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The Laplacian on hyperbolic 3-manifolds with Dehn
surgery type singularities

Frank Pfäffle and Hartmut Weiss

We study the spectrum of the Laplacian on hyperbolic 3-manifolds
with Dehn surgery type singularities and its dependence on the
generalized Dehn surgery coefficients.
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1. Introduction

Let M be a complete non-compact hyperbolic 3-manifold of finite volume.
The Laplacian considered as a symmetric densely defined operator

Δ : C∞
0 (M) → L2(M)

is essentially self-adjoint, cf. [1]. The essential spectrum of the unique self-
adjoint extension of Δ consists of the interval [1,∞), cf. [2,3]. Let us further
denote by 0 = λ0 < λ1 ≤ · · · ≤ λk < 1 the finitely many eigenvalues below
the essential spectrum, cf. [4].

If (Mi)i∈N is a sequence of compact hyperbolic 3-manifolds, which con-
verges to M , say in the pointed Lipschitz topology, one can ask in what
sense the spectrum of the limit manifold is related to the spectra of the
approximators. Note that since Mi is a compact manifold, the spectrum of
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the Laplacian on Mi is discrete for each i ∈ N. Let us assume for simplicity
that M has a single rank-2 cusp. The following results are known:

In [5], Colbois and Courtois show that the eigenvalues of M below the
essential spectrum are the limits of eigenvalues of the Mi. More precisely, if
0 = λi

0 < λi
1 ≤ · · · ≤ λi

k(i) < 1 are the eigenvalues of Mi smaller than 1, then
for i large enough one has k(i) ≥ k and further

(1.1) lim
i→∞

λi
j = λj

for j = 0, . . . , k.
In [6], Chavel and Dodziuk show that the eigenvalues of the Mi accu-

mulate in the interval [1,∞) as i → ∞. Moreover, they determine the pre-
cise rate of clustering in terms of geometric data of the degenerating tube.
Namely, with NΔi,Mi

[1, 1 + x2] = |{λ ∈ spec Δi : 1 ≤ λ ≤ 1 + x2}| denoting
the spectral counting function of the Laplacian on Mi, they obtain the
estimate

(1.2) NΔi,Mi
[1, 1 + x2] =

x

2π
log

(
1
li

)
+ Ox(1),

where li is the length of the shortest closed geodesic in Mi.
Let us mention that similar questions have been studied for the Laplacian

on differential forms by Dodziuk and McGowan in [7] and for the Dirac
operator on complex spinors by Bär in [8] and Pfäffle in [9].

From the point of view of the deformation theory of M , it is natural to
bring a certain class of singular hyperbolic 3-manifolds into play: while due
to Mostow–Prasad rigidity, cf. [10, 11], the hyperbolic structure on M may
not be deformed through complete hyperbolic structures, there is actually a
real two-dimensional deformation space of incomplete hyperbolic structures
parameterized by the so-called generalized Dehn surgery coefficients. This is
the essence of Thurston’s Hyperbolic Dehn Surgery Theorem, cf. [12]. The
existence of sequences Mi as above is, in fact, a consequence of that theorem.

These incomplete structures are said to have Dehn surgery type sin-
gularities, special cases include hyperbolic cone-manifold structures and in
particular smooth hyperbolic structures on certain topological fillings.

The aim of this article is to study the basic spectral properties of the
Laplacian on hyperbolic 3-manifolds with Dehn surgery type singularities
and to prove analogues of the asymptotic statements in Equations (1.1)
and (1.2) for this wider class of hyperbolic manifolds. The main results are
Theorems 5.1 and 4.1. Note that due to Corollary 3.3, our results include the
results of [5] and [6]. Moreover, we emphasize a “continuous” aspect of these
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phenomena, namely all our estimates take place on the deformation space
of structures (and do not make reference to specific sequences of manifolds).

The authors would like to thank Christian Bär for useful conversa-
tions and SFB 647 “Raum–Zeit–Materie” for financial support, furthermore
Prof. Kalf for pointing out the references [13] and [14] to us.

2. Hyperbolic Dehn surgery

Let M be a complete hyperbolic 3-manifold of finite volume. As a conse-
quence of the Margulis Lemma, cf. [15], M has only finitely many ends all of
which are rank-2 cusps. More precisely, if for μ > 0 we look at the thick–thin
decomposition of M , i.e., M = M(0,μ) ∪ M[μ,∞), where

M(0,μ) = {p ∈ M : injp < μ}

is the μ-thin part of M , and

M[μ,∞) = {p ∈ M : injp ≥ μ}

the μ-thick part, then the Margulis Lemma asserts the existence of a uni-
versal constant μ0, such that the components of the μ-thin part of M have
standard geometry for μ < μ0: they are either rank-2 cusps or smooth tubes.

A rank-2 cusp is the quotient of a horoball in H
3 by a rank-2 free abelian

group of parabolic isometries, which we in the following denote by Γcusp. The
intrinsic geometry of the boundary horosphere is that of flat R

2, its principal
curvatures are constantly 1. Let T 2

cusp = R
2/Γcusp be the corresponding flat

torus. Then the cusp based on T 2
cusp is given as the Riemannian manifold

((0,∞) × T 2, dt2 + e−2tgT 2),

where t ∈ (0,∞) and gT 2 denotes the flat metric on T 2.
A smooth tube is the quotient of the distance tube of a geodesic γ in

H
3 by an infinite cyclic group of hyperbolic isometries. Let us denote its

generator in the following by φ. The isometry φ is a screw-motion along
γ, i.e., after orienting γ, we can associate the translation length l > 0 and
the rotation angle t ∈ [0, 2π) with φ. The boundary of the distance tube of
radius r is intrinsically flat, its principal curvatures are given by coth(r) and
tanh(r). Let Γ be the lattice in R

2 generated by the vectors (2π, 0) and (t, l)
and let T 2 = R

2/Γ. Then the tube of radius R based on T 2 is given as the
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Riemannian manifold

((0, R) × T 2, dr2 + sinh(r)2dθ2 + cosh(r)2dz2),

where r ∈ (0, R) and (θ, z) ∈ R
2.

