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Gluing constructions for asymptotically hyperbolic
manifolds with constant scalar curvature

Piotr T. Chruściel and Erwann Delay

We show that asymptotically hyperbolic initial data satisfying
smallness conditions in dimensions n ≥ 3, or fast decay conditions
in n ≥ 5, or a genericity condition in n ≥ 9, can be deformed, by
a deformation that is supported arbitrarily far in the asymptotic
region, to ones that are exactly Kottler (“Schwarzschild- adS”) in
the asymptotic region.
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1. Introduction

One of the key problems in mathematical general relativity is the under-
standing of the space of solutions of the vacuum constraint equations. In
this context, an important gluing method has been introduced by Corvino
and Schoen [12, 13] for vacuum data with vanishing cosmological constant.
The object of this paper is to present related gluing results when the cos-
mological constant Λ is negative. The question we address is the possibility
of deforming an asymptotically hyperbolic Riemannian manifold of constant
scalar curvature, and hence a time-symmetric vacuum initial data set, to one
with a Kottler metric (sometimes known as Schwarzschild — anti-de Sitter
metric) outside of a compact set. We establish deformation or extension
theorems in dimensions n ≥ 3 under a smallness condition for metrics suffi-
ciently close to (generalized) Kottler metrics, or under smallness and parity
conditions for metrics close to a standard hyperbolic metric, or assuming a
rapid decay condition in dimensions n ≥ 5.

More precisely, we consider n-dimensional manifolds containing
asymptotic ends

(1.1) Mext := (r0,∞) × N,

where N is a compact manifold. We are interested in constant scalar curva-
ture metrics that asymptote, as r goes to infinity, to a background metric b
of the form1

(1.2) b =
dr2

r2 + k
+ r2

̂b,

where k ∈ {0,±1}, and where ̂b is a (r-independent) metric on N satisfying
Ric(̂b) = k(n − 2)̂b. A family of examples is provided by the (generalized)
Kottler metrics,

(1.3) bm =
dr2

r2 + k − 2m
rn−2

+ r2
̂b.

Note that b0 = b, with b as in (1.2).

1The constant k in (1.2)–(1.3) is of course unrelated to the order of differentia-
bility k used elsewhere, we hope that this will not confuse the reader.
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For the purpose of the next theorem define the manifold M to be

M = (r0, r2] × N,

and suppose that g is a constant negative scalar curvature metric on M close
to b, or to bm. There are two natural questions:

First, choose r1 satisfying r0 < r1 < r2, can one deform g, keeping the
scalar curvature fixed, so that the resulting metric coincides with g on
(r0, r1] × N , and with bm, for some m, near {r2} × N? In this case we
set M ′ = (r0, r1] × N , M ′′ = [r2,∞) × N , and we refer to this case as the
deformation problem.

Next, let r3 > r2, can one extend g to a new metric of constant scalar
curvature on (r0,∞) × N so that the extended metric coincides with bm, for
some m, on [r3,∞) × N? In this case we set M ′ = M , M ′′ = [r3,∞) × N ,
and we refer to this case as the extension problem. It is shown in
[8, Section 8.6] how to reduce this problem to the deformation one.

Our aim here is to show that those problems can always be solved when
g is sufficiently close to b, except perhaps when (N,̂b) is a round sphere
and m = 0, in which case we need to impose a restrictive condition: For
(r, q) ∈ M let ψ(r, q) = (r, φ(q)), where φ is the antipodal map of the sphere.
A metric g on M will be said to be parity symmetric if ψ∗g = g. At the end
of Section 5 we prove:

Theorem 1.1. Let n ≥ 3, N � � > �n
2 � + 4, λ ∈ (0, 1), m ∈ R. If (N,̂b) is

a round sphere and m = 0, we suppose moreover that g is parity symmetric.
There exists ε > 0 such that if ‖g − bm‖C�,λ(M) < ε, then there exists on Mext
a C�,λ metric of constant negative scalar curvature that coincides with g on
M ′, and which is a Kottler metric on M ′′. If g is smooth, then so is the
solution of the deformation problem.

We emphasize that g and bm are only required to be close to each other
on an “annulus” as above, and in fact bm is not even defined throughout the
original manifold.

We can also prove a result without smallness assumptions which, how-
ever, excludes dimensions three and four. Moreover, the decay rates are
undesirably restrictive in dimensions five, six and seven; they are satisfac-
tory, but not as weak as one would wish, in higher dimensions.

Let g be an asymptotically hyperbolic metric as defined in Section 2, and
let p0

(μ) be the momentum vector of g, obtained by passing to the limit as r

goes to infinity of the integral (5.1) below over submanifolds r = const. Let
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bp(μ) denote a (generalized, boosted) Kottler metric with momentum vector
p(μ). Suppose that

(1.4) n ≥ 5, α >

⎧

⎨

⎩

8, n = 5, 6, 7,

8 + n

2
, n ≥ 8.

(This can be compared with the conditions α > n/2, n ≥ 3, needed for p0
(μ)

to be well defined, or α = n, which holds for Kottler metrics.) For α ≤ n we
assume that g has the following asymptotic behaviour:

(1.5) |g − b|b + |D̊(g − b)|b + . . . + |D̊(k+2)(g − b)|b = O(ρα);

where D̊ is the covariant derivative operator of b. For α > n, if (N,̂b) is a
round sphere, we assume that the momentum vector p0

(μ) of g is timelike,2

so that an associated (perhaps boosted) Kottler metric bp0
(μ)

exists. Whether

or not (N,̂b) is a round sphere, for α > n instead of (1.5) we suppose that

(1.6) |g − bp0
(μ)

|b + |D̊(g − bp0
(μ)

)|b + . . . + |D̊(k+2)(g − bp0
(μ)

)|b = O(ρα);

in fact, (1.6) is equivalent to (1.5) if α ≤ n.
Letting Mδ be as in (2.1), and Aδ,4δ as in (2.2), in Section 4 we prove:

Theorem 1.2. Let n ≥ 5, N � � > �n
2 � + 4, λ ∈ (0, 1), and let α > 0 sat-

isfy (1.4). Let g be a C�,λ asymptotically hyperbolic metric with constant
negative scalar curvature satisfying (1.6) with k = � − 4. We furthermore
assume that (1.6) holds with k = � − 2 and α = 0, and that the energy-
momentum vector is timelike if (N,̂b) is a round sphere. There exists δ0 > 0
such that for all 0 < δ ≤ δ0 the metric g can be deformed across an annulus
Aδ,4δ to a constant scalar curvature metric, of C�,λ differentiability class,
which coincides with g on M\M4δ and with a Kottler metric bp(μ) on Mδ.
The solution is smooth if g is.

A key role in our analysis is played by the kernel of the operator P ∗
g given

by (2.6) below; it is known that this kernel is trivial for any open subset of
M for generic metrics [4]. Deforming first the metric as in Section 6, and
applying Theorem 1.2 to the new metric one concludes:

2Both past and future pointing p0
(μ) are allowed.
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Corollary 1.1. Let n ≥ 9. Under the remaining hypotheses of Theorem 1.2,
suppose instead of (1.4) that α > n/2. If there are no neighbourhoods of
the conformal boundary at infinity on which P ∗

g has a kernel, then the
conclusions of Theorem 1.2 hold.

It might be helpful to the reader to recall briefly the Corvino–Schoen
method, as adapted to our setting. We work on an end (r0, +∞) × N , where
we have a metric g asymptotic to a background metric b. We also have a
d-parameter family of references metrics bp, all asymptotic to b, all having
the same, constant scalar curvature. The gluing is performed on an annulus
AR = {R < r < 4R}, with R 
 1, in four steps:

Step 1. Do a scaling in order to work on a fixed annulus A1.

Step 2. Establish a weighted estimate of the form |P ∗u|L2 ≥ c|u|H2 , where
P ∗ is the adjoint of the linearized scalar curvature operator P and u is
orthogonal to the d-dimensional kernel K of P ∗. The constant c has to
be uniform in the family of metrics under consideration, with controlled
dependence upon R. In fact, in previous applications c was R–independent.

Step 3. By step 2, and up to weighting functions, the operator L = PP ∗

is an isomorphism modulo projections onto K⊥. By the inverse function
theorem, for R 
 1, the gluing of g with any bp can be done modulo weighted
L2-projection onto K⊥.

Step 4. Estimate the projection onto K and show that you can adjust the
parameter p to obtain a solution.

So, the overall strategy is the same as in [8,12,13]. However, in our case
essential new difficulties arise: the scaling transformation in the asymptoti-
cally flat case leads to a family of uniformly equivalent operators on a fixed
annulus, while this is not the case anymore for negative Λ. To handle this
we prove a sharp estimate on the family of operators that arise in our con-
text; unfortunately, the estimate degenerates as the gluing annuli recede to
infinity, as the sharp constant c in Step 2 above goes to zero. This results in
the undesirable restrictions described above. A possible approach to improve
this state of affairs could be to devise a method which, first, deforms any
asymptotically hyperbolic metric to one for which our Theorem 1.2 (or some
variation thereof) applies. Alternatively, a completely different method of
approaching the problem is needed.

Our work has been largely motivated by Andersson et al. [1], to remove
the sign condition on the mass aspect function imposed there. Our defor-
mation produces a metric with a constant mass aspect without a priori
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assuming such a sign in dimensions larger than eight; our result is, however,
irrelevant for the main result in [1], which is only proved for n ≤ 7.

2. Definitions, notations and conventions

Let M be a smooth, compact n-dimensional manifold with boundary ∂M .
Let M := M\∂M , a non-compact manifold without boundary. In our con-
text, the boundary ∂M will play the role of a conformal boundary at infinity
of M . We will choose a defining function ρ for ∂M , that is a non-negative
smooth function on M , vanishing precisely on ∂M , with dρ never vanishing
there.

We will work near the infinity of M , so it is convenient to define, for
small ε > 0, the manifold

(2.1) Mε = {x ∈ M, ρ(x) < ε}.

