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Backward Ricci flow on locally homogeneous
3-manifolds

Xiaodong Cao and Laurent Saloff-Coste

In this paper, we study the backward Ricci flow on locally
homogeneous 3-manifolds. We describe the long time behavior and
show that, typically and after a proper re-scaling, there is con-
vergence to a sub-Riemannian geometry. A similar behavior was
observed by the authors in the case of the cross curvature flow.

1. Introduction

1.1. The Ricci flow

In [6], Isenberg and Jackson studied the Ricci flow on homogeneous
3-manifolds. As homogeneous 3-manifolds are the models and building blocks
of the geometrization of 3-manifolds, it is natural and important to study
the behavior of various geometric flows in this basic case. See [2, Chapter 1].
Further studies are in [5, 7, 8].

For obvious reasons, works have focused on the forward behavior of the
Ricci flow although, in the homogeneous case, the flow reduces to a system
of ordinary differential equations and there is no obstruction to the study of
the backward flow. In [3, 4], the authors studied the forward and backward
limits of the cross curvature flow on homogeneous 3-manifolds. Indeed, in the
case of the cross curvature flow it is not entirely clear which direction is more
natural. The results obtained in [4] suggest that the backward behavior of
the Ricci flow should be studied as well and this is the subject of this paper.

Recall that the Ricci flow on a manifold is a flow of Riemannian metric
g(t) satisfying the equation

∂g

∂t
= −2 Rc, g(0) = g0

where Rc denotes the Ricci curvature tensor (in this instance, the Ricci
curvature tensor of the metric g(t)). This can be normalized in various ways
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by setting g̃(t̃) = ψ(t)g(t), t̃ =
∫ t
0 ψ(s) ds. Setting ψ̃(t̃) = ψ(t), we obtain

∂g̃

∂t̃
= −2 R̃c +

(
∂ ln ψ̃

∂t̃

)

g̃, g̃(0) = g0.

For compact manifolds, the customary normalization uses 1
ψ

∂ψ
∂t = 2r

3 , where

r is the average of the scalar curvature R, in which case, 1
ψ̃

∂ψ̃
∂t̃

= 2r̃
3 . This

normalization keeps the volume constant under the flow. In the case of the
locally homogeneous manifolds, we can use this normalization even in the
non-compact case since the scalar curvature is constant. Hence, following [6],
we will study the flow

(1.1)
∂g

∂t
= −2 Rc +

2
3
Rg, g(0) = g0.

1.2. The backward behavior of the Ricci flow

There are 9 types of locally homogeneous 3-manifolds and these are split
into two families. The first family contains the manifolds covered by the
hyperbolic 3-space H3, and the product geometries of type H2 × R and
S2 × R. The second family corresponds to those geometries whose universal
cover is a group itself. They are: R

3, SU(2, R); ˜SL(2, R); E(1, 1) = Sol, i.e.,
the group of isometries of a flat Lorentz plane; Ẽ(2), the universal cover of
group of isometries of the plane; the Heisenberg group. This second family is
referred to as the Bianchi case (see [6]). In the Bianchi case, given a metric
g0, Milnor [9] provides a frame (f1, f2, f3) in which both the metric and the
Ricci tensors are diagonalized. As this property is preserved by the Ricci
flow, writing

g = Af1 ⊗ f1 + Bf2 ⊗ f2 + Cf3 ⊗ f3

the Ricci flow becomes an ODE system in (A, B, C). Furthermore, Milnor’s
paper [9] provides the computation of the Ricci tensor in each case so that
the ODE system in question can be written down explicitly. The simplest
non-trivial case is the Heisenberg group. Given a metric g0 on the Heisen-
berg group (or on a 3-manifold of Heisenberg type), we fix a Milnor frame
{fi}3

1 such that [f2, f3] = 2f1, [f3, f1] = 0 and [f1, f2] = 0. Using [9], the ODE
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system for the normalized Ricci flow is given by

(1.2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dA

dt
= −16

3
A3

A0B0C0

dB

dt
= +

8
3

A2B

A0B0C0

dC

dt
= +

8
3

A2C

A0B0C0

where we used the fact that, under (1.1), ABC = A0B0C0. Let R0 = − 2A0
B0C0

< 0 be the initial scalar curvature. Then (1.2) admits a completely explicit
maximal solution defined on (3/(16R0), +∞) and given by

⎧
⎪⎨

⎪⎩

A(t) = A0(1 − (16/3)R0t)−1/2

B(t) = B0(1 − (16/3)R0t)1/4

C(t) = C0(1 − (16/3)R0t)1/4.

Observe that the metric g(t) = (C0/C(t))g(t) converges when t tends to
3/(16R0) = −Tb to

∞f1 ⊗ f1 + B0f
2 ⊗ f2 + C0f

3 ⊗ f3

which can be interpreted as describing a sub-Riemannian geometry on the
Heisenberg group. The point of this paper is to show that this behavior in the
backward direction is typical for all locally homogeneous manifolds corre-
sponding to the Bianchi cases described above except for those corresponding
to the trivial case R

3.