Let M̄ denote the compact core of M obtained by removing the cusp
components from the μ-thin part of M . The boundary components of M̄ are
horospherical tori, whose injectivity radii satisfy a universal lower bound.
For simplicity we will assume in the following that M has a single cusp.

Let Def(M) be the deformation space of (possibly incomplete) hyper-
bolic structures on M , for precise definitions see [16]. A hyperbolic structure
is determined by a local diffeomorphism dev : M̃ → H

3, the developing map,
which is equivariant w.r.t. a group homomorphism hol : π1M → SL2(C), the
holonomy representation. The topology of C∞-convergence on compact sub-
sets of M̃ on the space of developing maps induces a topology on Def(M).
The map obtained by sending a hyperbolic structure to its holonomy rep-
resentation induces a local homeomorphism Def(M) → X(π1M, SL2(C)),
where the latter is the space of group homomorphisms ρ : π1M → SL2(C)
considered up to conjugation in SL2(C), cf. [17], see also [16].

We fix generators μ, λ ∈ π1∂M̄ . Let ρ0 be the holonomy of the com-
plete structure and χ0 the corresponding element in X(π1M, SL2(C)). For
ρ a deformation of ρ0 we consider the complex lengths Lμ(ρ) and Lλ(ρ) of
the isometries corresponding to ρ(μ) and ρ(λ). Since the complex length is
invariant under conjugation, but only determined up to addition of mul-
tiples of 2πi and multiplication by ±1, Lμ and Lλ may be considered as
multi-valued functions on X(π1M̄, SL2(C)).

In [18], it is shown that on a branched cover of a neighbourhood of χ0
the functions Lμ and Lλ can be defined as single-valued functions. More
precisely, there exist open sets 0 ∈ U ⊂ C and χ0 ∈ V ⊂ X(π1M̄, SL2(C)),
a branched cover π : U → V and a holomorphic map f : U → C such that

Lμ(π(z)) = z

and

Lλ(π(z)) = f(z).

Furthermore, for z small enough (w.l.o.g. for z ∈ U), the equation

(2.1) xz + yf(z) = 2πi
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has a unique solution (x, y) ∈ R
2 ∪ {∞}, the so-called generalized Dehn

surgery coefficients. The map f satisfies f(−u) = −f(u) (in particular
f(0) = 0), such that the generalized Dehn surgery coefficients are determined
by a character χ∈V up to sign. Hence, for a sufficiently small neighbourhood
W of the complete structure in Def(M) there is a well-defined map

DS : W → (R2 ∪ {∞})/ ± 1.

With these preparations we can state Thurston’s Hyperbolic Dehn Surgery
Theorem, cf. [12], see also [16,18]:

Theorem 2.1 [12]. There is a neighbourhood W ⊂ Def(M) of the complete
structure such that the map

DS : W → (R2 ∪ {∞})/ ± 1

is a homeomorphism onto a neighbourhood W ′ of ∞ ∈ (R2 ∪ {∞})/ ± 1.

In the following, we give a geometric description of how these incomplete
structures look like:

Let g denote the complete hyperbolic metric on M . Recall that ∂M̄
equipped with g is a horospherical torus, i.e., intrinsically flat with principal
curvatures 1. A structure that is close to the complete structure may be rep-
resented by a hyperbolic metric g′ on M̄ , which is C∞-close to g restricted
to M̄ , such that ∂M̄ equipped with g′ becomes intrinsically flat with prin-
cipal curvatures coth(R) and tanh(R) for R > 0 large. Then a singular tube
of radius R is added, such that the principal curvature lines match.

A singular tube of radius R is the following obvious generalization of a
smooth tube as above: let Γ ⊂ R

2 be any lattice and consider the metric

(2.2) dr2 + sinh(r)2dθ2 + cosh(r)2dz2

on (0, R) × R
2/Γ, where r ∈ (0, R) and (θ, z) ∈ R

2. We denote the tube of
radius R based on the torus T 2 = R

2/Γ by T 2
(0,R). The following cases occur:

1. Γ ∩ {z = 0} 
= {0}: In this case, Γ is spanned by unique vectors (α, 0)
with α > 0 and (t, l) with 0 ≤ t < α and l > 0. Then T 2

(0,R) is the
smooth part of a cone tube with cone angle α, length l and twist t.
In the special case α = 2π this is nothing but a smooth tube with the
core geodesic removed. The principal curvature lines corresponding to
coth(R) close up and are isotopic to a curve pμ + qλ with μ, λ ∈ π1∂M̄
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as above and p, q coprime integers. The generalized Dehn surgery coef-
ficients of the structure are given by (x, y) = 2π

α (p, q).

2. Γ ∩ {z = 0} = {0}: In this case, the metric completion is not a mani-
fold. The generalized Dehn surgery coefficients of the structure are of
the form (x, y) with x/y irrational.

We will generally say that a hyperbolic 3-manifold obtained in this way has
Dehn surgery type singularities.

The precise shape of the deformed tube is determined by the deformed
holonomy of the boundary torus, i.e., by the complex lengths Lμ and Lλ.
These in turn are determined by the generalized Dehn surgery coefficients
via Equation (2.1); however, this dependence is not explicit. Qualitatively
we can say the following:

Lemma 2.1. Let M∞ be a complete hyperbolic 3-manifold of finite volume
with a single cusp. Then:

1. For any ε > 0 there is a neighbourhood W ⊂ Def(M∞) of the complete
structure such that diam T 2 < ε for any hyperbolic structure in W ,
where T 2 = R

2/Γ is the base of the corresponding tube.

2. For any neighbourhood W ⊂ Def(M∞) of the complete structure there
are constants C1, C2 > 0 such that C1 ≤ e2Rarea T 2 ≤ C2 for any
hyperbolic structure in W .

Proof. Recall that the complex lengths Lμ and Lλ are defined as single-
valued functions z and f(z) on a branched cover of a neighbourhood of the
complete structure with f holomorphic and f(0) = 0. Hence Γ is spanned
by arbitrarily short vectors for hyperbolic structures close enough to the
complete one.

