = (4π)−m/2Ibd{Tr(−κ̄α−2F2 Id +κ1

α−1F1Laa Id

+F0[κ3
αRamma + κ4

αLaaLbb + κ5
αLabLab] Id − κ̄αF0[E + 1

6Rijji Id])}.
(2) If α �= 1, 2, then κ̄α = κα and κ1

α = 1
2Γ
(2−α

2

)
α−4

2(α−3) .

(3) κ̄1 = C
2 .
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In Section 4, we evaluate the remaining universal coefficients of Lemma
1.2 using the calculus of pseudo-differential operators and complete the proof
of Theorem 1.5 by showing:

Lemma 1.3. Adopt the notation of Lemma 1.2. If α �= 1, 2, then:

κ3
α = −α−1

24 Γ
(1−α

2

)
, κ4

α = 7−8α+α2

32(α−6) Γ
(1−α

2

)
, κ5

α = 6α−5−α2

16(α−6) Γ
(1−α

2

)
.

We conclude the paper in Section 5 by using the pseudo-differential cal-
culus to establish Theorem 1.4. We have postponed the proof of Theorem 1.4
until this point as much of the needed notation will be established in Sec-
tion 4. We will also complete the proof of Theorem 1.6.

We have chosen to use special case calculations, the functorial method
and the pseudo-differential calculus as our purpose in this paper is at least
in part expository and we wish to illustrate the interplay amongst these
methods. In a subsequent paper, we shall perform a similar analysis for other
elliptic boundary conditions (Robin, transfer, transmittal, etc.); it will be
necessary to restrict to Re(α) < 1 to ensure convergence, and regularization
will not be required in that analysis.

2. Computations in R
2

This section is devoted to the proof of Theorem 1.3, and we shall adopt the
notation of that theorem throughout. As we shall be dealing with different
weights, we drop the notation I and return to ordinary integrals in this
section to perform a special case calculation in flat space. One has the fol-
lowing estimate of Lang [10] and of Lerche and Siegmund [11] that adjusts
the formula of Equation (1.4) for the heat kernel on a half space to take
into account the curvature of the boundary of M (for related results see
also [3, 12]):

Lemma 2.1. Adopt the notation of Theorem 1.3. Let x = (y, r) ∈ Cε. As
t ↓ 0,

pM (x, x; t) =
1

4πt

{
1 − e−r2/t − Laa(y)r2t−1/2

∫ ∞

rt−1/2

e−η2
dη

}
+ O(1).

Proof of Theorem 1.3 (1). Parametrize the boundary of M by arclength.
There is no higher order correction in R

2 and the O(r2) term in Equa-
tion (1.6) vanishes. Thus on the collar Cε, we have

dx = (1 − Laa(y)r)drdy.
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Following Equation (1.4), we let pH(x, x; t) = (4πt)−1(1 − e−r2/t) be the
Dirichlet heat kernel in the half space r ≥ 0 on the diagonal. We take
0 < α < 1 and express:

TrL2(F e−tΔM )

=
∫

∂M

∫ ε

0
F0(y)r−αχ(r)(1 − Laa(y)r)pM ((y, r), (y, r); t)drdy

=
∫

∂M

∫ ∞

0
F0(y)r−αχ(r)(1 − Laa(y)r)pM ((y, r), (y, r); t)drdy

= D1 + D2 + D3 + D4 + D5

where, motivated by Lemma 2.1, we have:

D1 :=
1

4πt

∫

M
F (x)dx,

D2 := − 1
4πt

∫

∂M

∫ ∞

0
F0(y)r−αe−r2/tdrdy,

D3 :=
1

4πt

∫

∂M

∫ ∞

0
F0(y)r−α(1 − χ(r))(1 − Laa(y)r)e−r2/tdrdy,

D4 :=
1

4πt

∫

∂M

∫ ∞

0
F0(y)Laa(y)r1−αe−r2/tdrdy,

D5 :=
∫

∂M

∫ ∞

0
F0(y)r−αχ(r)(1 − Laa(y)r){(pM − pH)((y, r), (y, r); t)}drdy.

A straightforward computation yields:

D2 = − 1
4π

· 1
2
Γ
(

1 − α

2

)
t−(1+α)/2

∫

∂M
F0(y)dy,

D3 = O
(
e−ε2

0/(2t)
)

,

D4 =
1
4π

· 1
2
Γ
(

2 − α

2

)
t−α/2

∫

∂M
F0(y)Laa(y)dy.

We use Lemma 2.1 to compute D5. Since F0(y)r−αχ(r) is integrable on Cε,
we have the O(1) in Lemma 2.1 remains O(1) as t ↓ 0. Hence for 0 < α < 1,

D5 = − 1
4πt

∫

∂M

∫ ∞

0

∫ ∞

rt−1/2

F0(y)Laa(y)r2−αt−1/2e−η2
dηdrdy

+
1

4πt

∫

∂M

∫ ∞

0

∫ ∞

rt−1/2

F0(y)Laa(y)Lbb(y)r3−αt−1/2e−η2
dηdrdy + O(1)
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=
1
4π

· 2 − α

4(α − 3)
Γ
(

2 − α

2

)
t−α/2

∫

∂M
F0(y)Laa(y)dy + O(t(1−α)/2) + O(1)

=
1
4π

· 2 − α

4(α − 3)
Γ
(

2 − α

2

)
t−α/2

∫

∂M
F0(y)Laa(y)dy + O(1).

We collect terms to complete the proof of Theorem 1.3 (1). �

Remark 2.1. We have chosen to study the region 0 < α < 1. The reason
for this is that F has to be integrable in order to control the O(1) remainder
in Lemma 2.1. If one wishes to obtain just the leading asymptotic behaviour
of TrL2(F e−tΔM ), then probabilistic estimates for

(2.1) RM (x; t) := (pM − pH)((y, r), (y, r); t)

along the lines of [1], and analogous to [2], could be used to show that for
1 ≤ α < 3,

(2.2)
∫

∂M

∫ ε

0
χ(r)r−αR(x; t)drdy = O(t−(m−2+α)/2), t ↓ 0.

