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Spacelike mean curvature one surfaces
in de Sitter 3-space

S. Fujimori, W. Rossman, M. Umehara, K. Yamada and

S.-D. Yang

The first author studied spacelike constant mean curvature one
(CMC-1) surfaces in the de Sitter 3-space S3

1 when the surfaces
have no singularities except within some compact subsets and are
of finite total curvature on the complement of this compact sub-
set. However, there are many CMC-1 surfaces whose singular sets
are not compact. In fact, such examples have already appeared in
the construction of trinoids given by Lee and the last author via
hypergeometric functions.

In this paper, we improve the Osserman-type inequality given by
the first author. Moreover, we shall develop a fundamental frame-
work that allows the singular set to be non-compact, and then will
use it to investigate the global behavior of CMC-1 surfaces.

0. Introduction

A holomorphic map F : M2 → SL2 C of a Riemann surface M2 into the
complex Lie group SL2 C is called null if det(dF/dz) vanishes identically,
where z is a local complex coordinate of M2. We consider two projections,
one into the hyperbolic 3-space

πH : SL2 C −→ H3 = SL2 C/ SU2

and the other into the de Sitter 3-space

πS : SL2 C −→ S3
1 = SL2 C/ SU1,1,

where the definition of SU1,1 is in Appendix B. It is well known that the
projection of a holomorphic null immersion into H3 by πH gives a conformal
constant mean curvature one (CMC-1) immersion (see [3, 6, 21]). Moreover,
conformal CMC-1 immersions are always given locally in such a manner.

On the other hand, spacelike CMC-1 surfaces given by the projection
of holomorphic null immersions into S3

1 by πS can have singularities, and
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are called CMC-1 faces. We work with this class of surfaces that is larger
than the class of CMC-1 immersions. In fact, the class of CMC-1 immersions
is too small, since there is only one, up to congruency, complete spacelike
CMC-1 immersion [2, 17], which we call an S3

1-horosphere. (We also give a
simple proof of this here. See Remark 1.15)

The relationship between CMC-1 surfaces in H3 and CMC-1 faces in
S3

1 is analogous to that between minimal surfaces in Euclidean 3-space R3

and spacelike maximal surfaces with singularities in the Lorentz-Minkowski
3-space R3

1 (called maxfaces [24]). Note that maximal surfaces also admit a
Weierstrass-type representation formula ([11]). As in the case of maxfaces
(see [24]), the first author [7] investigated the global behavior of CMC-1
faces in S3

1 , in particular proving an Osserman-type inequality for complete
CMC-1 faces of finite type whose ends are all elliptic, where a complete
end of a CMC-1 face is called elliptic, parabolic or hyperbolic if the mon-
odromy matrix of the holomorphic lift F : M2 → SL2 C is elliptic, parabolic
or hyperbolic, respectively (see Section 1). One of our main results is the
following, which implies that the ellipticity or parabolicity of ends follows
from completeness:

Theorem 0.1. A complete end of a CMC-1 face in S3
1 is never hyperbolic,

so must be either elliptic or parabolic. Moreover, the total curvature over a
neighborhood of such an end is finite.

We remark that there exist incomplete elliptic and parabolic ends.
It is remarkable that just completeness of an end is sufficient to conclude

that it has finite total curvature. This is certainly not the case for CMC-1
surfaces in H3 nor for minimal surfaces in R3, but is similar to the case of
maximal surfaces in R3

1 [24]. Although the asymptotic behavior of regular
elliptic CMC-1 ends in S3

1 is investigated in [7], there do also exist complete
parabolic ends, and to describe them, a much deeper analysis is needed,
which we will conduct in this article.

As an application of Theorem 0.1, we prove the following Osserman-type
inequality, which improves the result of [7] by removing the assumptions of
finite type and ellipticity of ends:

Theorem 0.2. Suppose a CMC-1 face f : M2 → S3
1 is complete. Then

there exist a compact Riemann surface M
2 and a finite number of points

p1, . . . , pn ∈ M
2 such that M2 is biholomorphic to M

2 \ {p1, . . . , pn}, and

(∗) 2 deg(G) ≥ −χ(M2) + 2n,
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where G is the hyperbolic Gauss map of f and χ(M2) is the Euler
characteristic of M

2. Furthermore, equality holds if and only if each end
is regular and properly embedded.

CMC-1 trinoids in S3
1 were constructed by Lee and the last author using

hypergeometric functions [15], and those trinoids with elliptic ends are com-
plete in the sense of [7], and attain equality in (∗). However, those having
other types of ends are not complete, as their singular sets are not compact.
For this reason, our goal is not only to prove the above two theorems, but
also to extend the framework for CMC-1 surfaces to include a larger class of
surfaces, relaxing the immersedness and completeness conditions. If M2 is of
finite topology, i.e., if M is diffeomorphic to a compact Riemann surface M

2

with finitely many punctures p1, . . . , pn, and if a CMC-1 face f : M2 → S3
1

is weakly complete, whose precise definition will be given in Section 1, we
say that f is a weakly complete CMC-1 face of finite topology. We shall
develop the framework under this more general notion, which includes all
the trinoids in [15].

In Section 1, we recall definitions and basic results. In Section 2, we
investigate the monodromy of the hyperbolic metrics on a punctured disk
around an end. As an application, we prove Theorem 0.1 in Section 3. In
Section 4, we give a geometric interpretation of the hyperbolic Gauss map.
In Section 5, we investigate the asymptotic behavior of regular parabolic
ends, and prove Theorem 0.2. In Appendix A, we prove meromorphicity of
the Hopf differential for complete CMC-1 faces. In Appendix B, we explain
the conjugacy classes of SU1,1.

Generic singularities of CMC-1 faces are classified in [9]. A CMC-1 face
is called embedded (in the wider sense) if it is embedded outside of some
compact set of S3

1 . Examples of complete embedded CMC-1 faces are given
in [8] as deformations of maxfaces in the Lorentz-Minkowski 3-space R3

1.

1. Preliminaries

The representation formula

Let R4
1 be the Lorentz–Minkowski space of dimension 4, with the Lorentz

metric

〈(x0, x1, x2, x3), (y0, y1, y2, y3)〉 = −x0y0 + x1y1 + x2y2 + x3y3.
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Then the de Sitter 3-space is

S3
1 = {(x0, x1, x2, x3) ∈ R4

1 ; −x2
0 + x2

1 + x2
2 + x2

3 = 1}

with metric induced from R4
1, which is a simply connected Lorentzian

3-manifold with constant sectional curvature 1. We identify R4
1 with the

set of 2 × 2 Hermitian matrices Herm(2) = {X∗ = X} (X∗ := t
X) by

(1.1) X = (x0, x1, x2, x3) ↔ X =
3∑

k=0

xkek =
(

x0 + x3 x1 + ix2
x1 − ix2 x0 − x3

)
,

where

(1.2) e0 =
(

1 0
0 1

)
, e1 =

(
0 1
1 0

)
, e2 =

(
0 i

−i 0

)
, e3 =

(
1 0
0 −1

)

and i =
√

−1. Then S3
1 is

S3
1 = {X ; X∗ = X , det X = −1} = {Ae3A

∗ ; A ∈ SL2 C}

with the metric

〈X, Y 〉 = −1
2 trace

(
Xe2(tY )e2

)
, 〈X, X〉 = − det X.

The projection πS : SL2 C → S3
1 mentioned in the introduction is written

explicitly as πS(A) = Ae3A
∗. Note that the hyperbolic 3-space H3 is given

by H3 = {AA∗ ; A ∈ SL2 C} and the projection is πH(A) = AA∗.
An immersion into S3

1 is called spacelike if the induced metric on the
immersed surface is positive definite. The complex Lie group SL2 C acts
isometrically on Herm(2) = R4

1, as well as S3
1 , by

(1.3) Herm(2) 
 X �−→ AXA∗, A ∈ SL2 C.

In fact, PSL2 C = SL2 C/{± id} is isomorphic to the identity component
SO+

3,1 of the isometry group O3,1 of S3
1 . Note that each element of SO+

3,1
corresponds to an orientation preserving and orthochronous (i.e., time ori-
entation preserving) isometry. The group of orientation preserving isometries
of S3

1 is generated by PSL2 C and the map

(1.4) S3
1 
 X �−→ −X ∈ S3

1 .

Aiyama-Akutagawa [1] gave a Weierstrass-type representation formula
in terms of holomorphic data for spacelike CMC-1 immersions in S3

1 . The
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first author [7] extended the notion of CMC-1 surfaces as follows, like as for
the case of maximal surfaces in the Lorentz-Minkowski space [24].

Definition 1.1 [7]. Let M2 be a 2-manifold. A C∞-map f : M2 → S3
1 is

called a CMC-1 face if

(1) there exists an open dense subset W ⊂ M2 such that f |W is a spacelike
CMC-1 immersion.

(2) For any singular point (that is, a point where the induced metric degen-
erates) p, there exists a C1-differentiable function λ : U ∩ W → (0,∞),
defined on the intersection of neighborhood U of p with W , such that
λ ds2 extends to a C1-differentiable Riemannian metric on U , where
ds2 is the first fundamental form, i.e., the pull-back of the metric of
S3

1 by f .

(3) df(p) �= 0 for any p ∈ M2.

Remark 1.1. Although the original definition of CMC-1 faces in [7] assu-
med the orientability of the source manifold, our definition here does not.
However, this difference is not of an essential nature. In fact, for any CMC-1
face f : M2 → S3

1 , M2 is automatically orientable. (See [12].)

Remark 1.2. A C∞-map f : M2 → S3
1 is called a frontal if f lifts to a C∞-

map Lf : M2 → P (T ∗S3
1) such that dLf (TM2) lies in the canonical contact

hyperplane field on P (T ∗S3
1). Moreover, f is called a wave front or a front

if Lf is an immersion, that is, Lf (M2) is a Legendrian submanifold. If a
frontal Lf can lift up to a smooth map into T ∗S3

1 , f is called co-orientable,
and otherwise it is called non-co-orientable. Wave fronts are a canonical
class for investigating flat surfaces in the hyperbolic 3-space H3. In fact, like
for CMC-1 faces (see Theorem 0.2 in the introduction), an Osserman-type
inequality holds for flat fronts in H3 (see [14]). Although our CMC-1 faces
belong to a special class of horospherical linear Weingarten surfaces (cf. [12]),
they may not be (wave) fronts in general, but are co-orientable frontals. In
particular, there is a globally defined non-vanishing normal vector field ν on
the whole of M2 for a given CMC-1 face f : M2 → S3

1 . It should be remarked
that the limiting tangent plane at each singular point contains a lightlike
direction, that is, a CMC-1 face is not spacelike on the singular set.