Let T 2
r denote the torus T 2 = R

2/Γ equipped with the Riemannian met-
ric sinh(r)2dθ2 + cosh(r)2dz2. Then area T 2

r = sinh(r) cosh(r)area T 2 and
area T 2

R differs from the area of the horospherical torus ∂M̄∞ by some
bounded amount depending on the neighbourhood W ⊂ Def(M∞). Since
sinh(r) cosh(r) ∼ e2r, the second claim follows. �

Note that a cone tube based on T 2 with small diameter (and hence small
area) may have small cone angle or not. In any case, it is easy to see that
the length of the tube has to be small.

Further, for a cone tube one has areaT 2 = lα, where α is the cone angle
and l the length of the tube. In particular, if we restrict to smooth fillings,



The Laplacian on hyperbolic 3-manifolds 511

i.e., α = 2π, Lemma 2.1 gives us constants C ′
1, C

′
2 > 0 such that

C ′
1 ≤ e2Rl ≤ C ′

2 ⇔ R − C ′′
1 ≤ 1

2 log
1
l

≤ R + C ′′
2 ,

which is the estimate used in [6] and [8]. This suggests that area T 2 in our
arguments should play the role of l in the arguments of [6] and [8].

Lemma 2.2. Consider c > 4 and β > 0. Then there exists μ > 0 below the
Margulis constant μ0 and a neighbourhood W of M∞ ∈ Def(M∞) such that
one has:

1. For any M ∈ W the μ-thick part M[μ,∞) is (1 + β)-quasi-isometric to
M∞

[μ,∞),

2. any M ∈ W contains a singular tube T 2
(0,ρ+c] for some ρ > 0 such that

T 2
[ρ,ρ+c] ⊂ M[μ,∞).

Proof. The proof is evident from the discussion above. �

3. The spectrum of the Laplacian

Let M be a hyperbolic 3-manifold with Dehn surgery type singularities. The
Laplacian Δ considered on dom Δ = C∞

0 (M) is a symmetric, densely defined
operator in L2(M). Since M is incomplete, we cannot expect the Laplacian
to be essentially selfadjoint on that domain; in fact, we will see that it never
is. Nevertheless, since Δ is non-negative on C∞

0 (M), i.e., 〈Δf, f〉L2 ≥ 0 for all
f ∈ C∞

0 (M), there is always a distinguished self-adjoint extension at hand,
namely, the so-called Friedrichs extension of Δ.

In the following, we briefly review the construction of the Friedrichs
extension of a semibounded symmetric operator. Recall that if H is a Hilbert
space and q a quadratic form defined on a dense domain in H such that
q ≥ c for some c ∈ R and q is closable with closure q̄, then there exists a
unique self-adjoint operator A with domA ⊂ dom q̄ and 〈Af, g〉 = q(f, g)
for all f ∈ dom q ∩ dom A and g ∈ dom q. Furthermore, A satisfies the same
lower bound as q, i.e., A ≥ c. The domain of A is given by

dom A = {f ∈ dom q̄ : ∃h ∈ H s.t. q̄(f, g) = 〈h, g〉 ∀g ∈ dom q}

and then Af = h.
The spectral theorem for self-adjoint operators yields the well-known

variational characterization of the eigenvalues of A below the essential
spectrum:
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Theorem 3.1. For λk = inf
V ⊂dom q
dim(V )=k

sup
f∈V \{0}

q(f,f)
|f |2 one has

1. the sequence (λk) is non-decreasing, and λk → λ∞ ≤ ∞,

2. the λn < λ∞ are precisely the eigenvalues of A below λ∞,

3. λ∞ is the bottom of the essential spectrum of A.

Now if A0 is a densely defined symmetric operator in H with A0 ≥ c, then
q(f, g) = 〈A0f, g〉 for f, g ∈ dom A0 is closable and trivially q ≥ c. One has
dom A = dom A∗

0 ∩ dom q̄ and Af = A∗
0f for the corresponding self-adjoint

operator A, which is the so-called Friedrichs extension of A0.
If M is a Riemannian manifold (without boundary) we may apply this

construction to the Dirichlet energy q(f) =
∫
M |df |2 on dom q = C∞

0 (M) to
obtain the Friedrichs extension of Δ, in the following denoted by ΔFr. One
has dom q̄ = dom dmin and dom ΔFr = dom Δmax ∩ dom dmin, where for a dif-
ferential operator P acting on compactly supported smooth sections of some
vector bundle (equipped with a Euclidean metric) we set

Pmax = (P t)∗ and Pmin = P̄ .

Here, P t denotes the formal adjoint of P and P̄ = P ∗∗ the closure of P . It
is easy to see that

dom Pmax = {s ∈ L2 : Ps ∈ L2}

and

dom Pmin = {s ∈ L2 : ∃sn ∈ C∞
0 with sn

L2

→ s, sn
L2

→ Ps},

where P is applied to L2-sections in a distributional sense.
For example, if M is the interior of a compact manifold with boundary

M̂ , i.e., M = M̂ \ ∂M̂ , then dom q̄ = H1
0 (M) and the Friedrichs extension

of Δ is the Dirichlet extension with

dom ΔDir = H2(M) ∩ H1
0 (M).

If we apply the Friedrichs construction to q(f) =
∫
M |df |2 on dom q =

C∞(M̂), then dom q̄ = H1(M) and the corresponding self-adjoint operator



The Laplacian on hyperbolic 3-manifolds 513

is the Neumann extension of Δ with

dom ΔNeu = {f ∈ H2(M) : νf ∈ H1
0 (M)},

where ν is a smooth extension of a unit normal to the boundary.
Returning to M being a hyperbolic 3-manifold with Dehn surgery type

singularities, let d : C∞(M) → Ω1(M) denote the exterior differential on
functions and δ : Ω1(M) → C∞(M) the divergence on 1-forms. As usual let
H1(M) = dom dmax and H1

0 (M) = dom dmin. From the preceding discussion
it is clear that ΔFr = δmaxdmin.

Theorem 3.2 (L2-Stokes). Let M be a hyperbolic 3-manifold with Dehn
surgery type singularities. Then for f ∈ dom dmax and w ∈ dom δmax one has

〈df, ω〉L2 = 〈f, δω〉L2 .