Proof of Theorem 1.3 (2). Recall from Equation (1.4) the formula for the
heat kernel pH on the diagonal for the half space. We decompose

TrL2(F e−tΔM ) = E1 + E2 + E3

where we have:

E3 :=
∫

∂M

∫ ∞

0
F0(y)r−1χ(r)(1 − Laa(y)r)(pM − pH)((y, r), (y, r); t))drdy,

E2 := − 1
4πt

∫

∂M

∫ ∞

0
F0(y)Laa(y)χ(r)(1 − e−r2/t)drdy,

E1 :=
1

4πt

∫

∂M

∫ ∞

0
F0(y)r−1χ(r)(1 − e−r2/t)drdy.

We apply Equations (2.1) and (2.2) with m = 2 and with α = 1 to see that
E3 = O(t−1/2). Furthermore, E2 = O(t−1/2). The leading term is provided
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by E1. We integrate by parts to see that:

E1 = − 1
4πt

∫

∂M
F0(y)

∫ ∞

0
ln(r)

{
χ′(r)(1 − e−r2/t) + χ(r)

2r

t
e−r2/t

}
drdy

= − 1
4πt

∫

∂M
F0(y)

{∫ ∞

0
ln(r)χ′(r)dr +

∫ ∞

0
ln(r)

2r

t
e−r2/tdr

}
dy

+ O(e−ε2
0/(2t))

=
1

4πt
· 1
2

∫

∂M
F0(y)

{
ln
(

ε2
0
t

)
+ C + 2

∫ ε

ε0

χ(r)
r

dr

}
+ O(e−ε2

0/(2t)).

This completes the proof of Theorem 1.3. �

3. The functorial method

We adopt the notation of Theorem 1.4 throughout this section. We begin
our study with the following:

Lemma 3.1. There exist constants εν
�,α so that

(1) abd
0,α(F,D) = (4π)−m/2Ibd{Tr(ε0

0,αF0 Id)}.

(2) abd
1,α(F,D) = (4π)−m/2Ibd{Tr(ε0

1,αF1 Id +ε1
1,αF0Laa Id)}.

(3) abd
2,α(F,D) = (4π)−m/2Ibd{Tr(ε0

2,αF2 Id +ε1
2,αF1Laa Id

+F0[ε2
2,αRijji + ε3

2,αRamma + ε4
2,αLaaLbb + ε5

2,αLabLab] Id

+ε6
2,αF0E)}.

Proof. We apply dimensional analysis — we shall suppose that α /∈ Z for
the moment. Let c > 0 define a rescaling gc := c2g. We then have

dxc = cmdx, dyc = cm−1dy, Dc = c−2D,
rc := cr, ∂rc

= c−1∂r, Fi,c = cα−iFi,
IReg,c = cmIReg, Ibd

c = cm−1Ibd.

Let an,c := an(x,Dc), a�,α,c := a�,α(y, Dc) and a�,α,i,c := a�,α,i(y, Dc) denote
the local heat trace invariants defined by Dc on M and on ∂M , respectively.
It is immediate that

(3.1) TrL2(F e−(tc−2)D) = TrL2(F e−tDc).
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We expand both sides of Equation (3.1) in an asymptotic expansion:

t−m/2cm
∞∑

n=0

(c−2t)nIReg{Fan}

+ (c−2t)−(m−1)/2
∞∑

�=0

cα−�t(�−α)/2
�∑

i=0

Ibd{Fia�,α,i}

∼ t−m/2
∞∑

n=0

tncmIReg{Fan,c}

+ t−(m−1)/2
∞∑

�=0

t(�−α)/2
�∑

i=0

cm−1cα−iIbd{Fia�,α,i,c}.

Since α /∈ Z, the interior and the boundary terms decouple. We equate terms
in the asymptotic expansions to see that

an,c = c−2nan and a�,α,i,c = ci−�a�,α,i.

Examining relations of this kind is straightforward – they mean that the
local formula an(x,D) is homogeneous of weighted degree 2n in the jets of
the derivatives of the symbol of D and that the local formula a�,α,i(y, D) is
homogeneous of weighted degree 
 − i in the jets of the derivatives of the
symbol of D. One may use Weyl’s theory of invariants to express a spanning
set for the invariants which arise in this context and complete the proof of
Lemma 3.1 for α /∈ Z. We use analytic continuation to establish Lemma 3.1
when α = 0,−1,−2, . . . as well. We refer to [7] for further details concerning
this sort of dimensional analysis.

If α = 1, then the argument is rather different. Let εc be the width of
the collar C with respect to the rescaled metric. The regularizing term in
Equation (1.7) does not simply rescale. Rather we have:

ln(εc)Ibd
c {(Fan,c)0,c} = ln(cε)cαc−2ncm−1Ibd{(Fan)0}

= cm−2n{ln(c) + ln(ε)}Ibd{(Fan)0}.

This yields the modified relation:

IReg,c{Fan,c} = cm−2nIReg{Fan} + ln(c)cm−2nIbd{(Fan)0}.

A similar argument for α = 2 shows that:

IReg,c{Fan,c} = cm−2nIReg{Fan} + ln(c)cm−2nIbd{(Fan)1 − (Fan)0Laa}.
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When we use Equation (3.1) to equate coefficients in the asymptotic series,
we have

abd
�,α(F,Dc) = c�abd

�,α(F, D),

which completes the proof of Lemma 3.1 in these exceptional cases. We
compare the terms involving ln(c) to obtain additional relations. The left-
hand side in the following equation arises from ln(c−2t) and the right-hand
side arises from Ireg,c when we apply Equation (3.1); if k = 2n, then

− 2 ln(c)ãbd
k,1(F,D) = ln(c)Ibd{(Fan)0}

− 2 ln(c)ãbd
k,2(F,D) = ln(c)Ibd{(Fan)1 − (Fan)0Laa}.

There are no corresponding terms if k is odd and thus ãk,1 = 0 and ãk,2 = 0
if k is odd. This establishes Theorem 1.4 (4). An alternate proof is given in
Section 5. �

We now use the functorial method to establish the following result:

Lemma 3.2.

(1) ε2
2,α = 1

6ε0
0,α and ε6

2,α = ε0
0,α.

(2) The constants εμ
�,α of Lemma 3.1 are dimension free.

(3) ε0
1,α = ε0

0,α−1, ε0
2,α = ε0

0,α−2 and ε1
2,α = ε1

1,α−1.

Proof. Suppose that M = M1 × M2, that gM = gM1 + gM2 , that DM = DM1

+ DM2 and that FM = F1F2 where Fi are defined on Mi. We suppose that
M1 is a closed manifold and thus ∂M = M1 × ∂M2. We then have:

e−tDM = e−tDM1 e−tDM2 ,

TrL2(FMe−tDM ) = TrL2(F1e−tDM1 ) · TrL2(F2e−tDM2 ).

Equating asymptotic series yields

abd
�,α(FM ,DM ) =

∑

2k+j=�

ak(F1,DM1)a
bd
j,α(F2,DM2),

and hence a corresponding decomposition of the local formulas:

(3.2) abd
�,α,i(y, DM ) =

∑

2k+j=�

ak(x1,DM1)a
bd
j,α,i(y2,DM2) for y = (x1, y2).