We also define for small ε > δ > 0, the “annulus”

(2.2) Aδ,ε := Mε\Mδ.

We continue by defining a class of background metrics of interest. For k
equal to −1, 0 or 1, let ̂b be a metric on ∂M satisfying Ric(̂b) = k(n − 2)̂b.
For ρ0 such that 1 − k(ρ

2)2 has no zeros on (0, ρ0), consider the metric

(2.3) b = ρ−2
(

dρ2 +
(4 − kρ2)2

16
̂b

)

=: ρ−2b

defined on (0, ρ0) × ∂M . Then b is Einstein, Ric(b) = −(n − 1)b, in particu-
lar it has constant scalar curvature R(b) = −n(n − 1), and in fact provides
initial data for a static solution of the vacuum Einstein equations with a
negative cosmological constant. These are of course identical to (1.2) (use
r = ρ−1[1 − k(ρ

2)2]). The basic example of such a background is the standard
hyperbolic metric. In that case M is the unit ball of R

n, with

(2.4) b = ω−2δ,

δ is the Euclidean metric, ω(x) = 1
2(1 − |x|2δ).

A metric g will be called asymptotically hyperbolic if g tends to a back-
ground metric as in (2.3) when approaching ∂M . The precise decay rates
will be indicated whenever needed. The terminology is motivated by the
fact that the sectional curvatures of g tend to −1 as ρ approaches zero; cf.,
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e.g., [17]. One should, however, keep in mind that b does not necessarily
have constant sectional curvature in space–time dimension other than four.
Moreover, metrics which asymptote to hyperbolic metrics in cuspidal ends
do not necessarily belong to our class.

An important class of asymptotically hyperbolic metrics is given by the
(generalized) Kottler metrics [14] (cf. [5]) as given by (1.3). In the coordinate
system of (2.3) they read

bm = ρ−2

⎧

⎨

⎩

[

1 − 2mρn

(

1 − k
(ρ

2

)2
)2−n(

1 + k
(ρ

2

)2
)−2

]−1

dρ2

+
(

1 − k
(ρ

2

)2
)2
̂b

}

= ρ−2 [b + 2mρn(1 + O(ρ2))dρ2] ,(2.5)

where, as before, ̂b is a fixed metric on the boundary at infinity N satisfy-
ing Ric(̂b) = k(n − 2)̂b. Those metrics satisfy R(bm) = −n(n − 1), and again
provide initial data for static Einstein metrics.

If ̂b is not the round metric on a sphere, the only energy-like Hamiltonian
invariant of bm is m, see, e.g., [6] and references therein. Otherwise b is the
standard hyperbolic metric, and the energy-momentum vector of bm, say
p(μ) (as defined in [10] or [22], see (4.18) with r → +∞)), is proportional to
(m,�0). Under isometries of hyperbolic space, p(μ) transforms as a Lorentz
vector, and a metric with any timelike p(μ) can be obtained by applying such
an isometry to some bm.

In this way we generate a family of metrics with any timelike p(μ), as
needed for the Brouwer fixed point argument when compensating for the
cokernel below. (On the other hand, we are not aware of existence of such
metrics with non-timelike non-zero p(μ), whence the restriction of timelike-
ness in our results when (N,̂b) is a round sphere.) We denote by bp(μ) the
resulting metrics, and we will refer to them as Kottler metrics, or boosted
Kottler metrics when ambiguities are likely to occur.

Recall that the linearized scalar curvature operator P = Pg is

Pgh := DR(g)h = −∇k∇k(trg h) + ∇k∇lhkl − Rklhkl,

so that its L2 formal adjoint reads

(2.6) P ∗
g f = [DR(g)]∗f = −∇k∇kfg + ∇∇f − f Ric(g).
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(We use the summation convention, indices are lowered with gij and raised
with its inverse gij .) We note that

Tr P ∗
g f = (n − 1)∇∗∇f − Rf.

Let

(2.7) bδ := z−2
(

dz2 + δ−2
̂b(δz)

)

be a hyperbolic metric scaled up in ρ from Aδ,4δ to

(2.8) A ≡ A(1,4) := (1, 4) × ∂M.

We have Ric(bδ) = −(n − 1)bδ, thus

(2.9) P ∗
bδ

u := ∇∇u +
(

(n − 1)u − ∇k∇ku
)

bδ,

where ∇ is associated with the metric bδ.
It is well known that the kernel of P ∗ has dimension at most n + 1,

see [12] for instance. For the hyperbolic metric b on the unit n-dimensional
ball Bn(1) ⊂ R

n, in the representation (2.4), the kernel of P ∗
b is spanned by

the following functions, which are the restrictions to the hyperboloid H
n of

the coordinates functions in Minkowski R
n,1:

V(0) :=
1 + |x|2
1 − |x|2 = ρ−1

(

1 +
(ρ

2

)2
)

,(2.10)

V(k) := − 2xk

1 − |x|2 = −ρ−1
(

1 −
(ρ

2

)2
)

xk

|x| ,(2.11)

with ρ = 2(1 − |x|)/(1 + |x|). We can also rewrite (2.4) as

(2.12) b = ρ−2(dρ2 +̂b(ρ)),

with ̂b(ρ) =
(

1 −
(ρ

2

)2
)2
̂b(0), where ̂b(0) is the round unit metric on Sn.

Setting ρ = δz, defining

(2.13) Vδ,(μ)(z, θ) = V(μ)(δz, θ),

and letting δ tend to zero, the functions δVδ,(μ) tend to

u(0) := z−1, u(k) := −z−1 xk

|x| .(2.14)
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For non-spherical boundary metrics ̂b ≡ ̂b(0) we still write {V(μ)} for
any basis of Ker P ∗

b , and then Vδ,(μ) is defined by (2.13). By hypothesis
the scalar curvature of ̂b is constant, so that we can invoke a theorem of
Obata [20] (see also [15, Theorem 24]) to conclude that the only Riemannian
manifold (̂M,̂b) of dimension n − 1 with non-constant solutions v to the
equation DDv + D∗Dv

n−1
̂b = 0 is a round sphere. For metrics of the form (2.3)

with ̂b different from a round sphere, this implies (cf. Appendix A) that
dim Ker P ∗ = 1 and V(0) = V(0)(ρ), with the u(μ)’s proportional to u(0) = z−1

(cf. (3.19) and (3.20)).

Definition 2.1. Let k ∈ N, C, σ ≥ 0. Let b be of the form (2.3), with ̂b an
Einstein metric on ∂M with scalar curvature (n − 1)(n − 2)κ, κ ∈ {0,±1},
and with ρ ∈ (0, 2ρ0]. We will say that g is (C, k, σ)-asymptotically hyperbolic
if we have

(2.15) |g − b|b + |∇g|b + . . . + |∇(k)g|b ≤ Cρσ,

where the norm and covariant derivatives are defined by b. For α ∈ (0, 1) we
will say that g is (C, k + α, σ)-asymptotically hyperbolic if the derivatives of
order k of g − b further satisfy a weighted Hölder condition of order α, as
in [16].

Let g be a Riemannian metric on M , recall that (M, g) is conformally
compact if there exists on M a smooth defining function ρ for ∂M (that is
ρ ∈ C∞(M), ρ > 0 on M , ρ = 0 on ∂M and dρ nowhere vanishing on ∂M ;
the symbol ρ will be used throughout this work to denote such a function)
such that g := ρ2g is a Riemannian metric on M , we will denote by ĝ the
metric induced on ∂M . The background metrics b considered above are
conformally compact in this sense.

It is well know that, near infinity, for any sufficiently differentiable con-
formally compact metric g we may choose the defining function ρ to be the
g-distance to the boundary. Thus, if ε is small enough, Mε can be identified
with (0, ε) × ∂M equipped with the metric

(2.16) g = ρ−2(dρ2 + ĝ(ρ)) = ρ−2(dρ2 + ĝAB(ρ)dθAdθB),

where {ĝ(ρ)}ρ∈(0,ε) is a family of smooth, uniformly equivalent, metrics on
∂M , with ĝ(0) = ĝ. However, the introduction of this system of coordinates
might lead to a loss of up to two derivatives of the metric. This can be
circumvented for (C, k, σ)-asymptotically hyperbolic metrics by introducing
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a coordinate system as in [2, Appendix B] in which g takes the form

(2.17) g = ρ−2
(

(1 + O(ρk+σ))dρ2 + ĝAB(ρ)dθAdθB + O(ρk+σ)AdρdθA
)

,

with all metric coefficients of original differentiability class.
If g is (C, k, σ)-asymptotically hyperbolic with k ≥ 2 and σ > 0, we have

(2.18)
P ∗

g u :=∇∇u − ∇k∇ku g −u Ric(g) = ∇∇u +
(

(n − 1)u − ∇k∇ku
)

g + O(ρσ)u,

where the covariant derivatives are related to g, and the O(ρσ) term is
bounded (in b-norm) together with its b-derivatives up to order k − 2, by ρσ

times a constant depending on C and k.

3. A uniform estimate for P ∗

Let y be the function on A defined by

(3.1)
y : (1, 4) × ∂M −→ R

(z, θ) �−→ 4
3

(

1 − z

4

)

(z − 1).

We claim that:

Proposition 3.1. Let c0, σ > 0 and s ≥ 0. There exist constants c1 =
c1(n, s, c0, σ) > 0 and δ0 = δ0(n, s, c0, σ) > 0 such that for all (c0, 4, σ)-asym-
ptotically hyperbolic metrics g, for all 0 < δ ≤ δ0, and for all u satisfying

(3.2) ∀μ = 0, . . . , k,

∫

A
e−s/yuu(μ) dμbδ

= 0,

where k = n if b is the standard hyperbolic metric, and k = 0 otherwise,
we have

(3.3)
∫

A
e−s/yy8|P ∗

gδ
u|2gδ

dμgδ
≥ c1δ

4
∫

A
e−s/y(y8|∇∇u|2gδ

+ y4|∇u|2gδ
+ u2) dμgδ

,

provided that the right-hand side is finite. Similarly (3.3) holds (with perhaps
a different constant c1) if

(3.4) ∀μ = 0, . . . , k,

∫

A
e−s/yuVδ,(μ) dμgδ

= 0,

or if in (3.2) the measure z−n dz dμ
̂b(0) is used.



