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The edge of the wedge theorem for separately
holomorphic functions with singularities

Luca Baracco and Giuseppe Zampieri

For a function that is defined and continuous on R
n except from a

C1-hypersurface V ⊂ R
n and that extends as a holomorphic func-

tion separately in each complex direction zj = xj + iyj to yj > 0,
jointly continuous up to R

n \ V , we prove simultaneous holomor-
phic extension to the domain {z = x + iy ∈ C

n : yj > 0 for any j}
provided that the conormal v = vx to V at any x∈V satisfies vj > 0
(or vj < 0) for any j. This is a generalization of the Ajrapetyan–
Henkin “edge of the wedge theorem” [2] where singularities are
not allowed that is V = ∅. Our statement has also a local vari-
ant and, moreover, applies to functions that are defined, when
yj = 0 for any j, only on one side of V . There is a great amount of
work that has been done on the problem of joint analyticity of sepa-
rately holomorphic functions based on the method of the “pluripo-
tential theory” whose use was initiated by Siciak. In absence of
singularities, that is for V = ∅, we quote among others [5,16–19]; in
case of V �= ∅ analytic, we refer to [10,14]. Also, the above extension
principle, in its formulation with a set of singularities V , has inter-
esting applications to the range characterization of the exponential
Radon transform (cf. [1, 8, 12]).

1. Introduction

The classical “edge of the wedge theorem” by Ajrapetyan–Henkin states
that a continuous function f on R

n that extends holomorphically in each
zj = xj + iyj to yj > 0, jointly continuous up to yj = 0, extends in fact to the
(convex) wedge of C

n defined by yj > 0 for any j. We generalize this state-
ment in the following sense. Let V ⊂ C

n be a real C1 hypersurface of C
n and

f be a continuous function in R
n \ V that extends holomorphically in each

zj to yj > 0 continuous up to yj = 0 for any j on R
n \ V . Then f extends to

the quadrant defined by yj > 0 for any j if we assume that the conormal v to
V at any point of V satisfies vj > 0 (or vj < 0) for any j. There is also a local
variant of the classical edge of the wedge theorem. For suitable constants
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c1, c2, if f is defined in the ball B(x, c1ε) of center x and radius c1ε and
extends holomorphically in each zj to {yj : 0 < yj < c2ε}, continuous up to
yj = 0 for any j, then f extends to {z : x ∈ B(x, ε),

∑n
j=1 yj < ε, yj > 0}.

(Indeed we can take c2 = n + 1.) Let Ω be a domain of R
n with C1 bound-

ary. We prove that if over a compact subset of the boundary K ⊂⊂ ∂Ω all
conormals v to Ω satisfy vj > 0 (or vj < 0) for any j, then for suitable c1
c2 and ε0, for any ε < ε0, and for any point x ∈ K, f extends holomorphi-
cally to {z = x + iy : x ∈ Ω ∩ B(x, ε),

∑n
j=1 yj < ε} when it is supposed to

be continuous up to yj = 0 for any j only on Ω ∩ B(x, c1ε) instead of the
whole B(x, c1ε).

There is a wide literature about separate analyticity and the so-called
“Hartogs phenomenon.” The most common approach is based on the “pluri-
potential theory” due to Siciak [17,18] whose original idea goes back to the
celebrated Phragmén–Lindelöf principle or the Bochner’s tube theorem (see,
e.g., [13] for a local version). The general purpose is to describe the envelop of
holomorphy X̂ of a set of the type X = (D1 × A2 × A3 × · · · ) ∪ (A1 × D2 ×
A3 × · · · ) ∪ . . . where the Dj ’s are domains of C and the Aj ’s are “polar”
subsets that is 0-sets of subharmonic functions ϕj with Dj defined by ϕj < 1:
the envelop X̂ is the set described by

∑
j ϕj < 1. In this context, we refer

to the papers by Bernstein [5], Siciak [16, 17], Zaharjuta [19], Nguyen and
Zeriahi [11]. These results were further extended to some cases of non-polar
sets Aj by Shiffman [15]. Also, there are some variants of the above extension
problem in which f is defined outside an analytic subset V of X: f is then
holomorphic in X̂ \ V C where V C denotes the complexification of V . This
result is stated in [16] in case V is the 0 set of a polynomial P and was
further extended by Jarnicki and Pflug [10] and Pflug and Nguyen [14] for
general analytic sets V .