An oriented 2-manifold M2 on which a CMC-1 face f : M2 → S3
1 is

defined always has a complex structure (see [7]). Since CMC-1 faces are all
orientable and co-orientable (cf. [12]), from now on, we will treat M2 as
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a Riemann surface, and we can assume the existence of a globally defined
non-vanishing normal vector field. The representation formula in [1] can be
extended for CMC-1 faces as follows:

Theorem 1.1 ([7], Theorem 1.9). Let M̃2 be a simply connected Rie-
mann surface. Let g be a meromorphic function and ω a holomorphic 1-form
on M̃2 such that

(1.5) dŝ2 = (1 + |g|2)2|ω|2

is a Riemannian metric on M̃2 and |g| is not identically 1. Take a holomor-
phic immersion F = (Fjk) : M̃2 → SL2 C satisfying

(1.6) F−1dF =
(

g −g2

1 −g

)
ω.

Then f : M̃2 → S3
1 defined by

(1.7) f = πS ◦ F := Fe3F
∗

is a CMC-1 face. The induced metric ds2 on M̃2, the second fundamental
form II, and the Hopf differential Q of f are given as follows:

(1.8) ds2 = (1 − |g|2)2|ω|2, II = Q + Q + ds2, Q = ω dg.

The singularities of the CMC-1 face occur at points where |g| = 1.
Conversely, for any CMC-1 face f : M̃2 → S3

1 , there exist a meromor-
phic function g (with |g| not identically 1) and a holomorphic 1-form ω

on M̃2 so that dŝ2 is a Riemannian metric on M̃2 and (1.7) holds, where
F : M̃2 → SL2 C is an immersion satisfying (1.6).

Remark 1.3. By definition, CMC-1 faces have dense regular sets. How-
ever, the projection of null holomorphic immersions might not have dense
regular sets, in general. Such an example has been given in ([7], Remark 1.8).
Fortunately, we can explicitly classify such degenerate examples, as follows:
Let M2 be a connected Riemann surface and F : M2 → SL2 C be a null
immersion. We assume that the set of singular points of the corresponding
map

f = Fe3F
∗ : M2 −→ S3

1

has an interior point. Then the secondary Gauss map g is constant on M2

and |g| = 1. Without loss of generality, we may assume g = 1. Since F is
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an immersion, (1 + |g|2)2|ω|2 is positive definite. Then ω �= 0 everywhere.
Hence for each p ∈ M2, one can take a complex coordinate z such that
ω = dz near p. Then F is a solution of

F−1dF =
(

1 −1
1 −1

)
dz.

Without loss of generality, we may assume that F (0) =
(

1/2 1/2
−1 1

)
. Then

we have

F =
(

z + 1/2 −z + 1/2
−1 1

)
,

and the corresponding map f is computed as

f = Fe3F
∗ =
(

2 Re z −1
−1 0

)
,

whose image is a lightlike line in S3
1 . Thus, we have shown that the image

of any degenerate CMC-1 surface is a part of a lightlike line.

Remark 1.4. Theorem 1.1 is an analogue of the Bryant representation
for CMC-1 surfaces in H3, which explains why CMC-1 surfaces in both
H3 and S3

1 are characterized by the projections πH ◦ F and πS ◦ F . The
CMC-1 surfaces in H3 and S3

1 are both typical examples in the class of
linear Weingarten surfaces. A Bryant-type representation formula for linear
Weingarten surfaces was recently given by Gálvez et al. [10].

Remark 1.5. Following the terminology of [21], g is called a secondary
Gauss map of f . The pair (g, ω) is called Weierstrass data of f , and F is
called a holomorphic null lift of f .

The holomorphic 2-differential Q as in (1.8) is called the Hopf differential
of f . In analogy with the theory of CMC-1 surfaces in H3, the meromorphic
function

(1.9) G :=
dF11

dF21
=

dF12

dF22

is called the hyperbolic Gauss map. A geometric meaning for the hyperbolic
Gauss map is given in Section 4.
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Remark 1.6. Corresponding to Theorem 1.1, a Weierstrass-type represen-
tation formula is known for spacelike maximal surfaces in R3

1 [11]. In fact,
the Weierstrass data (g, ω) as in Theorem 1.1 defines null curves in C3 by

F0(z) :=
∫ z

z0

(
−2g, 1 + g2, i(1 − g2)

)
ω.

Any maxface (see [24] for the definition) is locally obtained as the real part
of some F0. Moreover, their first fundamental forms and Hopf differentials
are given by (1.8). The meromorphic function g can be identified with the
Lorentzian Gauss map.

Remark 1.7. Let G, g be meromorphic functions on a Riemann surface. Set

(1.10) F =

⎛

⎜⎜⎝
G

da

dG
− a G

db

dG
− b

da

dG

db

dG

⎞

⎟⎟⎠ , a =

√
dG

dg
, b = −ga.

Then F is a meromorphic null map with hyperbolic and secondary Gauss
maps G and g respectively. Formula (1.10) is called Small’s formula [13,19].

Remark 1.8. The holomorphic null lift F of a CMC-1 face f is unique
up to right-multiplication by matrices in SU1,1, that is, for each A ∈ SU1,1,
the projection of FA−1 is also f . Under the transformation F �→ FA−1, the
secondary Gauss map g changes by a Möbius transformation:

(1.11) g �−→ A � g :=
A11g + A12

A21g + A22
, A =

(
A11 A12
A21 A22

)
.

The conditions |g| = 1, |g| > 1, |g| < 1 are invariant under this transfor-
mation.

In particular, let f : M2 → S3
1 be a CMC-1 face of a (not necessarily

simply connected) Riemann surface M2. Then the holomorphic null lift F is
defined only on the universal cover M̃2 of M2. Take a deck transformation
τ ∈ π1(M2) in M̃2. Since πS ◦ F = πS ◦ F ◦ τ , there exists a ρ̃(τ) ∈ SU1,1
such that

(1.12) F ◦ τ = F ρ̃(τ).

The induced homomorphism ρ̃ : π1(M2) → SU1,1 is called the monodromy
representation, which induces a PSU1,1-representation

ρ : π1(M2) → PSU1,1 = SU1,1 /{±1}
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satisfying

(1.13) g ◦ τ−1 = ρ(τ) � g.

Remark 1.9. The action F �→ BF , B ∈ SL2 C, induces a rigid motion f �→
BfB∗ in S3

1 , and the isometric motion f �→ −f as in (1.4) corresponds to

(1.14) F �−→ F � = F

(
0 i
i 0

)
= iFe1.

The secondary Gauss map of F � is 1/g.

Remark 1.10. Let Kds2 be the Gaussian curvature of ds2 on the set of
regular points of f . Then

(1.15) dσ2 := Kds2 ds2 =
4 |dg|2

(1 − |g|2)2

is a pseudometric of constant curvature −1, which degenerates at isolated
umbilic points. We have

(1.16) dσ2 · ds2 = 4|Q|2.

Remark 1.11. The metric
(1.17)

ds2
# := trace

(
α#
)(

α#
)∗ =

(
1 + |G|2

)2
∣∣∣∣

Q

dG

∣∣∣∣
2 (

α# :=
(
F−1)−1

d
(
F−1))

is induced from the canonical Hermitian metric of SL2 C via F−1 : M̃2 →
SL2 C. When the CMC-1 face is defined on M2, G and Q are as well, so
ds2

# is well defined on M2, and is called the lift metric. It is nothing but the
dual metric of the CMC-1 surface πH ◦ F in H3, see [23].

Completeness

We now define two different notions of completeness for CMC-1 faces as
follows:

Definition 1.2. We say a CMC-1 face f : M2 → S3
1 is complete if there

exists a symmetric 2-tensor field T which vanishes outside a compact subset
C ⊂ M2 such that the sum T + ds2 is a complete Riemannian metric on M2.
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See [7], with similar definitions in [14] for flat fronts in H3 and in [24]
for maxfaces.

Definition 1.3. We say that f is weakly complete if it is congruent to an
S3

1 -horosphere or if the lift metric (1.17) is a complete Riemannian metric
on M2.

Here, the S3
1-horosphere is the totally umbilic CMC-1 surface, which is

also the only complete CMC-1 immersed surface (see Remark 1.15). It has
the Weierstrass data g = c = constant (|c| �= 1) and ω = dz. The metric ds2

#
of an S3

1 -horosphere cannot be defined by (1.17) as G is constant and Q is
identically 0.

Definition 1.4. We say that f is of finite type if there exists a compact set
C of M2 such that the first fundamental form ds2 is positive definite and
has finite total (absolute) curvature on M2 \ C.

Let f : M2 → S3
1 be a CMC-1 face of finite topology, that is, M2 is

diffeomorphic to a compact Riemann surface M
2 with a finite number of

points {p1, . . . , pn} ⊂ M
2 excluded. We can take a punctured neighborhood

Δ∗
j of pj which is biholomorphic to either the punctured unit disk Δ∗ = {z ∈

C ; 0 < |z| < 1} or an annular domain, and pj is called a puncture-type end
or an annular end, respectively.

Proposition 1.1. Let f : M2 → S3
1 be a CMC-1 face. If f is complete, then

(1) the singular set of f is compact,

(2) f is weakly complete,

(3) M2 has finite topology and each end is of puncture-type.

Proof. (1) is obvious. If f is totally umbilic, it is congruent to an S3
1 -

horosphere and the assertion is obvious. So we assume the Hopf differential
Q does not vanish identically. Since the Gaussian curvature of f is non-
negative, completeness implies (3) by the appendix of [24]. So we shall now
prove that completeness implies weak completeness: fix an end pj of f . By an
appropriate choice of a coordinate z, the restriction of f to a neighborhood
of pj is fj : Δ∗ → S3

1 . We denote by dŝ2 the induced metric of the corre-
sponding CMC-1 surface f̂j = FF ∗ : Δ̃∗ → H3 into hyperbolic 3-space (see
(1.5), where Δ̃∗ is the universal cover of Δ∗). Take a path γ : [0, 1) → Δ∗

such that γ(t) → 0 as t → 1. Then by (1.5) and (1.8), dŝ2 ≥ ds2 holds, and
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hence completeness of f implies that each lift γ̃ : [0, 1) → Δ̃∗ of γ has infinite
length with respect to dŝ2. Here, dŝ2 and ds2

# = (1 + |G|2)2|Q/dG|2 are the
pull-backs of the canonical Hermitian metric of SL2 C by F and F−1, respec-
tively. Yu [26] showed that completeness of these two metrics are equivalent.
Hence, γ̃ has infinite length with respect to the metric ds2

#. Since ds2
# is well

defined on Δ∗, γ also has infinite length with respect to ds2
#, that is, the

metric ds2
# on Δ∗ is complete at 0. Thus, fj is a weakly complete end. �

For further properties of complete ends, see Theorems 3.1 and 3.2.

Remark 1.12. The converse of Proposition 1.1 is true (see [25]). Our def-
inition of weak completeness of CMC-1 faces is somewhat more technical
than that of maxfaces [24], but it is the correctly corresponding concept in
S3

1 : for data (g, ω), weak completeness of the associated maxface in R3
1 is

equivalent to that of the CMC-1 face in S3
1 .