Gluing constructions for negative scalar curvature 353

Remark 3.1. There is little doubt that the result remains valid for (c0, 2, σ)
asymptotically hyperbolic metrics, or for those conformally compact metrics
which are C2 up-to-boundary after the conformal rescaling, by using coor-
dinates as in (2.17). For simplicity of calculations we assume (2.16), since
our main gluing results require (c0, 4, σ) asymptotically hyperbolic metrics
anyway.

Remark 3.2. The power of δ in (3.3) cannot be improved, which can be
seen by considering a function of the form u(z, θ) = v(θ)/z, with a non-trivial
v of vanishing integral on ∂M , such that DDv + D∗Dv

n−1
̂b(0) �= 0, where D is

the covariant derivative operator of ̂b(0), and such that v is L2(∂M,̂b(0))-
orthogonal to the kernel of P ∗

̂b(0)
(see (3.15) below).

Proof. In some of the calculations of this proof the reader might find it
convenient to use the coordinate system of (2.16). Without loss of generality,
we can assume that σ ≤ 1. Let us define dνgδ

= δn−1dμgδ
, and note that the

measure dμgδ
can be replaced by dνgδ

in (3.2) to (3.4); e.g., (3.2) can be
replaced by

(3.5) ∀μ = 0, . . . , k,

∫

A
e−s/yuu(μ) dνgδ

= 0.

Suppose that (3.3) with dμgδ
there replaced by dνgδ

does not hold, then there
exist sequences δn → 0, g(n) and un satisfying (3.2) (respectively (3.4)) such
that the right-hand side equals one, while the reverse inequality to (3.3)
holds with c1 replaced by 1/n:

∫

A
e−s/yy8|P ∗

δn
un|2gn

dνgn
≤ δ4

n

n
,(3.6)

∫

A
e−s/y(y8|∇∇un|2gn

+ y4|∇un|2gn
+ u2

n)dνgn
= 1,(3.7)

where we have set
gn := g

(n)
δn

and P ∗
δn

≡ P ∗
gn

.

Let y be the function on A defined in (3.1). Using (2.18) to express ∇∇un

in terms of P ∗
gn

un and un one obtains (cf. (3.22) below)
∫

A
e−s/yy8|∇∇un|2gn

dνgn
≤ C

∫

A
e−s/y

(

y8|P ∗
δn

|2gn
+ u2

n

)

dνgn

≤ C

(

δ4
n

n
+
∫

A
e−s/yu2

n

)

dνgn
,(3.8)
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which together with (3.7) implies that there exists c > 0 such that

∫

A
e−s/y(y4|∇un|2gn

+ u2
n) dνgn

≥ c.(3.9)

Now,

|∇un|2gn
= z2(|∂zun|2 + δ2

n|∂θun|2ĝn
),(3.10)

where | · |ĝn
denotes the norm of a tensor field on ∂M with respect to the

metric

ĝn(z) := ĝ(n)(δnz).

Note that, decreasing the constant ρ0 of Definition 2.1 if necessary, all the
ĝn’s are uniformly equivalent to ̂b(0). From (3.9) we obtain

∫

A
e−s/y(y4|∂zun|2 + u2

n) dνgn
≥ c,(3.11)

for some c > 0.
Clearly the trace of P ∗

gn
u satisfies an estimate of the form (3.6) (cf.

Appendix A)

∫

A
e−s/yy8|Δgn

un − nun + O(δσ
n)un|2 dνgn

≤ C
δ4
n

n
.(3.12)

Let

E := ∇∇un − Δgn
un

n
gn = ∇∇un − un gn + error,

where the error term is bounded, after integration, as in (3.12). From (3.6)
and (3.12) we conclude that

∫

A
e−s/yy8|E + O(δσ

n)un|2gn
dνgn

≤ C
δ4
n

n
.(3.13)

Since E is trace free we have Ezz = −δ−2
n ĝCD

n ECD, so that

(3.14)

|E|2gn
= z4

((

1 +
δ4
n

n − 1

)

|Ezz|2 + 2δ2
n|EzA|2ĝn

+ δ4
n|EAB − ĝCD

n ECDĝnAB|2ĝn

)

,
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which together with the formulae in Appendix A (recall we have assumed
σ < 1) leads to

∫

A
e−s/yy8(|∂2

zun + z−1∂zun − z−2un + O(δσ
n)un|2

+ δ2
n|∂z∂Aun + z−1∂Aun + O(δn∂θun) + O(δσ

n)un|2ĝn

+ δ4
n|DADBun − ĝ(n)(δn)CDDCDDun(ĝn)AB + O(δσ

n)un|2ĝn
)dνgn

≤ C
δ4
n

n
.

(3.15)

Next, (3.6) together with the formula for (P ∗
gδ

u)zz in Appendix A gives

∫

A
e−s/yy8

∣

∣

∣[(n − 1)z + O(δσ
n)]∂zun + [(n − 1) + O(δσ

n)]un

− δ2
nΔĝδn

un

∣

∣

∣

2
dνgn

≤ C
δ4
n

n
.(3.16)

Choose δn0 �= 0 and let H1 and H2 be the Hilbert spaces with norms defined
by the left-hand sides of (3.9) and (3.7) with n = n0, and norms, covariant
derivatives and measures related to bδn0

:

‖u‖H1 :=
∫

A
e−s/y(y4|∇u|2bδn0

+ u2) dνbδn0
,(3.17)

‖u‖H2 :=
∫

A
e−s/y(y8|∇∇u|2bδn0

+ y4|∇u|2bδn0
+ u2) dνbδn0

.(3.18)

Now, (3.7) shows that un and y2∂zun are bounded in L2 = L2(A, e−s/y

dνbδn0
). Equation (3.12) proves that y4 times the Laplacian of un is bounded

in L2. Further, (3.15) establishes that y4∂2
zun is bounded in L2. Simple alge-

bra gives then that y4 times the tangential Laplacian of un is bounded in
L2. Coming back to (3.15) we obtain that all tangential derivatives of un

are L2-bounded, when multiplied by relevant powers of y. Standard interpo-
lation gives an L2-bound for y2 times the first tangential derivatives of un.
But (3.15) shows now that the functions y4∂z∂Aun are L2-bounded. Finally,
an interpolation will bound every (weighted) first derivatives of un.

So, the sequence un is bounded in H2, therefore there exists a subse-
quence, still denoted by un, which converges strongly in H1. But (3.8) with
un replaced by un − um shows that un is Cauchy in H2, hence there exists
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u ∈ H2 such that un converges to u in H2. From (3.15) we infer that

|∂2
zu + z−1∂zu − z−2u|2 + |∂z∂Au + z−1∂Au|2bδn0

+ |DADBu −̂b(0)CDDCDDûb(0)AB|2bδn0
= 0,(3.19)

while (3.16) implies

(3.20) z∂zu + u = 0.

Solving (3.19) and (3.20), we conclude that u is a linear combination of
the u(μ)’s as given by (2.14) for a standard hyperbolic metric, while u =
const/z otherwise. But the integral in (3.5) is continuous on H2, which
implies that (3.2) is satisfied in the limit. Similarly, δn times the integral
(3.4) is continuous on H2. Recalling that the family {u(μ)} is orthogonal
with respect to the scalar product defined by the integral in (3.2), we obtain
u = 0. This contradicts (3.9), and proves the result. �

Let ψ = e−s/2y, φ = y2. We will use spaces Hk
δ ≡ Hk

gδ
of tensor fields on

A (cf. [8]) for which the norms

(3.21) ‖u‖Hk
δ

:=

(

∫

A

(

k
∑

i=0

φ2i|∇(i)u|2gδ

)

ψ2δ(n−1)dμgδ

)1/2

are finite, where ∇(i) stands for the tensor ∇...∇
︸ ︷︷ ︸

i times

u, with ∇ — the Levi–

Civita covariant derivative of gδ; we assume throughout that the metric is
at least W 1,∞

loc ; higher differentiability will be usually indicated whenever
needed. The factor δ(n−1) in front of the measure dμgδ

has been included
so that δ(n−1)dμgδ

is equivalent to the Lebesgue coordinate measure dz dθ,
uniformly in δ.

Note that H0
gδ

involves weighs, but L2 does not.
An equivalent norm, and therefore the same space, is obtained if gδ in

(3.21) is replaced by bδ.
We will need the following:

Lemma 3.1. Let c0, σ > 0 and s ≥ 0. There exist constants C = C(n, �,
s, c0, σ) > 0 and δ0 = δ0(n, �, s, c0, σ) > 0 such that for all (c0, � + 2, σ)-
asymptotically hyperbolic metrics g and for all 0 < δ ≤ δ0

‖u‖H�+2
gδ

≤ C
(

‖φ2P ∗
gδ

u‖H�
gδ

+ ‖u‖H0
gδ

)

.
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Proof. For � = 0 the result has been established in the course of the proof of
Proposition 3.1, see the first line of (3.8). For � = 1 we start the calculation
that follows with k = 2 and we stop at the second line, invoking weighted
interpolation and the result for � = 0 to conclude. Otherwise, suppose that
the result is true for k − 1 ≤ �0 with �0 ≥ 1. Using [8, Equation (A.4)] (one
can check that the constants in Equations (A.2) and (A.3) there, thus also
in (A.4), do not depend on δ) to control the first term when passing from
the second to the third line below, we find for 2 ≤ k − 1 + 2 ≤ �0 + 2

‖φk+1∇(k−1)(∇(2)u − Δugδ)‖H0
gδ

= ‖φk+1∇(k−1)(P ∗u − (n − 1)u + O(δσ)u)‖H0
gδ

≤ ‖φk+1∇(k−1)P ∗u‖H0
gδ

+ C1‖ φ2
︸︷︷︸

≤C

φk−1∇(k−1)[(1 + O(δσ))u]‖H0
gδ

≤ C

⎛

⎜

⎝

‖φ2P ∗u‖Hk−1
gδ

+ C2 ‖u‖Hk−1
gδ

︸ ︷︷ ︸

≤C(‖φ2P ∗u‖
H

k−3
gδ

+‖u‖H0
gδ

)

⎞

⎟

⎠

≤ C(1 + CC2)‖φ2P ∗u‖Hk−1
gδ

+ C2C2‖u‖H0
gδ

.