Theorem 1.1. Let (M, g0) be a locally homogeneous 3-manifold with uni-
versal cover SU(2, R), ˜SL(2, R), E(1, 1) = Sol, Ẽ(2) or the Heisenberg group.
Let g(t), (−Tb, Tf ) be a maximal solution of the normalized Ricci flow (1.1).
Let d(t) be the associated distance function on M . Assume g0 is generic
among all locally homogeneous metric on M . Then Tb is finite and there
exists a function r(t) : (−Tb, 0] → (0,∞) such that, as t tends to −Tb, the
metric spaces (M, r(t)d(t)) converge uniformly to a sub-Riemannian space
(M, db) whose tangent cone at any point is the Heisenberg group equipped
with its natural sub-Riemannian metric.

By definition, the uniform convergence of metric spaces (M, dt) to (M, d)
means the uniform convergence over compact sets of (x, y) → dt(x, y) to
(x, y) → d(x, y).
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The present paper proves this theorem in all cases except ˜SL(2, R). For
manifolds covered by ˜SL(2, R), we prove the result under the additional
assumption that there exists a time t0 such that either A(t0) ≥ max{B(t0),
C(t0)} or A(t0) ≤ |B(t0) − C(t0)|. In the paper [1], we show that this con-
dition is always satisfied except for a hypersurface of initial conditions.

The proof of this theorem proceeds by inspection of the different cases.
It would be more elegant to have an argument covering all cases at once.
However, the existence of exceptional sets of initial conditions for which
the general result fails indicates that it is unlikely that such treatment is
possible. Indeed, the exceptional sets of initial conditions are very much
case dependent, see the more precise statements in the different sections
below.

The results obtained in each of the different cases are more precise than
stated in Theorem 1.1. They describe the asymptotic behavior of each of
the metric components in a fixed Milnor frame. This is useful in exploring
the Ricci flow on homogeneous 3-manifolds under more sophisticated scaling
procedures. See [5, 7, 8].

Together, the study of the forward normalized Ricci flow (see [6–8]) and
this paper, give a description of the asymptotic behaviors of the Ricci flow
on homogeneous 3-manifolds for both the forward and backward directions.
For instance, the solutions of the forward normalized Ricci flow always exist
for all (positive) time in the Bianchi classes [6].

1.3. Sub-Riemannian geometries

Our main result, Theorem 1.1, refers to the notion of sub-Riemannian geom-
etry, a term that we now explain in the present context. The typical behavior
(possibly after some re-scaling) of the evolving metric

g = Af1 ⊗ f1 + Bf2 ⊗ f2 + Cf3 ⊗ f3

at the end points of a maximal existence interval is that some of the coeffi-
cients A, B, C either vanish or tend to ∞. When a coefficient vanishes and
the manifold is compact, the phenomenon can be interpreted as a dimen-
sional collapse. Naively, at least one direction disappears. To interpret the
situation when a coefficient tends to infinity, it is useful to look at the
dual tensor

Q = A−1f1 ⊗ f1 + B−1f2 ⊗ f2 + C−1f3 ⊗ f3
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defined on the co-tangent bundle. Suppose that A tends to infinity whereas
B, C have finite limits B∗, C∗. Then the tensor Q tends to

Q∗ = B−1
∗ f2 ⊗ f2 + C−1

∗ f3 ⊗ f3.

If it turns out that [f2, f3] = 2ε1f1 with ε1 �= 0, then the tensor Q∗ induces
a natural distance function d∗ on the underlying manifold M . This distance
can be computed by minimizing the length of the so-called horizontal curves,
i.e., those curves that stay tangent to the linear span of f2, f3. The associated
“geometry” is called a sub-Riemannian geometry. See [10] for a book length
introduction to sub-Riemannian geometry and [4] for some details directly
relevant to the present situation. Let us note here that the convergence
Q → Q∗ translates quite easily in the uniform convergence over compact sets
on M × M of the associated distance functions. This explains the conclusion
of Theorem 1.1.