In the applications, of primary interest is the simple case of X =
((R × C) ∪ (C × R)) \ Δ where Δ is the diagonal of R

2 for which our the-
ory provides a particularly simple and geometrically meaningful proof. This
situation was treated by Aguilar, et al. [1], Ehrenpreis [8] and Öktem [12],
and more recently by Baracco [3]. By the holomorphic extension property
which applies to this situation, one sees (cf. the subsequent Appendix) that
a function on R

2 \ Bμ, the complement of the ball of radius μ, which is
separately entire when restricted to any ray tangent to ∂Bμ, is indeed an
entire function on C

2. From this statement one gets a beautiful characteri-
zation of the range of the Radon transform of C∞

c functions in R
2. This is

described as the collection of all functions separately entire in the above
sense and which have in addition the Paley–Wiener exponential growth
estimates.
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2. The generalization of the “edge of the wedge” Theorem

We use the following notations

Γε = ((0, ε) × {0} × · · · ) ∪ ({0} × (0, ε) × {0} × · · · ) ∪ · · ·(2.1)

Γ̂ε = the convex hull of Γε(2.2)

Let Ω be a domain of R
n with C1 boundary. We assume in the first part of

our discussion that Ω seats on one side of its boundary. For a point x ∈ ∂Ω,
we denote by v = vx the conormal to Ω at x.

Theorem 2.1. Let K be a compact subset of ∂Ω and assume that vx ∈ ±Γ̂
for any x ∈ K. There are then ε0, c1, c2 such that for any ε < ε0, for any
x ∈ K and for any continuous function f on Ω ∩ B(x, c1ε) which extends
as a separately holomorphic function to B(x, c1ε) + iΓc2ε, continuous up to
Ω ∩ B(x, c1ε), extends holomorphically to (Ω ∩ B(x, ε)) + iΓ̂ε.

The proof will be given in Section 3. We make now some remarks and
discuss some applications and complements.

Remark 2.1. By the classical edge of the wedge theorem of [2], f first
extends to a neighborhood of Ω ∩ B(x, c1ε) in the sector {yj > 0 for any j};
next, by the theorem of Hanges–Treves [9], this extension propagates along
the zj-planes to a neighborhood of B(x, c1ε) + iΓc2ε in the sector {z ∈ C

n :
yj > 0 for any j}. The initial extension described above is founded on a
construction of a family of discs of the type of our subsequent proof in
addition to the approximation theorem by Baouendi–Treves [4]. Our result
consists in starting from this initial domain of holomorphic extension and
in improving it to the final domain (Ω ∩ B(x, ε)) + iΓ̂ε. Its proof is com-
pletely self-contained; also, it relies on the continuity principle instead of
the approximation theorem.

Remark 2.2. The proof of Theorem 2.1 shows that if for any x ∈ ∂Ω the
conormal vx is contained in a proper subcone of Γ̂, there are then ε0, c1, c2
such that separately holomorphic functions on B(x, c1ε) + iΓc2ε (with x ∈ ∂Ω
and ε < ε0), continuous up to Ω ∩ B(x, c1ε), extend to (Ω ∩ B(x, ε)) + iΓ̂ε.

In the statements which follow we can allow any size in the y-plane for the
sets of holomorphic extension. Also, the shrinking in some parameters is not
related to the geometry of Ω. Hence we disregard it and denote by a common
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notation Γ or Γ̂ the cones as in (2.1) and (2.2) without specifying their
truncatures. These cones can possibly be infinite, that is, non-truncated.

Theorem 2.2. Let Ω be a domain of R
n with C1-boundary such that for

any x ∈ ∂Ω the conormal v = vx satisfies v ∈ ±Γ̂. Then any separately holo-
morphic function f on R

n + iΓ̇, continuous up to Ω extends holomorphically
to Ω + iΓ̂.