Assertion (1) now follows from Theorem 1.2 (2), from Lemma 3.1, and from
Equation (3.2); the multiplicative constants (4π)−m/2 play no role. If we take



Heat trace asymptotics 545

M1 = S1 and DM1 = −∂2
θ , then the structures are flat. Thus a0(x,DM1) =

1/
√

4π and ak(x,DM1) = 0 for k ≥ 1. Thus Equation (3.2) yields in this
special case the following identity from which Assertion (2) follows after
taking into account the multiplicative constants (4π)−m/2:

abd
�,α,i(y, DM ) = 1√

4π
abd

�,α,i(y2,DM2).

We prove Assertion (3) by index shifting. Let χ(r) be a smooth function
so that χ ≡ 0 near r = ε. Let F (y, r) = F0(y)χ(r)r−α1 for Re(α1) < 3. We
apply Theorem 1.4 with α = α1 and with α = α1 − 1 to see that:

abd
�,α,j(y, D) = abd

�−1,α−1,j−1(y, D) for j ≥ 1.

Assertion (3) now follows. �

Proof of Lemma 1.2. Assertion (1) of Lemma 1.2 follows from Lemma 3.1
and Lemma 3.2 by a suitable relabelling of the coefficients. Assertions (2)
and (3) follow from Theorem 1.3. �

Proof of Theorem 1.6. We now derive Theorem 1.6 from Theorem 1.5 using
Assertion (3) of Theorem 1.4. Certain of the coefficients are regular so the
computation is elementary; we do not need to drop the pole. We simply set
α = 1 to compute abd

1,1 and α = 2 to compute abd
0,2 and abd

2,2:

abd
0,2(F,D) = κ2(4π)−m/2Ibd{Tr(−F0 Id)}

=
√

π(4π)−m/2Ibd{Tr(F0 Id)},

abd
1,1(F,D) = κ0(4π)−m/2Ibd{Tr(−F1 Id +3

4F0Laa Id)}

=
√

π
8 (4π)−m/2Ibd{Tr(−4F1 Id +3F0Laa Id)},

abd
2,2(F,D) = κ0(4π)−m/2Ibd{Tr(−F2 Id + α−5

2(α−4)F1Laa Id

+ 1
6F0Ramma Id − α−7

8(α−6)F0LaaLbb Id + α−5
4(α−6)F0LabLab Id

− 1
3(1−α)F0Rijji Id − 2

1−αF0E)}|α=2

=
√

π(4π)−m/2Ibd{Tr(−1
2F2 Id +3

8F1Laa Id + 1
12F0Ramma Id

− 5
64F0LaaLbb Id + 3

32F0LabLab Id +1
6F0Rijji Id +F0E)}.
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We compute the remaining coefficients as follows. Let c(abd
i,α, A) be the

coefficient of the monomial Ibd{Tr(A)} in (4π)m/2abd
i,α(F, D). It follows by

Theorem 1.3 that

abd
0,1(F,D) = C

2 · (4π)−m/2Ibd{Tr(F0 Id)}.

We may expand

κα−1
α−4

2(α−3) = κα−1
2(α−3)+(2−α)

2(α−3) = κα−1 + Γ
(4−α

2

) 1
2(α−3) .

It now follows that

c(abd
1,2, F0Laa Id) = −C

2 − 1
2 ,

abd
1,2(F,D) = (4π)−m/2Ibd{Tr(C

2 F1 Id −(C
2 + 1

2)F0Laa Id)}.

Many of the terms in abd
2,1(F,D) are in fact regular at α = 1. We have:

c(abd
2,1, F2 Id) = −1

2 , c(abd
2,1, F1Laa Id) = 1

3 ,

c(abd
2,1, Ramma Id) = 1

12 , c(abd
2,1, LaaLbb Id) = − 3

40 ,

c(abd
2,1, LabLab Id) = 1

10 .

The terms involving Rijji and E can be written in the form −καF0(1
6Rijji Id

+E). Thus we may use the regularization of −F0 Id in abd
0,1 which was already

computed to see

abd
2,1(F,D) = (4π)−m/2Ibd

{
Tr
(
−1

2F2 Id +1
3F1Laa Id + 1

12Ramma Id

− 3
40LaaLbb Id + 1

10LabLab Id + C
12Rijji Id +C

2 E
)}

.

This completes the derivation of Theorem 1.6 from Theorem 1.5. �

4. The pseudo-differential calculus

We adopt the following notational conventions. Let �α = (α1, . . . , αm) be a
multi-index. We set

|�α| = α1 + . . . + αm, �α! = α1! × . . . × αm!,

xα = xα1
1 × . . . × xαm

m , dα
x =
(

∂
∂x1

)α1

× . . . ×
(

∂
∂xm

)αm

,

Dx
α = (−

√
−1)|α|dα

x .

We apologize in advance for the slight notational confusion involved with
using α to control the growth of F and also to using �α as a multi-index.
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We begin our discussion by reviewing the standard pseudo-differential
computation of the resolvent on a closed manifold without boundary and
refer to [5–8,13] for further details. Let D be an operator of Laplace type. We
want to construct the resolvent of D − λ for large λ where we use Equation
(1.1) to express:

D =
∑

|α|≤2

aα(x)Dx
α.

For the symbol σ(D)(x, ξ) of D this means

σ(D)(x, ξ) =
∑

|α|≤2

aα(x)ξα;

note that for the scalar Laplacian ΔM the zeroth term vanishes so a0 = 0 in
this setting. In the evaluation of the heat equation asymptotics homogeneity
properties of symbols are relevant and it turns out that collecting terms
according to

a2(x, ξ, λ) = −λ +
∑

|α|=2

aα(x)ξα,

aj(x, ξ, λ) =
∑

|α|=j

aα(x)ξα, j = 0, 1

is fruitful. As a result, the symbol σ(D − λ)(x, ξ, λ) can be written as

σ(D − λ)(x, ξ, λ) =
2∑

j=0

aj(x, ξ, λ).

For the symbol of the resolvent of D − λ we make the Ansatz

σ((D − λ)−1)(x, ξ, λ) ∼
∞∑

l=0

q−2−l(x, ξ, λ).(4.1)

In view of the formula for the symbol of a product we see that q−2−l is
determined algebraically by

1 = a2(x, ξ, λ)q−2(x, ξ, λ),(4.2)

0 =
∑

�α,j,l≤k

k=2+l+|α|−j

1
�α!

