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Connecting certain rigid birational
non-homeomorphic Calabi–Yau threefolds via

Hilbert scheme
Nam-Hoon Lee and Keiji Oguiso

We shall give an explicit pair of birational projective Calabi–Yau
threefolds which are rigid, non-homeomorphic, but are connected
by projective flat deformation over some connected base scheme.

0. Introduction

A Calabi–Yau manifold is a compact Kähler simply connected manifold with
a nowhere vanishing global n-form but no global i-form with 0 < i < n =
dim X. By Kodaira’s criterion, it is projective if the dimension n ≥ 3.

As well known, Calabi–Yau manifolds, hyperkähler manifolds and
complex tori form the building blocks of compact Kähler manifolds with
vanishing first Chern class [2, 6]. A famous theorem of Huybrechts states
that two bimeromorphic hyperkähler manifolds are equivalent under smooth
deformation [8,9]. In particular, they are homeomorphic to each other, hav-
ing the same Betti numbers and Hodge numbers. Clearly, the same holds
true for complex tori. Another theorem, originally due to Batyrev and Kont-
sevich, says that two birational Calabi–Yau manifolds have the same Betti
numbers and Hodge numbers [1, 4, 10, 19, 21]. However, there are rigid bira-
tional non-isomorphic Calabi–Yau manifolds (cf. Theorem 0.1). Obviously,
they are not equivalent under any smooth deformation.

The aim of this paper is to remark that there nevertheless exist bira-
tional Calabi–Yau threefolds which are rigid, non-homeomorphic, but are
connected by (necessarily non-smooth) projective flat deformation:

Theorem 0.1. There are Calabi–Yau threefolds X and Y such that:

(1) X and Y are birational and rigid,

(2) X and Y are not homeomorphic but,
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(3) X and Y are connected by projective flat deformation over some
connected scheme.

Note that any family that connects X and Y necessarily involves very
singular spaces (see the toy example in Section 1). This result is experi-
mental but we believe that it is the first attempt to study “deformation” of
rigid Calabi-Yau threefolds. This work is also motivated by the first named
author’s recent result on the equivalence of certain Calabi–Yau threefolds
with Picard number one, of different topological type, under projective flat
deformation [11].

In the proof of our main theorem (Theorem 0.1), the following deep
theorem of Hartshorne [7] (see also [16]) plays an important role:

Theorem 0.2 (Hartshorne). The Hilbert scheme HilbP (x)
PN of PN with fixed

Hilbert polynomial P (x) is connected.

So, if two varieties belong to the same Hilbert scheme HilbP (x)
PN , then they

appear as fibers of the universal family u : U −→ HilbP (x)
PN , in which HilbP (x)

PN

is connected. In this way, they are connected by projective flat deformation.
Let Z be a Calabi–Yau threefold and let H be an ample divisor on Z.

Then, by the Kodaira vanishing theorem and the Riemann–Roch formula,
we have

dim H0(OZ(nH)) = χ(OZ(nH)) =
H3

6
n3 +

H · c2(Z)
12

n.

Here c2(Z) = c2(TZ) is the second Chern class of Z. It is also known that 10H
is always very ample on Z [14]. Therefore, as a special case of Theorem 0.2,
one obtains the following:

Theorem 0.3. Two Calabi–Yau threefolds are embedded into a projec-
tive space with the same Hilbert polynomial, accordingly belong to the same
Hilbert scheme of that projective space and connected by projective flat defor-
mation, if and only if they have ample divisors that have the same values of

H3 and H · c2.

In general, two Calabi–Yau threefolds are unlikely to be connected by
projective flat deformation, especially if they are of different topological
type. Let X and Y be a complete intersection of two cubics in P5 and a
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quintic hypersurface in P4, respectively. Then we always have

9k3 = (kHX)3 �= (lHY )3 = 5l3

for any positive integers k, l, where HX and HY are the ample generators of
the Picard groups of X and Y , respectively. So X and Y cannot be connected
by any projective flat deformation.

Our Calabi–Yau threefolds in Theorem 0.1 are the famous rigid Calabi–
Yau threefold Xφ constructed by Beauville [3] and its birational modification
XT studied by the second named author [13] (see also Section 2).

Our proof (for connectedness) is implicit. So the following question might
be interesting:

Question 0.1. Can one describe how X and Y in Theorem 0.1 are con-
nected in more explicit manner?

One can find some relevant work in [20].
The structure of this paper is as follows: we discuss some toy case of

elliptic curves in Section 1. This explains some idea behind our consideration.
In Section 2, we recall Beauville’s rigid Calabi–Yau threefold Xφ and its
birational modification XT . Sections 3 and 4 are devoted to the proof of
Theorem 0.1.

1. Toy example: connecting two elliptic curves in two ways

Let Cλ (λ �= 0, 1) be the elliptic curve defined by the Weierstrass equation

y2 = x(x − 1)(x − λ).

Obviously, any two elliptic curves Cλ1 and Cλ2 are connected by the following
projective smooth family:

ψ : X = {([x0 : x1 : x2], λ) ∈ P2 × B | x2
1x2

− x0(x0 − x2)(x0 − λx2) = 0} −→ B.