This is the desired inequality, to see this set

T := ∇(k+1)u, S := ∇(k−1)(∇2u − Δugδ),

or, in index notation,

Ti1...ik−1jk := ∇i1 · · · ∇ik−1∇j∇ku

Si1...ik−1jk := ∇i1 · · · ∇ik−1∇j∇ku − ∇i1 · · · ∇ik−1∇�∇�u (gδ)jk,

straightforward algebra shows that

(3.22) |T |2gδ
≤ |S|2gδ

,

and the lemma follows. �
As in [8] we set

(3.23) Lgδ
:= ψ−2Pgδ

φ4ψ2P ∗
gδ

,

and

(3.24) Kbδ
= ker P ∗

bδ
.
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The proof of [8, Theorem 3.6] shows that

L−1
gδ

: Hk
gδ

∩ K
⊥H0

gδ

δ → Hk+4
gδ

exists for δ small enough. However, uniform boundedness in δ of L−1
gδ

does
not hold in our case, instead we have:

Corollary 3.1. Let k ∈ N, c0, σ > 0 and s ≥ 0. There exist constants C =
C(n, k, s, c0, σ) > 0 and δ0 = δ0(n, k, s, c0, σ) > 0 such that for all (c0, k +
4, σ)-asymptotically hyperbolic metrics g, for all 0 < δ ≤ δ0, and for all u
satisfying (3.2) or (3.4)

‖L−1
gδ

u‖Hk+4
gδ

≤ C
(

‖u‖Hk
gδ

+ δ−4‖u‖H0
gδ

)

.

Proof. By Proposition 3.1 we have (recall that H0 is weighted but L2 is not)

cδ4‖u‖2
H2

gδ

≤ ‖φ2P ∗
gδ

u‖2
H0

gδ

= 〈ψ2φ2P ∗
gδ

u, φ2P ∗
gδ

u〉L2
gδ

= 〈ψ2u, ψ−2Pgδ
φ4ψ2P ∗

gδ
︸ ︷︷ ︸

Lgδ

u〉L2
gδ

= 〈ψu, ψLgδ
u〉L2

gδ
≤ ‖ψLgδu‖L2

gδ
‖ψu‖L2

gδ
= ‖Lgδ

u‖H0
gδ

‖u‖H0
gδ

.

Replacing u by L−1
gδ

u we conclude that

(3.25) cδ4‖L−1
gδ

u‖H2
gδ

≤ ‖u‖H0
gδ

.

In order to finish the proof we will use the following elliptic estimate,
which is standard except for the uniformity in δ; the proof can be found
in Appendix B.

Lemma 3.2. Under the conditions of Corollary 3.1, there exists a constant
C, independent of g and δ, such that for δ small

(3.26) ‖u‖Hk+4
gδ

≤ C
(

‖Lgδ
u‖Hk

gδ
+ ‖u‖H0

gδ

)

.

Returning to the proof of Corollary 3.1, we replace u by L−1
gδ

u in (3.26)
to obtain

(3.27) ‖L−1
gδ

u‖Hk+4
gδ

≤ C
(

‖u‖Hk
gδ

+ ‖L−1
gδ

u‖H0
gδ

)

,

and the corollary follows from (3.25). �
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Summarizing, we have proved:

Theorem 3.1. Let k ∈ N, σ > 0, c0 > 0 and s ≥ 0. There exist constants
C = C(n, s, σ, c0) > 0 and δ0 = δ0(n, s, σ, c0) > 0 such that for all (c0, k +
4, σ)-asymptotically hyperbolic metrics g, for all 0 < δ ≤ δ0 and for any u ∈
Hk+4

gδ
∩ K

⊥gδ

bδ
,

Cδ4‖u‖Hk+4
gδ

≤ ‖Lgδ
u‖Hk

gδ
.

In particular the operator Π
K

⊥gδ
bδ

Lgδ
, where Π

K
⊥gδ
bδ

denotes orthogonal projec-

tion on K
⊥gδ

bδ
in H0

gδ
, is an isomorphism from Hk+4

gδ
∩ K

⊥gδ

bδ
to Hk

gδ
∩ K

⊥gδ

bδ

such that the norm of its inverse is bounded by C−1δ−4.

At this point, we have established Step 2 of the Introduction, as well as
some elements of Step 3. We continue with further details of Step 3.

4. The gluing construction on a moving annulus

In this section we prove Theorem 1.2. We set k = � − 4. We consider confor-
mally compact asymptotically hyperbolic metrics g which asymptote, with
k + 2 derivatives, to a fixed AH metric b. We fix a small δ0 > 0 and define
the space W k+4,∞

b (M4δ0) of symmetric two tensors with k + 4 b-covariant
derivatives bounded on M4δ0 , relatively to the norm of b. Following [8], we
assume that g − b is close to zero in W k+4,∞

b (M4δ0).
Similarly to (2.7), we denote by gδ the metric on A1,4 obtained by

restricting g to Aδ,4δ, and rescaling the ρ coordinate to A1,4. Unless explicitly
specified otherwise, covariant derivatives on A1,4 are related to gδ.

As in [8], consider the map

fgδ
: ψ2φ2Hk+2

δ −→ Hk
δ ∩ K⊥

bδ

h �−→ Π{ψ−2[R(gδ + h) − R(gδ)]},

where Kbδ
= Ker P ∗

bδ
, where P ∗

bδ
is as in (2.9), and Π is the H0

δ projection
onto K⊥

bδ
, the H0

δ -orthogonal of Kbδ
; all the spaces here are spaces of tensors

on A1,4.
One should keep in mind that we are interested in h’s of the form h =

ψ2φ4P ∗u, u ∈ Hk+4
δ ∩ K⊥

bδ
, with u small in the last space.

Near h = 0 the map fgδ
is a smooth map between Hilbert spaces. We

consider now [8, Proposition G.1] with x = gδ so that fx there equals fgδ

here. One checks that f satisfies conditions (2) and (3) of [8, Proposition
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G.1] with the set A there being

(4.1) A = {gδ, 0 < δ ≤ δ0, (g − b) sufficiently small in W k+4,∞
b (M4δ0)}.

Furthermore,

Vx = ψ2φ2Hk+2
δ , Wx = Hk

δ ∩ K⊥
bδ

.

Now, fgδ
satisfies a modified version of condition (1) there: here, by Theo-

rem 3.1, we have that Dfx(0) has a right inverse ψ2φ4P ∗
gδ

L−1
gδ

bounded by
C1δ

−4, where C1 does not depend upon x ∈ A. For the sake of notational leg-
ibility, we present the argument without using the smoothing operators of [9];
the latter provide what is needed to obtain the differentiability claimed. Note
that we haven’t assumed any uniformity in δ on the modulus of the Hölder
continuity of g, as the solution will exist, and will have Hölder regularity,
without any such assumptions. Any further hypotheses about uniformity of
that modulus would be reflected in associated uniformity for the metrics
obtained by the gluing procedure, but such uniformity is irrelevant for our
purposes.

A repetition of the proof of Proposition G.1 of [8] with C1 there replaced
with C1δ

−4 yields:

Theorem 4.1. There exist constants ε > 0 and C > 0 such that for all δ
sufficiently small and for all functions f ∈ Hk

δ with

‖f‖Hk
δ

≤ εδ4,

there exists a unique h = ψ2φ4P ∗
gδ

u, with ‖ψ−2φ−2h‖Hk+2
δ

close to zero, sat-
isfying fgδ

(h) = Πf and

‖ψ−2φ−2h‖Hk+2
δ

≤ C ′‖u‖Hk+4
δ

≤ Cδ−4‖f‖Hk
δ

≤ Cε.

We will use Theorem 4.1 to glue an AH metric g, with timelike energy-
momentum vector, with a Kottler one bp(μ) , on an annulus Aδ,4δ. Let χ be
a cutoff function equal to zero on A1,2 and to one on A3,4. We define a first
glued metric on A1,4 as

(4.2) gδ,p(μ) := χgδ + (1 − χ)bδ,p(μ) .

It is clear that the metric gδ,p(μ) belongs to the set A of (4.1). Set

(4.3) f := ψ−2[R(bδ) − R(gδ,p(μ))] = ψ−2[R(bδ,p(μ)) − R(gδ,p(μ))].
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Let p0
(μ) be the momentum vector of g. We will assume that g has the

following asymptotic behaviour:

(4.4) |g − bp0
(μ)

|b + |D̊(g − bp0
(μ)

)|b + . . . + |D̊(k+2)(g − bp0
(μ)

)|b = O(ρα),

for some α > 0, to be restricted shortly; here D̊ is the covariant derivative
of b. Recall that

(4.5) |bp(μ) − b|b + |D̊bp(μ) |b + . . . + |D̊(k+2)bp(μ) |b = O(ρn).

Under (4.4) we have

|gδ,p(μ) − bδ,p0
(μ)

|bδ
+ |∇(gδ,p(μ) − bδ,p0

(μ)
)|bδ

+ . . . + |∇(k+2)(gδ,p(μ) − bδ,p0
(μ)

)|bδ

= O(δα),
(4.6)

where the norm and covariant derivatives are defined by bδ. This implies

|gδ,p(μ) − bδ,p(μ) |bδ
≤ |gδ,p(μ) − bδ,p0

(μ)
|bδ

+ |bδ,p(μ) − bδ,p0
(μ)

|bδ

= O(δα) + O(|p(μ) − p0
(μ)|δn)

= O(δα) + O(δβ+n),(4.7)

provided that p(μ) is assumed to satisfy

(4.8) |p(μ) − p0
(μ)| = O(δβ),

for some β > 0. An inequality similar to (4.7) holds for derivatives of order
up to k + 2. It follows that the function f defined in (4.3) satisfies

‖f‖Hk
δ

= O(δα) + O(δβ+n).