[dα
ξ aj(x, ξ, λ)] [Dx

αq−2−l(x, ξ, λ)] for k ≥ 1.(4.3)

These symbols will play a crucial role in the proof of Theorem 1.4 in Section 5.
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We now specialize to the case where D = ΔM is the scalar Laplacian.
For our present considerations we need q−2, q−3, q−4. For simplicity we skip
the arguments in the following summary of results — we use in an essen-
tial fashion the fact that ΔM is scalar. We also use the convention that
repeated indices are summed over. We find (all greek indices will range over
{1, 2, . . . , m}):

q−2 = a−1
2 ,

q−3 = −a−1
2

[
a1q−2 + (Dν

ξ a2)(
√

−1D
x
νq−2)

]
,

q−4 = −a−1
2

[
a0q−2 + a1q−3 + (Dν

ξ a1)(
√

−1D
x
νq−2)

+ (Dν
ξ a2)(

√
−1D

x
νq−3) − 1

2(Dνμ
ξ a2)(Dx

νμq−2)
]
.

For later use it will be advantageous to express the results in terms of qn
−2.

We then have

q−3 = −a1q
2
−2 + c−3,3q

3
−2,

q−4 = −a0q
2
−2 + c−4,3q

3
−2 + c−4,4q

4
−2 + c−4,5q

5
−2,

where

c−3,3 = −
√

−1 (∂ν
ξ a2)(∂x

ν a2),

c−4,3 = a2
1 −

√
−1 (∂ν

ξ a1)(∂x
ν a2) −

√
−1 (∂ν

ξ a2)(∂x
ν a1) − 1

2(∂νμ
ξ a2)(∂x

νμa2),

c−4,4 = −3a1c−3,3 +
√

−1 (∂ν
ξ a2)(∂x

ν c−3,3) + (∂νμ
ξ a2)(∂x

ν a2)(∂x
μa2),

c−4,5 = 3c2
−3,3.

The relevant operator for our considerations is

ΔM − λ = −gμν∂μ∂ν + bμ∂μ − λ,

where we have changed notation slightly from that used previously. For the
symbols this gives

a2(x, ξ, λ) = gμνξμξν − λ ≡ |ξ|2 − λ,

a1(x, ξ, λ) =
√

−1bμξμ and a0(x, ξ, λ) = 0.

To state results for q−2, q−3 and q−4 for this operator D we will as usual
raise and lower indices using the inverse metric and the metric. Furthermore,
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‘,’ denotes partial differentiation. One computes easily that:

q−2(x, ξ, λ) = 1
|ξ|2−λ ,

q−3(x, ξ, λ) = − 1
(|ξ|2−λ)2

√
−1bμξμ − 1

(|ξ|2−λ)3 2
√

−1gσγ
,ν ξνξσξγ ,

q−4(x, ξ, λ) = 1
(|ξ|2−λ)3

{
−bμbνξμξν + bνgσβ

,ν ξσξβ + 2bσ
,νg

νβξβξσ − gσβ
,νμgνμξσξβ

}

+ 1
(|ξ|2−λ)4

{
−6bμgσγ

,ν gνβξμξβξσξγ + 4gσγ
,βνg

βμgνδξμξσξγξδ

+4gσγ
,β gβμ

,ν gνδξμξσξγξδ + 2gσβ
,ν gγδ

,μ gνμξσξβξδξγ

}

+ 1
(|ξ|2−λ)5

{
−12gσγ

,ν gνβgδτ
,μ gμρξβξσξγξρξδξτ

}
.

If the manifold has a boundary the expansion (4.1) has to be augmented
by a boundary correction. To formulate the conditions to be satisfied by
the boundary correction we expand about r = 0. We adopt the notation
established in Section 1.7 and expand

ds2
M = gσ	(y, r)dyσ ◦ dy	 + dr2 on Cε.

The coordinate y locally parameterizes the boundary, and r is the geodesic
distance to the boundary, so x = (y, r). A tilde above any quantity will indi-
cate that it is to be evaluated at the boundary, that is at r = 0. Furthermore,
we use ξ = (ω, τ).

We find

ΔM − λ =
∞∑

k=0

1
k!

rk
∑

|α|≤2

∂k

∂rk
aα(y, r)

∣
∣
∣
∣
r=0

Dα
y,r

with the notation

Dα
y,r =

(
m−1∏

i=1

Dαi
yi

)

Dαm
r .

Introducing

aj(y, r, ω, Dr, λ) =

⎧
⎨

⎩

∑
|α|=j aα(y, r)

(∏m−1
i=1 ωαi

i

)
Dαm

r for j = 0, 1,
∑

|α|=2 aα(y, r)
(∏m−1

i=1 ωαi

i

)
Dαm

r − λ for j = 2,

we define the partial symbol

σ′(ΔM − λ) =
∞∑

k=0

1
k!

rk
2∑

j=0

∂k

∂rk
aj(y, r, ω, Dr, λ)

∣
∣
∣
∣
r=0

.
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As it turns out, the symbols

a(j)(y, r, ω, Dr, λ) =
2∑

l=0

∞∑

k=0
l−k=j

1
k!

rk ∂k

∂rk
al(y, r, ω, Dr, λ)

∣
∣
∣
∣
r=0

have suitable homogeneity properties and using these symbols we write

σ′(ΔM − λ) =
2∑

j=−∞
a(j)(y, r, ω, Dr, λ).

We write the symbol of the resolvent as

σ((ΔM − λ)−1)(y, r, ω, τ, λ)

=
∞∑

j=0

q−2−j(y, r, ω, τ, λ) − e−
√

−1τr
∞∑

j=0

h−2−j(y, r, ω, τ, λ),(4.4)

where the second term is the boundary correction. The factor e−
√

−1τr

appears because the operator constructed from these terms is the Op′(h)
in [13], and Op′(h) = Op(he−

√
−1τr). This shows

σ′(ΔM − λ) ◦
∞∑

j=0

h−2−j(y, r, ω, τ, λ) = 0.

Here ◦ denotes the symbol product on R
m−1. Analogously to Equations (4.2)

and (4.3) this equation leads to the differential equations

0 = a(2)(y, r, ω, Dr, λ)h−2(y, r, ω, τ, λ),

0 = a(2)(y, r, ω, Dr, λ)h−2−j(y, r, ω, τ, λ)

+
∑

�α,k,l<j

j=l+2+|α|−k

1
�α!

[
Dα

ωa(k)(y, r, ω, Dr, λ)
] [

(
√

−1D
y
)αh−2−l(y, r, ω, τ, λ)

]
.