Here and hereafter, we put B = P1 \ {0, 1,∞}.
Yet, we can connect Cλ1 and Cλ2 by another way.
Let D be a hyperelliptic curve with a hyperelliptic involution ι and let Ξ

be the set of the branch points of ι in D/〈ι〉 	 P1. We consider the natural
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morphisms,

ϕ1 : ˜Cλ1 × D
/
〈(−1, ι)〉 −→ D/〈ι〉 	 P1

and

ϕ2 : ˜Cλ2 × D
/
〈(−1, ι)〉 −→ D/〈ι〉 	 P1.

Here ˜’s are the minimal resolutions. We regard ϕ1 and ϕ2 as projective
flat deformations. Then, for q ∈ Ξ, the scheme-theoretic fiber ϕ−1

1 (q) = 2l +
l0 + l1 + l∞ + lλ1 consists of 5 P1’s, intersecting like

�������

�������

�������

�������
•
0

l0

•
1

l1

•
∞

l∞

•
λ1

lλ1

2l

and ϕ−1
1 (p) 	 Cλ1 for p /∈ Ξ. Similarly, the scheme-theoretic fiber ϕ−1

2 (q) for
q ∈ Ξ is like

�������

�������

�������

�������
•
0

l0

•
1

l1

•
∞

l∞

•
λ2

lλ2

2l

and ϕ−1
2 (p) 	 Cλ2 for p /∈ Ξ. The singular schemes ϕ−1

1 (q) and ϕ−1
2 (q) can

be put into a projective flat family, in which the fibers are of the form

�������

�������

�������

�������
•
0

•
1

•
∞

•
λ

For example, the natural projection ψ : Y −→ B, where

Y = {([x0 : x1], [y0 : y1], λ) ∈ P1 × P1 × B
∣
∣ x2

0y0y1(y0 − y1)(y0 − λ1y1) = 0}

is such a family. In this way, Cλ1 and Cλ2 are connected by a chain of three
projective flat deformations.

In the second method, smooth fibers in families are only Cλ1 and Cλ2

and they are connected through very singular spaces. So, the method sug-
gests some possibilities to connect two rigid manifolds of different topological
structure. This is the idea behind our construction.

2. Beauville’s rigid Calabi–Yau threefold and its
modification

We briefly recall the two rigid Calabi–Yau threefolds X and Y that appear
in Theorem 0.1.
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Let ζ = e2π
√

−1/3. By Eζ , we denote the elliptic curve whose period is ζ
and by En

ζ /〈ζ〉 the quotient of the n-fold product, En
ζ by the scalar multi-

plication by ζ. Let

Q0 = 0, Q1 = (1 − ζ)/3 and Q2 = −(1 − ζ)/3

in Eζ . These are exactly the fixed points of the scalar multiplication by ζ
on Eζ . For ik = 0, 1, 2, let

Qi1i2···in
= (Qi1 , Qi2 , . . . , Qin

) ∈ En
ζ

and let Qi1i2···in
be its image in En

ζ /〈ζ〉. Then X = E3
ζ /〈ζ〉 has singularities

of type 1
3(1, 1, 1) at Qijk’s and the blow-up π : Xϕ −→ X at these 27 singular

points gives a Calabi–Yau threefold Xφ. This is the famous rigid Calabi–Yau
threefold found by Beauville [3]. We denote by Eijk the exceptional divisor
lying over Qijk. The surfaces Eijk is isomorphic to P2.

Let
pφ : Xφ −→ B := E2

ζ /〈ζ〉
be the morphism, induced by the projection pr12 : E3

ζ −→ E2
ζ . Then we have

p−1
φ Qij = lij ∪ Eij0 ∪ Eij1 ∪ Eij3.

Here lij is a smooth rational curve meeting Eijk transversally. See figure 1.
The normal bundle of lij in Xφ is

NXφ|lij
= Olij

(−1)⊕2.

Performing the elementary transformation along
⋃

i,j lij , we obtain a smooth
threefold XT . This XT corresponds to that in [13] for T = {(i, j)|i, j =
0, 1, 2}. Denote the proper transform of Eijk in XT by Fijk. Note that Fijk

is the first Hirzebruch surface F1. Compare figure 2 with figure 1.
Now we summarize some properties of Xφ and XT , showed in [3, 13].

Theorem 2.1. (1) Xφ and XT are both Calabi–Yau threefolds.

(2) h1,2(Xφ) = h1,2(XT ) = 0, i.e., Xφ and XT are rigid.

So, Xφ and XT are birational, rigid Calabi–Yau threefolds. In fact, these
Xφ and XT are the Calabi–Yau threefolds X and Y in our Theorem 0.1. We
shall show that Xφ and XT are non-homeomorphic in Section 3 and that
Xφ and XT are connected by projective flat deformation in Section 4.
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Figure 1: pφ : Xφ → B

Figure 2: pT : XT → B

Here, we summarize notations which will be frequently used in the next
two sections:

Notation 2.1.

• ζ = e2π
√

−1/3, the primitive third root of unity in the upper half plane.