Proof. We may w.l.o.g. assume that f and ω are smooth, i.e., f ∈ C∞(M)
with ‖f‖L2 < ∞ and ‖df‖L2 < ∞ and ω ∈ Ω1(M) with ‖w‖L2 < ∞ and
‖δω‖L2 < ∞. We may also replace the hyperbolic metric by the flat met-
ric dr2 + r2dθ2 + dz2, since the L2-Stokes property is unaffected by passing
to a quasi-isometric metric. Now

∫
M\T 2

(0,r)

df ∧ ∗ω =
∫

M\T 2
(0,r)

f ∗ δω ±
∫

T 2
r

f ∗ ω,

where T 2
r denotes the cross-section {r} × T 2 ⊂ T 2

(0,R). We wish to show
that the boundary integral vanishes in the limit as r → 0 (or at least for
a sequence rn → 0 as n → ∞). If we write ω = φrdr + φθdθ + φzdz, then
the resriction of ∗ω to T 2

r equals φrrdθ ∧ dz and

∣∣∣
∫

T 2
r

f ∗ ω
∣∣∣ ≤

(∫
T 2

f2 rdθ ∧ dz
) 1

2 ·
(∫

T 2

φ2
r rdθ ∧ dz

) 1
2
.

If ϕ ∈ L1(0, 1) then Lemma 1.2 in [19] shows that there exists a sequence
rn → 0 such that ϕ(rn) = o(r−1

n | log rn|−1). Applied to the second factor this
yields a sequence rn → 0 such that

(∫
T 2

φ2
r rndθ ∧ dz

) 1
2 = o(r

− 1
2

n | log rn|− 1
2 ).
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To achieve a better estimate for the first factor we use that also ‖df‖L2 < ∞,
cf. Lemma 2.3 in [19]:

(∫
T 2

(∫ 1

r

∂f

∂r
(s)ds

)2
rdθ ∧ dz

) 1
2 ≤ r

1
2 | log r| 1

2

∫
T 2

(∫ 1

r

(∂f

∂r
(s)

)2
sds

)
dθ ∧ dz.

Now ∫ 1

r

∂f

∂r
(s, θ, z)ds = f(1, θ, z) − f(r, θ, z)

such that
(∫

T 2

f2 rdθ ∧ dz
) 1

2 = O(r
1
2 | log r| 1

2 ).

Altogether we obtain that limn→∞
∫
T 2

rn

f ∗ ω = 0. �

This proof also shows the following Green’s formula.

Corollary 3.1. If we denote the singular tube in M again by T 2
(0,r), then

−∂r is the exterior normal vector field of X along T 2
r , and one has for all

f ∈ C∞(M) with ‖f‖L2 < ∞, ‖df‖L2 < ∞ and ‖Δf‖L2 < ∞:
∫

T 2
(0,r)

|df |2 −
∫

T 2
(0,r)

f · Δf = ±
∫

T 2
r

f · ∂rf,

where all integrals are taken with respect to the induced volume measures.

Corollary 3.2. Let M be a hyperbolic 3-manifold with Dehn surgery type
singularities. Then:

1. dmax = dmin, i.e., H1(M) = H1
0 (M).

2. 0 ∈ spec ΔFr.

Proof. Theorem 3.2 shows that dmax = δ∗
max, where δ∗

max denotes the Hilbert
space adjoint of δmax. Since in general one has δ∗

max = dmin, the first assertion
follows. Since ΔFr = δmaxdmin it is enough to show that 1 ∈ H1

0 (M). Clearly,
1 ∈ H1(M), so the second assertion follows from the first. �

Corollary 3.3. Let M̂ be a compact hyperbolic 3-manifold and let Δ̂ denote
the Laplacian on M̂ . If M = M̂ \ γ for γ ⊂ M̂ a closed geodesic, then ΔFr
coincides with the unique self-adjoint extension of Δ̂, i.e., dom ΔFr =
H2(M̂). In particular, spec ΔFr = spec Δ̂.
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Proof. Clearly H1
0 (M) ⊂ H1(M̂) ⊂ H1(M), hence by Corollary 3.2 one has,

in particular, H1
0 (M) = H1(M̂). Applying the Friedrichs construction to

both form domains yields the result. �
To investigate further properties of Δ, we use a separation of variables

argument on the singular tube. A direct calculation shows that the Laplacian
on T 2

(0,R) is given by

Δ = −∂2
r − 2 coth(2r)∂r + L(r),

where

L(r) = − 1
sinh(r)2

∂2
θ − 1

cosh(r)2
∂2

z

is the Laplacian on the cross-section T 2
r with the induced metric. The volume

form on T 2
(0,R) is given by sinh(r) cosh(r)dr ∧ dθ ∧ dz, hence

L2(T 2
(0,R)) → L2((0, R) × T 2)),

f �→ sinh(r)
1
2 cosh(r)

1
2 f

is a unitary operator. Since

sinh(r)
1
2 cosh(r)

1
2

(
(−∂2

r − 2 coth(2r)∂r)
(
sinh(r)− 1

2 cosh(r)− 1
2 f

))
= −∂2

rf +
(
2 − coth(2r)2

)
f,

we obtain that the Laplacian on T 2
(0,R) is unitarily equivalent to the operator

−∂2
r + 2 − coth(2r)2 + L(r).

If T 2 = R
2/Γ, let Λ be the dual lattice to Γ, i.e.,

Λ = {λ ∈ R
2 : 〈λ, γ〉 ∈ Z ∀ γ ∈ Γ}.