By Theorem 4.1 if

(4.9) α > 4, β + n > 4,

then for all δ small enough there exists a solution hδ,p(μ) to the equation

fgδ,p(μ)
(hδ,p(μ)) = Πf,

with

(4.10) ‖ψ−2φ−2hδ,p(μ)‖Hk+2
δ

= O(δα−4) + O(δβ+n−4).
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Summarizing, for all p(μ), we have constructed a solution hδ,p(μ) , modulo
kernel, to the equation

R(gδ,p(μ) + hδ,p(μ)) − R(b) = 0,

satisfying (4.10). This finishes Step 3 of the Introduction.
We now proceed to Step 4. Set

g̃δ,p(μ) = gδ,p(μ) + hδ,p(μ) .

We consider now the projection onto the kernel as follows. For all δ small,
and for all p(μ) satisfying (4.8), we define

(4.11) Iδ(p(μ)) =
1
δn

π[ψ−2(R(g̃δ,p(μ)) − R(bδ))],

where π is the H0
δ orthogonal projection onto Kbδ

. We want to show that
we can choose p(μ) such that Iδ(p(μ)) = 0. We need the following identity,
from [10]:

(4.12)
√

det g N̊(Rg − Rb) = ∂i

(

U
i(N̊)

)

+
√

det g (ρ + Q),

where

U
i(N̊) := 2

√

det g
(

N̊gi[kgj]lD̊jgkl + D[iN̊gj]kejk

)

,(4.13)

ρ := (−N̊ Ric(b)ij + D̊iD̊jN̊ − ΔbN̊bij)gikgj�ek�,(4.14)

Q := N̊(gij − bij + gikgj�ek�) Ric(b)ij + Q′.(4.15)

Brackets over a symbol denote anti-symmetrization, with an appropriate
numerical factor (1/2 in the case of two indices), and D̊ denotes the covariant
derivative operator of the metric b; note that ρ here should not be confused
with the defining function of the boundary. Here Q′ denotes an expression
that is bilinear in

e ≡ eij dxi dxj := (gij − bij) dxi dxj ,

and in D̊keij , linear in N̊ , dN̊ and Hess N̊ , with coefficients that are constants
in any ON frame for b. The key is that ρ vanishes when N̊ is in the kernel
of P ∗

b , and then Q is at least quadratic in e near e = 0. Indeed, the first
term on the right-hand side of (4.15) does not contain any terms linear in
eij when Taylor expanded at gij = bij .
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The integral of U at the boundary at infinity provides the momentum
vector, and we need to know how fast the limit is approached. The simplest
case arises when g is a Kottler metric bm with mass parameter m, so that
(see (1.2) and (1.3))

(4.16) bm =
dr2

W 2 + r2h̊, b =
dr2

W̊ 2
+ r2h̊,

where h̊ is the unit round metric on the sphere S
n−1. If {r} × S

n−1 is posi-
tively oriented, a calculation gives

(4.17)
∫

{r}×Sn−1

U
idSi = 2ωn−1(n − 1)W̊W−1m = 2ωn−1(n − 1)m + O(r−n),

where ωn−1 is the volume of S
n−1. An identical formula, with ωn−1 replaced

by thêb–volume of N , holds for the non-spherical Kottler metrics (2.5). Next,
assume that |g − b|b = O(r−α), where r is a coordinate for b as in (4.16),
and h̊ is an (r–independent) metric on the compact conformal boundary
N , with the same decay rate for first derivatives, and with R(g) = R(b).
Integrating (4.12) over [r, ∞) × N one finds, for α > n/2,

(4.18)
∫

{r}×N
U

i(V(μ)) dSi = p(μ) + O(rn−2α),

which coincides of course with (4.17) if α = n; we note that α = n is the
appropriate rate for Kottler metrics, whether boosted or not.

To calculate (4.11) explicitly, let Vδ,(μ) be a basis of Kbδ
, the vanishing

of (4.11) is then equivalent to the vanishing of the collection of integrals
Jδ(p) = (Jδ,(ν)), where p = (p(μ)) and

Jδ,(ν) :=
∫

A1,4

ψ2ψ−2(R(g̃δ,p(μ)) − R(bδ))Vδ,(ν)dμbδ
.

In order to use (4.12) we need to change the measure dμbδ
to dμg̃δ,p(μ)

, the
following estimates are useful for that:

R(g̃δ,p(μ)) − R(bδ) = O(δα) + O(δn+β),

dμbδ
=
(

1 + O(δα−4) + O(δn+β−4) + O(δn)
)

dμg̃δ,p(μ)
.
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Keeping in mind that Vδ,(ν) behaves as δ−1, and that the volume form grows
as δ1−n, this leads to

Jδ,(ν) =
∫

A1,4

ψ2ψ−2(R(g̃δ,p(μ)) − R(bδ))Vδ,(ν)dμg̃δ,p(μ)

+ O(δ2α−4−n) + O(δ2(β+n)−4−n) + O(δα) + O(δn+β)

= p0
(ν) − p(ν) + O(δ2(α−4)−n) + O(δ2(β+n−4)−n) + O(δn) + O(δ2α−n)

= δβ

(

p0
(ν) −p(ν)

δβ
+O(δ2α−8−n−β)+O(δβ+n−8)+O(δn−β)+O(δ2α−β−n)

)

.

Here the terms O(δ2(α−4)−n) and O(δ2(β+n−4)−n) in the third line arise from
the terms quadratic in (4.12) and from the first two terms in the second line;
while the terms O(δn) and O(δ2α−n) arise from the difference between the
boundary term and its limit (namely p0

(μ) − p(μ)) when δ goes to zero, cf.
(4.17) and (4.18), and also contain the last two terms in the second line. To
close the argument all error terms should go to zero as δ tends to zero, thus

(4.19) 2α − 8 − n − β > 0, β + n − 8 > 0, n − β > 0.

(Note that (4.9) does not impose any further restrictions.) This is
equivalent to

(4.20) n ≥ 5, α >
8 + n + β

2
, max(8 − n, 0) < β < n.

So β can be chosen consistently with those bounds provided that (1.4) holds.
If the kernel of P ∗

b is one dimensional, with p0
(μ) = m0, then for δ small,

using the intermediate value theorem, there exists p(0) = m in an interval
[−m0, 2m0] such that Jδ(m) = 0 = Iδ(m), proving existence of a solution.

Otherwise, under (4.20), we can use a Brouwer fixed point theorem as
in Lemma 3.18 of [8] with:

• U : a bounded open ball of centre 0 in R
n+1;

• G = Id: q(μ) �→ q(μ),

• V = U ,

• λ = 1/δ and Gλ = G1/δ = δ−βJδ(p0
(μ) + δβq(μ)),

• y = 0.
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This shows that for small δ, we can choose p(μ) so that Iδ(p(μ)) = 0, which
again proves existence of a solution.

Regularity follows from [9, Theorem 4.9]. This completes the proof of
Theorem 1.2. �

5. The gluing construction on a fixed annulus

The question addressed in Theorem 1.1 is a special case of the following: In
dimension n ≥ 3, consider an n-dimensional submanifold M ⊂ Mext, where
Mext has been defined in (1.1), with compact, connected, non-empty bound-
ary ∂M which separates Mext into two components, one of which is bounded.
We further suppose that M is included in the bounded component, and that
M is equipped with a metric g ∈ C�,λ, � > �n

2 � + 4, λ ∈ (0, 1), of constant
negative scalar curvature.

Let M1 ⊂ M be a one-sided collar neighbourhood of ∂M contained in
M , we will refer to M1 as the interior collar.

Let M2 ⊂ Mext be a one-sided collar neighbourhood of ∂M which lies in
the unbounded component of Mext, we refer to M2 as the exterior collar.

The extension problem is to find a constant scalar curvature metric on
M ∪ M2 which coincides with g on M , and which coincides with a Kottler
metric near ∂M2 � ∂M . In this case we set M ′ = M and M ′′ = M ∪ M2. In
this problem one would presumably want M2 to be small: a solution with a
small M2 provides a solution for any bigger one.

The deformation problem is to find a constant scalar curvature metric on
M which coincides with g on M � M1, and which coincides with a Kottler
metric near ∂M . In this case we set M ′ = M � M1 and M ′′ = M . Similarly
to the previous problem, one would presumably want M1 to be small.

Let p0
(μ) denote the energy-momentum vector of ∂M , defined as

(5.1) p0
(μ) =

∫

∂M
U

i(V(μ)) dSi,

with U as in (4.13), and V(μ) defined in Section 2. If (N,̂b) is the round
sphere, then p0

(μ) is a vector in R
n+1. Otherwise p0

(μ) is simply a number,
say m0.

Denote by

ψ∂M : bp(μ) �→
∫

∂M
U

i(V(μ)) dSi,

the map which to a Kottler metric bp(μ) associates the energy-moment vector
of ∂M , where U

i is calculated using (4.13) with g there replaced by bp(μ) .
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Remark 5.1. As an illustration, assume that ∂M = {r} × N for some r.
Suppose that (N,̂b) is not a round sphere, then ψ−1

∂M is a smooth diffeo-
morphism between an interval of masses around m0 and its image; this
follows immediately from the (non-spherical equivalent of the) first equality
in (4.17). The result remains true in the spherical case when one restricts
ψ∂M to the standard, unboosted Kottler metrics bm as given by (1.2).