1.4. The normalized backward Ricci flow

In order to study the backward behavior of the Ricci flow, it is convenient
to reverse time and consider the solution of the positive normalized Ricci
flow equation

(1.3)
∂g

∂t
= 2 Rc − 2

3
Rg, g(0) = g0.

We let T+ ∈ [0, +∞] be the maximal existence time for this equation. The
rest of this paper is devoted to the asymptotic properties of this flow when
t → T+ in the case of SU(2), E(1, 1), Ẽ(2) and ˜SL(2, R). This includes deter-
mining whether T+ is finite or infinite. The results are stated explicitly for
the flow on each of these groups but, in each case, it holds in the same form
on any locally homogeneous 3-manifold covered by the corresponding group.
In each case, we write the solution of (1.3) in the form

g = Af1 ⊗ f1 + Bf2 ⊗ f2 + Cf3 ⊗ f3

in a Milnor frame (f1, f2, f3) for g0. Under (1.3), ABC = A0B0C0 is a con-
stant. In the rest of this paper, we assume the normalization A0B0C0 = 4.
This choice is made so that the ODE systems are the same as in [6], despite
the fact that the frame we use here have a different normalization than those
used in [6].
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If A, B, C is the solution under A0B0C0 = 4 and Ã, B̃, C̃ is the solution
with Ã0 = λA0, B̃0 = λB0, C̃0 = λC0, then Ã(t) = λA(t/λ), B̃(t) = λB(t/λ)
and C̃(t) = λC(t/λ).

2. The normalized positive Ricci flow on SU(2)

Given a metric g0 on SU(2), we fix a Milnor frame such that [fi, fj ] = 2fk

for all cyclic permutations of the indices. This section is devoted to the proof
of the following result.

Theorem 2.1. Let g0 be a homogeneous metric on SU(2) with associ-
ated Milnor frame (f1, f2, f3) and g0 = A0f

1 ⊗ f1 + B0f
2 ⊗ f2 + C0f

3 ⊗ f3

with A0B0C0 = 4. Let g(t) = A(t)f1 ⊗ f1 + B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3, t ∈
[0, T+) be the maximal forward solution of the positive normalized Ricci flow
(1.3) with g(0) = g0. Assume that A0 ≥ B0 ≥ C0.

(1) If A0 = B0 = C0 then T+ = ∞ and g(t) = g0, t ∈ [0,∞).

(2) If A0 = B0 > C0 then T+ = ∞, A = B > C and, as t tends to infinity,
A ∼ 8

3 t, C ∼ 9
16 t−2.

(3) If A0 > B0 ≥ C0 then T+ is finite, A > B ≥ C and there are constants
η1, η2 ∈ (0,∞) such that

A ∼
√

6
4

(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4

as t tends to T+.

Let d(t) be the distance function associated to (B0/B(t))g(t). In case (3),
the metric space (SU(2), d(t)) converges uniformly as t → T+ towards the
sub-Riemanninan metric space (SU(2), d∗) where d∗ is the sub-Riemannian
distance associated with

Q∗ = B−1
0 f2 ⊗ f2 + η1η

−1
2 B−1

0 f3 ⊗ f3.

Remark 2.1. Consider a maximal solution

gf (t) = A(t)f1 ⊗ f1 + B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3, t ∈ (−T+,∞)

of the forward normalized Ricci flow (1.1). Let g(t) = (B0/B(t))gf (t). Isen-
berg and Jackson [6] shows that A − C ≤ (A0 − C0)e−2C2

0 t,∀t ≥ 0, if A0 ≥
B0 ≥ C0 (this order is preserved by the flow). Hence, in the forward
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direction, g(t) converges exponentially fast to the round metric whereas
Theorem 2.1 describes the backward behavior. In the generic case A0 >
B0 ≥ C0, g(t) converges to a sub-Riemannian metric as t → −T+.

The sectional curvatures are (see, e.g., [2, p. 12])

K(f2 ∧ f3) =
(B − C)2

ABC
− 3A

BC
+

2
B

+
2
C

K(f3 ∧ f1) =
(C − A)2

ABC
− 3B

CA
+

2
A

+
2
C

K(f1 ∧ f2) =
(A − B)2

ABC
− 3C

AB
+

2
A

+
2
B

.

From the sectional curvatures given above, we easily obtain the ODEs
corresponding to the flow, under the normalization ABC = 4, namely,

(2.1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dA

dt
= −2

3
A[−A(2A − B − C) + (B − C)2]

dB

dt
= −2

3
B[−B(2B − A − C) + (A − C)2]

dC

dt
= −2

3
C[−C(2C − A − B) + (A − B)2].

Without loss of generality, we may assume that A0 ≥ B0 ≥ C0. As

d

dt
(A − C) =

2
3
(A − C)[2A2 + 2AC + 2C2 − (A + B + C)B](2.2)

d

dt
(A − B) =

2
3
(A − B)[2A2 + 2AB + 2B2 − (A + B + C)C](2.3)

d

dt
(B − C) =

2
3
(B − C)[2B2 + 2BC + 2C2 − (A + B + C)A](2.4)

it is easy to see that A ≥ B ≥ C is preserved along the flow. This yields the
following lemma.

Lemma 2.1. Assume that A0 ≥ B0 ≥ C0. Then A, A − B and A − C are
all non-decreasing along the flow and C is non-increasing.