The proof follows in Section 3. Remark that in case ∂Ω is an ana-
lytic hypersurface V defined, say, by l(x) = 0, the hypothesis v ∈ ±Γ̂ yields
V C ∩ (Ω + iΓ̂) = ∅. The above condition is clearly necessary for the func-
tion f(z) = 1

l(z) , singular along V C, not to be in contrast with Theorem 2.2.
Note that in the above statement the condition about the conormal must
hold all along ∂Ω; in particular, Ω must be unbounded.

We change a little from now on our setting and assume that Ω = R
n \ V

for a C1-hypersurface V of R
n. We denote by M the hypersurface of C

n

defined by M = V + iRn. We recall that M is said to be “minimal” at any
of its points (in the sense of Trepreau and Tumanov) when it does not
contain any germ of complex hypersurface. We also recall that this situation
characterizes the property that holomorphic functions extend from one of
the two sides of M to a full neighborhood of any of its boundary points.
We begin by proving that the case when M is non-minimal is exceptional
according to the following statement which can be found in the literature,
e.g., in [7].

Proposition 2.1. Let γ be an open complex hypersurface in M , and denote
by π : C

n → R
n z 	→ x the projection. Then γ is a complex hyperplane and

π(γ) is an open piece of V .

Proof. Let T CM = TM ∩ iTM be the complex tangent bundle to M and
note that due to the special choice of M , we have for any zo = xo + iyo ∈ M :

(2.3) T C
zo

M = TxoV + iTxoV.

A CR curve on M is an integral curve of a section of T CM and a CR orbit
is a union of piecewise C1 smooth CR curves. Note that γ is necessarily a
CR orbit whence in particular any CR curve isssued from its points must
lie in γ. Also, for zo ∈ γ, we must have

Tzoγ = T C
zo

M

= TxoV + iTxoV
(2.4)
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due to (2.3). But for any fixed y ∈ TxoV the line zo + ity for t ∈ R is a CR
curve and therefore it is contained in γ. It follows that γ (resp. V ) is a
complex (resp. real) plane and indeed γ = TxoV + iTxoV (resp. V = TxoV in
a neighborhood of xo). �

Note that at any point zo in the closure of γ, but not in γ, M is minimal.
Otherwise there should exist a germ of a complex hypersurface through zo
which would necessarily glue with γ.

Theorem 2.3. (i) Let K be a compact subset of V and assume that vx ∈
±Γ̂ for any x ∈ K. Then there are ε0, c1, c2 such that for any ε < ε0, for
any x ∈ K and for any continuous function f on (Rn \ V ) ∩ B(x, c1ε) which
extends as a separately holomorphic function to B(x, c1ε) + iΓc2ε, continuous
up to (Rn \ V ) ∩ B(x, c1ε), extends holomorphically to B(x, ε) + iΓ̂ε.

(ii) Let vx ∈ ±Γ̂ for any x ∈ V . Then any f separately holomorphic in
R

n + iΓ, continuous up to R
n \ V , extends to R

n + iΓ̂, continuous
up to R

n \ V .

Proof. The proof for the two cases, local and global, is the same so we do
not distinguish the related notations. We first extend f to (Rn \ V ) + iΓ̂
by the aid of Theorem 2.2. Next, we can have two possibilities. The hyper-
surface V + iRn is minimal; hence f extends from one side of V + iΓ̂ and
since it extends from both sides at V + iΓ, then f extends to R

n + iΓ̂.
The alternative is that V is a real plane defined, say, by l(x) = 0. Hence V +
iΓ̂ is foliated by the complex planes defined by l(z) = it for t ∈ R which all
intersect V + iΓ. Thus holomorphicity at V + iΓ propagates all
over V + iΓ̂. �

We further specialize our discussion and consider functions which extend
as separately holomorphic to both sides yj > 0 and yj < 0. We use the
notations

Σ := (R × {0} × · · · ) ∪ ({0} × R × {0} × · · · ) ∪ · · · , Σ̇ = Σ \ {0}.

From now on all our proofs and statements are the same for the local and the
global cases so we do not distinguish the related notations. In particular, Σ
will be truncated or not without specification. By collecting the conclusions
of Theorem 2.1 slightly modified, with those of Proposition 2.1, we get the
following statement which is largely contained in [3].
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Theorem 2.4. Assume that

(2.5) for any x /∈ V there is a “quadrant”, say Γ̂, s.t. (x + Γ̂) ∩ V = ∅.