Remark 1.13. The CMC-1 trinoids in S3
1 constructed in [15] are all weakly

complete (sometimes complete as well) and all ends are g-regular, see
Section 3.

Remark 1.14. The Hopf differential Q of a complete CMC-1 face f :
M2 → S3

1 is meromorphic on its compactification M
2, even without assum-

ing that all ends of f are regular. See Appendix A. It should be remarked
that for CMC-1 surfaces in the hyperbolic 3-space, finiteness of total curva-
ture is needed to show the meromorphicity of Q (see [3]).

Monodromy of ends of CMC-1 faces

For any real number t, we set

(1.18)

Λe(t) :=
(

eit 0
0 e−it

)
,

Λp(t) :=
(

1 + it −it
it 1 − it

)
,

Λh(t) :=
(

cosh t sinh t
sinh t cosh t

)
.

A matrix in SU1,1 is called

(1) elliptic if it is conjugate to Λe(t) (t ∈ (−π, π]) in SU1,1,

(2) parabolic if it is conjugate to ±Λp(t) (t ∈ R \ {0}) in SU1,1, and

(3) hyperbolic if it is conjugate to ±Λh(t) (t > 0) in SU1,1.
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Any matrix in SU1,1 is of one of these three types, see Appendix B. Note
that the parabolic matrices Λp(t1) and Λp(t2) are conjugate in SU1,1 if and
only if t1t2 > 0. Although the set of conjugate classes of parabolic matrices
is fully represented by {±Λp(±1)}, we may use various values of t in this
paper for the sake of simplicity.

Let f : M2 → S3
1 be a weakly complete CMC-1 face of finite topology,

where M2 is diffeomorphic to a compact Riemann surface M
2 with finitely

many punctures {p1, . . . , pn}. Any puncture pj , or occasionally a small neigh-
borhood Uj of pj , is called an end of f .

An end is called elliptic, parabolic or hyperbolic when the monodromy
matrix ρ̃(τ) ∈ SU1,1 is elliptic, parabolic or hyperbolic, respectively, where ρ̃
is as in Remark 1.8 and τ ∈ π1(M2) is the deck transformation corresponding
to the counterclockwise loop about pj .

The Schwarzian derivative

Let (U, z) be a local complex coordinate of a Riemann surface M2, and h(z)
a meromorphic function on U . Then

Sz(h) :=
(

h′′

h′

)′
− 1

2

(
h′′

h′

)2 (
′ =

d

dz

)

is the Schwarzian derivative of h with respect to the coordinate z.
If h(z) = a + b(z − p)m + o

(
(z − p)m

)
at z = p ∈ U (b �= 0), where

o
(
(z − p)m

)
denotes higher order terms, then the positive integer m is called

the (ramification) order of h(z), and we have

(1.19) Sz(h) =
1

(z − p)2

(
1 − m2

2
+ o(1)

)
.

We write S(h) = Sz(h) dz2, which we also call the Schwarzian derivative.
The Schwarzian derivative depends on the choice of local coordinates, but
the difference does not, that is, S(h1) − S(h2) is a well-defined holomorphic
2-differential.

The Schwarzian derivative is invariant under Möbius transformations:
S(h) = S(A � h) holds for A ∈ SL2 C, where � denotes the Möbius transfor-
mation as in (1.11). Conversely, if Sz(h) = Sz(g), there exists an A ∈ SL2 C
such that g = A � h.
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Let f : M2 → S3
1 be a CMC-1 face with the hyperbolic Gauss map G, a

secondary Gauss map g and the Hopf differential Q. Then

(1.20) S(g) − S(G) = 2Q.

Remark 1.15. Here we give a proof that the only complete CMC-1 immer-
sion is the totally umbilic one, that is, the S3

1 -horosphere, which is simpler
than the original proofs in [2,17]. (The proof is essentially the same as for the
case of maximal surfaces in R3

1 given in [24, Remark 1.2].) Let f : M2 → S3
1

be a complete CMC-1 immersion. Without loss of generality, we may assume
that M2 is both connected and simply connected. Then the Weierstrass data
(g, ω) as in Theorem 1.1 is single valued on M2. Since f has no singular
points, we may assume that |g| < 1 holds on M2. Since (1 − |g|2)2|ω|2 < |ω|2,
the metric |ω|2 is a complete flat metric on M2. Then the uniformization
theorem yields that M2 is bi-holomorphic to C, and g must be a constant
function, which implies that the image of f must be totally umbilic.

2. Monodromy of punctured hyperbolic metrics

By Remark 1.8, the monodromy of a holomorphic null immersion F is ellip-
tic, parabolic or hyperbolic if and only if the monodromy of its secondary
Gauss map g is elliptic, parabolic or hyperbolic, respectively. In this section,
in an abstract setting, we give results needed for investigating the behavior
of g at a puncture-type end, in terms of the monodromy of g.

Lifts of PSU1,1-projective connections on a punctured disk

Let
Δ∗ = Δ \ {0}, where Δ := {z ∈ C ; |z| < 1},

be the punctured unit disk and P = p(z)dz2 a holomorphic 2-differential on
Δ∗. Then there exists a holomorphic developing map gP : Δ̃∗ → C ∪ {∞}
such that S(gP ) = P , where Δ̃∗ is the universal cover of Δ∗. For any other
holomorphic function h such that S(h) = P , there exists an A ∈ SL2 C so
that A � gP = h. Thus there exists a matrix T ∈ PSL2 C such that

(2.1) gP ◦ τ−1 = T � gP ,

where τ is the generator of π1(Δ∗) corresponding to a counterclockwise loop
about the origin. We call T the monodromy matrix of gP . If there exists a
gP so that T ∈ PSU1,1, P is called a PSU1,1-projective connection on Δ∗ and
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gP is called a PSU1,1-lift of P . A PSU1,1-projective connection on Δ∗ has a
removable singularity, a pole or an essential singularity at 0, and is said to
have a regular singularity at 0 if it has at most a pole of order 2 at 0. (The
general definition of projective connections is given in [20, 22]. There exist
holomorphic 2-differentials on Δ∗ which are not PSU1,1-projective connec-
tions.) When T ∈ PSU1,1, it is conjugate to one of the matrices in (1.18). The
PSU1,1-projective connection P is then called elliptic, parabolic or hyperbolic
when T is elliptic, parabolic or hyperbolic, respectively. This terminology is
independent of the choice of gP .

By property (1.13), the Schwarzian derivative S(g) of the secondary
Gauss map g of a CMC-1 face is an example of a PSU1,1-projective
connection.

Note that a PSU1,1-lift gP has the PSU1,1 ambiguity gP �→ A � gP for
A ∈ PSU1,1. The property that |gP | > 1 (resp. |gP | < 1) is independent of
this ambiguity.

Remark 2.1. Let gP be a PSU1,1-lift of a PSU1,1-projective connection P .
Then

1
gP

= D � gP

(
D :=

(
0 i
i 0

))

is also a PSU1,1-lift of P , because DAD−1 ∈ PSU1,1 for any A ∈ PSU1,1.
However, D �∈ PSU1,1, and one can show that there is no matrix B ∈ PSU1,1
such that 1/gP = B � gP , that is, 1/gP is not PSU1,1-equivalent to gP .

In the rest of this article, as well as in the following proposition, we use

(2.2) R :=
1
2

(
1 1
i −i

)
,

which is motivated by an isomorphism between SL2 R and SU1,1. See
Appendix B.

Proposition 2.1. Let P be a PSU1,1-projective connection on Δ∗. Then
the following assertions hold:

(1) Suppose that P is elliptic. Then,
(i) there exist a real number μ and a single-valued meromorphic func-

tion h(z) on Δ∗ such that

g(z) := zμh(z)

is a PSU1,1-lift of P .
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(ii) P has a regular singularity at z = 0 if and only if h(z) has at most
a pole at z = 0.

(2) Suppose that P is parabolic and take an arbitrary positive number t.
Then,
(i) for each ε ∈ {−1, 1}, there exists a single-valued meromorphic func-

tion h(z) on Δ∗ such that

g(z) := R−1 �

(
h(z) − εt

πi
log z

)

is a PSU1,1-lift of P .
(ii) The function h(z) has at most a pole at z = 0 if and only if P has

a pole of order exactly 2 at z = 0.
(iii) h(z) is holomorphic at z = 0 if and only if P − dz2/(2z2) has at

most a pole of order 1 at z = 0.
(iv) When h(z) is holomorphic at z = 0, |g(z)| > 1 (resp. |g(z)| < 1)

holds for sufficiently small |z| if and only if ε = +1 (resp. ε = −1).

(3) Suppose that P is hyperbolic. Then,
(i) there exist a positive number μ and a single-valued meromorphic

function h(z) on Δ∗ such that

g(z) := R−1 �
(
ziμh(z)

)

is a PSU1,1-lift of P .
(ii) h(z) has at most a pole at z = 0 if and only if P has a pole of order

exactly 2 at z = 0.

Remark 2.2. In the statements of Proposition 2.1, the function zμ (μ ∈ C)
is defined by

zμ := exp(μ log z),

where log z is considered as a function defined on the universal cover
Δ̃∗ of Δ∗.

To prove this, we consider the following ordinary differential equation

(2.3) X ′′ +
1
2
p(z)X = 0

(
′ =

d

dz
, P = p(z) dz2

)
.
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If we assume P (z) has a regular singularity at z = 0, then p(z) = αz−2
(
1 +

o(1)
)

for some α ∈ C and (2.3) has the fundamental system of solutions

(2.4)
X1(z) = zμ1ξ1(z)
X2(z) = zμ2ξ2(z) + k log zX1

(Re μ1 ≥ Re μ2),

where ξj(z) (j = 1, 2) are holomorphic functions on Δ = {|z| < 1} such that
ξj(0) �= 0 (j = 1, 2). The constant k ∈ C is called the log-term coefficient
and μ1, μ2 are the solutions of the indicial equation

(2.5) t(t − 1) +
α

2
= 0.

If μ1 − μ2 �∈ Z, then k vanishes. (See [5] or the appendix of [18].) The fol-
lowing lemma is easy to show:

Lemma 2.1. In the above setting, S(g0) = P if g0 := X2/X1.

Proof of Proposition 2.1. Take the matrix T as in (2.1).
We first prove the elliptic case. Since P is elliptic, there exist a t ∈ R and

an A ∈ SU1,1 such that ATA−1 = Λe(t). So (A � g) ◦ τ−1 = e2it(A � g), and
h(z) := zt/π(A � g(z)) is single-valued on Δ∗, proving the first part of (1). If
the origin 0 is at most a pole of h, a direct calculation shows that P has a
regular singularity. To show the converse, we set g0 := X2/X1, with {X1, X2}
as in (2.4). Then by Lemma 2.1, we have S(g0) = P . The monodromy matrix
±T0 of g0 is conjugate to

(2.6)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
eπi(μ1−μ2) 0

0 eπi(μ2−μ1)

)
(if k = 0),

(
1 −2πik
0 1

)
(if k �= 0).