For the present considerations we need h−2−j for j = 0, 1, 2, and we have
more explicitly (repeated letters a, b, c, . . . run over tangential coordinates
{1, 2, . . . , m − 1})

0 = a(2)(y, r, ω, Dr, λ)h−2(y, r, ω, τ, λ),

0 = a(2)(y, r, ω, Dr, λ)h−3(y, r, ω, τ, λ) + a(1)(y, r, ω, Dr, λ)h−2(y, r, ω, τ, λ)

+
[
Db

ωa(2)(y, r, ω, Dr, λ)
] [

(
√

−1D
y
)bh−2(y, r, ω, τ, λ)

]
,
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0 = a(2)(y, r, ω, Dr, λ)h−4(y, r, ω, τ, λ) + a(0)(y, r, ω, Dr, λ)h−2(y, r, ω, τ, λ)

+
[
Db

ωa(1)(y, r, ω, Dr, λ)
] [

(
√

−1D
y
)bh−2(y, r, ω, τ, λ)

]

+ 1
2

[
Dbc

ω a(2)(y, r, ω, Dr, λ)
] [

(
√

−1D
y
)bch−2(y, r, ω, τ, λ)

]

+ a(1)(y, r, ω, Dr, λ)h−3(y, r, ω, τ, λ)

+
[
Db

ωa(2)(y, r, ω, Dr, λ)
] [

(
√

−1D
y
)bh−3(y, r, ω, τ, λ)

]
.

The relevant equations for a(i)(y, r, ω, Dr, λ), i = 0, 1, 2 are

a(2)(y, r, ω, Dr, λ) = a2(y, r, ω, Dr, λ)|r=0

= g̃abωaωb + D2
r − λ,

a(1)(y, r, ω, Dr, λ) = r(∂ra2(y, r, ω, Dr, λ))|r=0 + a1(y, r, ω, Dr, λ)|r=0

= rg̃ab
,r ωaωb +

√
−1b̃aωa +

√
−1b̃rDr,

a(0)(y, r, ω, Dr, λ) = 1
2r2(∂2

ra2(y, r, ω, Dr, λ))|r=0 + r(∂ra1(y, r, ω, Dr, λ))|r=0

+ a0(y, r, ω, Dr, λ)|r=0

= 1
2r2g̃ab

,rrωaωb + r
√

−1 b̃a
,rωa + r

√
−1 b̃r

,rDr + c̃.

The differential equations have to be augmented by a growth condition

h−2−j(y, r, ω, τ, λ) → 0 as r → ∞,(4.5)

and an initial condition corresponding to the Dirichlet boundary condition

(4.6) h−2−j(y, r, ω, τ, λ)|r=0 = q−2−j(y, r, ω, τ, λ)|r=0.

Once the symbols h−2−j have been determined, their contribution to the
asymptotics of the trace of the heat kernel follows from multiple integration.
As before, we suppose rαF ∈ C∞(Cε). The contribution reads

∞∑

l=0

t
1−α−m

2 t
l

2

∫

∂M
η l

2
(y, F, ΔM )dy

with

η l

2
(y, F, ΔM ) =

1
(2π)m+1

∑

j+k=l

∫

Rm−1

dω

∫ ∞

−∞
ds

∫ ∞

0
dr̄e

√
−1 s

×
(

−
∫

γ
dτe−

√
−1 τ r̄

)
h−2−j(y, r̄, ω, τ, −

√
−1 s)r̄k−αFk(y),(4.7)
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where γ is anticlockwise enclosing the poles of h−2−j in the lower half-
plane. The integral with respect to s is the contour integral transforming
the resolvent to the heat kernel; see Section 5. Note that from (4.4) the
contribution to the heat kernel is minus the above.

As will become clear in the following, with Λ =
√

|ω|2 +
√

−1 s, we need
integrals of the type

T kljn
ab... ≡

∫

Rm−1

dω

∫ ∞

−∞
ds

∫ ∞

0
dr̄e

√
−1 s

(
−
∫

γ
dτe−

√
−1 τ r̄

)

× τkr̄l−αωaωb . . .

Λj(τ2 + Λ2)n
e−r̄Λ.

The τ integration can be done using

∫

γ
dτe−

√
−1 τ r̄ τk

(τ2 + Λ2)l
=

(
√

−1)k(−1)l+kπ

(l − 1)!

(
1

2Λ
d

dΛ

)l−1 [
Λk−1e−r̄Λ

]
.

So

T kljn
ab... = (

√
−1)k(−1)n+k+1π

(n−1)!

∫

Rm−1

dω

∫ ∞

−∞
ds

×
∫ ∞

0
dr̄e

√
−1 sr̄l−α ωaωb...

Λj e−r̄Λ ( 1
2Λ

d
dΛ

)n−1
[
Λk−1e−r̄Λ

]
.

Performing the Λ-differentiation, different r̄-dependent functions would
occur. It is therefore desirable to first perform the r̄-integration before per-
forming the Λ-derivatives explicitly. This is achieved by noting that (z = Λ
has to be put after the Λ differentiation has been performed)

T kljn
ab... =

(
√

−1)k(−1)n+k+1π

(n − 1)!

∫

Rm−1

dω

∫ ∞

−∞
dse

√
−1 s ωaωb . . .

Λj

×
(

1
2Λ

d

dΛ

)n−1

Λk−1
∫ ∞

0
dr̄r̄l−αe−r̄(Λ+z)

∣
∣
∣
∣
∣
z=Λ

=
(
√

−1)k(−1)n+k+1π

(n − 1)!
Γ(l + 1 − α)

∫

Rm−1

dω

∫ ∞

−∞
dse

√
−1 s ωaωb . . .

Λj

(
1

2Λ
d

dΛ

)n−1 Λk−1

(Λ + z)l+1−α

∣
∣
∣
∣
∣
z=Λ

.
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We can proceed in general by introducing numerical multipliers cnkl accord-
ing to

(
1

2Λ
d

dΛ

)n−1 Λk−1

(Λ + z)l+1−α

∣
∣
∣
∣
∣
z=Λ

= cnkl
1

Λl+2n−k−α
.

The s-integration is then performed using
∫ ∞

−∞
ds

e
√

−1 s

(|ω|2 +
√

−1 s)β
=

2π

Γ(β)
e−|ω|2 .

The final ω-integrations follow from

C(y) ≡
∫

Rm−1

dωe−g̃abωaωb+
√

−1 yaωa = π
m−1

2

√
g̃e− g̃abyayb

4 ,

by observing that
∫

Rm−1

dω ωa1ωa2 . . . ωar
e−g̃abωaωb =

(
1√
−1

)r ∂

∂ya1
· · · ∂

∂yar
C(y)

∣
∣
∣
∣
y=0

.

In particular
∫

Rm−1

dω e−|ω|2 = π
m−1

2

√
g̃,

∫

Rm−1

dω ωaωbe−|ω|2 = 1
2π

m−1
2

√
g̃g̃ab,

∫

Rm−1

dω ωaωbωcωde−|ω|2 = 1
4π

m−1
2

√
g̃ (g̃abg̃cd + g̃acg̃bd + g̃adg̃bc) .