Similarly, consider ∂M = {r} × N for some r, with (N,̂b) — a round
sphere, and assume moreover that p0

(μ) lies in the image of ψ∂M . It is then
easily seen from (4.18) that ψ−1

∂M provides a smooth diffeomorphism between
a neighbourhood of p0

(μ) and its image provided that r is large enough.
We have the following:

Theorem 5.1. Let n ≥ 3, N � � > �n
2 � + 4, λ ∈ (0, 1). Assume that the

map ψ−1
∂M is a homeomorphism of a neighbourhood of p0

(μ) and its image.
There exists ε > 0 such that if

‖g − bψ−1(p0
(μ))‖C�,λ(M) < ε,

then there exists a C�,λ metric of constant negative scalar curvature which
coincides with g on M ′, and which is a Kottler metric on the unbounded
component of Mext � ∂M away from M ′′. If g is smooth, then so is the
solution of the deformation problem.

Proof. We proceed as in [8, Section 8.6] but we use the refined versions of
Theorem 5.6 and Proposition 5.7 of [8] used there, as given by Theorems 3.1
and 4.9 of [9] (cf. Section 6.3 of [9]). The gluing is done on the collar neigh-
bourhood [0, 1] × ∂M , with g0 there being bp(μ) , K = δJ = 0, g there equal to
χg + (1 − χ)bp(μ) where χ is a cutoff function that vanishes near ∂M , which
we identify with {1} × ∂M ; finally, p(μ) is close to ψ−1

∂M (p0
(μ)). One thus

obtains a solution modulo kernel (note that for the estimates on pp. 53–54
of [8], we have to replace ρ there with R + n(n − 1)). For the kernel projec-
tion (see [8, Equation (8.24), p. 55]) we proceed as in [8, p. 55], where Q
there is replaced by p here. By Lemma 3.3 in [11] the kernel at bψ−1(p0

(μ)) is
one dimensional except in the spherical case with bψ−1(p0

(μ)) = b, so except
for this last case this is a straightforward continuity argument by varying
masses in an interval around m0. The Hölder regularity of the final metric
follows from Theorem 4.9 of [9]. �
Proof of Theorem 1.1. The result follows immediately from Theorem 5.1
and Remark 5.1 except in the spherical case with bψ−1(p0

(μ)) = b. In this last



Gluing constructions for negative scalar curvature 367

situation, the supplementary hypothesis of parity insures that all construc-
tions can be made within the class of parity symmetric metrics. The kernel
within this class is one dimensional, and the solution can be adjusted by
changing bm in the exterior region within the family of unboosted Kottler
metrics; cf. the proof of Theorem 2.1 in [7]. �

6. b-conformal deformations near infinity

Let M be a compact manifold with boundary, set M = M � ∂M , and let
ρ be a defining function for ∂M . Let b̄ be a Ck+2,α metric on M . Let h be
covariant symmetric two tensor field such that g = b + h is positive definite,
and for functions v > −1 set u = 1 + v. For δ > 0 and h ∈ Ck+2,α

δ we consider
the function Fg defined on a neighbourhood of zero in Ck+2,α

δ to Ck,α
δ as

Fg(v) = −4
n − 1
n − 2

∇k∇ku + R(g)u + n(n − 1)u(n+2)/(n−2),

where covariant derivatives are related to g = b + h, with the spaces Ck,α
δ of

tensors fields or functions as in [16]. Note that Fg(v) = 0 if and only if the
scalar curvature of u4/(n−2)g equals −n(n − 1). The map Fg is smooth near
zero and, if R(g) = −n(n − 1), the derivative at v = 0 given by

F ′
g(0)w = 4

n − 1
n − 2

(−∇k∇k + n)w.

The map F ′
g(0) is an isomorphism from Ck+2,α

δ to Ck,α
δ when δ ∈ (−1, n)

[2, Theorem 7.2.1], so in particular when δ ∈ (0, n). The implicit function
theorem then shows:

Proposition 6.1. Let k ∈ N, δ ∈ (0, n), α ∈ (0, 1), and for h̊ ∈ Ck+2,α
δ let

g̊ = b + h̊ be a metric on M as described above with constant scalar curvature
−n(n − 1). There exists ε > 0 and a constant C such that for any h ∈ Ck+2,α

δ

with norm less than ε there exists a unique v ∈ Ck+2,α
δ satisfying

Fg̊+h(v) = 0, v > −1, ‖v‖Ck+2,α
δ

≤ C‖h‖Ck+2,α
δ

,

so that the tensor field u4/(n−2)(̊g + h) defines a Riemannian metric with
constant scalar curvature −n(n − 1). The map h �→ v is smooth near zero.

Given a Riemannian metric g̊ as in the statement of Proposition 6.1, we
will use that proposition to construct metrics that are arbitrarily close to g̊
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on compact sets, and which are conformal to the background b near infin-
ity, as follows. Let 0 < δ < σ, δ < n, and let ga be the metric interpolating
between g̊ and b on the annulus Aa,4a, as in (4.2). Then ga = g̊ + ha, where
ha ∈ Ck+2,α

σ ⊂ Ck+2,α
δ , with ‖ha‖Ck+2,α

δ
going to zero when a does. Proposi-

tion 6.1 shows that for all a small enough there exists va ∈ Ck+2,α
δ satisfying

va > −1 such that the metric

(6.1) ĝa := (1 + va)4/(n−2)ga

has scalar curvature −n(n − 1), and va goes to zero in Ck+2,α
δ when a does.

In particular, va goes to zero with (k + 2, α) derivatives uniformly on any
compact subset of M .

The metric ĝa is conformal to b near the conformal boundary at infinity.
If we assume that ρ2b is smooth up to boundary at ∂M , then the conformal
factor u is polyhomogeneous at the conformal boundary [2, 3]. Further [3],
the asymptotic expansion of ua = 1 + va is identical to that of the back-
ground metric b up to terms O(ρn). This implies that ua is in fact smooth
up to boundary and, for small ρ,

(6.2) |ĝa − b|b = O(ρn).

If b has the form (1.2), with ̂b–Einstein, and if σ > n/2, then the energy-
momentum vector p(μ) of g̊ is well defined. We can then choose δ > n/2, in
which case it immediately follows from the definition of p(μ) and from (4.12)
to (4.15) that the energy-momentum vector of (1 + va)4/(n−2)ga tends to
that of g̊ as a goes to zero.

As we have seen, the construction can be done rather generally, resulting
in a small conformal deformation of the metric on compact sets. It turns
out that the deformation can be localized to the asymptotic region if one
supposes, moreover, that g̊ is not static in the asymptotic region; by this
we mean that P ∗

g̊ has no kernel on Mε for all ε small enough. Then the
deformation can be localized to the exterior region, in the sense that for any
ε > 0 we can find a constant scalar curvature metric g̃ε which coincides with
g̊ on M � Mε, with Mε as in (2.1), and which is conformal to b near the
conformal boundary. The construction goes as follows: By the arguments
in [4] there exists a sequence of annuli Aai,4ai

on which P ∗
g̊ has no kernel.

Choose ai0 < ε/4, for all a < aio
small enough let ĝa be as in (6.1), then

ĝa restricted to Aai0 ,4ai0
approaches zero in Ck+2,α. By the gluing results

of [8, 9], for k > �n
2 � + 2 and for a small enough ĝa can be deformed within

Aai0 ,4ai0
to a metric g̃ε with constant scalar curvature which coincides with
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g̊ on M � M4ai0
⊂ M � Mε, and which coincides with ĝa on Mai0

, hence
is conformal to b near the conformal boundary at infinity. In particular g̃ε

approaches b as O(ρn) by (6.2).
Summarizing, we have proved the following result, somewhat reminiscent

of [21, Proposition 4.1]:

Proposition 6.2. Let dim M = n ≥ 3, C, σ > 0, � ∈ N, � ≥ 2, α ∈ (0, 1)
and suppose that g̊ = b + h̊ is a Riemannian metric with scalar curvature
−n(n − 1) with ρ2b ∈ C l,α(M) and h̊ ∈ C l,α

σ . Then:

(1) For all ε > 0 there exists a metric g̊ε with scalar curvature −n(n − 1),
conformal to g̊ away from Mε, and conformal to b near the conformal
boundary.

(2) Furthermore g̊ε converges to g̊ in C�,α(U ) topology on any relatively
compact open subset U of M .

(3) If ρ2b is sufficiently differentiable at the conformal boundary (e.g.,
smooth), then the metrics g̊ε approach b as O(ρn) for small ρ.

(4) If b is of the form (1.2) with ̂b Einstein, and if σ > n/2, then the
energy-momentum of g̊ε approaches that of g̊ as ε tends to zero.

(5) If � > �n
2 � + 4 and if there exists ε0 > 0 such that P ∗

g̊ has no kernel on
Aε0/4,ε0

, then g̊ε can be chosen to coincide with g̊ away from Mε0, but
then the convergence of point (2) to g̊ is in C�−2,α(U ) topology only.

Appendix A. The asymptotics of P ∗

A.1. Conformally compact metrics

In this section, we study the behaviour of the operator P ∗
g , when rescaled

from Aδ,4δ to A1,4, with δ tending to zero, for conformally compact metric,
asymptotically hyperbolic in the sense of [18]. We consider on M4δ a metric
of the form

(A.1) g = ρ−2(dρ2 + ĝ(ρ)) =: ρ−2g.

This metric is conformally compact and |dρ|g = 1 at infinity, so

Ric(g) = −(n − 1)g + O(ρ),



370 Piotr T. Chruściel and Erwann Delay

where O(ρ) is a symmetric covariant two tensor with g-norm of order O(ρ)
(equivalently g-norm of order O(ρ−1)).

We study the metric on Aδ,4δ, of course this calculation is valid for g = b
with b as is (2.3) or (1.3). This can be pulled-back to A = A1,4 using the
change of variable ρ = δz to

gδ = z−2(dz2 + δ−2 δ ĝ(z)),

where δ ĝ(z) = ĝ(δz). The determinant reads

det(gδ) = z−2nδ−2(n−1) det( δ ĝ).

The non-trivial Christoffel symbols of gδ are

δΓ
z
zz = −z−1,

δΓ
z
AB = −z2

2
(−2z−3δ−2 δ ĝAB + z−2δ−2∂z

δ ĝAB),

δΓ
C
Az = δΓC

zA =
1
2
(−2z−1δC

A + δ ĝBC∂z
δ ĝAB),

δΓ
C
AB = ΓC

AB( δ ĝ) =: δ
̂ΓC

AB.