We now consider three cases. The first case is when A0 = B0 = C0. Then
A(t) = B(t) = C(t) = A0 and the solution exists for all time.
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The second case is when A0 = B0 > C0. Then A(t) = B(t) as long as the
solution exists and we have

(2.5)

⎧
⎪⎪⎨

⎪⎪⎩

dA

dt
=

2
3
AC(A − C)

dC

dt
= −4

3
C2(A − C).

In this case, A is increasing, C is decreasing and A2C = A2
0C0 along the flow.

Lemma 2.2. If A0 = B0 > C0, then T+ = ∞, A ∼ 8
3 t and C ∼ 9

16 t−2 as t
tends to infinity.

Proof. Since dA
dt = 2

3A2
0C0 − 2

3AC2, if T+ < ∞, then limT+ A < ∞, and limT+

C > 0. This contradicts the assumption that T+ is the maximal existence
time. Hence T+ = ∞. As A is increasing, C is decreasing and A2C constant,
it follows from (2.5) that lim∞ A = ∞, and thus lim∞ C = 0. Moreover,
lim∞ AC2 = 0. Now the asymptotic for A and C follows from (2.5) which
yields d

dtA ∼ 2
3A2

0C0, and A2C = A2
0C0 = 4. �

We now focus on the third case, the generic case.

Lemma 2.3. Assume that A0 > B0 ≥ C0. Then T+ < ∞.

Proof. Assume that T+ = ∞. We have

d

dt
A =

2
3
A[A(A − B) + A(A − C) − (B − C)2] ≥ 2

3
A2(A − B)

and
d

dt
C < −2

3
C(A − B)2.

Since, by Lemma 2.1, both A and A − B are non-decreasing, it follows that
lim∞ A = ∞, lim∞ C = 0. Now, (2.3) implies that

d

dt
ln(A − B) ≥ 2

3
(2A2 + B2)

hence lim∞(A − B) = ∞. Since

(2.6)
d

dt
lnB = −2

3
[B(A − B) + (A − B)2 + 2(A − B)(B − C) − C(B − C)]
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this shows that B is non-increasing for t large enough, hence bounded. So,
we have

dA

dt
∼ 4

3
A3.

But this shows that there exists a finite time T0, such that limT0 A = ∞,
this contradicts our assumption that T+ = ∞. �

Lemma 2.4. Assume A0 > B0 ≥ C0. Then limT+ A = ∞, limT+ B = limT+

C = 0.

Proof. Assume that limT+ C > 0. As A > B ≥ C and that T+ is finite, we
must have limT+ A = ∞. We have

d

dt
lnA <

4
3
A2 ≤ d

dt
ln(A − B).

It follows that limT+(A − B) = ∞. By (2.6), B is non-increasing for t close
to T+ and hence bounded from above. This shows that d

dtA ∼ 4
3A3 and thus

that A−2 ∼ 8
3(T+ − t). Hence

d

dt
lnC ∼ −1

4
(T+ − t)−1.

This contradicts limT+ C > 0 and we conclude that limT+ C = 0.
Now by (2.6) we can see that B is bounded from above. So, if limT+

A < ∞ then d
dtC ∼ −ηC, for some constant η ∈ (0,∞). This contradicts

limT+

C = 0. So we conclude that limT+ A = ∞.
To show that limT+ B = 0, notice that (2.6) implies that B is non-

increasing for t close enough to T+. As

d

dt
ln(AB2) = 2(B − C)(B + C − A)

we obtain that AB2 is bounded from above on [0, T+), hence
limT+ B = 0. �

Lemma 2.5. Assume that A0 > B0 ≥ C0, then there exist η1, η2 ∈ (0,∞),
such that

A ∼
√

6
4

(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.
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Proof. The first statement follows directly from

d

dt
A ∼ 4

3
A3.

To obtain the asymptotic behavior for B, C, notice that

d

dt
ln(AC2) = 2(B − C)(A − B − C),

d

dt
ln(AB2) = 2(B − C)(B + C − A).

Since limT+ A = ∞ and limT+ B = limT+ C = 0, we have limT+(A − B −
C) = ∞. Hence, the equations above imply that AB2 is non-increasing and
AC2 is non-decreasing for t close to T+. But B ≥ C, so

0 < lim
T+

AC2 ≤ lim
T+

AB2 < ∞.

It follows that limT+ B ∼ η1(T+ − t)1/4 and limT+ C ∼ η2(T+ − t)1/4. �
This finishes the proof of Theorem 2.1.

3. The normalized positive Ricci flow on E(1, 1)
(Sol geometry)

Given a metric g0 on E(1, 1), we fix a Milnor frame such that [f2, f3] =
2f1, [f3, f1] = 0, [f1, f2] = −2f3. This section is devoted to the proof of the
following result.