Introducing the numerical multipliers dkljn according to

dkljn =
2(

√
−1)k(−1)n+k+1π2Γ(l + 1 − α)cnkl

(n − 1)!Γ
(

j+l−k−α
2 + n

) ,

we obtain the compact-looking answers

T kljn
ab... = dkljn

∫

Rm−1

dω ωaωb . . . e−|ω|2 ,

where the last ω-integration is performed with the above results.
Note that the numerical multipliers dkljn are easily determined using an

algebraic computer program. Therefore, all appearing integrals can be very
easily obtained.
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Let us apply this formalism explicitly to the leading orders, and we start
with h−2(y, r, ω, τ, λ). The relevant differential equation reads

(∂2
r − Λ2)h−2(y, r, ω, τ, λ) = 0,

which has the general solution

h−2(y, r, ω, τ, λ) = Ae−rΛ + BerΛ.

The asymptotic condition (4.5) on the symbol as r → ∞ imposes B = 0.
The initial condition h−2|r=0 = q−2|r=0 gives

A =
1

τ2 + Λ2 .

Putting the information together we have obtained

h−2(y, r, ω, τ, λ) =
1

τ2 + Λ2 e−rΛ.

Performing the relevant integrals, with the notation
∫

dI =
∫

Rm−1

dω

∫ ∞

−∞
ds

∫ ∞

0
dr̄e

√
−1 s

(
−
∫

γ
dτe−

√
−1 τ r̄

)
r̄−α,

produces
∫

dIh−2(y, r̄, ω, τ, −
√

−1 s) = d0001π
m−1

2

√
g̃ =

2απ2Γ(1 − α)
Γ
(
1 − α

2

) π
m−1

2

√
g̃

= πΓ
(

1 − α

2

)
πm/2

√
g̃.

Taking into account the prefactor in (4.7), this confirms the value of κ̄α in
Lemma 1.2.

In the next order we obtain

(∂2
r − Λ2)h−3(y, r, ω, τ, λ) = (E + U1)e−rλ + (F + U2)re−rΛ,

where

E = − b̃rΛ
τ2 + Λ2 , F =

g̃ab
,r ωaωb

τ2 + Λ2 ,

U1(ω) =
√

−1 b̃aωa

τ2 + Λ2 +
2
√

−1 g̃ac
,b ωbωaωc

(τ2 + Λ2)2
, U2(ω) =

√
−1 g̃ac

,b ωbωaωc

(τ2 + Λ2)Λ
.
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Note, for later arguments, that U1(ω) and U2(ω) are odd functions in ω.
Furthermore, for the scalar Laplacian at hand ba = gbcΓbc

a; thus they contain
only tangential derivatives of the metric.

Using for example the annihilator method, we write down the general
form of the solution to this differential equation as

h−3(y, r, ω, τ, λ) = c1e−rΛ + c2re−rΛ + c3r
2e−rΛ + c4erΛ.

From the asymptotic condition (4.5) we conclude c4 = 0. From the initial
condition given in Equation (4.6) we obtain

c1 = −
√

−1 b̃aω

(τ2 + Λ2)2
−

√
−1 b̃rτ

(τ2 + Λ2)2
−

2
√

−1 g̃ab
,c ωcωaωb

(τ2 + Λ2)3
−

2
√

−1 g̃ab
,r τωaωb

(τ2 + Λ2)3
.

From the differential equation we derive

c2 = − 1
4Λ2 (F + U2) − 1

2Λ(E + U1),
c3 = − 1

4Λ(F + U2).

Collecting the available information, we see

h−3(y, r, ω, τ, λ) = De−rΛ + Bre−rΛ + Cr2e−rΛ + O(ω),

with

D = −
√

−1 b̃rτ

(τ2 + Λ2)2
−

2
√

−1 g̃ab
,r τωaωb

(τ2 + Λ2)3
,

B = −
g̃ab
,r ωaωb

4Λ2(τ2 + Λ2)
+

b̃r

2(τ2 + Λ2)
,

C = −
g̃ab
,r ωaωb

4Λ(τ2 + Λ2)
,

and where O(ω) is an odd function in ω. Furthermore, O(ω) contains only
tangential derivatives of the metric. We next perform the multiple integrals;
note, odd functions in ω do not contribute. We obtain
∫

dIh−3(y, r̄, ω, τ, −
√

−1 s)

= π
m−1

2

√
g̃g̃ab

,r g̃ab

{
−

√
−1
2 d1002 + 1

4d0101 −
√

−1 d1003 − 1
8d0121 − 1

8d0211

}

=
π(α − 4)
4(3 − α)

Γ
(

2 − α

2

)
πm/2

√
g̃g̃ab

,r g̃ab.
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This confirms the value of κ1
α in Lemma 1.2 after taking into account the

prefactor in (4.7) and the fact that g̃ab
,r g̃ab = −g̃abg̃ab,r = 2gabLab.

Up to this point the calculation can be considered a warm up for the next
order. We would like to determine the universal coefficients of the geometric
invariants Ramma, LaaLbb and LabLab. In terms of the metric the last two
are determined by

Lab = −1
2 g̃ab,r.

Using the Christoffel symbols

Γjk
i = 1

2gil (glj,k + gkl,j − gjk,l) ,

and taking into account that with our sign convention the scalar curvature
is given by the contraction gjkRijk

i, we may expand the Riemann curvature
tensor in the form:

Rijk
l = Γjk

l
,i − Γik

l
,j + Γin

lΓjk
n − Γjn

lΓik
n.

The normal projection of the Riemann curvature tensor reads

R̃amma = −1
2 g̃ac

,r g̃ac,r − 1
2 g̃acg̃ac,rr − 1

4 g̃bc
,r g̃ad

,r g̃cag̃bd

= 1
4 g̃abg̃cdg̃ac,rg̃bd,r − 1

2 g̃acg̃ac,rr.

The above results suggest a strategy for the calculation. It suffices to consider
the special case where the metric is independent of y. As a consequence, our
answer will have the form

(4.8) (4π)−m/2
{

Ag̃acg̃ac,rr + Bg̃abg̃cdg̃ac,rg̃bd,r + Cg̃abg̃cdg̃ab,rg̃cd,r

}
.

This has to be compared with the terms in abd
2,α(F, ΔM ) that possibly con-

tribute to these geometric invariants. In detail one can show these terms are
(mod terms with tangential derivatives of the metric)

− 1
6καR̃ + κ3

αR̃amma + κ4
αLaaLbb + κ5

αLabLab

= g̃acg̃ac,rr

(1
6κα − 1

2κ3
α

)
+ g̃abg̃cdg̃ab,rg̃cd,r

( 1
24κα + 1

4κ4
α

)

+ g̃abg̃cdg̃ac,rg̃bd,r

(
−1

8κα + 1
4κ3

α + 1
4κ5

α

)
.