We note that ∂z
δ ĝAB(z) = δ∂ρĝAB(δz) = O(δ). The Hessian of a function u

takes the form

δ∇z∂zu = ∂2
zu + z−1∂zu,

δ∇z∂Au = ∂z∂Au + (z−1δC
A + O(δ)C

A)∂Cu,
δ∇A∂Bu = δ

̂∇A∂Bu − (z−1δ−2 δ ĝAB + O(δ−1)AB)∂zu,

thus
δ∇k

∂ku = z2∂2
zu − [(n − 2)z + O(δ)]∂zu + z2δ2δ

̂∇A
∂Au.

This gives

(P ∗
gδ

u)zz = [(n − 1)z−1 + O(δ)]∂zu − u Ric(gδ)zz − δ2δ
̂∇A

∂Au,

(P ∗
gδ

u)zA = ∂z∂Au + (z−1δC
A + O(δ)C

A)∂Cu − u Ric(gδ)zA,

(P ∗
gδ

u)AB = δ
̂∇A∂Bu − δ

̂∇C∂Cu δ ĝAB − δ−2∂2
zu δ ĝAB

+ [(n − 3)z−1δ−2 δ ĝAB + O(δ−1)AB]∂zu − u Ric(gδ)AB.

Now, recall that Ric(g) = −(n − 1)g + ρ−1T , where T is g bounded. As
g = dρ2 + ĝ(ρ) = δ2 dz2 + δ ĝ(z), we have that Tzz = O(δ2), TzA = O(δ) and
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TAB = O(1), thus the coordinate components of P ∗
gδ

u are

(P ∗
gδ

u)zz = [(n − 1)z−1 + O(δ)]∂zu + [(n − 1)z−2 + O(δ)]u − δ2 δ
̂∇A∂Au,

(P ∗
gδ

u)zA = ∂z∂Au + (z−1δC
A + O(δ)C

A)∂Cu − uO(1)zA,

(P ∗
gδ

u)AB = δ
̂∇A∂Bu − δ

̂∇C
∂Cu δ ĝAB − δ−2∂2

zu δ ĝAB

+ [(n − 3)z−1δ−2 δ ĝAB + O(δ−1)AB]∂zu

+ u(n − 1)(z−2δ−2 δ ĝAB + O(δ−1)AB).

A.2. The (C, k, σ)-asymptotically hyperbolic case

In this section we compare the behaviour of the operator P ∗
g with that of

P ∗
b , when rescaled from Aδ,4δ to A1,4, for (C, k, σ)-asymptotically hyperbolic

metrics of the form (A.1). We also give an explicit formula for P ∗
b and its

kernel for metrics of the form (2.3).
If k ∈ N, σ > 0, and g is (C, k, σ)-asymptotically hyperbolic with b of

the form (2.3), we have

Ric(g) = Ric(b) + O(ρσ) = −(n − 1)b + O(ρσ) = −(n − 1)g + O(ρσ),

where O(ρσ) is a symmetric covariant two tensor with g-norm (or b-norm)
of order O(ρσ) (equivalently g-norm of order O(ρσ−2)) .

First, we have ĝ(ρ) −̂b(ρ) = O(ρσ) and ∂ρ[ĝ −̂b](ρ) = O(ρσ−1), so that

δ ĝ(z) − δ
̂b(z) = O(δσ),

∂z[ δ ĝ − δ
̂b ](z) = δ O(δσ−1) = O(δσ).

The non-trivial Christoffel symbols of gδ are

δΓ
z
zz = −z−1 = δΓz

zz(bδ),
δΓ

z
AB = δΓz

AB(bδ) + O(δσ−2)AB,

δΓ
C
Az = δΓC

zA = δΓC
Az(bδ) + O(δσ)C

A,

δΓ
C
AB = ΓC

AB( δ ĝ) = δ
̂ΓC

AB(δ
̂b) + O(δσ)C

AB.
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Let ν be a one-form on A. To make things clear, let δ
˜∇ denote the covariant

derivative operator of the metric bδ and δ∇ the one for gδ, we have

δ∇zνz = ∂zνz + z−1νz,
δ∇zνA = δ

˜∇zνA + O(δσ)C
AνC ,

δ∇Aνz =δ
˜∇Aνz + O(δσ)C

AνC ,
δ∇AνB = δ

˜∇AνB + O(δσ−2)ABνz + O(δσ)C
ABνC ,

where the error terms are measured with any fixed metric on the compact
set A, e.g. dz2 +̂b(0).

If ν = du, then

δ∇z∂zu = ∂2
zu + z−1∂zu = δ

˜∇z∂zu,
δ∇z∂Au = δ

˜∇z∂Au + O(δσ)C
A∂Cu,

δ∇A∂Bu = δ
˜∇A∂Bu + O(δσ−2)AB∂zu + O(δσ)C

AB∂Cu,

thus

δ∇k∂ku = δ
˜∇k∂ku + O(δσ)∂zu + O(δσ+2)AB δ ̂

˜∇B∂Au + O(δσ+2)C∂Cu.

We obtain for the components of P ∗
gδ

u:

(P ∗
gδ

u)zz = (P ∗
bδ

u)zz + O(δσ)∂zu + O(δσ)u,

+ O(δσ+2)AB δ ̂
˜∇B∂Au + O(δσ+2)C∂Cu

(P ∗
gδ

u)zA = (P ∗
bδ

u)zA + O(δσ)C
A∂Cu + O(δσ−1)Au,

(P ∗
gδ

u)AB = (P ∗
bδ

u)AB + O(δσ−2)AB∂zu + O(δσ)C
B

δ ̂
˜∇C∂Au

+ O(δσ)C
AB∂Cu + O(δσ−2)ABu.

Next, we compute the explicit expression of P ∗
bδ

for a metric of the form
(2.3). In that case we have

δ
̂b(z) =

[

1 − k

(

δz

2

)2
]2

̂b,

then

∂z(δ
̂b)(z) = −kδ2z

[

1 − k

(

δz

2

)2
]

̂b.
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The non-trivial Christoffel symbols of bδ are

δΓz
zz = −z−1,

δΓz
AB = δ−2z−1

[

1 − k

(

δz

2

)2
][

1 + k

(

δz

2

)2
]

̂bAB,

δΓC
Az = −z−1

[

1 − k

(

δz

2

)2
]−1 [

1 + k

(

δz

2

)2
]

δC
A ,

δΓC
AB = ΓC

AB(̂b).

We thus obtain for the components of the Hessian of u:

δ
˜∇z∂zu = ∂2

zu + z−1∂zu

δ
˜∇z∂Au = ∂z∂Au + z−1

[

1 − k

(

δz

2

)2
]−1 [

1 + k

(

δz

2

)2
]

∂Au,

δ
˜∇A∂Bu = ̂∇A∂Bu − δ−2z−1

[

1 − k

(

δz

2

)2
][

1 + k

(

δz

2

)2
]

̂bAB ∂zu,

thus

δ
˜∇k∂ku = z2∂2

zu +

⎧

⎨

⎩

1 − (n − 1)

[

1 − k

(

δz

2

)2
]−1 [

1 + k

(

δz

2

)2
]

⎫

⎬

⎭

z∂zu

+ z2δ2

[

1 − k

(

δz

2

)2
]−2

̂∇A∂Au.

One checks that Ric(b) = −(n − 1)b, which implies

Ric(bδ) = −(n − 1)bδ.

We obtain for the components of P ∗
bδ

u:

(P ∗
bδ

u)zz = (n − 1)

⎧

⎨

⎩

[

1 − k

(

δz

2

)2
]−1 [

1 + k

(

δz

2

)2
]

z−1∂zu + z−2u

− 1
n − 1

δ2

[

1 − k

(

δz

2

)2
]−2

̂∇A∂Au

⎫

⎬

⎭

,
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(P ∗
bδ

u)zA = ∂z∂Au + z−1

[

1 − k

(

δz

2

)2
]−1 [

1 + k

(

δz

2

)2
]

∂Au,

(P ∗
bδ

u)AB = ̂∇A∂Bu − ̂∇C∂Cu ̂bAB − δ−2z−2

[

1 − k

(

δz

2

)2
]2{

z2∂2
zu

+ z

(

1 − (n − 2)
1 + k

(

δz
2

)2

1 − k
(

δz
2

)2

)

∂zu − (n − 1)u

}

̂bAB.

Now, a function u is in the kernel of P ∗
bδ

if and only if

δ∇∂u = u bδ.

One checks that

u0 = z−1

[

1 + k

(

δz

2

)2
]

,

is indeed in this kernel. Further, if v is a non-trivial solution of the Obata-
type equation

̂∇A∂Bv = −kv ̂bAB

on the boundary at infinity, then the function

u = vz−1

[

1 − k

(

δz

2

)2
]

satisfies (P ∗
bδ

u)zz = (P ∗
bδ

u)zA = 0, with ((P ∗
bδ

u)AB = 0 if and only if k = 1).
Finally, it is an easy exercise to show that these functions generate the
kernel of P ∗

bδ
. Here one can use the well-known fact that the kernel of P ∗

has dimension at most n + 1 (see, e.g., [12]).

Appendix B. Proof of Lemma 3.2

Throughout this appendix we write Aδ for Aδ,4δ and A for A1,4; we hope that
the clash of notation with the A-spaces occasionally used elsewhere will not
confuse the reader. We start by scaling Aδ to A = (1, 4) × ∂M . Recall that
the weight function φ = y2 on A relevant for the calculation at hand equals
(z − 1)2(z − 4)2/9, where z runs along the (1, 4) factor of A. The argument
that follows actually applies to any non-negative function φ = φ(z) which
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vanishes precisely at the boundary of A and satisfies

φ(1) = φ(4) = φ′(1) = φ′(4) = 0, φ′′(1) > 0, φ′′(4) > 0.