Theorem 3.1. Let g0 be a homogeneous metric on E(1, 1) with associ-
ated Milnor frame (f1, f2, f3) and g0 = A0f

1 ⊗ f1 + B0f
2 ⊗ f2 + C0f

3 ⊗ f3

with A0B0C0 = 4. Let g(t) = A(t)f1 ⊗ f1 + B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3, t ∈
[0, T+) be the maximal forward solution of the positive normalized Ricci flow
(1.3) with g(0) = g0. Assume that A0 ≥ C0.

(1) If A0 = C0 then T+ = 3
32B0 and

A(t) = C(t) =
√

6
4

(T+ − t)−1/2, B(t) =
32
3

(T+ − t), t ∈ [0, T+).

(2) If A0 > C0 then T+ < ∞ and, as t tends to T+, there are constants
η1, η2 ∈ (0,∞) such that

A ∼
√

6
4

(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.
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Let d(t) be the distance function associated to (B0/B(t))g(t). In case (2),
the metric space (E(1, 1), d(t)) converges uniformly as t → T+ towards the
sub-Riemanninan metric space (E(1, 1), d∗) where d∗ is the sub-Riemannian
distance associated with

Q∗ = B−1
0 f2 ⊗ f2 + η1η

−1
2 B−1

0 f3 ⊗ f3.

Remark 3.1. For the forward normalized Ricci flow (1.1), Isenberg and
Jackson [6] show that the solution exists for all time and presents a cigar
degeneracy.

The sectional curvatures of g(t) in the frame (fi)31 are:

K(f2 ∧ f3) =
(A − C)2 − 4A2

ABC

K(f3 ∧ f1) =
(A + C)2

ABC

K(f1 ∧ f2) =
(A − C)2 − 4C2

ABC
.

These yield the equations for the normalized positive Ricci flow on E(1, 1),
under the normalization ABC = 4, namely,

(3.1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dA

dt
=

2
3
A(2A2 + AC − C2)

dB

dt
= −2

3
B(A + C)2

dC

dt
=

2
3
C(2C2 + AC − A2).

Lemma 3.1. If A0 = C0, then T+ = 3
32B0 < ∞. Moreover A(t) = C(t) =√

6
4 (T+ − t)−1/2 and B(t) = 32

3 (T+ − t), for t ∈ [0, T+).

Proof. It is easy to see that A = C as long as the solution exists. As d
dtA

−2 =
−8

3 , we have T+ < ∞ and

A =
√

6
4

(T+ − t)−1/2, T+ =
3

8A2
0

=
3
32

B0.

Further, d
dtB = −8

3BA2, so B = 32
3 (T+ − t). �

Without loss of generality, we assume that A0 > C0. This implies that
A is increasing. Note that B is always decreasing.
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Lemma 3.2. If A0 > C0, then T+ < ∞, limT+ A = ∞, and there exists a
time t0 such that A(t0) ≥ 2C(t0).

Proof. The fact that T+ < ∞ follows from d
dtA > 2

3A3. Now assume that
limT+ A = A(T+) < ∞. Then, since

d

dt
lnC = −2

3
(A + C)(A − 2C) > −4

3
A2 > −4

3
A(T+)2

and
d

dt
lnB = −2

3
(A + C)2 >

8
3
A2 > −8

3
A(T+)2

we get that B ≥ limT+ B = B(T+) > 0. Similarly, there exists some constant
η > 0 such that C ∈ [η, A(T+)]. This contradicts the fact that the maximal
existence time T+ is finite. Hence limT+ A = ∞.

To prove the second statement, we assume that C < A < 2C for all t ∈
[0, T+). So we have limT+ C = ∞. Since

d

dt
ln(A/C) = 2(A + C)(A − C) > 0

we see that A/C is increasing, so A/C > A0/C0 and A − C = A(1 − C/A) >
(1 − C0/A0)A. Moreover, we have

(1 − C0/A0)
∫ T+

0
(A + C)A <

∫ T+

0
(A + C)(A − C) <

1
2

ln 2.

Hence
∫ T+

0
(A + C)(2C − A) <

∫ T+

0
(A + C)C <

∫ T+

0
(A + C)A < ∞.

This contradicts the fact that

d

dt
lnC =

2
3
(A + C)(2C − A) and lim

T+

C = ∞.

So there exists a time t0 such that A(t0) ≥ 2C(t0). �

Lemma 3.3. Assume that A0 > C0. There exist η1, η2 ∈ (0,∞) such that,
as t tends to T+, we have

A ∼
√

6
4

(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.
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Proof. By Lemma 3.2, there is t0 such that A(t0) ≥ 2C(t0). As d
dt ln(A/C) =

2(A + C)(A − C) > 0, we conclude that A(t) ≥ 2C(t) for t ∈ [t0, T+). Hence
C is non-increasing on [t0, T+). As

d

dt
ln(AC3) =

2
3
(−A2 + 4AC + 5C2),

d

dt
ln(AB2) = −2C(A + C)

and limT+ A = ∞, it follows that both AC3 and AB2 are bounded from
above, hence limT+ B = limT+ C = 0.