Since P is elliptic, the log-term coefficient k = 0 and μ2 − μ1 ∈ R. Thus

g0(z) = zμ ξ2(z)
ξ1(z)

(μ := μ2 − μ1).

Since S(A � g) = S(g0), there exists a B ∈ SL2 C so that A � g = B � g0.
Then

Λe(t) � (A � g) = (A � g) ◦ τ−1 = B � (g0 ◦ τ−1) = BΛe(−πμ)B−1 � (A � g),
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so Λe(t) = ±BΛe(−πμ)B−1. If t ≡ 0 (mod π), then A � g is meromorphic,
proving (1). Otherwise,

B =
(

c 0
0 c−1

)
or

(
0 c

−c−1 0

)

for some c ∈ C \ {0}, and (1) (ii) in the proposition follows from

A � g(z) = c2zμ ξ2(z)
ξ1(z)

or −c2z−μ ξ1(z)
ξ2(z)

,

respectively.
Next, we assume P is parabolic and take a positive number t and

ε ∈ {−1, 1}. Then by Theorem B.1 and Remark B.2 in Appendix B, there
exists a matrix A ∈ SU1,1 such that ATA−1 is one of Λp(εt), −Λp(εt),
Λp(−εt), −Λp(−εt). Note that Λp(εt) and Λp(−εt) are not conjugate in
PSU1,1. Replacing g with 1/g if ATA−1 = ±Λp(−εt) (see Remark 2.1), we
can choose a PSU1,1-lift g such that

ATA−1 = ±Λp(εt).

Then, (A � g) ◦ τ−1 = Λp(εt) � (A � g). Here the ±-ambiguity of ATA−1 does
not affect the �-action. Thus,

((RA) � g) ◦ τ−1 = (RA) � g + 2εt, since RΛp(εt) =
(

1 2εt
0 1

)
R.

Hence h(z) := (RA) � g + (εt/(πi)) log z is a single-valued meromorphic fun-
ction on Δ∗, proving the first part of (2) in the proposition. If h(z) has at
most a pole at z = 0, then a direct computation shows that P has a pole of
order exactly 2. Therefore, it suffices to show that h(z) has at most a pole
at z = 0 when P has a regular singularity. We now show this:

We set g0 := X2/X1. Since P is parabolic, (2.6) yields that the log-term
coefficient k �= 0 and μ := μ2 − μ1 ∈ Z is non-positive. Hence

g0 = zμ ξ2(z)
ξ1(z)

+ k log z.

Here zμξ2(z)/ξ1(z) is single-valued on Δ∗ and has at most a pole at z = 0.
Take a matrix B ∈ SL2 C such that (RA) � g = B � g0. Then
(

1 2εt
0 1

)
� (RA � g) = (RA � g) ◦ τ−1 = B � (g0 ◦ τ−1)

= B

(
1 −2πik
0 1

)
� g0 = B

(
1 −2πik
0 1

)
B−1 � (RA � g).
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Replacing X2 by (iεt/(πk))X2 and renaming (iεt/(πk))ξ2 to ξ2, −2πik
becomes 2εt, and we have

(
1 2εt
0 1

)
= B

(
1 2εt
0 1

)
B−1,

and there is no ±-ambiguity in the above equation, as the eigenvalues of the
left-hand matrix must have the same sign as those of the right-hand matrix.
Thus we can choose

B =
(

1 c
0 1

)

for some c ∈ C, which proves the second part of (2) in the Proposition 2.1.
It is easy to see that h(z) is holomorphic at z = 0 if and only if μ2 = μ1,
that is, α in (2.5) is 1/2, which proves the third part of (2). Assume h is
holomorphic on Δ. Since the Möbius transformation z �→ R � z maps the disk
Δ onto the upper-half plane {z; Im z > 0}, the condition |g| > 1 (equivalently
|A � g| > 1) is equivalent to Im(RA � g) < 0 for all A ∈ SU1,1. And since |h|
is bounded, this is equivalent to ε > 0. Thus we obtain the last part of (2).

Next, we assume P is hyperbolic. By Theorem B.1 in Appendix B, there
are a matrix A ∈ SU1,1 and t > 0 such that ATA−1 = Λh(t) or −Λh(t). Then
(A � g) ◦ τ−1 = Λh(t) � (A � g), which implies ((RA) � g) ◦ τ−1 = e2t(RA) �
g. So h(z) := z−it/π(RA) � g is a single-valued meromorphic function in Δ∗.
This proves the first part of (3). To prove the second part of (3), analogous
to the parabolic case, we only need to prove one direction. Suppose that P
has a regular singularity. We set g0 := X2/X1. Since P is hyperbolic, (2.6)
yields that k = 0 and μ2 − μ1 ∈ iR. Thus

g0(z) = ziμ ξ2(z)
ξ1(z)

, μ := i(μ1 − μ2).

Exchanging X1 and X2 if necessary, we may assume μ > 0 without loss of
generality. Take a B ∈ SL2 C such that RA � g = B � g0. Then we have

(
et 0
0 e−t

)
� (RA � g) = B � (g0 ◦ τ−1) = B

(
eπμ 0
0 e−πμ

)
B−1 � (RA � g),

so
(

et 0
0 e−t

)
= B

(
eπμ 0
0 e−πμ

)
B−1,
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that is, t = ±πμ. As we have assumed that t > 0 and μ > 0, we have t = πμ,
and then B must be diagonal. Hence

RA � g(z) = c2zit/π ξ2(z)
ξ1(z)

, B =
(

c 0
0 c−1

)

proving the assertion. �

Monodromy of punctured hyperbolic metrics

We consider a conformal metric dσ2 on Δ∗ of constant Gaussian curvature
−1, called a punctured hyperbolic metric. Then there exists a meromorphic
function g : Δ̃∗ → C ∪ {∞} \ {|z| = 1} such that

(2.7) dσ2 =
4 |dg|2

(1 − |g|2)2 ,

which is called the developing map of dσ2. Since dσ2 is a well defined hyper-
bolic metric on Δ∗, either |g| < 1 or |g| > 1 holds on Δ∗.

We remark that, for a CMC-1 immersion f : Δ∗ → S3
1 , the metric dσ2

as in (1.15) is an example of a hyperbolic metric, and the secondary Gauss
map is a developing map of it.

The developing map g is not unique, and the set of all developing maps
of dσ2 coincides with

{A � g; A ∈ SU1,1} ∪
{

A �
1
g

= A

(
0 i
i 0

)
� g; A ∈ SU1,1

}
.

Set

(2.8) S(dσ2) := S(g) =
(

wzz − (wz)2

2

)
dz2,

where dσ2 = ew |dz|2, that is, w := log(4|gz|2/(1 − |g|2)2). We call the pro-
jective connection S(dσ2) the Schwarzian derivative of dσ2. Since the met-
ric dσ2 is well defined on Δ∗, the developing map g is a PSU1,1-lift of the
PSU1,1-projective connection S(dσ2).

If g is a developing map of dσ2 = Kds2ds2 in (1.15), then

g ◦ τ−1 = T � g for some T ∈ PSU1,1 .

If the matrix T is elliptic (resp. parabolic, hyperbolic), the metric dσ2 is
said to have elliptic (resp. parabolic, hyperbolic) monodromy.
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Definition 2.1. We say that a hyperbolic punctured metric dσ2 has a
regular singularity at the origin if S(dσ2) has a regular singularity at the
origin, that is, it has at most a pole of order 2.

Theorem 2.1. Any conformal hyperbolic metric on Δ∗ has a regular sin-
gularity at z = 0.

Proof. Let g be a developing map of a conformal hyperbolic metric dσ2

on Δ∗.
Suppose dσ2 has elliptic monodromy. Since dσ2 has no singular points on

Δ∗, |g| < 1 or |g| > 1 holds on Δ∗. Since 1/g is also a developing map of dσ2,
we may assume that |g| < 1. By Proposition 2.1, there exists a real number μ
such that h(z) := z−μg(z) is a single-valued function on Δ∗. Multiplying h(z)
by zk (k ∈ Z), we may assume that −1 < μ ≤ 0 without loss of generality.
Thus

|h(z)| = |z|−μ|g(z)| < |z|−μ < 1,

and h(z) has more than two exceptional values, so has at most a pole at
z = 0, by the Great Picard theorem. Then by (1) (ii) in Proposition 2.1,
S(g) has a regular singularity at the origin.

Suppose dσ2 has parabolic monodromy. Applying Proposition 2.1 for the
PSU1,1-projective connection S(dσ2) with ε = −1 and t = π, we can take a
PSU1,1-lift g such that

h = ĝ + i log z

(
ĝ(z) := R � g(z) =

1
i
g(z) + 1
g(z) − 1

)

is a single-valued meromorphic function on Δ∗, where R is the matrix in
(2.2). Since dσ2 has no singular points on Δ∗, |g| > 1 or |g| < 1 holds. In
particular, because z �→ R � z maps the unit disk into the upper-half plane,
we have Im ĝ > 0 (resp. Im ĝ < 0) if |g| < 1 (resp. |g| > 1). Here, it holds that

|z exp(ih)| = | exp(iĝ)| = exp(−Im ĝ).

Thus,
|z exp(ih)| = exp(−Im ĝ) < 1 (if |g| < 1),∣∣∣∣

1
z

exp(−ih)
∣∣∣∣ = exp(Im ĝ) < 1 (if |g| > 1).

Thus by the Great Picard theorem, there exist an integer m and a holomor-
phic function ϕ(z) with ϕ(0) �= 0 such that exp(±ih(z)) = zmϕ(z), that is,

±ih(z) = m log z + log ϕ(z).
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Since h(z) is single valued, m must be 0. Therefore, h(z) can be extended to
be holomorphic at z = 0, and then by (2)(ii) of Proposition 2.1, the origin
is a regular singularity of S(dσ2).

To prove the hyperbolic case, we need the following

Fact 2.1 (Montel’s theorem). If a family of holomorphic functions
{fn}n=1,2,3,... defined on a domain D(⊂ C) have two exceptional values in
common, then they are a normal family, that is, there is a subsequence
{fnj

}j=1,2,3,... such that either {fnj
}j=1,2,3,... or {1/fnj

}j=1,2,3,... converges
uniformly on every compact set in D.

Proof of Theorem 2.1, continued. The proof for the hyperbolic case is par-
allel to the proofs of Propositions 4 and 5 in [3].