The idea of the proof is to cover (1, 4) by intervals Ii, with sizes chosen
so that on each interval the ratio supφ/ inf φ is bounded independently of i.
Furthermore, the size of each interval should be of the order of the value of
φ on the interval, to ensure good scaling properties. We then use interior
elliptic estimates after a cube decomposition of Ii × ∂M ; this requires a
second family of thickened intervals ̂Ii, with properties similar to the ones
satisfied by the Ii’s. Summing over the cubes provides the desired estimate,
after having ensured that the ̂Ii’s do not overlap too much. We note that
the scalings in z and θA are different; the former is tailored to account for
the degeneracy in the “radial” z-direction, measured by φ, and the latter
accounting for the φδ-dependent degeneracy in the “angular” θA-direction.

So we divide (1, 4) into intervals

(B.1) Ik ⊂ ̂Ik ⊂ (1, 4), ∪kIk = (1, 4),

as follows: There exists 1 < z1 < 5/2 such that φ : [1, z1] → R
+ is strictly

increasing. Choose a > 0 small enough so that

z − 2aφ(z) > 1 on (1, z1] and z1 + a(φ(z1)) ≤ 4.

Define zi by induction using

zi+1 = zi − aφ(zi),

thus 1 < zi+1 < zi, and limi→∞ zi = 1. For any function f ∈ L1(A) we thus
have

(B.2)
∫

[1,z1]×∂M
f =

∑

i

∫

[zi+1,zi]×∂M
f.

We want to show that there exists a constant C such that for all a small
enough and for all positive integrable functions f we have

(B.3)
∑

i

∫

[zi−2aφ(zi),zi+aφ(zi)]×∂M
f ≤ C

∫

[1,4]×∂M
f.
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In order to do that we need to count how many of the intervals [zi −
2aφ(zi), zi + aφ(zi)] overlap. Letting b := aφ′′(1)/2, one easily finds

zi − 2aφ(zi) − 1 = (zi − 1)
(

1 − 2b(zi − 1)
)

+ O
(

(zi − 1)3
)

,

zi+k − 1 = (zi − 1)
(

1 − kb(zi − 1)
)

+ O
(

(zi − 1)3
)

,

zi+k + aφ(zi+k) − 1 = (zi − 1)
(

1 − (k − 1)b(zi − 1)
)

+ O
(

(zi − 1)3
)

,

where the error terms in the second and third equations depend upon k.
Choosing k = 4, it follows that

zi+k + aφ(zi+k) < zi − 2aφ(zi)

for all i large enough. So for i large enough [zi − 2aφ(zi), zi + aφ(zi)] will
intersect at most six such other intervals, and (B.3) with a constant C ≥
6 follows.

An obvious modification of the above construction, decreasing a if nec-
essary, will lead to a sequence z′

k → 4 satisfying

5/2 < z′
1 ≤ z′

i = z′
i+1 − aφ(z′

i+1) < z′
i+1 < 4,

with, for f ∈ L1(A),

(B.4)
∫

[z′
1,4]×∂M

f =
∑

i

∫

[z′
i,z

′
i+1]×∂M

f,

and if moreover f is positive then

(B.5)
∑

i

∫

[z′
i−2aφ(z′

i),z′
i+aφ(z′

i)]×∂M
f ≤ C

∫

[1,4]×∂M
f.

Letting {Ik}k∈N be the collection, without repetitions, of the intervals

{[z1, z
′
1]

︸ ︷︷ ︸

=:I1

, [zi+1, zi], [z′
j , z

′
j+1]}i,j∈N∗ ,

and letting {̂Ik}k∈N be the collection, without repetitions, of the intervals

{[z1 − aφ(z′
1), z

′
1 + aφ(z′

1)]
︸ ︷︷ ︸

=:̂I1

, [zi − 2aφ(zi), zi + aφ(zi)],

[z′
j − 2aφ(z′

j), z
′
j + aφ(z′

j)]}i,j∈N∗ ,



Gluing constructions for negative scalar curvature 377

we obtain (B.1) together with

∫

[1,4]×∂M
f =

∑

k

∫

Ik×∂M
f,(B.6)

C−1
∫

[1,4]×∂M
f ≤

∑

k

∫

̂Ik×∂M
f ≤ C

∫

[1,4]×∂M
f,(B.7)

for positive f ∈ L1(A). We set

z̃k = sup Ik.

The above construction provides a δ-independent decomposition of A
into stripes Ik × ∂M , the size of which in the z-direction is comparable to
φ(z) for any (z, v) ∈ Ik × ∂M ; similarly, the sizes of ̂Ik × ∂M are comparable
to φ(z) for any (z, v) ∈ ̂Ik × ∂M . Mapping A to Aδ provides an associated
decomposition of Aδ into stripes Iδ

k × ∂M with sizes uniformly comparable
to φ(ρ/δ) for any (ρ, v) ∈ Iδ

k × ∂M ; similarly for ̂Iδ
k × ∂M .

We continue with a δ-dependent, and stripe dependent, cube decom-
position of ∂M , as follows: Let {(Oi, ψi)}i=1,...,N be a covering of M by
coordinate charts with each coordinate system ψ−1

i mapping Oi smoothly
and diffeomorphically to a neighbourhood of [0, 1]n−1; the local coordinates
on [0, 1]n−1 will be denoted by θA. We further assume that ∪ψi([0, 1]n−1)
covers ∂M as well. Let ϕi be an associated decomposition of unity, thus
∑

i ϕi = 1. Setting fi = (ϕif) ◦ ψi, for any integrable function f we have

∫

[1,4]×∂M
f =

N
∑

i=1

∫

[1,4]×[0,1]n−1

fi.

Given δ satisfying 0 < δ < 1/ sup[1,4] φ and given an interval Ik define
m = m(k, δ) ∈ N by the inequality

(B.8)
1

m + 1
≤ φ(z̃k)δ <

1
m

.

Let {Kj} be the collection of closed (n − 1)-cubes, with pairwise disjoint
interiors, and with edges of size 1/m, covering [0, 1]n−1. For any Kj let ̂Kj

be the union of those cubes Ki which have non-empty intersection with Kj .
Note that there exists a number ̂N(n) such that ̂Kj consists of at most ̂N(n)



378 Piotr T. Chruściel and Erwann Delay

cubes Ki. It follows that for any integrable function fi we have
∫

[1,4]×[0,1]n−1

fi =
∑

k

∫

[1,4]×Kk

fi,

and if fi ≥ 0 then
∫

[1,4]×[0,1]n−1

fi ≤
∑

k

∫

[1,4]× ̂Kk

fi ≤ ̂N(n)
∫

[1,4]×[0,1]n−1

fi.

We are ready now to pass to the heart of our argument. Let {U�}�∈N be
the collection, without repetitions, of the sets

{Ik × ψi(Kj)}k∈N,i=1,...,N,j=0,...,mn−1 .

Similarly let { ̂U �}�∈N be the collection, without repetitions, of the sets

{ ̂Ik × ψi( ̂Kj)}k∈N, i=1,...,N, j=0,...,mn−1 .

From what has been said we have, for any positive integrable function f ,
∫

[1,4]×∂M
f ≤

∑

�

∫

U�

f ≤ N

∫

[1,4]×∂M
f,

∫

[1,4]×∂M
f ≤

∑

�

∫

̂U �

f ≤ N ̂N(n)
∫

[1,4]×∂M
f.

If U� = Ik × ψi(Kj) set φ� = φ(z̃k). Scale the local coordinates (z, θA)
in ̂U � as

(z, θA) �→ (z/φ�, mθA).

Up to translations, this maps all U� ⊂ ̂U �’s to fixed cubes

U� −→ [0, a] × [0, 1]n ⊂ [−a, 2a] × [−1, 2]n ←− ̂U �,

except for those which correspond to I1 × ψi(Kj), which are mapped to

U� −→ [0, a(z′
1 − z1)/φ(z′

1)] × [0, 1]n

⊂ [−a, a + a(z′
1 − z1)/φ(z′

1)] × [−1, 2]n ←− ̂U �,

By construction there exists a constant C > 0, independent of i, such that
we have

sup
Ii×∂M

φ ≤ C inf
Ii×∂M

φ, sup
̂Ii×∂M

φ ≤ C inf
̂Ii×∂M

φ,
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hence the same is true on each U� and ̂U �. Let ψ = e−s/2y; it is shown at
the end of [8, Appendix B] that one also has

sup
Ii×∂M

ψ ≤ C inf
Ii×∂M

ψ, sup
̂Ii×∂M

ψ ≤ C inf
̂Ii×∂M

ψ

(with perhaps a different constant C), and again such �-independent inequal-
ities hold on the U�’s and ̂U �’s. At this stage in is important to realize that

Lgδ
= B(φ∂z, φδ∂θA),

where B is uniformly elliptic of order 4 (see Equation (A.4) in [8]) on the
relevant cubes. We can also write

gδ = z−2(dz2 + δ2ĝAB(δz)dθAdθB) = z−2(dz2 + ĝAB(δz)d(δθ)Ad(δθ)B).

It then follows from the usual elliptic interior estimates [19, p. 246] for
the operator B and scaling that (here g = gδ)

∑

i≤k+4

∫

U�

ψ2φ2i|∇(i)u|2g ≤ C

(

∑

i≤k

∫

̂U �

ψ2φ2i|∇(i)Lu|2g +
∫

̂U �

ψ2|u|2
)

,

where C does not depend upon δ nor g close to b.
Summing over �, Lemma 3.2 follows.

Acknowledgments

We are grateful to two anonymous referees for suggesting many improve-
ments to the original version of this paper.

References

[1] L. Andersson, M. Cai and G.J. Galloway, Rigidity and positivity of mass
for asymptotically hyperbolic manifolds, Ann. Henri Poincaré 9 (2008),
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H. Poincaré 6 (2005), 155–194, arXiv:gr-qc/0403042, MR MR2121280
(2005m:83013).

[5] D. Birmingham, Topological black holes in anti-de Sitter space, Class.
Quantum Grav. 16 (1999), 1197–1205, arXiv:hep-th/9808032, MR
MR1696149 (2000c:83062).
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