Next, we show that limT+ AB2 = η1 and limT+ AC2 = η2. Note that

d

dt
ln(AC2) = 2C(A + C) and

d

dt
ln(AB2) = −2C(A + C).

Hence, it is enough to prove that
∫ T+

0 AC < ∞. As d
dtC ∼ −2

3A2C, and
C > 0, we have

∫ T+

0
AC < A−1

0

∫ T+

0
A2C < ∞.

Now, the lemma follows from d
dtA ∼ 4

3A3. �
This ends the proof of Theorem 3.1.

4. The normalized positive Ricci flow on Ẽ(2)

Given a left-invariant metric g0 on Ẽ(2), we fix a Milnor frame {fi}3
1

such that
[f2, f3] = 2f1, [f3, f1] = 2f2, [f1, f2] = 0.

The result in this case reads as follows.

Theorem 4.1. Let g0 be a homogeneous metric on Ẽ(2) with associated
Milnor frame (f1, f2, f3) and g0 = A0f

1 ⊗ f1 + B0f
2 ⊗ f2 + C0f

3 ⊗ f3 with
A0B0C0 = 4. Let g(t) = A(t)f1 ⊗ f1 + B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3, t ∈ [0, T+)
be the maximal forward solution of the positive normalized Ricci flow (1.3)
with g(0) = g0. Assume that A0 ≥ B0.

(1) If A0 = B0 then T+ = ∞ and g(t) = g0 on [0,∞).

(2) If A0 > B0 then T+ < ∞ and, as t tends to T+, there are constants
η1, η2 ∈ (0,∞) such that

A ∼
√

6
4

(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.
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Let d(t) be the distance function associated to (B0/B(t))g(t). In case (2),
the metric space (Ẽ(2), d(t)) converges uniformly as t → T+ towards the
sub-Riemanninan metric space (Ẽ(2), d∗) where d∗ is the sub-Riemannian
distance associated with

Q∗ = B−1
0 f2 ⊗ f2 + η1η

−1
2 B−1

0 f3 ⊗ f3.

Remark 4.1. Consider a maximal solution

gf (t) = A(t)f1 ⊗ f1 + B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3, t ∈ (−T+,∞)

of the forward normalized Ricci flow (1.1). Let g(t) = (B0/B(t))gf (t). Isen-
berg and Jackson [6] shows that A − B ≤ (A0 − B0)e−4B2

0t,∀t ≥ 0, if A0 ≥
B0 (this order is preserved by the flow). Hence, in the forward direction,
g(t) converges exponentially fast to the flat metric whereas Theorem 4.1
describes the backward behavior. In the generic case A0 > B0, g(t) converges
to a sub-Riemannian metric as t → −T+.

In this case, the sectional curvatures are:

K(f2 ∧ f3) =
1

ABC
(B − A)(B + 3A)

K(f3 ∧ f1) =
1

ABC
(A − B)(A + 3B)

K(f1 ∧ f2) =
1

ABC
(A − B)2.

Hence the solution g(t) = A(t)f1 ⊗ f1 + B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3 of the
normalized positive Ricci flow satisfies

(4.1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dA

dt
=

2
3
A(2A + B)(A − B)

dB

dt
= −2

3
B(2B + A)(A − B)

dC

dt
= −2

3
C(A − B)2

under the normalization ABC = 4.
If A0 = B0 we clearly have g(t) = g0 for all t ≥ 0. Without loss of gener-

ality, we assume that A0 > B0. Then A > B as long as the solution exists.
Hence A is increasing whereas B and C are decreasing.
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Lemma 4.1. If A0 > B0, then T+ < ∞, limT+ A = ∞, limT+ B = limT+

C = 0.

Proof. Since A − B > 0 is increasing and

d

dt
(A − B) =

4
3
(A − B)(A2 + AB + B2) >

4
3
(A − B)3

we have d
dt(A − B)−2 < −8

3 , so T+ < ∞.
If limT+ A = A(T+) < ∞, then

d

dt
lnB > −2A2 > −2A(T+)2

and
d

dt
lnC > −2

3
A2 > −2

3
A(T+)2.

This leads to limT+ B = B(T+) > 0 and limT+ C = C(T+) > 0 and contra-
dicts the fact that the maximal existence time T+ is finite.

To prove that B tends to 0, note that

d

dt
ln(AB2) = −2(A − B)B < 0.

Hence AB2 is decreasing and limT+ B = 0. Similarly,

d

dt
ln(AC3) = −2

3
(A − B)(A − 2B)

implies that AC3 is bounded from above. Hence limT+ C = 0. �

Lemma 4.2. Assume that A0 > B0. Then there exist η1, η2 ∈ (0,∞) such
that, as t tends to T+,

A ∼
√

6
4

(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.