Then any function f on R
n \ V which extends holomorphically to (Rn \ V ) +

iΣ extends in fact to the whole C
n unless V is a plane in which case f extends

to C
n \ V C.

Proof. First, we extend f to (Rn \ V ) + iRn. In fact, because of our assump-
tion (2.5), we can adapt the proof of Theorem 2.1 and manage to handle
the points y not only for y ∈ ±Γ̂ but for all occurrences y ∈ R

n. (It is easy
to make the right choice of the ηj ’s according to all possible occurrences of
signs.)

Next, there may be two possibilities. Either V + iRn is minimal and
therefore f extends from one side of M = V + iRn and since it extends from
both sides at V + iΣ̇, then it extends in fact from both sides all over M . The
other case, according to Proposition 2.1, is that V is a real plane defined, say,
by l(x) = 0. Then M is foliated by the family of complex planes with param-
eter t defined by l(z) = it and these have non-empty intersection with V + iΣ̇
apart from the plane V C itself (which corresponds to the choice t = 0). Since
f was already known to be holomorphic on V + iΣ̇, the theorem follows. �

3. Proof of Theorems 2.1 and 2.2

We denote by z the variable in C
n and by ζ or τ that in C. We denote by Δ

the unit disc in C and by ∂Δ its boundary parametrized by eiθ or eiϕ for θ
and ϕ in [0, 2π]. For a function η on [0, 2π] or ∂Δ, we write equivalently η(θ)
or η(ζ) under the above identification. For a real function η, we define the
Hilbert transform Tη as the function on ∂Δ, determined up to real constants,
such that η + iTη extends holomorphically from ∂Δ to Δ. We define

χϕ(θ) =
sin(ϕ − θ)

2π(1 − cos(ϕ − θ))
.

It is easy to prove that, for τ = eiϕ and ζ = eiθ we have

Tη(τ) = Im
(

1
2πi

∫

+∂Δ

ζ + τ

ζ − τ
η(ζ)

dζ

ζ

)

= Im
(

1
2π

∫ 2π

0

eiθ + eiϕ

eiθ − eiϕ η(θ) dθ

)

=
∫ 2π

0
χϕ(θ)η(θ) dθ.

(3.1)
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Note that the harmonic extension of Tη from ∂Δ to Δ is explicitly described
by the first line of (3.1). In particular

(3.2) Tη(0) = 0.

We also point out an important feature of χ that will play an essential role
in the following:

(3.3) χϕ(θ) =
1

π(θ − ϕ)
+ O(|θ − ϕ|).

We denote by C1,α(∂Δ) for 0 < α < 1 the space of functions whose first
derivatives are α-Hölder continuous. It is well known (cf. [6]) that T is
a bounded operator when acting on C1,α (the fractional regularity being
essential for this conclusion).

For a point x in R
n, we consider the discs

Ax = x + A(τ) with A : Δ̄ → C
n, A(τ) = x(τ) + iy(τ), x(0) = 0

these are analytic in Δ and C1,α up to ∂Δ. We denote by the same symbol
Ax both the parametrization maps and their ranges.

Proof of Theorem 2.1. It suffices to prove that we may find ε0, c1, c2, depen-
ding on K ⊂⊂ ∂Ω such that for x ∈ K and for x′ ∈ Ω ∩ B(x, ε) with ε < ε0,
there exists a family of discs Ax′ which satisfy the following claims:

(i) Each disc Ax′ is “attached” to S := (Ω ∩ B(x, c1ε)) ∪ (B(x, c1ε) +
iΓc2ε) in the sense that Ax′(∂Δ) ⊂ S.

(ii) The set of centers {Ax′(0)} fills a region which contains x′ + iΓ̂ε.

(iii) Each disc Ax′ can be contracted to the “limit” disc {x′} through a
family of attached discs.