The dual lattice Λ is spanned by the vectors
(

l

sinh(r) · covol(Γ)
,

−t

cosh(r) · covol(Γ)

)

and (
−s

sinh(r) · covol(Γ)
,

α

cosh(r) · covol(Γ)

)
.
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We decompose as orthogonal Hilbert sums

L2(R2/Γ) =
⊕
λ∈Λ

〈Ψλ〉

and

L2((0, R), L2(R2/Γ)) =
⊕
λ∈Λ

L2(0, R) ⊗ 〈Ψλ〉,

where Ψλ(x) = e2πi〈λ,x〉/
√

covol(Γ) and 〈Ψλ〉 denotes the span of Ψλ in
L2(R2/Γ). We have

spec L(r) =
{

(2π)2
(

λ2
1

sinh(r)2
+

λ2
2

cosh(r)2

)
: λ = (λ1, λ2) ∈ Λ

}

and therefore the action of the operator −∂2
r + 2 − coth(2r)2 + L(r) on its

domain intersected with L2(0, R) ⊗ 〈Ψλ〉 is given by the Schrödinger opera-
tor PVλ

= −∂2
r + Vλ with potential

Vλ(r) = 2 − coth(2r)2 + (2π)2
(

λ2
1

sinh(r)2
+

λ2
2

cosh(r)2

)
.

Let in the following PV = −∂2
r + V (r) be a Schrödinger operator on the

interval (0, R) with continuous potential V . It has been shown by Sears
in [13] that if

V (r) ≥ 3
4r2 + A

for some constant A ∈ R, then the limit-point case holds at 0 (using Weyl’s
classical terminology), whereas the limit-circle case holds at 0 if

|V (r)| <
δ

r2 + A

for 0 ≤ δ < 3/4 and some constant A ∈ R.
The following lemma asserts that it is indeed necessary to specify a self-

adjoint extension for the Laplacian on a hyperbolic 3-manifold with Dehn
surgery type singularities.
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Lemma 3.1. Let M be a hyperbolic 3-manifold with Dehn surgery type
singularities. Then Δ is not essentially self-adjoint.

Proof. Since Δmax (resp. Δmin) is unitarily equivalent to ⊕λ∈Λ(PVλ
)max

(resp. to ⊕λ∈Λ(PVλ
)min) on T 2

(0,R), it is enough to exhibit at least one λ ∈ Λ
such that PVλ

is in the limit-circle case at 0. Since limr→0 r2V0(r) = −1
4 we

obtain by Theorem 2 in [13] that PV0 is indeed in the limit-circle case at 0.
Note that there might actually be infinitely many λ ∈ Λ such that PVλ

is in
the limit-circle case at 0. �

It is again a result of Sears, cf. [14], that any self-adjoint extension of
PV on (0, R) has discrete spectrum if

V (r) ≥ − 1
4r2 + A

for some constant A ∈ R. Note that under the same condition PV is semi-
bounded by Hardy’s inequality.

Lemma 3.2. Let M be a hyperbolic 3-manifold with Dehn surgery type
singularities. Then spec ΔFr is discrete.

Proof. Since the essential spectrum is unaffected by removing a compact
submanifold with boundary, cf. Proposition 1 in [8], it is sufficient to show
that spec ΔFr is discrete on T 2

(0,R).
We use that ΔFr is unitarily equivalent to ⊕λ∈Λ(PVλ

)Fr on T 2
(0,R). From

Theorem 1 in [14] we obtain that for λ ∈ Λ any self-adjoint extension of PVλ

in L2(0, R) has discrete spectrum, hence in particular the Friedrichs exten-
sion. Observe that PV0 is a non-negative operator, i.e., 〈PV0f, f〉L2(0,R) ≥ 0
for all f ∈ C∞

0 (0, R), and that PVλ
− PV0 ≥ C|λ|2 for all λ ∈ Λ and some

constant C = C(R) > 0. We may estimate

〈PVλ
f, f〉L2(0,R) = 〈PV0f, f〉L2(0,R) + 〈PVλ

− PV0f, f〉L2(0,R)

≥ C|λ|2‖f‖2
L2(0,R)

for f ∈ C∞
0 (0, R). For l > 0, we obtain that spec(PVλ

)Fr ∩ [0, l] 
= ∅ only for
finitely many λ ∈ Λ, hence that spec ΔFr is discrete on T 2

(0,R). �

We finish this section with another application of the variational char-
acterization of eigenvalues.
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Lemma 3.3. Let X be a compact manifold with boundary, let β > 0 and let
g1 and g2 be two Riemannian metrics on X being (1 + β)-quasi isometric:

1
(1 + β)2

g2 ≤ g1 ≤ (1 + β)2 g2.

For j = 1, 2 let 0 < λj
1 ≤ . . . λj

i ≤ . . . denote the eigenvalues of the Dirichlet
problem on (X, gj), resp. 0 = λj

0 < λj
1 ≤ . . . λj

i ≤ . . . the eigenvalues of the
Neumann problem. Then for i ≥ 1 one has

1
(1 + β)2

λ1
i ≤ λ2

i ≤ (1 + β)2 λ1
i .

Proof. Consider f ∈ C∞(X). For the Rayleigh quotients one observes

1
(1 + β)2

·
‖df‖2

L2(X,g1)

‖f‖2
L2(X,g1)

≤
‖df‖2

L2(X,g2)

‖f‖2
L2(X,g2)

≤ (1 + β)2 ·
‖df‖2

L2(X,g1)

‖f‖2
L2(X,g1)

,

and Theorem 3.1 yields the claim for Neumann boundary conditions. Using
the above estimate on the space of smooth functions compactly supported
in the interior of X, then again Theorem 3.1 yields the claim for Dirichlet
boundary conditions. �

4. Clustering

Let M∞ be a hyperbolic 3-manifold of finite volume with a single cusp in
the following. For M ∈ Def(M∞) we fix the Friedrichs extension ΔFr for the
Laplacian on M .

For a fixed interval I ⊂ R we view the spectral counting function NΔ,MI
as a function on Def(M∞). Note that for μ > 0 fixed the tube radius R may
also be considered as a function on Def(M∞), cf. Section 2.

Theorem 4.1. The spectral counting function on Def(M∞) satisfies

NΔ,M [1, 1 + x2] =
x

π
R + Ox(1)

for x > 0. Here Ox(1) denotes a function on Def(M∞) which is bounded in
a neighbourhood of M∞. (This neighbourhood and the bounds may depend
on x > 0.)

We may reformulate this in terms of the tube shape, i.e., the geometry
of the base of the singular tube:



The Laplacian on hyperbolic 3-manifolds 519

Corollary 4.1. The spectral counting function on Def(M∞) satisfies

NΔ,M [1, 1 + x2] =
x

2π

(
1

area T 2

)
+ Ox(1)

for x > 0.