Proof. Since B > 0 and d
dtB ∼ −2

3A2B, we get

(4.2)
∫ T+

0
AB < A−1

0

∫ T+

0
A2B < ∞.

Observe that

d

dt
ln(AB2) = −2(A − B)B;

d

dt
ln(AC2) = 2(A − B)B.
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Hence (4.2) implies

lim
T+

AB2 > 0; lim
T+

AC2 < ∞.

The asymptotic behaviors of A, B and C now follow from d
dtA ∼ 4

3A3. �

This finishes the proof of Theorem 4.1.

5. The normalized positive Ricci flow on SL(2,R)

Given a left-invariant metric g0 on SL(2, R), we fix a Milnor frame {fi}3
1

such that

[f2, f3] = −2f1, [f3, f1] = 2f2, [f1, f2] = 2f3

and

g0 = A0f
1 ⊗ f1 + B0f

2 ⊗ f2 + C0f
3 ⊗ f3.

Theorem 5.1. Let g0 be a homogeneous metric on SL(2, R) with associ-
ated Milnor frame (f1, f2, f3) and g0 = A0f

1 ⊗ f1 + B0f
2 ⊗ f2 + C0f

3 ⊗ f3

with A0B0C0 = 4. Let g(t) = A(t)f1 ⊗ f1 + B(t)f2 ⊗ f2 + C(t)f3 ⊗ f3, t ∈
[0, T+) be the maximal forward solution of the positive normalized Ricci flow
(1.3) with g(0) = g0. Then T+ < ∞. Assume that B0 ≥ C0, and set

Q = {(a, b, c) ∈ R
3 : a > 0, b ≥ c > 0}

and

ḡ(t) =
C0

C(t)
g(t).

There is a partition of Q into subsets S0, Q1, Q2 with Q1, Q2 connected such
that, as t tends to T+:

(1) If (A0, B0, C0) ∈ Q1 then there exist η1, η2 ∈ (0,∞) such that

A ∼
√

6
4

(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.

Moreover, (M, g(t)) converges uniformly to the sub-Riemannian metric
space (M, bf2 ⊗ f2 + cf3 ⊗ f3) for some b, c ∈ (0,∞).
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(2) If (A0, B0, C0) ∈ Q2 then there exist η1, η2 ∈ (0,∞) such that

A ∼ η1(T+ − t)1/4, B ∼
√

6
4

(T+ − t)−1/2, C ∼ η2(T+ − t)1/4.

Moreover, (M, g(t)) converges uniformly to the sub-Riemannian metric
space (M, af1 ⊗ f1 + cf3 ⊗ f3) for some a, c ∈ (0,∞).

(3) If (A(t), B(t), C(t)) ∈ S0 for all t ∈ (T+, 0] then

A ∼
√

6
4

(T+ − t)−1/2, B ∼
√

6
4

(T+ − t)−1/2, C ∼ 32
3

(T+ − t).

Remark 5.1. Cases (1) and (2) of Theorem 5.1 are somewhat symmetric.
As we shall see, Q1 contains {(a, b, c) : a ≥ b ≥ c} and Q2 contains {(a, b, c) :
a ≤ b − c}. Case (3) is of a completely different nature and it is not even
entirely clear, a priori, that it occurs at all. In the forthcoming work [1], we
show that Q1 ∪ Q2 is a dense open set in Q and that S0 is an hypersurface
separating Q1 from Q2. This however requires different techniques than those
used in this paper.

Remark 5.2. In case (3), let d(t) be the metric on M = SL(2, R) induced
by g(t). Observe that there are no factors r(t) such that (M, r(t)d(t)) con-
verges uniformly to a metric structure on M . A meaningful scaling might be
to consider (M, A0

A(t)g(t)) for which two components converge and the third
goes to zero (potentially, a dimensional collapse but curvatures blow up).

Remark 5.3. For the forward normalized Ricci flow (1.1), Isenberg and
Jackson [6] show that the solution exists for all time and presents a pancake
degeneracy.

For the proof of Theorem 5.1, we recall that the sectional curvatures are

K(f2 ∧ f3) =
1

ABC
(−3A2 + B2 + C2 − 2BC − 2AC − 2AB)

K(f3 ∧ f1) =
1

ABC
(−3B2 + A2 + C2 + 2BC + 2AC − 2AB)

K(f1 ∧ f2) =
1

ABC
(−3C2 + A2 + B2 + 2BC − 2AC + 2AB).

Therefore, writing

g = Af1 ⊗ f1 + Bf2 ⊗ f2 + Cf3 ⊗ f3
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for the solution of the positive normalized Ricci flow with initial data g0,
A, B, C (with ABC = 4) satisfy the equations

(5.1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dA

dt
= −2

3
[−A2(2A + B + C) + A(B − C)2]

dB

dt
= −2

3
[−B2(2B + A − C) + B(A + C)2]

dC

dt
= −2

3
[−C2(2C + A − B) + C(A + B)2].