If we succeed in proving these claims, then the conclusion follows at once. In
fact, let f be as in the statement of Theorem 2.1. We recall from Remark 2.1
that f extends holomorphically to an initial domain, a neighborhood of S
intersected with the sector {z ∈ C

n : yj > 0 for any j}. Since each disc Ax′

is contractible to x′ ∈ Ω, and has its boundary in S, then if we perturb a
little this family by pushing it inside the sector {z ∈ C

n : yj > 0 for any j},
we conclude, by the continuity principle, that f extends from the boundaries
to the whole discs, hence to the region x′ + iΓ̂ε swept out by their centers.
Thus, let us prove the three above claims. We recall that we are denoting by
v = vx the normal to Ω at x; we fix a choice of its orientation and assume
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that it points inward Ω. We assume throughout the proof that v ∈ Γ̂ (the
symmetric case v ∈ −Γ̂ being treated similarly). We note that for ε and ε′

small enough we have

(3.4) |x′ − x| < ε, x′′ · vx ≥ ε′|x′′|, |x′′| < ε′ implies x′ + x′′ ∈ Ω.

We take λj ≥ 0 with
∑

j λj ≤ ε and give an increasing order to the numbers
λjvj ; to fix notations we assume

(3.5) λ1v1 ≤ λ2v2 ≤ · · · ≤ λnvn.

We decompose the interval [0, 2π] in n intervals by setting ϕ0 = 0, ϕj =
jπ

2(n−1) for j ≤ n − 1 , ϕn = 2π and finally define Ij = [ϕj−1, ϕj ]. We recall

the kernel χϕ(θ) = sin(ϕ−θ)
2π(1−cos(ϕ−θ)) ; we note that

(3.6) χϕj
(θ) < 0 for any j = 0, . . . , n − 1 and for any θ ∈

(π

2
, π

)
.

(To treat the case v ∈ −Γ̂ we have to notice, instead of (3.6), that

(3.7) χϕj
(θ) > 0 for any j = 0, . . . , n − 1 and for any θ ∈

(3
2π, 2π

)
.)

We choose positive real smooth functions ηj such that

supp(ηj) ⊂ [ϕj−1, ϕj ](3.8)

ηj ∈ C1,α and ηj = 0 exactly at θ = ϕj−1, ϕj .(3.9)
1
2π

∫ ϕj

ϕj−1

ηj dθ = 1 for any j ≤ n − 1,

1
2π

∫ π

π

2

ηn dθ = 1 − ε′,
1
2π

∫ 2π

π
ηn dθ = ε′.

(3.10)

ηj ≤ c2.(3.11)

Clearly we have η′
j = 0 at θ = ϕj−1, ϕj . Note here that to have (3.10) fulfilled

by any ηj for j = 1, . . . , n − 1, we need in (3.11) a constant c2 = c2(n) >
4(n − 1) (in particular this constant goes to +∞ as n → +∞) whereas ηn

may be estimated by a fixed constant c2 > 4. It is also clear that

(3.12) |Tηj(θ)| < c1 for any j and for any θ ∈ [0, 2π].

Again, |Tηj | < c1(n) for any j = 1, . . . , n − 1 with c1(n) → +∞ whereas
|Tηn| < c1 for c1 fixed. We further specify our choice of the ηi’s. We remark
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that Tηi(ϕj) is > 0 or < 0 according to j ≥ i or j < i; this is obvious when
i < n or i = n and j < 0. As for the case i = n, j = 0, we just have to take∫ 2π
π ηn dθ small. In particular, we then have Tηi(ϕ0) < 0 for any i. If η1 has

been chosen, we take η2 that satisfies the above requirements and also such
that Tη1(ϕ2) < −Tη2(ϕ2) − ε′. We then proceed by induction. If η1, . . . , ηj

have been taken, we choose ηj+1 such that

(3.13)
∑

i≤j

Tηi(ϕj+1) < −Tηj+1(ϕj+1) − ε′.

In other terms
∑

i≤j+1 Tηi(ϕj) < −ε′ and so for the full family of the ηi’s we
have

∑
i≤n Tηi(ϕj) < −ε′ for any j = 0, . . . , n − 1 due to Tηi(ϕj) < 0 for any

i ≥ j + 1. (In case v ∈ −Γ̂, we have to make a different choice of the ηi’s.
First, we have to take ηn satisfying, instead of (3.10), 1

2π

∫ 2π
3
2
π ηn dθ = 1 − ε′,

1
2π

∫ 3
2
π

π

2
ηn dθ = ε′. Next, we note that Tηi(ϕn−1) > 0 for any i. Thus, if

ηn−1 has already been taken, we choose ηn−2 such that Tηn−2(ϕn−2) >
Tηn−1(ϕn−2) + ε′. Reasoning by induction as above, we end up with a family
of ηi’s which satisfy

∑
i≤n Tηi(ϕj) > ε′ for any j = 0, . . . , n − 1.)