Suppose dσ2 has hyperbolic monodromy. Again, we may assume that
|g| < 1 without loss of generality. By Proposition 2.1, again replacing g by
A � g for some A ∈ SU1,1 if necessary, there exists a positive real number μ
such that h(z) := z−iμ(R � g(z)) is a single-valued meromorphic function on
Δ∗. The function

ĝ(z) := R � g(z) =
1
i
g(z) + 1
g(z) − 1

has neither zeros nor poles in Δ∗, and Im ĝ > 0. We now define a set

Ω :=
{

z ∈ C ; 0 < |z| < 1, | arg z| <
2π

3

}

and analytic functions ζ and fn for n = 1, 2, 3, . . . from Ω to C by ζ(z) :=
ĝ(z2) and fn(z) := ĝ(z2/22n). Then {fn}∞

n=1 is a family of holomorphic func-
tions on Ω. Since Im ĝ > 0, we have Im fn > 0. Thus {fn} is a normal family
by Montel’s theorem. Two possible cases arise.
Case 1. First we consider the case that a subsequence {fn} converges to a

holomorphic function uniformly on any compact subset of Ω. Since

Ωl :=
{

z ∈ C ; |z| = 1
2l

, | arg z| ≤ 3
5
π

}
∪
{

z ∈ C ; |z| = 1
2l+1 , | arg z| ≤,

3
5
π

}

∪
{

z ∈ C ; | arg z| =
3
5
π,

1
2l+1 ≤ |z| ≤ 1

2l

}

for a positive integer l ∈ Z+ is a compact subset of Ω, there exist a positive
number M ∈ R+ and a positive integer n0 ∈ Z+ such that |fn(z)| < M holds
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on Ω1 for n ≥ n0. This implies that |ζ(z)| < M on Ωn+1 for n ≥ n0. Then
by the maximum principle, we have

|ζ(z)| < M on
{

z ∈ C ;
1

2n+1 ≤ |z| ≤ 1
2n

, | arg z| ≤ 3
5
π

}

for each n > n0 + 1. Thus we have

|ĝ(z2)| = |ζ(z)| < M on
{

z ∈ C ; 0 < |z| ≤ 1
2n0+1 , | arg z| ≤ 3

5
π

}
.

On the other hand, since e−π|μ| < |z−iμ| < eπ|μ| for |z| < 1 and | arg z| < π,
the function h(z) is bounded in a punctured neighborhood of z = 0 and has
a removable singularity there.
Case 2. Next, we consider the case that a subsequence {1/fn} converges to

a holomorphic function f . Then we can conclude that 1/h(z) is bounded on
Δ∗. In this case h(z) has at most a pole at the origin.

In both cases, S(g) = S
(
R−1 � (ziμh(z))

)
has at most a pole of order

two at z = 0. �

Remark 2.3. In Corollary 3.1, we shall show that in fact the monodromy
of dσ2 can never be hyperbolic.

3. Intrinsic behavior of regular ends

Let f : M2 → S3
1 be a weakly complete CMC-1 face of finite topology, and

let M
2 be a compact Riemann surface such that M2 is diffeomorphic to

M
2 \ {p1, . . . , pn}.

Definition 3.1. A puncture-type end pj of f is called regular if the hyper-
bolic Gauss map G has at most a pole at pj .

Definition 3.2. On the other hand, we say a puncture-type end pj is g-
regular if the Schwarzian derivative S(g) of the secondary Gauss map g has
at most a pole of order 2 at pj , that is, the pseudometric dσ2 in (1.15) has
a regular singularity at pj (cf. Definition 2.1).

When g is single-valued, g-regularity implies that g has at most a pole at
the end. When the Hopf differential has at most a pole of order 2, regularity
and g-regularity are equivalent, by (1.20).
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Theorem 2.1 can now be stated in terms of CMC-1 faces as follows:

Lemma 3.1. All ends of a complete CMC-1 face are g-regular.

Proof. By Proposition 1.1, all ends are of puncture-type. So we can set
M2 = M

2 \ {p1, . . . , pn}, where M
2 is a compact Riemann surface. Let (g, ω)

be a Weierstrass data for f . Since the singular set is compact, the metric dσ2

as in (1.15) is a punctured hyperbolic metric in a punctured neighborhood
of pj . Then dσ2 has a regular singularity by Theorem 2.1, and hence f is
g-regular at pj . �

Definition 3.3. An elliptic end of a CMC-1 face is integral if the mon-
odromy of the secondary Gauss map is the identity, and non-integral
otherwise.

Lemma E1. Let f : Δ∗ → S3
1 be a g-regular non-integral elliptic end. Then

the singular set does not accumulate at the end 0.

Proof. One can take the secondary Gauss map g to be g(z) = zμh(z) on
a neighborhood of the end, where μ ∈ R \ Z and h(z) is holomorphic at
the end z = 0 with h(0) �= 0. Since μ �= 0, the singular set {|g| = 1} cannot
accumulate at the origin. �

On the other hand, an integral elliptic end might or might not be
complete:

Example 3.1. For non-zero integers m and n with |m| �= |n|, we set g =
1 − zm and G = zn. Setting Q = (S(g) − S(G))/2 and ω = Q/dg, we see
that (1.5) gives a Riemannian metric on C \ {0}. So using Small’s formula
(1.10), we have a CMC-1 face defined on C \ {0} with integral elliptic ends
at z = 0,∞. The singular set is

{z ∈ C \ {0} ; |z|2m − 2 Re(zm) = 0}

(see Figure 1 for the case m = 3). Thus the singular set accumulates at z = 0
but not at z = ∞. Thus z = ∞ is a complete integral elliptic end, but z = 0
is an incomplete integral elliptic end.

To state the behavior of an incomplete (integral) elliptic end, we intro-
duce a notation: For an m ∈ Z+, an ε ∈ (0, π/(2m)) and a δ ∈ [0, π/m], we
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Figure 1: The thick curve is the singular set of Example 3.1 for the case
m = 3. The shaded parts indicate the set S(3, ε, π/6).

define the open subset (which is a union of sectors, see Figure 1)

S(m, ε, δ) :=
2m−1⋃

k=0

{
z ∈ C \ {0} ;

k

m
π + δ − ε < arg z <

k

m
π + δ + ε

}
.

Lemma E2. Suppose f : Δ∗ → S3
1 is a g-regular integral elliptic end. If the

singular set accumulates at the end, then there are an m ∈ Z+ and a δ ∈ R
such that, for any ε > 0, there exists an r > 0 so that the singular set of f
in {z; 0 < |z| < r} lies in S(m, ε, δ).

Proof. The assertion of the lemma does not depend on a choice of the com-
plex coordinate at the origin.

Since the singular set accumulates at 0, we have |g(0)| = 1. Then by
Proposition 2.1(1), g(z) is holomorphic at z = 0. Moreover, we may set
g(0) = 1. Then ϕ(z) := log g(z) is well defined on a neighborhood of z = 0
and ϕ(0) = 0. Using the Weierstrass preparation theorem, we may further
assume, without loss of generality, that ϕ(z) = zm for some positive integer
m. Here, |g(z)| = 1 is equivalent to Reϕ(z) = 0. Thus, the singular set is
expressed as {cos mθ = 0}, where z = reiθ. �
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Definition 3.4. A parabolic end of a CMC-1 face is of the first kind if

S(dσ2) − dz2

2z2 = S(g) − dz2

2z2 = S(G) + 2Q − dz2

2z2

has at most a pole of order 1. Otherwise, it is of the second kind.

Lemma P. Let f : Δ∗ → S3
1 be a g-regular parabolic end. If the end is of

the first kind, the singular set does not accumulate at the end. If the end is
of the second kind, then the singular set does accumulate at the end. In this
case, there exist an m ∈ Z+ and a δ (δ ∈ [0, π/m]) such that, for all ε > 0,
there exists an r > 0 so that the singular set of f in {z; 0 < |z| < r} lies in
S(m, ε, δ).

Proof. Let g be the secondary Gauss map. Since the end is parabolic, the
Schwarzian derivative P := S(g) determines a PSU1,1-projective connection
of parabolic monodromy. Then by (2) in Proposition 2.1 for ε = −1 and
t = π, there exists a PSU1,1 lift g0 such that

h(z) = ĝ0(z) + i log z

(
ĝ0(z) = R � g0(z) =

1
i
g0(z) + 1
g0(z) − 1

)

is a meromorphic function on Δ∗. Here, there exists a matrix A ∈ SU1,1 such
that g = A � g0 or 1/g = A � g0 holds. Thus, by the SU1,1-ambiguity of the
secondary Gauss map, we may assume g = g0 or 1/g0. Moreover, replacing
f with −f if necessary (see Remark 1.9), we may assume g = g0 without
loss of generality.

Since the end is g-regular, (2)(ii) of Proposition 2.1 yields that h(z) is
meromorphic at z = 0. Thus, we can write

ĝ(z) = ĝ0(z) = −i log z + zmϕ(z) (ϕ(0) �= 0, m ∈ Z),

where ϕ(z) is a holomorphic function on a neighborhood of the origin. Then
there exist an a ∈ R \ {0} and a γ ∈ (−π, π) such that

Im ĝ(z) = − log r + arm sin(mθ + γ) + o(rm+1), z = reiθ.

Here, the singular set {|g| = 1} is written as {Im ĝ = 0}.
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ĝ = w10i ĝ = w1+10i

Figure 2: The thick curves indicate the singular sets of hyperbolic ends with
secondary Gauss map g = R−1 � ĝ, as discussed in Lemma H. The thin lines
indicate rays in Δ∗ emanating from the origin. Here we see that the singular
sets intersect rays emanating from the origin infinitely many times.

If the end is of the first kind, then m ≥ 0 by (2) (iii) in Proposition 2.1.
Therefore, for each fixed θ, the right-hand side approaches ∞ as r → 0,
which implies that the singular points do not accumulate at the end.

If the end is of the second kind, then m < 0. Therefore, for each fixed θ,
the right-hand side approaches ∞ if a sin(mθ + γ) > 0 and −∞ if a sin(mθ +
γ) < 0 as r → 0, giving solutions of Im ĝ(z) = 0 for sufficiently small r near
the lines sin(mθ + γ) = 0. This implies the second assertion. �

Lemma H. Let f : Δ∗ → S3
1 be a g-regular hyperbolic end. Then any ray in

Δ∗ emanating from the origin meets the singular set infinitely many times.
(See Figure 2.)

Remark 3.1. This intersection property does not depend on the choice of
a complex coordinate for a punctured neighborhood of the end.

Proof of Lemma H. By Proposition 2.1 and an appropriate choice of g, if we
set ĝ = R � g, then there is a μ ∈ R \ {0} such that

h(z) := z−iμĝ(z)

is a meromorphic function on Δ∗. Since f is g-regular, (3)(ii) of Proposi-
tion 2.1 implies h has at most a pole at the origin, and S(g) has a pole of
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order exactly 2 at z = 0. Thus we can rewrite

ĝ(z) = zm+iμϕ(z) (ϕ(0) �= 0, m ∈ Z),

where ϕ(z) is a single-valued holomorphic function on Δ = Δ∗ ∪ {0}. Now,
we set

w = z exp
(

log ϕ

m + iμ

)
,

which gives a new coordinate w around the end, now at w = 0. Then ĝ(w) =
wm+iμ. Since g = (ĝ − i)/(ĝ + i), setting w = reiθ, the singular set is

{w ; |g(w)| = 1} = {w ; Im(ĝ(w)) = 0}
= {(r, θ) ∈ (0, 1) × (−π, π) ; μ log r + mθ ≡ 0 (mod π)} ,

that is, r = exp((nπ − mθ)/μ), n ∈ Z, which is a log-spiral when m �= 0. If
m = 0, the singular set is a union of infinitely many disjoint circles. In any
case, the singular set meets any ray based at w = 0 infinitely many times.
(See Figure 2, left-hand side for the case m = 0 and right-hand side for the
case m �= 0.) �

Corollary 3.1. The monodromy of a hyperbolic metric on Δ∗ is either
elliptic or parabolic. That is, hyperbolic monodromy never occurs.