Proof. The assertion follows from Theorem 4.1 using Lemma 2.1. �

We will bound the spectral counting function from above and from
below, i.e., Theorem 4.1 will follow from Lemmas 4.2 and 4.1:

Lemma 4.1. The spectral counting function on Def(M∞) satisfies

NΔ,M [1, 1 + x2] ≤ x

π
R + Ox(1)

for x > 0. Furthermore, NΔ,M [0, 1] = O(1).

Proof. Let x ≥ 0. We claim that

NΔ,M [0, 1 + x2] ≤ x

π
R + Ox(1),

from which the assertions trivially follow. To prove this, we decompose

M = M[μ,∞) ∪ T 2
(0,R],

such that by the domain decomposition principle, cf. [8, Prop. 3], we obtain

NFr
Δ,M [0, 1 + x2] ≤ N nat

Δ,M[μ,∞)
[0, 1 + x2] + N nat

Δ,T 2
(0,R]

[0, 1 + x2].

Here, we choose natural boundary conditions for the Laplacian on the
various pieces, which are manifolds with boundary (compact or not), cf. [8].
More precisely, for a manifold with boundary N (compact or not) we are con-
sidering the self-adjoint extension of Δ obtained by applying the Friedrichs
construction to the form domain C∞

0 (N), i.e., compactly supported smooth
functions on N , whose support is allowed to hit ∂N . If N is in fact compact,
this amounts to choosing Neumann conditions on ∂N .

We claim:

1. N nat
Δ,M[μ,∞)

[0, 1 + x2] = Ox(1).

2. N nat
Δ,T 2

(0,R]
[0, 1 + x2] ≤ x

πR + Ox(1).
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The first claim follows from the fact that the metrics on the thick parts
are uniformly quasi-isometric together with Lemma 3.3.

To prove the second claim, we will first show that only the 0-mode
contributes to clustering. Towards that end, we choose c = c(x) > 0 and a
neighbourhood W of M∞ in Def(M∞) such that Vλ − V0 > 1 + x2 on the
interval (0, R − c] for all M ∈ W and for all λ 
= 0. This is possible since
there exists a constant C > 0 independent of λ 
= 0 such that for r ∈ (0, R]

Vλ(r) − V0(r) ≥ Ce2(R−r)(Vλ(R) − V0(R))

and hence for r ∈ (0, R − c]

Vλ(r) − V0(r) ≥ Ce2c(Vλ(R) − V0(R)).

Now, Vλ(R) − V0(R) is bounded from below by the first positive eigenvalue
of ∂T 2

(0,R) = ∂M[μ,∞), which in turn is bounded from below by some positive
constant, since the induced metrics on ∂M[μ,∞) are uniformly quasi-isometric
in a neighbourhood of M∞ in Def(M∞). We choose c > 0 accordingly and
we may further decompose

T 2
(0,R] = T 2

(0,R−c] ∪ T 2
[R−c,R]

to obtain

N nat
Δ,T 2

(0,R]
[0, 1 + x2] ≤ N nat

Δ,T 2
(0,R−c]

[0, 1 + x2] + N nat
Δ,T 2

[R−c,R]
[0, 1 + x2].

Since the metrics on the regions T 2
[R−c,R] are uniformly quasi-isometric in a

neighbourhood of M∞ in Def(M∞), we find

N nat
Δ,T 2

[R−c,R]
[0, 1 + x2] = Ox(1).

Clearly

N nat
PVλ

,(0,R−c][0, 1 + x2] = 0

since Vλ − V0 > 1 + x2 on (0, R − c] for λ 
= 0 and (PV0)nat ≥ 0, cf. the proof
of Lemma 3.2.

To estimate the contribution of the 0-mode, let r0 > 0 be the unique pos-
itive zero of V0(r) = 2 − coth(2r)2. We may assume that R − c > r0. Using
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the fact that V0 ≥ 0 for r ≥ r0 we obtain

N nat
PV0 ,(0,R−c][0, 1 + x2] ≤ N nat

PV0 ,(0,r0][0, 1 + x2] + N nat
PV0 ,[r0,R−c][0, 1 + x2]

≤ NNeu
PV0 ,[r0,R−c][0, 1 + x2] + Ox(1)

≤ NNeu
−∂2

r ,[r0,R−c][0, 1 + x2] + Ox(1) =
x

π
R + Ox(1).

This finishes the proof. �

Lemma 4.2. The spectral counting function on Def(M∞) satisfies

NΔ,M [1, 1 + x2] ≥ x

π
R + O(1)

for x > 0.

Proof. Note that V0(r) ≤ 1 for r > 0 and that (PV0)Fr ≥ 0, cf. the proof of
Lemma 3.2. By domain monotonicity, cf. [8, Prop. 2], and the variational
characterization of eigenvalues we get

NFr
Δ,M [0, 1 + x2] ≥ NFr

Δ,T 2
(0,R)

[0, 1 + x2]

≥ NFr
PV0 ,(0,R)[0, 1 + x2]

≥ NFr
−∂2

r+1,(0,R)[0, 1 + x2]

= NDir
−∂2

r ,(0,R)[0, x2] =
x

π
R + O(1).

Now by Lemma 4.1 we have NΔ,M [0, 1] = O(1), hence we obtain, as claimed,
that NΔ,M [1, 1 + x2] ≥ x

πR + O(1). �

5. Convergence of the small eigenvalues

Let M∞ be a hyperbolic 3-manifold of finite volume with a single cusp in
the following. Let 0 = λ∞

0 < λ∞
1 ≤ . . . ≤ λ∞

k∞ < 1 denote the eigenvalues of
the Laplacian on M∞ below the essential spectrum. We fix some Λ < 0
with λk∞ < Λ < 1. For M ∈ Def(M∞) let 0 = λ0 < λ1 ≤ . . . ≤ λk ≤ . . . →
∞ denote the eigenvalues of ΔFr on M , and let k(Λ) denote the number of
positive eigenvalues strictly below Λ, which means λk(Λ) < Λ ≤ λk(Λ)+1.