Let ej be the unit coordinate vectors. For x′ ∈ Ω ∩ B(x, ε) and λ ∈ Γ̂ε

we take ηj chosen as above (depending on x′ and λ), set η :=
∑

j λjηjej ,
and consider the disc

(3.14) Ax′ = (x′ − Tη) + iη.

(In the case v ∈ −Γ̂ we just define Ax′ = (x′ + Tη) − iη.) We recall that
Tη(0) = 0 and remark that η(0) = 1

2π

∑
j λjej

∫ 2π
0 ηj dθ =

∑
j λjej ; hence we

have for the centers

(3.15) Ax′(0) = x′ + i
∑

λjej .

Hence (ii) is fulfilled and (iii) is also evident by letting λj → 0 for any j.
We notice that ∂Ax′ \ R

n ⊂ R
n + iΓ since we are supposing that at no point

θ ∈ [0, 2π] two of the ηi’s are simultaneously non-vanishing. We also have

(3.16) ∂Ax′ \ R
n ⊂ B(x, c1ε) + iΓc2ε due to (3.12) and (3.11).

We want to prove now that

(3.17) ∂Ax′ ∩ R
n ⊂ Ω ∩ B(x, c1ε).
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According to (3.4), it suffices to prove that Tη(ϕj) · v < −ε′|Tη(ϕj)| for any
j. But in fact, by (3.13),

∑
i≤n Tηi(ϕj) · v < −ε′ and hence by (3.5)

∑
i≤n

Tηi(ϕj)λivi < −ε′|λ|. Since it is trivial that |λ| 
 |Tη(ϕj)|, we get the con-
clusion (for a different ε′). Thus x′ − Tη(ϕj) ∈ Ω for any j which implies
(3.17). (The end of the proof for the case v ∈ −Γ̂ is similar and only requires
to switch from η to −η.) This concludes the proof of Theorem 2.1. �

Proof of Theorem 2.2. We assume that Γ and Γ̂ are non-truncated during
the proof. By Theorem 2.1, for any x ∈ ∂Ω and for a suitably small ε, f
extends to (B(x, ε) ∩ Ω) + iΓ̂ε. By a finite covering argument, for any K ⊂⊂
R

n and for some ε, f extends to (K ∩ Ω) + iΓ̂ε. Now, we prove that for any
K ′ ⊂⊂ R

n, for any t > 0 large, and for suitable ε, we can find a family of
discs Ax′ , x′ ∈ K ′ ∩ Ω such that

(3.18)

{
Ax′ is attached to Ω ∪

(
(K ∩ Ω) + iΓ̂ε

)
∪ (Rn + iΓ)

The centers Ax′(0) fill (K ′ ∩ Ω) + iΓ̂t.

Again, the family of discs is contractible to the points x′. If we succeed
in proving these claims, then by the same argument as in the proof of
Theorem 2.1, f extends to (K ′ ∩ Ω) + iΓ̂t, hence to the whole Ω + iΓ̂ by
letting K ′ → R

n and t → +∞. We still describe analytic discs by Ax′ =
(x′ − Tη) + iη, and make a suitable choice of η. We take η = (ηj) such that

(a) x′ − Tη|∂Δ ∈ K for any x′ ∈ K ′ ∩ Ω;

(b) |Tη| is arbitrarily close to 0 at the points where ηj = 0 for any j and
Tη · v ≥ ε′|Tη|; in particular x′ − Tη ∈ Ω at these points;

(c) either ηj �= 0 only for one index j, or otherwise, |η| < ε.