Without loss of generality, we may assume that B0 ≥ C0. Looking at
the evolution equation of B − C, it follows that B ≥ C as long as a solution
exists.

Since that ABC = A0B0C0 = 4. We have

d

dt
C = −2

3
[BC2 + B2C − 2C3 + ABC − AC2 + ABC + A2C] ≤ −2

3

C is decreasing and the solution can only exist up to some finite
time T+ < ∞.

Lemma 5.1. Assume that B0 ≥ C0, we have

lim
T+

C = 0.

Proof. Observe that AB is increasing because that

d

dt
ln(AB) = −2

3
[−B2 − A2 − 2AB − BC + AC + 2C2] > 0.

Assume that limT+ C(t) = η > 0. Then AB < 4
η and B ≥ C > η. So A <

4
η2 and we must have limT+ A(t) = 0 and limT+ B(t) = ∞ (because AB is
increasing and bounded from above, it is easy to see those two conditions
are equivalent). Hence we have

dA

dt
∼ −2

3
AB2,

dB

dt
∼ 4

3
B3,

dC

dt
∼ −2

3
CB2.

So we have B(t)−2 ∼ 8
3(T+ − t), but this contradicts limT+ C(t) = η > 0. �

Lemma 5.2. Assume B0 ≥ C0. If there exists a time t0 such that A(t0) ≥
B(t0) then

A ∼
√

6
4

(T+ − t)−1/2, B ∼ η1(T+ − t)1/4, C ∼ η2(T+ − t)1/4.
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Proof. As ABC = 4, we have limT+ AB = ∞. Moreover,

(5.2)
d

dt
ln(A/B) = 2(A + B)(A + C − B).

If there exists a time t0 such that A(t0) ≥ B(t0), then A ≥ B on [t0, T+).
Similarly, the condition A > 2B is preserved by the flow. Assuming that
A > 2B, we have

d

dt
B ∼ −2

3
B(A − 2B)(A + B) < 0

hence limT+ B(t) = B(T+) < ∞. So limT+ A(t) = ∞ and the system 5.1
yields

(5.3)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dA

dt
∼ 4

3
A3

dB

dt
∼ −2

3
BA2

dC

dt
∼ −2

3
CA2.

This gives the desired asymptotics.
We now need to rule out the case when B ≤ A ≤ 2B for all t. In that

case we have
4
3
A3 ≤ dA

dt
≤ 2A3

this implies
∫ T+

0 A2 = ∞. Further, by (5.2),
∫ T+

0 (A2 − B2) < ∞. Since A/B
is non-decreasing, there exists a constant η, such that A − B > ηA. Thus∫ T+

0 A2 < ∞. This is a contradiction. �

Lemma 5.3. Assume B0 ≥ C0. If there exists a time t0 such that A(t0) ≤
B(t0) − C(t0) then

A ∼ η1(T+ − t)1/4, B ∼
√

6
4

(T+ − t)−1/2, C ∼ η2(T+ − t)1/4.

Proof. We have

(5.4)
d

dt
(B −A −C) = −2

3
(2A3 + 2C3 − 2B3 + 2A2B + 2ABC − 2AB2 − 2A2C).

Hence the condition B − A ≥ C is preserved by the flow. It follows from
the flow equations (5.1) and (5.2) that both B and B/A are increasing.
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So we have limT+ B = ∞. If limT+ B/A < ∞ then, since there exists a η

such that B − A − C > ηB, (5.2) yields that
∫ T+

0 B2 < ∞. The evolution
equation (5.1) shows that this contradicts limT+ B(t) = ∞. Hence we must
have limT+ B/A = ∞, and (5.1) gives

(5.5)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dA

dt
∼ −2

3
AB2

dB

dt
∼ 4

3
B3

dC

dt
∼ −2

3
CB2.

This proves the desired result. �

Now the only case left is when A < B < A + C for all t ∈ [0, T+). In this
case since limT+ C = 0, we have limT+(B − A) = 0, and the flow equation
(5.1) yields that

(5.6)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dA

dt
∼ 4

3
A3

dB

dt
∼ 4

3
B3

dC

dt
∼ −8

3
CB2.

So we arrive at

A ∼
√

6
4

(T+ − t)−1/2, B ∼
√

6
4

(T+ − t)−1/2, C ∼ 32
3

(T+ − t).

This together with the two previous lemmas concludes the proof of The-
orem 5.1. As noted in the remark following the theorem, it is not clear from
the proof itself that the third case does indeed occur. In [1], we show that
there is a smooth hypersurface of initial condition which is preserved by the
flow, which exactly corresponds to the asymptotic behavior described in the
third case A < B < A + C for all t ∈ [0, T+).
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