Proof. Suppose that a hyperbolic metric dσ2 on Δ∗ has hyperbolic mon-
odromy. Let g be a developing map for dσ2. The data (g, ω = dz) produces
an F as in (1.6), and then the immersion f = Fe3F

∗ : Δ∗ → S3
1 is with-

out singularities, since dσ2 is non-singular. By Theorem 2.1, f is g-regular
at z = 0. Then by Lemma H, the singularities accumulate at the end, a
contradiction. �

Lemmas E1, E2, P and H imply:

Corollary 3.2 (Characterization of hyperbolic ends). A g-regular
end f : Δ∗ → S3

1 of a CMC-1 face is hyperbolic if and only if every ray in
Δ∗ emanating from the origin meets the singular set infinitely many times.

Completeness

We now give two theorems on complete CMC-1 faces.

Theorem 3.1. Any complete end of a CMC-1 face is either g-regular ellip-
tic or g-regular parabolic of the first kind.
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Proof. By Proposition 1.1, the end is of puncture-type. Moreover, Theo-
rem 2.1 implies the end is g-regular. Thus the theorem follows from Corol-
lary 3.1 and Lemma P. �

Theorem 3.2. Any complete CMC-1 face is of finite type. (The definition
of finite type is given in Definition 1.4.)

Proof. Let f : M2 → S3
1 be a complete CMC-1 face. Then by Proposition 1.1,

there is a compact Riemann surface M
2 such that M2 is biholomorphic to

M
2 \ {p1, . . . , pn}.
We fix any end pj , and take a small coordinate neighborhood (U, z) with

z = 0 at pj . We may assume that there are no singular points on U \ {pj},
and thus we may also assume that |g| < 1 on U \ {pj} for a secondary Gauss
map g. We know from Theorem 3.1 that the end is a g-regular elliptic end
or a g-regular parabolic end of the first kind.

First, we consider the elliptic case. Since |g| < 1, we may assume that
there exist some μ(≥ 0) and a holomorphic function h(z) on U with h(0) �= 0
such that g(z) = zμh(z). If |g(0)| = 1, then μ = 0 and

g(z) = eiθ(1 + azm + o(zm))

for some θ ∈ R, a ∈ C \ {0} and m ∈ Z+, which contradicts the fact that
|g| < 1 on U \ {pj}. Hence |g(0)| < 1. Therefore, there exist a neighborhood

Ũ ⊂ U of pj and an ε > 0 such that |g|2 < 1 − ε on Ũ . So, on Ũ ,

(3.1) Kds2 ds2 =
4|dg|2

(1 − |g|2)2 ≤ 4
ε2

4 |dg|2
(1 + |g|2)2 =

4
ε2 (−Kdŝ2) dŝ2,

where dŝ2 is the metric as in (1.5), which is defined on Ũ \ {pj} because
g(z) = zμh(z). Since pj is a regular singularity of the punctured spherical
metric

dσ̂2 := (−Kdŝ2) dŝ2 =
4 |dg|2

(1 + |g|2)2 ,

dσ̂2 has finite area, so ds2 has finite total curvature on Ũ \ {pj}, by (3.1).
Next we consider the parabolic case. By Theorem 3.1, the end is parabolic

of the first kind. Then without loss of generality, we may assume there exists
a holomorphic function h(z) on Δ such that (we set t = π and replace h(z)
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by ih(z) in the proof of Proposition 2.1)

(3.2) ĝ(z) = i(h(z) ± log z), where ĝ(z) = R � g(z) =
1
i
g(z) + 1
g(z) − 1

.

If we set k(z) := h(z) ± log z + 1, we have g = 1 − 2/k, g′ = 2k′/k2 and

1 − |g(z)|2 =
4(Re k(z) − 1)

|k(z)|2 =
4(Re h(z) ± Re log z)

|k(z)|2 .

So we have

(3.3) dσ2 =
4 |dg|2

(1 − |g|2)2 =
|h′(z) ± (1/z)|2|dz|2
(Re h(z) ± Re log z)2

.

We set c := supz∈Δ | Re h(z)| and r = |z|. Since log r → −∞ as z → 0, we
may assume − log r > c. Then

| Re h(z) ± log r| ≥
∣∣| Re h(z)| − | log r|

∣∣ ≥ |c + log r|, and

(3.4) dσ2 ≤ C2

r2(c + log r)2
|dz|2,

where C = supz∈Δ |zh′(z) + 1|. Since

∫ ε

0

C2r dr

r2(c + log r)2
= − C2

c + log ε
< ∞,

the area of a sufficiently small punctured neighborhood of z = 0 with respect
to dσ2 is finite, which proves the assertion. �

Theorem 0.1 in the introduction follows from Theorems 3.1 and 3.2.

4. The light-cone Gauss map and extrinsic behavior of ends

Let LC = {x ∈ R4
1 ; 〈x, x〉 = 0} be the light-cone of R4

1, with future and past
light cones

LC± := {x = (x0, x1, x2, x3) ∈ LC ; ±x0 > 0}.

The multiplicative group R+ of the positive real numbers acts on LC± by
scalar multiplication. The ideal boundary ∂S3

1 of S3
1 consists of two (future
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and past) components

∂±S3
1 := LC±/R+,

each of which are identified with C ∪ {∞} by the projection

(4.1) π : ∂±S3
1 

[
(v0, v1, v2, v3)

]
�−→ 1

v0 − v3
(v1 + iv2) ∈ C ∪ {∞}.

The isometries of R4
1 induce Möbius transformations on C ∪ {∞}. The

boundary ∂S3
1 is identified with the set of equivalence classes of oriented

time-like geodesics in S3
1 .

In particular, for a space-like immersion f : M2 → S3
1 with the (time-

like) unit normal vector field ν, the equivalence class [f + ν] determines a
point in ∂S3

1 for each p ∈ M2. Hence we have the light-cone Gauss map

L = [f + ν] : M2 −→ ∂S3
1 .

Let f : M2 → S3
1 be a CMC-1 face, and p ∈ M2 a regular point, that is,

f is an immersion in a neighborhood of p. Under the identification of R4
1

and Herm(2) as in (1.1), we can compute that the unit normal vector ν is

ν =
1

|g|2 − 1
F

(
1 + |g|2 2g

2ḡ 1 + |g|2
)

F ∗,

where F is the holomorphic lift of f and g is the secondary Gauss map.
Hence

(4.2) L =
[

2
|g|2 − 1

F

(
|g|2 g
ḡ 1

)
F ∗
]

= sgn(|g|2 − 1)
[
F

(
|g|2 g
ḡ 1

)
F ∗
]

,

where sgn(|g|2 − 1) is the sign of the function |g|2 − 1. Thus, we have:

Proposition 4.1. The light-cone Gauss map L of a CMC-1 face takes
values in ∂+S3

1 (resp. ∂−S3
1) if |g| > 1 (resp. |g| < 1). Moreover, its projec-

tion π ◦ L is the hyperbolic Gauss map G as in (1.9), which extends to the
singular set.

Proof. By (4.2), the x0-component of f + ν is

1
|g|2 − 1

trace
(

F

(
|g|2 g
ḡ 1

)
F ∗
)

=
1

|g|2 − 1
(
|gF11 + F12|2 + |gF21 + F22|2

)
,
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where F = (Fij)i,j=1,2. Here, |gF11 + F12|2 + |gF21 + F22|2 > 0 holds because
det F = 1 �= 0, implying the first part of the proposition. By (4.2), (4.1), (1.6)
and (1.9), we have

π ◦ L = π ◦ [f + ν] =
gF11 + F12

gF21 + F22
=

dF11

dF21
= G,

and this completes the proof. �

Next, we give a criterion for when a complete regular end approaches
∂+S3

1 or ∂−S3
1 :

Proposition 4.2. Let f : Δ∗ → S3
1 be a complete regular end at z = 0 and

let g be a secondary Gauss map of f . Then the image of f converges to a
point in ∂+S3

1 (resp. ∂−S3
1) at the end if and only if |g| < 1 (resp. |g| > 1)

near the end.

Proof. We can change the holomorphic null lift F to F � as in (1.14), so
that f and its secondary Gauss map g change to −f and 1/g. The end of
f approaches ∂±S3

1 if and only if −f approaches ∂∓S3
1 , so it is sufficient to

prove this result under the assumption |g| < 1 on Δ∗. By Theorem 3.1, the
end is either elliptic or parabolic.

First we assume the end is elliptic. Replacing F by aFb−1 (a ∈ SL2 C,
b ∈ SU1,1) and using the Weierstrass preparation theorem if necessary, we
may assume without loss of generality that the hyperbolic and secondary
Gauss maps are

G(z) = zm, g(z) = zμh(z) for some m ∈ Z+, μ ∈ R \ {0},

where h is a holomorphic function on Δ with h(0) �= 0. Here μ > 0 because
|g| < 1.

If m �= μ, Small’s formula (1.10) implies that

F =
1

2
√

mμ

(
−z

m−μ

2 (m + μ)(1 + o(1)) z
m+μ

2 (m − μ)(1 + o(1))
z

−m−μ

2 (m − μ)(1 + o(1)) −z
−m+μ

2 (m + μ)(1 + o(1))

)
.

Since m and μ are positive, the first component x0 is

x0 =
1
2

trace(Fe3F
∗) =

(m − μ)2

8mμ
r−m−μ

(
1 + o(1)

)
→ +∞ (r → 0),
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where z = reiθ. Other components of f = (x0, x1, x2, x3) are expressed as

x1 + ix2 = eimθr−μ μ2 − m2

4μm
(1 + o(1)),

x3 = −(m − μ)2

8mμ
r−m−μ(1 + o(1)).

We now consider the stereographic projection given in [7]:

(4.3) Π : {(x0, x1, x2, x3) ∈ S3
1 ; x0 > 1} 
 (x0, x1, x2, x3)

�−→ 1
1 + x0

(x1, x2, x3) ∈

⎧
⎨

⎩(X1, X2, X3) ∈ R3 ;
1
2

<
3∑

j=1

(Xj)2 < 1

⎫
⎬

⎭ ,

which is a diffeomorphism. Then Π ◦ f is expressed as

Π ◦ f = (0, 0,−1) + o(1).

Thus, Π ◦ f approaches (0, 0,−1) ∈ S2 = ∂+S3
1 .