We also make our choice so that 1
2π

∫ 2π
0 ηj dθ = 1. To define such a ηj ’s,

we divide [0, 2π] into disjoint intervals Ij = [ϕj−1, ϕj ], j = 1, . . . , n of equal
length 2π

n . We want Ax′ map Ij into R
n + isej for 0 < s < 1 except from two

neighborhoods of the end-points ϕj−1 and ϕj , with the end-points removed,
which are sent to K + iΓ̂ε and from the end-points themselves which are sent
to an arbitrary neighborhood of x′ on Ω where f extends holomorphically
into the sector {z ∈ C

n : yj > 0 for any j} according to Remark 2.1. We
first take ηj ∈ C1,α supported in each Ij such that

0 ≤ ηj ≤ n + 1, ηj = 0 exactly at ϕj−1 and ϕj
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and such that 1
2π

∫ 2π
0 ηj dθ = 1. We then take, for any arbitrarily small ν, a

first set of small perturbations {δ1
j }j=1,...,n, positive, supported near ϕ1 from

one of the two sides to get compensation of sign and such that
∫

χ1ηj dθ +
∫

χ1δ
1
j dθ < ν.

This is possible due to (3.3). We also take |δ1
j | < ε and suppose that supp(δ1

j )
are so small that η1 < ε and η2 < ε over supp(δ1

j ); this choice brings part
of the boundary of Ax′ into the domain of holomorphic extension given by
Theorem 2.1. Note that the δ1

j ’s are small in C0-norm but only bounded
in C1-norm in order to compensate |Tηj |. We claim that we can find {δh

j }j

for any h ≤ n for any j ≤ n such that

∑

h≤n

∫

χkδ
h
j dθ +

∫

χkηj dθ < ν for any k ≤ n, for any j ≤ n.

We use induction and assume that for some m < n we have already found
a family of perturbations {δh

j } for any j ≤ n for any h ≤ m such that

∑

h≤m

∫

χkδ
h
j dθ +

∫

χkηj dθ < ν for any k ≤ m, for any j ≤ n.

On account of (3.3) we then choose new functions δm+1
j at the new extremal

point ϕm+1 supported near ϕm+1 (and from the suitable side) such
that

∫

χm+1δ
m+1
j dθ +

⎛

⎝
∑

h≤m

∫

χm+1δ
h
j dθ +

∫

χm+1ηj dθ

⎞

⎠ < ν

still keeping the property, by a choice of small δm+1
j , that for any k ≤ m:

∫

χkδ
m+1
j dθ +

⎛

⎝
∑

h≤m

∫

χkδ
h
j dθ +

∫

χkηj dθ

⎞

⎠ < ν.

Thus the inductive argument is proved. We take λj ≥ 0 with
∑

j λj < t

and set η :=
∑

j=1,...,n λj(ηj +
∑

h=1,...,n δh
j )ej . We recall that Tη(0) = 0 and

remark that η(0) =
∑

j λjej
1
2π

∫ 2π
0 (ηj +

∑
h δh

j ) dθ is arbitrarily close to
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∑
j λjej ; hence we have for the centers

(3.19) Ax′(0) is arbitrarily close to x′ + i
∑

λjej .

We recall that Ax′ touches yj = 0 for any j only at the extremal points ϕj ;
for these points we have that

“Ax′(ϕj) = x′ − Tη(ϕj) with |Tη(ϕj)| < ν so that Ax′(ϕj) ∈ Ω”

This proves (b). Also, our choice of small δh
j , with support in small neigh-

borhoods of the points ϕh, implies that (c) is fulfilled. We finally prove that
for a suitable constant c, we have all over ∂Δ:

(3.20) |Tη| ≤ c

and hence in particular

“Ax′(θ) for any θ has real part which belongs to K for any x′ ∈ K ′”

which implies (a). In fact, recall again (3.3). For any fixed ϕo ∈ [0, 2π] and
for κ small let us decompose integration over [0, 2π] as

∫ 2π
0 · =

∫ ϕo−κ
0 · +

∫ 2π
ϕo+κ · +

∫ ϕo+κ
ϕo−κ ·. If we integrate χϕoη using the above decomposition, then

the absolute values of the two first integrals are estimated by c, and as for
the third we have

∣
∣
∣
∣

∫ ϕo+κ

ϕo−κ
χϕoη dθ

∣
∣
∣
∣ ≤

∼

∣
∣
∣
∣

∫ ϕo+κ

ϕo−κ
η(ϕo)

1
θ − ϕo dθ

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ ϕo+κ

ϕo−κ
η′(ϕo) dθ

∣
∣
∣
∣ + O(κ2)

≤
∼

κ|η′(ϕo)| + O(κ2).