Theorem 5.1. For each ε > 0 there exists a neighbourhood W of M∞ in
Def(M∞) such that for M ∈ W one has:

1. k(Λ) = k∞,

2. |λi − λ∞
i | < ε for i = 1, . . . , k∞.
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We may reformulate this in terms of generalized Dehn surgery
coefficients:

Corollary 5.1. For each ε > 0 there exists a neighbourhood W ′ of ∞ in
(R2 ∪ {∞})/ ± 1 such that for (x, y) ∈ W ′ one has for M = M (x,y):

1. k(Λ) = k∞,

2. |λi − λ∞
i | < ε for i = 1, . . . , k∞.

Proof. The assertion follows from Theorem 5.1 together with Theorem 2.1.
�

In order to prove Theorem 5.1 we will extend Colbois’ and Courtois’
method of parties fuyantes (see [5]) to hyperbolic manifolds with Dehn
surgery type singularities. We need some preliminary considerations.

If μ > 0 is small enough the μ-thin part of M∞ consists of a rank-2
cusp: M∞

(0,μ) can isometrically be identified with (0,∞) × T 2 carrying the
Riemannian metric dt2 + e−2tgT 2 , and M∞

[μ,∞) is a smooth compact manifold
with boundary. Let 0 < λ∞

0 (μ) < λ∞
1 (μ) ≤ . . . ≤ λ∞

i (μ) ≤ . . . → ∞ be the
eigenvalues of the Dirichlet problem on M∞

[μ,∞), and denote the index of the
last eigenvalue strictly below 1 by k∞

μ . Then the same proof as the one of
(1.4) in [5] shows:

Lemma 5.1. For each ε > 0 with λ∞
k∞ + ε < 1 there is a με > 0 such that

for all μ < με one has

1. k∞
μ = k∞,

2. λ∞
i ≤ λ∞

i (μ) < λ∞
i + ε for i = 0, . . . , k∞.

And, by domain monotonicity, one also has λ∞
k∞+1(μ) ≥ 1.

Next, we note that elliptic regularity is a local statement, hence it also
holds on manifolds with Dehn surgery type singularities. We get that any
eigenfunction f ∈ L2(M) of ΔFr is smooth.

For the moment let us fix ρ > 0 and c > 4 and let us consider a hyperbolic
3-manifold M containing a singular tube T 2

(0,ρ+c) isometric to (0, ρ + c) × T 2

with the metric given in (2.2). For 0 ≤ a < b ≤ ρ + c we denote the domain
that corresponds to (a, b] × T 2 by T 2

(a,b] and for 0 < r ≤ ρ + c we denote the
hypersurface that corresponds to {r} × T 2 by T 2

r .
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Lemma 5.2. For any Λ > 0 and for any f ∈ C∞(M) with ‖f‖2
L2(M) = 1

and ‖df‖2
L2(M) < Λ there exists an r ∈ [ρ + 2, ρ + c] such that

1. ‖f‖2
H1(T 2

(r−1,r])
< 2·(1+Λ)

c−4 and

2.
∫
T 2

r

{
|f |2 + |df |2

}
< 2·(1+Λ)

c−4 .

Proof. In fact, the proof is the same as the one of [5, Lemma 2.4]: One
defines F = |f |2 + |df |2 and gets

1 + Λ >

∫
M

F ≥
∫

T 2
(ρ+2,ρ+c]

F ≥
[ c

2
]−1∑

k=1

∫
T 2

(ρ+2k,ρ+2k+2]

F.

Hence, there is a k ∈
{
1, . . . , [ c

2 ] − 1
}

with

1 + Λ
[ c
2 ] − 1

>

∫
T 2

(ρ+2k,ρ+2k+2]

F =
∫ ρ+2k+2

ρ+2k
dr

∫
T 2

r

F.

Furthermore, there is an r ∈ [ρ + 2k + 1, ρ + 2k + 2] ⊂ [ρ + 2, ρ + c] with∫
T 2

r
F < 1+Λ

[ c

2
]−1 ≤ 2·(1+Λ)

c−4 and we are done. �

Corollary 5.2. For Λ > 0, f ∈ C∞(M) and r ∈ [ρ + 2, ρ + c] as in
Lemma 5.2 with ‖Δf‖L2 < ∞ one has

(5.1)

∣∣∣∣∣
∫

T 2
(0,r]

|df |2 −
∫

T 2
(0,r]

f · Δf

∣∣∣∣∣ <
2 · (1 + Λ)

c − 4
.

Proof. We use the Green’s formula in Corollary 3.1 to obtain
∣∣∣∣∣
∫

T 2
(0,r]

|df |2 −
∫

T 2
(0,r]

f · Δf

∣∣∣∣∣ =

∣∣∣∣∣
∫

T 2
r

f · ∂rf

∣∣∣∣∣ ≤
√∫

T 2
r

f2 ·
√∫

T 2
r

(∂rf)2.

Then Lemma 5.2 finishes the proof. �

Lemma 5.3. Let Ω = T 2
(0,R) be a singular tube of radius R. Consider the

Friedrichs extension ΔFr of the Laplace operator acting on C∞
0 (Ω). For h ∈

dom(ΔFr) one has

‖h‖L2(Ω) ≤ ‖dh‖L2(Ω).
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Proof. For h ∈ C∞
0 (Ω) one gets

(5.2)
∫

Ω

∣∣∂r(h2)
∣∣ =

∫
Ω

|2h · ∂rh| ≤ 2‖h‖L2(Ω) · ‖dh‖L2(Ω).

As h is compactly supported we may integrate by parts and obtain

‖h‖2
L2(Ω) =

∫
T 2

dθ dz

∫ R

0
h2 · d

dr

(
1
2

sinh2(r)
)

dr

= −
∫

T 2

dθ dz

∫ R

0

1
2

sinh2(r) · ∂r

(
h2) dr

= −1
2

∫
Ω

tanh(r)∂r

(
h2) ≤ 1

2

∫
Ω

∣∣∂r(h2)
∣∣ ≤ ‖h‖L2(Ω) · ‖dh‖L2(Ω)

by (5.2). For the Rayleigh quotient this means

‖dh‖2
L2(Ω)

‖h‖2
L2(Ω)

≥ 1.