When μ = m, by (1.10) again, F11, F12 and F22 are bounded on a neigh-
borhood of 0, and these components can be extended to become holomorphic
on a neighborhood of 0. If F21 is bounded, F must be holomorphic and then
the induced metric is bounded, which contradicts the weak completeness of
the end. Hence F21 has a pole at 0. So the x0-component of f is

x0 =
1
2
|F21|2 + (a bounded function) → +∞ (z → 0).

Moreover, since

x3 = −1
2 |F21|2 + (a bounded function),

x1 + ix2 = F11F21 − F12F22 = cF21 + (a bounded function),

where c ∈ C \ {0} is a constant, we have Π ◦ f → (0, 0,−1) as z → 0.
Next we assume the end is parabolic. Again we may set G = zm, m ∈

Z+. Applying Proposition 2.1 for t = 2mπ and ε = −1, there exists a PSU1,1-
lift g0 of S(g) such that h(z) := R � g0(z) + 2mi log z is a single-valued mero-
morphic function on Δ∗, and the secondary Gauss map g satisfies g = A � g0
or 1/g = A � g0 for some A ∈ SU1,1. By completeness, Lemma P implies that
the end is of first kind. Hence by (2)(iii) of Proposition 2.1, h(z) is holomor-
phic on a neighborhood of the origin. Moreover, by the assumption |g| < 1,
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(2)(iv) of Proposition 2.1 yields that g = A � g0 for some A ∈ SU1,1. Thus,
without loss of generality, we may set

R � g(z) = 2mi(k(z) − log z),

here we set h(z) = 2mik(z).
For a holomorphic null lift F of f with the secondary Gauss map g, set

F̂ = FB−1, where B :=
((

1 0
0 2i

)
R

)
=
(

1/2 1/2
−1 1

)
∈ SL2 C.

Then F̂ is a holomorphic null immersion whose hyperbolic Gauss map Ĝ
and secondary Gauss map ĝ are given by

(4.4)
Ĝ = G = zm,

ĝ(z) = B � g(z) =
(

1 0
0 2i

)
� (R � g(z)) = m(k(z) − log z).

So applying (1.10) for this (Ĝ, ĝ), the components of F̂ are written as

(4.5)
F̂11(z) = − i

2
zm/2ϕ1(z), F̂12(z) = − i

2
zm/2(mϕ1(z) log z + ψ1(z)),

F̂21(z) =
i
2
z−m/2ϕ2(z), F̂22(z) =

i
2
z−m/2(mϕ2(z) log z + ψ2(z)),

where ϕ1, ϕ2, ψ1 and ψ2 are holomorphic functions defined on a neighbor-
hood of the origin such that

ϕ1(0) = ϕ2(0) = 1.

Since Be3B
∗ = −e1, f = Fe3F

∗ satisfies

(4.6) f = −F̂

(
0 1
1 0

)
F̂ ∗ = −

(
F̂11F̂12 + F̂12F̂11 F̂11F̂22 + F̂12F̂21

F̂11F̂22 + F̂12F̂21 F̂21F̂22 + F̂22F̂21

)
.

Hence the components of f are expressed as

(4.7)

x0 =
m

4
r−m

(
η1(u, v) log r + δ1(u, v)

)
,

x3 =
m

4
r−m

(
−η2(u, v) log r + δ2(u, v)

)
,

x1 + ix2 = −m

2
eimθ

(
η3(u, v) log r + δ3(u, v)

)
,
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where z = reiθ = u + iv. Here, ηj(u, v) (j = 1, 2) and δj(u, v) (j = 1, 2) (resp.
η3(u, v) and δ3(u, v)) are real-valued (resp. complex-valued) differentiable
functions defined on a neighborhood of the origin, such that ηj(0, 0) = 1
(j = 1, 2, 3).

Equations (4.7) yield that x0 → +∞ and Π ◦ f → (0, 0,−1) as z → 0.
�

5. The Osserman-type inequality

Here we prove Theorem 0.2 stated in the introduction. First we prepare:

Lemma 5.1. The Hopf differential of a CMC-1 face has a pole of order 2
at any complete regular parabolic end.

Proof. Let f : Δ∗ → S3
1 be a complete regular parabolic end at z = 0. By

Theorem 3.1, the end is of the first kind. Then

2Q + Sz(G) dz2 = Sz(g) dz2 =
1
z2

(
1
2

+ o(1)
)

dz2.

Since G is meromorphic at z = 0, we may assume that G = zmϕ(z), where
m is a positive integer and ϕ(z) is a holomorphic function on a neighborhood
of 0 with ϕ(0) �= 0. Applying (1.19) to Sz(G), it follows that Q has a pole
of order 2 at z = 0. �

The next lemma improves a result in [7, Proposition 4.4]:

Lemma 5.2. Let f : Δ∗ → S3
1 be a complete regular end at z = 0 of a

CMC-1 face with Hopf differential Q and hyperbolic Gauss map G. Then
the ramification order m of G(z) at z = 0 satisfies

(5.1) m ≥ Ord
z=0

(Q) + 3.

(For the definition of the ramification order, see the subsection about the
Schwarzian derivative in Section 1.) Here, Ordz=0 Q denotes the order of Q
at the origin, that is, Ordz=0 Q = k if Q = zkϕ(z) dz2, where ϕ(z) is holo-
morphic at z = 0 and ϕ(0) �= 0.

Proof. By Theorem 3.1, a complete end is either elliptic or parabolic of the
first kind. The elliptic case has been proved in [7]. Assume that the end is
parabolic. Then by Lemma 5.1, Q must have a pole of order 2 at z = 0,
which proves the inequality since m ≥ 1. �
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It should be remarked that the order of the metric dσ2
# = 4|dG|2/(1 + |G|2)2

at 0 is equal to m − 1, where m is the ramification order of G. Using
Lemma 5.2 instead of [7, Proposition 4.4], the inequality in Theorem 0.2
is proved in the same way as [7, 23].

The condition for equality in (∗) in Theorem 0.2 for elliptic ends was
completely analyzed in [7]. So, it suffices to show the following theorem
for parabolic ends. Note that Ordp(Q) = −2 for complete regular parabolic
ends, hence the equality in (5.1) holds if and only if G does not branch at p
(see [7] for details).

Theorem 5.1. A complete regular parabolic end of a CMC-1 face is prop-
erly embedded if and only if the hyperbolic Gauss map G does not branch at
the end.

Proof. Let f : Δ∗ → S3
1 be a complete regular parabolic end at z = 0. Taking

−f instead of f if necessary, we may assume that |g| < 1 in a neighborhood
of the end, and that G(z) = zm, m ≥ 1 and g(z) = R−1 � (2mi(k(z) − log z)),
as in the proof of Proposition 4.2. Then f is represented as in (4.5)
and (4.6).

By Proposition 4.2, the image of f tends to a point in ∂+S3
1 . So we may

assume that x0 > 1 on Δ∗, and

Π ◦ f : Δ∗ 
 z �−→ (X1, X2, X3) ∈ R3

is well defined, where Π is the projection in (4.3).
Here, by (4.7),

U(z) := z−m x1 + ix2

1 + x0

(
= z−m(X1 + iX2)

)
= −2

η3 log r + δ3

η1 log r + δ1 + (4/m)rm
.

Since η1, η3 and δ1, δ3 are differentiable functions defined on a neighborhood
of 0, we have

(5.2) lim
z→0

U(z) = −2 �= 0, lim
z→0

z
∂

∂z
U(z) = 0 and lim

z→0
z

∂

∂z̄
U(z) = 0.

Now we suppose that the ramification order m of the hyperbolic Gauss
map at z = 0 is 1, that is m = 1. As seen in the proof of Proposition 4.2,
Π ◦ f converges to (0, 0,−1). Then X1 + iX2 = zU(z) and (5.2) yield that

lim
z→0

∂

∂z
(X1 + iX2) �= 0 and lim

z→0

∂

∂z̄
(X1 + iX2) = 0,
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which implies that the correspondence z �→ X1 + iX2 is bijective near the
origin, and the end is properly embedded.

Conversely, suppose that the end is properly embedded. We have already
seen that X3 → −1 as z → 0. Moreover U(0) �= 0 implies that for any suffi-
ciently small ε > 0, the image of the end f({z; 0 < |z| < ε}) does not meet
the X3-axis and is diffeomorphic to a cylinder. Then the image of Π ◦
f({z; |z| = ε}) by the orthogonal projection (X1, X2, X3) �→ X1 + iX2 is an
embedded closed curve with the winding number m with respect to the
origin. So m = 1. �

Remark 5.1. In Proposition 4.4 of [7], the first author showed the equal-
ity condition in Theorem 0.2 for elliptic ends using the expression of the
solution of the ordinary differential equation (1.6). Here we proved the
equality condition in Theorem 0.2 for parabolic ends by using Small’s for-
mula (1.10). It is also possible to prove the result in [7] more directly by
using (1.10).

We give here three important examples:

Example 5.1 (An incomplete 3-noid not satisfying (∗) in Theo-
rem 0.2). We set M2 := C \ {0, 1} and

G := z, g :=
2z − 1

2z(z − 1)
− log

z

z − 1
.

Then (1.10) gives a CMC-1 face f : M2 → S3
1 with hyperbolic and secondary

Gauss maps G and g, and Hopf differential

Q =
1
2
(S(g) − S(G)) = − 2dz2

z(z − 1)
.

Since the lift metric

ds2
# =

4(1 + |z|2)2
|z(z − 1)|2 |dz|2

is complete on M2, f is weakly complete. The end z = ∞ is complete and
elliptic, and z = 0, 1 are parabolic ends of the second kind. Hence z = 0, 1 are
incomplete ends. Since deg(G) = 1, f does not satisfy (∗). This implies that
completeness is an essential assumption in Theorem 0.2 in the introduction.
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Example 5.2 (A 2-noid with complete parabolic ends satisfying the
equality in (∗)). We set

(5.3) F (z) =
i

2
√

2

(√
z 0

0
√

z
−1

)(
3 − log z −1 + log z
1 + log z −3 − log z

)
.

Then f = Fe3F
∗ : C \ {0} → S3

1 has two parabolic regular ends. The hyper-
bolic Gauss map G, the secondary Gauss map g and the Hopf differential Q
are computed as follows:

G = z, g =
log z + 1
log z − 1

, Q =
dz2

4z2 .

Since {z ∈ C ; |g(z)| = 1} = {z ∈ C ; |z| = 1}, the singular set is compact,
and hence f is complete.

Any genus zero CMC-1 face with two parabolic regular ends and with
degree 1 hyperbolic Gauss map is congruent to this f . We call this CMC-1
face the parabolic catenoid. On the other hand, the CMC-1 face with G = z,
g = zμ (μ ∈ R \ {0}) given in [7, Example 5.4] is called the elliptic catenoid.