Then (3.20) follows. This completes the proof of Theorem 2.2. �

Appendix (Application to Radon transform)

In the plane R
2 we consider the disc Bμ of center 0 and radius μ and the circle

Sμ = ∂Bμ. We identify in R
2 points x to vectors v by the correspondence

x 	→ v := x − 0; we attach the suffix “⊥” to a vector v and write v⊥, in order
to denote the orthogonal vector of equal length (and with (v, v⊥) giving the
standard orientation). From any point x ∈ R

2 \ Bμ we can issue exactly two
lines tangent to Sμ at a pair of points ω⊥, σ⊥; we can thus write for a
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suitable t ∈ R

x = μω⊥ + tω

= μσ⊥ − tσ.
(A.1)

We have the relation

(A.2) x = μ
(ω + σ)⊥

1 + ω · σ
.

We denote by α and β the arguments of ω and σ, respectively, write ω =
(cos α, sin α), σ = (cos β, sin β), define ξ := tgα

2 , η = tgβ
2 . We can then write

(A.3) ω =
(

1 − ξ2

1 + ξ2 ,
2ξ

1 + ξ2

)

, σ =
(

1 − η2

1 + η2 ,
2η

1 + η2

)

and hence (A.2) reads

(A.4) x =
−μ

1 + ξη
(ξ + η, ξη − 1) .

We can also easily check that we have

(A.5) t = μ
ξ − η

1 + ξη
.

Summarizing, we have found a correspondence

R
2 \ {ξ = −1

η
} → R

2 \ Bμ

(ξ, η) → xξ,η =
−μ

1 + ξη
(ξ + η, ξη − 1).

We also note that

• The functions f of the points x in R
2 \ Bμ are the functions F of the

parameters ω ∈ S1 and t ∈ R such that if x = μω⊥ + tω = μσ⊥ − tσ,
then F (ω, t) = F (σ, −t).

• The functions f of x ∈ R
2\Bμ are the functions F of (ξ, η) ∈ R

2\
{ξ = − 1

η} such that F (ξ, η) = F (η, ξ).

We also remark that

• f extends holomorphically in t if and only if F extends in η for fixed
ξ or in ξ for fixed η,
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or in other words

• f extends holomorphically in t if it is separately holomorphic in ξ
and η.

Last, we note that the coordinate transform (ξ, η) 	→ (ξ,− 1
η ) interchanges

the set {ξ = − 1
η} with the diagonal of R

2. Thus Theorem 2.4 above yields
at once the proof of the following

Proposition A.1 (Cf. [12, Theorem 3.1 ]). Let f(x), x ∈ R
2 \ Bμ extend as

a continuous, separately holomorphic function to the union of the complex-
ifications of the lines tangent to Sμ. Then f extends as an entire function
to C

2.

Proposition A.1 can be applied to the situation that follows. Let Rμ

denote the Radon transform defined by

Rμ(f)(ω, p) :=
∫

x·ω=p
f(x)eμx·ω⊥

dm(x)

where dm(x) is the element of area in the plane {x : x · ω = p}. We first
recall the fundamental relation between Rμ and the Fourier transform F
which is a consequence of Fubini’s Theorem:

(A.6) FRμ(f)(ω, t) = F(f)(iμω⊥ + tω) for any f ∈ C∞
c .

Given F = F (iω, it) for (iω, it) ∈ i(R2 \ Bμ) we wonder under what condi-
tions F is the transform FRμ(f)(ω, it) of some f ∈ C∞

c . First, according to
(A.6) it is necessary that

F (iω, it) = F (iσ, −it)

whenever μω⊥ + tω = μσ⊥ − tσ. Also, F must be holomorphic in t and
endowed with the Paley–Wiener exponential growth estimates in the sense
that for some c′ for any N and for suitable cN we have |F | ≤ cN (1 + |tC|)−N

ec′|Im tC|. But then by Proposition A.1 F is indeed entire and since there is
no difficulty in proving that the 2-variables function inherits the exponen-
tial growth from the 1-variable one (cf. [12, Th. 3.2]), then it is the Fourier
transform of some f ∈ C∞

c (Paley–Wiener characterization).
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