So once we know A, B, C, we can deduce

(4.9)
κ3

α = −2
(
A − 1

6κα

)
, κ4

α = 4
(
C − 1

24κα

)
, κ5

α = 4
(
B + 1

8κα − 1
4κ3

α

)
.
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In summary, when writing down the differential equation for h−4(y, r, ω, τ, λ),
we can neglect all terms that are odd in ω as well as all terms that contain
tangential derivatives of the metric. We obtain (up to irrelevant terms)

(∂2
r − Λ2)h−4(y, r, ω, τ, λ) = Ae−rΛ + Bre−rΛ + Cr2e−rΛ + Dr3e−rΛ,

where

A =
√

−1 b̃r b̃rΛτ
(τ2+Λ2)2 + 2

√
−1 b̃r g̃ab

,r Λτωaωb

(τ2+Λ2)3 − b̃r g̃ab
,r ωaωb

4Λ2(τ2+Λ2) + b̃r b̃r

2(τ2+Λ2) ,

B = − b̃r
,rΛ

τ2+Λ2 −
√

−1 g̃ab
,r b̃rτωaωb

(τ2+Λ2)2 − 2
√

−1 g̃ab
,r g̃cd

,r τωaωbωcωd

(τ2+Λ2)3 − g̃ab
,r b̃rωaωb

4Λ(τ2+Λ2) − b̃r b̃rΛ
2(τ2+Λ2) ,

C = g̃ab
,rrωaωb

2(τ2+Λ2) − g̃ab
,r g̃cd

,r ωaωbωcωd

4Λ2(τ2+Λ2) + 3g̃ab
,r b̃rωaωb

4(τ2+Λ2) ,

D = − g̃ab
,r g̃cd

,r ωaωbωcωd

4Λ(τ2+Λ2) .

So the solution has the form, taking into account the asymptotic behaviour
(4.5),

h−4(y, r, ω, τ, λ) = α̃e−rΛ + βre−rΛ + γr2e−rΛ + δr3e−rΛ + εr4e−rΛ.

From the initial condition α̃ = q−4(y, r, ω, τ, λ)|r=0 we obtain, up to irrele-
vant terms,

α̃ = 1
(τ2+Λ2)3

{
−b̃r b̃rτ2 + b̃rg̃ab

,r ωaωb + 2b̃r
,rτ

2 − g̃ab
,rrωaωb

}

+ 1
(τ2+Λ2)4

{
−6b̃rg̃ab

,r τ2ωaωb + 4g̃ab
,rrτ

2ωaωb + 2g̃ab
,r g̃cd

,r ωaωbωcωd

}

+ 1
(τ2+Λ2)5

{
−12g̃ab

,r g̃cd
,r ωaωbωcωdτ

2
}

.

From the differential equation we obtain the conditions

A = −2Λβ + 2γ, B = −4Λγ + 6δ,

C = −6Λδ + 12ε, D = −8εΛ.

This determines the numerical multipliers β, γ, δ and ε to be

β = −3
8

D
Λ4 − 1

4
C
Λ3 − 1

4
B
Λ2 − 1

2
A
Λ ,

γ = −3
8

D
Λ3 − 1

4
C
Λ2 − 1

4
B
Λ ,

δ = −1
4

D
Λ2 − 1

6
C
Λ ,

ε = −1
8

D
Λ .
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For the Laplacian on the manifold M we have

b̃r = −1
2 g̃abg̃ab,r,

b̃r b̃r = 1
4 g̃abg̃cdg̃ab,rg̃cd,r,

b̃rg̃abg̃
ab
,r = 1

2 g̃abg̃cdg̃ab,rg̃cd,r,

b̃r
,r = 1

2 g̃acg̃bdg̃cd,rg̃ab,r − 1
2 g̃abg̃ab,rr,

g̃abg̃
ab
,rr = 2g̃acg̃bdg̃ab,rg̃cd,r − g̃abg̃ab,rr,

g̃ab
,r g̃cd

,r (g̃abg̃cd + g̃acg̃bd + g̃adg̃bc) = g̃abg̃cdg̃ab,rg̃cd,r + 2g̃abg̃cdg̃ac,rg̃bd,r.

Performing the integrations we obtain the contributions (modulo π(m−1)/2
√

g̃)

α̃I = g̃abg̃cdg̃ab,rg̃cd,r

[
−1

4d2003 + 1
4d0003 − 3

2d2004 + 1
2d0004 − 3d2005

]

+ g̃abg̃cdg̃ac,rg̃bd,r [d2003 − d0003 + 4d2004 + d0004 − 6d2005]

+ g̃abg̃ab,rr

[
−d2003 + 1

2d0003 − 2d2004
]
,

βI = g̃abg̃cdg̃ab,rg̃cd,r

[
3

128d0151 + 1
64d0151 +

√
−1
8 d1123 +

√
−1
16 d1122 −

√
−1
4 d1103

−
√

−1
8 d1102 − 1

32d0111

]

+ g̃abg̃cdg̃ac,rg̃bd,r

[
3
64d0151 + 1

32d0151 +
√

−1
4 d1123 − 1

8d0131 + 1
8d0111

]

+ g̃abg̃ab,rr

[ 1
16d0131 − 1

8d0111
]
,

γI = g̃abg̃cdg̃ab,rg̃cd,r

[
3

128d0241 + 1
64d0241 +

√
−1
8 d1213 + 1

32d0201 − 3
64d0221

+
√

−1
16 d1212 + 1

64d0221

]

+ g̃abg̃cdg̃ac,rg̃bd,r

[
3
64d0241 + 1

32d0241 +
√

−1
4 d1213 − 1

8d0221 + 1
8d0201

]

+ g̃abg̃ab,rr

[ 1
16d0221 − 1

8d0201
]

δI = g̃abg̃cdg̃ab,rg̃cd,r

[ 5
192d0331 − 1

32d0311
]

+ g̃abg̃cdg̃ac,rg̃bd,r

[ 5
96d0331 − 1

12d0311
]

+ g̃abg̃ab,rr

[ 1
24d0311

]
,

εI = g̃abg̃cdg̃ab,rg̃cd,r

[ 1
128d0421

]
+ g̃abg̃cdg̃ac,rg̃bd,r

[ 1
64d0421

]
.
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Adding up all terms and simplifying using the functional equation and the
doubling formula for the Γ-function, the contribution to the heat kernel
coefficient reads

(4π)−m/2
{

g̃abg̃cdg̃ab,rg̃cd,r
3α2−16α−27

384(α−6) Γ
(1−α

2

)

+ g̃abg̃cdg̃ac,rg̃bd,r
5(9+4α−α2)

192(α−6) Γ
(1−α

2

)
+g̃abg̃ab,rr

α+3
48 Γ

(1−α
2

)}
.