By the construction of Friedrichs extensions this lower bound holds for any
h ∈ dom(ΔFr), and we are done. �

Corollary 5.3. Let M be a hyperbolic 3-manifold containing a singular
tube T 2

(0,ρ+c], where ρ > 0 and c > 4. Then for any f ∈ dom(ΔFr) and any
r ∈ [ρ + 2, ρ + c] one obtains

(5.3)
∫

T 2
(0,r]

|f |2 −
∫

T 2
(0,r]

|df |2 ≤ 3 · ‖f‖2
L2(T 2

(r−1,r])
.

Proof. We choose a cut-off function u ∈ C∞(M) with supp(u) ⊂ T 2
(0,r),

0 ≤ u ≤ 1, | grad(u)| ≤ 2 and u|T 2
(0,r−1]

≡ 1 and consider h = u · f . Then
h is in the domain of the Friedrichs extension of the Laplacian acting on
C∞

0 (T 2
(0,r)), and by Lemma 5.3 we obtain

∫
T 2

(0,r]

|f |2 − ‖f‖2
L2(T 2

(r−1,r))
≤

∫
T 2

(0,r]

|h|2 ≤
∫

T 2
(0,r]

|dh|2

≤
∫

T 2
(0,r]

|df |2 + 2 · ‖f‖2
L2(T 2

(r−1,r])
,

which finishes the proof. �
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Now, let f ∈ C∞(M) be a normalized eigenfunction of ΔFr correspond-
ing to an eigenvalue λ < Λ < 1, which means ΔFrf = λf and ‖f‖L2(M) = 1.
We take r ∈ [ρ + 2, ρ + c] as in Lemma 5.2, and we abbreviate

A :=
∫

T 2
(0,r]

|df |2, B :=
∫

T 2
(0,r]

|f |2, η :=
2 · (1 + Λ)

c − 4
.

One gets |A − λ · B| < η by (5.1) and B − A < 3η by (5.3) and Assertion
1 of Lemma 5.2. Together this yields B − λ · B < A + 3η − λB < 4η and
hence B < 4η

1−λ < 4η
1−Λ . Using A + B ≤ (1 + Λ)B + η we conclude:

Proposition 5.1. Let f ∈ C∞(M) be an eigenfunction of ΔFr correspond-
ing to an eigenvalue λ < Λ < 1 with ‖f‖L2 = 1. Then there is an r ∈
[ρ + 2, ρ + c] such that

‖f‖2
H1(T 2

(0,r])
<

40
1 − Λ

· 1
c − 4

.

Finally, we have all ingredients to prove Theorem 5.1.

Proof of Theorem 5.1. Let ε > 0. Without loss of generality we may assume
that λ∞

k∞ + ε < Λ and Λ + ε < 1. Applying Lemma 5.1 for ε/2 we obtain
μ ε

2
> 0 such that for any μ < μ ε

2
one has k∞

μ = k∞ and

λ∞
i ≤ λ∞

i (μ) ≤ λ∞
i +

ε

2
for i = 0, · · · , k∞, and(5.4)

1 ≤ λ∞
k∞+1(μ).(5.5)

We choose μ ∈ (0, μ ε

2
).

For M ∈ Def(M∞) we denote the Dirichlet-eigenvalues of M[μ,∞) by
λi(μ). By Lemma 3.3 there exists β > 0 such that if the μ-thick parts M[μ,∞)
and M∞

[μ,∞) are (1 + β)-quasi-isometric, then one has

λ∞
i (μ) − ε

2
≤ λi(μ) ≤ λ∞

i (μ) +
ε

2
for i = 0, . . . , k∞, and(5.6)

λk∞+1(μ) > Λ +
ε

2
.(5.7)

From (5.4) and (5.6) we obtain for i = 0, . . . , k∞

(5.8) λ∞
i − ε

2
≤ λi(μ) ≤ λ∞

i + ε.

Domain monotonicity applied to M[μ,∞) ⊂ M gives

(5.9) λi ≤ λi(μ) ≤ λ∞
i + ε < Λ
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for i = 0, . . . , k∞, and therefore k(Λ) ≥ k∞.
For λ0, . . . , λk∞ we take L2-orthonormal eigenfunctions f0, . . . , fk∞ . Now

for i ≤ k∞ Proposition 5.1 applies and we find ri ∈ [ρ + 2, ρ + c) with

‖fi‖2
H1(T 2

(0,ri]
) <

40
1 − Λ

· 1
c − 4

.

We choose ϕi ∈ C∞(M) with 0 ≤ ϕi ≤ 1, ϕi

∣∣
T 2

(0,ρ]
≡ 0, ϕi

∣∣
M\T 2

(0,ri]
≡ 1 and

| gradϕi| ≤ 2 and obtain

(5.10) ‖fi − ϕi · fi‖2
H1(M) ≤ 3 · ‖fi‖2

H1(T 2
(0,ri]

) <
120

1 − Λ
· 1
c − 4

.

Now gi = ϕi · fi are smooth functions with compact support inside the inte-
rior of M[μ,∞). By (5.10) we get that for c large enough the functions gi

are linearly independent and their Rayleigh quotients are arbitrarily close
to those of the fi (the difference being uniformly controlled by c). Hence, by
choosing c larger than some constant only depending on the number k∞, we
can achieve λi(μ) ≤ λi + ε

2 for i = 0, . . . , k∞. Together with (5.8) and (5.9)
this means

λ∞
i − ε ≤ λi ≤ λ∞

i + ε for i = 0, . . . , k∞.

If we suppose λk∞+1 < Λ, the same argument as above (possibly involving a
new choice of c) yields λk∞+1(μ) < Λ + ε

2 which is a contradiction to (5.7).
Therefore k(Λ) ≤ k∞.

For these chosen μ, β and c, we take the neighbourhood W of M∞ ∈
Def(M∞), which is given in Lemma 2.2, and by the preceding arguments it
is clear that W is the desired neighbourhood in Theorem 5.1. �
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