Example 5.3 (A complete 4-noid with 4 integral elliptic ends satis-
fying the equality in (∗)). Since SL2 C can be identified with the complex
hyperquadric Q3 of C4, the null (meromorphic) curves in SL2 C can be
identified with those in Q3. The null curve in SL2 C with

G :=
3(z3 + 2)

4 − z
, g := −z3 − 12z2 + 2

3z

belongs to the moduli space M4 in the classification list of null curves in Q3

in Bryant [4], which has four integral elliptic ends at the roots of 1 + 6z2 − z3

and z = ∞. Since G is of degree 3 and χ(C ∪ {∞}) = 2, the corresponding
CMC-1 face attains equality in (∗) of Theorem 0.2. (For the definition of an
integral elliptic end, see Definition 3.3.)

Remark 5.2. We can deform an elliptic catenoid to a parabolic catenoid.
Let fμ be an elliptic catenoid with the hyperbolic Gauss map G = z and
the secondary Gauss map g = zμ, where μ > 0. Then the hyperbolic metric
corresponding to fμ is

dσ2
μ =

4|dg|2
(1 − |g|2)2 =

4μ2|z|2μ−2

(1 − |z|2μ)2
|dz|2.
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It can be easily checked that

lim
μ→0

dσ2
μ =

|dz|2
(r log r)2

, where z = reiθ,

which is the hyperbolic metric of a parabolic catenoid with

g(z) = R � log z =
1
i
log z + 1
log z − 1

,

see (3.3). On the other hand, by Small’s formula (1.10) there exists a unique
smooth 1-parameter family of CMC-1 faces f̃μ (μ ≥ 0) with hyperbolic Gauss
map G = z and associated hyperbolic metric dσ2

μ. Then f̃μ is congruent to
fμ, and f̃0 gives a parabolic catenoid.

Remark 5.3. As a consequence of Remark 1.15, we know that there are
no compact CMC-1 immersed surfaces in S3

1 . Here we give an alternative
proof of this: Let M2 be a compact Riemann surface without boundary,
and suppose there exists a compact CMC-1 face f : M2 → S3

1 which has
no singular points. Let F be a holomorphic lift of f . We may assume that
|g| < 1 since there are no singular points. Then, by (1.6), we have

fzz̄ = (1 − |g|2)F
(

g
1

)(
ḡ 1

)
F ∗|ω̂|2,

where z is a local complex coordinate and ω = ω̂ dz. Thus, trace f is a non-
constant subharmonic function, which is a contradiction to the maximum
principle.

This proof does not apply to compact CMC-1 faces, leading us to the
following open problem:

Problem. Is there a compact CMC-1 face?

If such a CMC-1 face exists, the genus γ must be greater than or equal to
3, since equality in (∗) in the introduction holds in this case and the degree
of the hyperbolic Gauss map must be γ − 1.

Appendix A. Meromorphicity of the Hopf differential

In this appendix, we shall give a proof of the following
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Theorem A.1. Let M
2 be a compact Riemann surface. Then the Hopf

differential Q of a complete CMC-1 face

f : M
2 \ {p1, . . . , pn} −→ S3

1

is meromorphic on M
2.

Proof. It is sufficient to show the meromorphicity of Q at a complete end
f : Δ∗ = {z; 0 < |z| < 1} → S3

1 at the origin. We write the Hopf differential
Q as

Q = Q̂ dz2,

where Q̂ is a holomorphic function on Δ∗. By Theorem 3.1, a complete end
f : Δ∗ → S3

1 is either a g-regular elliptic end or a g-regular parabolic end of
the first kind. (The definition of g-regularity is given in Definition 3.2.)

First, we consider the case that f is elliptic. By g-regularity, the sec-
ondary Gauss map is written in the form

g = zμh(z) (h is a holomorphic function with h(0) �= 0),

where μ is a real number. Since |g(0)| �= 1 by completeness, we may set
g(0) = 0, or ∞, because of the SU1,1-ambiguity of g. Moreover, replacing f
by −f if necessary, we may assume μ > 0 without loss of generality. In this
case, the corresponding hyperbolic metric dσ2 is written as

dσ2 =

(
2|z|μ−1|μh(z) + zh′(z)|∣∣1 − |z|2μ|h(z)|2

∣∣ |dz|
)2

,

(
′ =

d

dz

)
.

Since |z|μ|h(z)| and zh′(z) tend to 0 as z → 0 and h(z) is bounded near the
origin, we have that

dσ ≥ c|z|μ−1 |dz| ≥ c|z|l |dz|

holds on a neighborhood of the origin, where l is the smallest integer such
that l ≥ μ − 1 and c is a positive constant. Then, by (1.16), we have

ds = 2
|Q|
dσ

≤ 2
|Q̂|
c|z|l |dz| =

2
c

∣∣∣∣∣
Q̂

zl
dz

∣∣∣∣∣ .

Since ds is complete at 0, we have meromorphicity of the one-form z−lQ̂ dz
at the origin, because of [16, Lemma 9.6, page 83].
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Next, we consider the case that f is parabolic. Since the end is g-regular
parabolic of the first kind, one can choose the secondary Gauss map g as in
(3.2):

g = R−1ĝ, ĝ(z) = i(h(z) ± log z),

where h(z) is a holomorphic function on Δ := Δ∗ ∪ {0}. Hence dσ2 is written
as in (3.3):

dσ2 =

(
|h′(z) ± (1/z)|∣∣Re h(z) ± log |z|

∣∣ |dz|
)2 (

′ =
d

dz

)
.

Since z log |z| → 0 as z → 0 and h is bounded on a neighborhood of the
origin,

dσ =
|1 ± zh′(z)|

∣∣z log |z|
∣∣
∣∣∣1 ± Re h(z)

log |z|

∣∣∣
|dz| ≥ c|dz|

holds on a neighborhood of the origin, where c is a positive constant. Thus,

ds = 2
|Q|
dσ

≤ 2
c
|Q̂ dz|.

Hence, by the same argument as in the elliptic case, we have meromorphicity
of Q at the origin. �

Appendix B. Conjugacy classes of SU1,1

The Lie group SU1,1 is the set of matrices S ∈ SL2 C satisfying Se3S
∗ = e3.

Two matrices A, B ∈ SU1,1 are called conjugate in SL2 C if there exists a
matrix P ∈ SL2 C such that B = P−1AP , and are called conjugate in SU1,1
if B = P−1AP for some P ∈ SU1,1.

As in (1.18) and (2.2), we set

Λe(t) :=
(

eit 0
0 e−it

)
, Λp(t) :=

(
1 + it −it

it 1 − it

)
,

Λh(t) :=
(

cosh t sinh t
sinh t cosh t

)
and R :=

1
2

(
1 1
i −i

)

for an arbitrary t ∈ R.
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Theorem B.1. A matrix A ∈ SU1,1 is conjugate in SU1,1 to one of

1) Λe(s) (s ∈ (−π, π]),

2) ±Λp(t) or ±Λp(−t) (t > 0), or

3) ±Λh(t) (t > 0).

Remark B.1. Though the matrices Λe(s) and Λe(−s) are conjugate in
SL2 C, they are not conjugate in SU1,1 if s �≡ 0 (mod 2π). That is, for any
elliptic matrix A ∈ SU1,1, there exists a unique real number t ∈ (−π, π] such
that A and Λe(s) are conjugate in SU1,1.

Remark B.2. On the other hand, Λp(t1) and Λp(t2) (t1, t2 �= 0) are conju-
gate in SU1,1 if and only if t1t2 > 0. In fact, if t1 �= t2, PΛp(t1)P−1 = Λp(t2)
(P ∈ SU1,1) holds if and only if

P = ±
(

a b̄
b ā

)
, a = cosh s + iu, b = sinh s + iu,

where s = log
√

t2/t1 ∈ R and u ∈ R.
In particular, the sign of t in Λp(t) is invariant under such a conjugation.

Though Λp(t) (t ∈ R \ {0}) is conjugate with Λp(1) or Λp(−1), we choose
various values of t in this paper for the sake of convenience.

Remark B.3. Since
(

i 0
0 −i

)(
cosh t sinh t
sinh t cosh t

)(
−i 0

0 i

)
=
(

cosh t −sinh t
−sinh t cosh t

)

Λh(t) and Λh(−t) are conjugate in SU1,1.

To show Theorem B.1, we use the following group isomorphism:

ρ : SL2 R 
 X �−→ R−1XR ∈ SU1,1 .

Note that Λe(t), Λp(t) and Λh(t) are the images of
(

cos t sin t
−sin t cos t

)
,

(
1 2t
0 1

)
and

(
et 0
0 e−t

)

respectively, by ρ.

Lemma B.1. Let A and B be 2 × 2 real matrices that are conjugate in
SL2 C. Then A and either B or e3Be3 are conjugate in SL2 R.
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Proof. By assumption, there is a P̃ ∈ SL2 C with AP̃ = P̃B. We set P̃ =
U + iV , for real matrices U , V . Then AU = UB, AV = V B and

A(U + tV ) = (U + tV )B for any t ∈ R.

If det(U + tV ) vanishes identically for all t ∈ R, holomorphicity of C 
 t �→
det(U + tV ) yields that det(U + iV ) = det P̃ = 0, a contradiction. Thus for
some t0 ∈ R, det(U + t0V ) �= 0, and then (U + t0V )−1A(U + t0V ) = B. If
det(U + t0V ) > 0, we set P = (U + t0V )/

√
det(U + t0V ) ∈ SL2 R, giving

P−1AP = B. If det(U + t0V ) < 0, we set

P =
(U + t0V )e3√
| det(U + t0V )|

∈ SL2 R,

giving P−1AP = e3Be3. �

Proof of Theorem B.1. Let A ∈ SU1,1 and Ã := ρ−1(A) ∈ SL2 R.
If the eigenvalues of A are not real numbers, they are written as

{eit, e−it}, where t ∈ (−π, 0) ∪ (0, π). In this case, Ã is conjugate in SL2 C
to Be := RΛe(t)R−1. Hence by Lemma B.1, Ã is conjugate in SL2 R to
Be or e3Bee3. Thus, A = ρ(Ã) is conjugate in SU1,1 to ρ(Be) = Λe(t) or
ρ(e3Bee3) = Λe(−t).

If the eigenvalues of A are {ε, ε} (ε = {−1, 1}) and A �= ε id, Ã is con-
jugate in SL2 C to Bp := εRΛp(t)R−1 for any t ∈ R+. Hence Ã is con-
jugate in SL2 R to either Bp or e3Bpe3. Thus, A is conjugate in SU1,1
to ρ(Bp) = εΛp(t) or ρ(e3Bpe3) = εΛp(−t). As mentioned in Remark B.2,
Λp(u) for u ∈ R \ {0} is conjugate in SU1,1 to Λp(sgn u) = Λp(ε).

If the eigenvalues of A are two distinct real numbers, they are represented
as {εet, εe−t}, where t ∈ R+ and ε ∈ {−1, 1}. Thus, Ã is conjugate in SL2 C
to the diagonal matrix Bh := εRΛh(t)R−1. Hence, similarly to the first case,
A is conjugate in SU1,1 to ρ(Bh) = εΛh(t). �
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