This allows us to read off A, B and C from Equations (4.8) and (4.9) and
to conclude:

κ3
α = − 1

12(α − 1)κα, κ4
α = 7−8α+α2

16(α−6) κα, κ5
α = 6α−5−α2

8(α−6) κα.

This completes the proof of Lemma 1.3. �

5. The proof of Theorem 1.4

We adopt the notation of Theorem 1.4. We may suppose that the weighting
function F is supported in a boundary coordinate neighbourhood U and that
F has the form F = r−αG with G ∈ C∞

comp(U). For appropriate functions q

and qbd set

Op(q)f(y, r) :=
∫ ∫

e
√

−1y·ω+
√

−1rτq(y, r, ω, τ, λ)f̂(ω, τ)d̄ωd̄τ,

Op′(qbd)f(y, r) :=
∫ ∫

e
√

−1y·ωqbd(y, r, ω, τ, λ)f̂(ω, τ)d̄ωd̄τ,

d̄ω := (2π)1−mdω and d̄τ := (2π)−1dτ.

Thus one has that Op′(qbd) = Op(e−
√

−1rτqbd). In local coordinates (y, r),
we follow the construction in [13] to define the standard parametrix for
(D − λ)−1:

QN (λ) =
N∑

n=0

{
Op(q−2−n(λ)) − Op′(qbd

−2−n(λ))
}

.

The qj and qbd
j are discussed in further detail in Section 4; we refer in partic-

ular to Equations (4.1)–(4.3). Note that the qbd
j here is the hj of Section 4.

We pass to a parametrix HN for the operator e−tD by performing a
contour integration:

HN (D, t) :=
1

2π
√

−1

∫

Γ
e−tλQN (λ)dλ =

N∑

n=0

{Op(e−2−n) − Op′(ebd
−2−n)};
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in this expression, ej and ebd
j are the corresponding contour integrals of qj

and qbd
j . For another construction of the heat parametrix see [8].

Take φ and ψ with compact support in U , with ψ ≡ 1 in a neighbourhood
of the support of φ. Then

RN = φ
[
e−tD − HN

]
ψ

has a kernel k(y, r, y′, r′; t) which, for sufficiently large N , is C2, O(tJ) for
large J (depending on N), and vanishes when r = 0, although not for r′ = 0.
To achieve vanishing in both variables, we consider

φHN (D, t/2)ψ2HN (D∗, t/2)∗φ − φe−tD/2ψ2(e−tD∗/2)∗φ

= −RNψHN (D∗, t/2)∗φ − φHN (D, t/2)ψR∗
N − RNR∗

N .(5.1)

Here we compute the adjoints with respect to the measure dydr. The remain-
der given by Equation (5.1) has a kernel which is C2, with derivatives O(tJ)
for large J , and vanishes when either r = 0 or r′ = 0. By the pseudo-local
properties of HN and e−tD, the same is true of

φHN (D, t/2)HN (D∗, t/2)∗φ − φ e−tDφ.

Hence the kernel of this operator is O(r2tJ) for large J and we can deduce
an expansion for TrL2(F e−tD) from an expansion of TrL2(FHNH∗

Nφ), taking
φ ≡ 1 on the support of F . The error will be holomorphic in α for Re(α) < 3.
Since TrL2(F e−tD) is also holomorphic for Re(α) < 3, we may compute our
expansion for Re(α) < 1 and continue analytically.

From the expansion of qj in powers of (|ω|2 + τ2 − λ)−1 (See Section 4)
we obtain the estimates

|e−2−k| ≤ Ctk/2e−ct(|ω|2+τ2)(5.2)

|ebd
j | ≤ C(|ω|2 + τ2 + 1)−1e−|ω|2t/2(5.3)

for suitably chosen constants C and c. Set ξ = (ω, τ). The qj and the qbd
j have

an appropriate homogeneity property [13]. This homogeneity yields that

ej(y, r, sξ, t/s2) = s2+jej(y, r, ξ, t), and(5.4)

ebd
j (y, r/s, sξ, t/s2) = s2+jebd

j (y, r, ξ, t).(5.5)
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Furthermore, the kernel k1 of Op(ej)Op(e∗
k)

∗ and the kernel k2 of Op(ej)Op′

(ebd∗
k )∗ on the diagonal are given, respectively, by:

k1(y, r, y, r; t) =
∫

ej(y, r, ξ, t/2)ek(y, r, ξ, t/2)d̄ξ

= (t/2)−(m+j+k+4)/2
∫

ej(y, r, ξ, 1)ek(y, r, ξ, 1)d̄ξ,(5.6)

k2(y, r, y, r; t) = (t/2)−(m+j+k+4)/2
∫

ej(y, r, ξ, 1)ebd
k (y, r(2/t)1/2, ξ, 1)d̄ξ.

(5.7)

There are similar formulas for the kernel of Op′(ebd
j )Op(e∗

k)
∗ and for the

kernel of Op′(ebd
j )Op′(ebd∗

k )∗ on the diagonal.
We integrate F (y, r)ki(y, r, y, r; t). An expansion of Fejek in powers r�−α

gives terms t−(m+j+k+4)/2 times a meromorphic function with simple poles
at α = 1, 2, . . .. For other α, this gives the interior terms in Theorem 1.4;
the terms with j + k odd vanish because of the parity of ej and ek in ξ. For
the terms in Equation (5.7), note that from Equations (5.3) and (5.5), ebd

k

decays exponentially as r → ∞ so that we may integrate in r from 0 to ∞.
An expansion of Fej in powers of r and a change of variable r/

√
t → r gives

boundary terms of the form in Theorem 1.4 for α �= 1, 2.
This proves Theorem 1.4 for Re(α) < 1 and the rest follows by ana-

lytic continuation. Since for each t, the expansion is holomorphic in α for
Re(α) < 3, the residues arising from the interior integrals at α = 1, 2 must
be cancelled by residues from the boundary terms. And, since the various
powers of t are linearly independent, the residue of each interior coefficient
must be cancelled by the residue from the corresponding boundary coeffi-
cient. The residue from tnIReg(Fan) = tnIReg(r−αGan) is

(5.8)

{
−tnIbd{(Fan)0} at α = 1,

−tnIbd{(Fan)1 + (Fan)0Laa} at α = 2.

The corresponding boundary term when α = 1 is tn−(α−1)/2abd
2n,α(F, D). Let

R be the residue of abd
2n,α(F,D) at α = 1. Then

tn−(α−1)/2abd
2n,α(F,D) =

tnR

α − 1
− 1

2
tn ln(t)R + (const)tn + O(α − 1)

Assertion (2) now follows. Since tnR must cancel the residue in Equa-
tion (5.8), we get the ln(t) coefficient in Assertion (4) for α = 1. The proof
of the rest of Assertion (4) and also of Assertion (3) follows in a similar
fashion. ��
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