• Eζ = C/(Z ⊕ Zζ) is the elliptic curve with period ζ.



Birational non-homeomorphic Calabi–Yau threefolds 289

• Q0 = 0, Q1 = (1 − ζ)/3 and Q2 = −(1 − ζ)/3 in Eζ : the fixed points
of the scalar multiplication by ζ on Eζ .

• Qi1i2···in
= (Qi1 , Qi2 , . . . , Qin

) ∈ En
ζ for i1, i2, . . . , in ∈ {0, 1, 2}.

• Qi1i2···in
is the image of Qi1i2···in

in En
ζ /〈ζ〉.

• X = E3
ζ /〈ζ〉, B = E2

ζ /〈ζ〉. Here E2
ζ in the definition of B is the product

of the first two factors of E3
ζ .

• q : E3
ζ −→ X is the quotient map.

• pri : E3
ζ −→ Eζ is the projection to the ith factor.

• prij : E3
ζ −→ E2

ζ is the projection to the product of ith and jth
factors.

• pij : X −→ E2
ζ /〈ζ〉 and pi : X −→ Eζ/〈ζ〉 are the the morphisms

induced by prij and pri, respectively.

• gi : B −→ Eζ/〈ζ〉 = P1 is the morphism, induced by the projection
E2

ζ −→ Eζ to the ith factor (i = 1, 2).

• π : Xφ −→ X is the blow-up at {Qijk|i, j, k = 0, 1, 2}.

• pφ = p12 ◦ π : Xφ −→ B.

• pT : XT −→ B is the projection, induced by pφ.

• Eijk 	 P2 is the exceptional divisor over Qijk by the blow-up π :
Xφ −→ X.

• Fijk 	 F1 is the proper transformation of Eijk in XT .

The next lemma will be also frequently used in the next two sections:

Lemma 2.1. Let Z be a Calabi–Yau threefold and let D be a smooth divisor
on Z. Then, D3 = c1(TD)2 and D · c2(Z) = −c1(TD)2 + c2(TD).

We also note that c1(TD)2 = K2
D and that c2(TD) = c2(D) is the topo-

logical Euler number of the surface D.

Proof. This follows from the fact that c1(Z) = 0 and the normal sequence

0 −→ TD −→ TZ |D −→ NZ|D −→ 0.

�



290 Nam-Hoon Lee and Keiji Oguiso

3. Topological difference between Xφ and XT

In this section we shall prove (0.1) of Theorem 0.1, i.e., that Xφ and XT are
not homeomorphic. Since the linear form c2(Z) : H2(Z,Z) −→ Z and the
cubic form cZ : Sym3H2(Z,Z) −→ Z are topological invariants, the result
follows from:

Theorem 3.1. (1) The linear form given by c2(Xφ) is divisible by 6, i.e.
D · c2(Xφ) ≡ 0 (mod 6) for each D ∈H2(Xφ,Z), while the linear form c2(XT )
is not.

(2) The cubic form of Xφ is divisible by 3, i.e., D3 ≡ 0 (mod 3) for each
D ∈ H2(Xφ,Z), while the cubic form of XT is not.

For the main result, the statement (2) is sufficient but we also add
statement (1) for its own interest.

Remark 3.1. As far as we know, Friedman is the first who found a pair
of birational projective Calabi–Yau threefolds which are not homeomorphic
[5, Example 7.7]. His examples are based on [17] and they are not rigid. Our
proof here is inspired by his argument there.

We shall prove Theorem 3.1 in the sequel.
Let F 	 F1 be one of Fijk in XT . Then, by Lemma 2.1,

F 3 = K2
F = 8, F · c2(XT ) = c2(F ) − K2

F = 4 − 8 = −4.

Clearly, none of them is divisible by 3.
In the rest of this section, we shall show 6-divisibility of the linear form

c2(Xφ). Three-divisibility of the cubic form then follows from the Riemann–
Roch formula (cf. Introduction). Here we note that PicXφ 	 H2(Xφ,Z).
From now until the end of this section, we write

E = Eζ , X = Xφ.

For other notations, see Notation 2.1.

Proposition 3.1. (1) The Néron-Severi group NS(E2) is generated by the
classes of the four divisors, {0} × E, E × {0}, Δ and Γ. Here Δ is the
diagonal and Γ is the graph of the automorphism ζ : E −→ E.

(2) The Néron-Severi group NS(E3) is generated by the subgroups pr∗
ij

NS(E2) (1 ≤ i < j ≤ 3).
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Proof. The four classes in (1) are clearly in NS(E2), and their intersection
matrix is ⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 3
1 1 3 0

⎞

⎟
⎟
⎠ .

The discriminant of this matrix is 3. On the other hand, the discriminant
of the transcendental lattice of E2 is 3 by Chioda and Mitani [18]. Thus, the
discriminant of NS(E2) is also 3. Since NS(E2) is torsion free, assertion (1)
follows.

Let us show (2). By the Künneth formula, we have

H2(E3,Z) =
3⊕

i=1

pr∗
i H

2(E,Z) ⊕
⊕

1≤i<j≤3

pr∗
ij(H

1(E,Z) ⊗ H1(E,Z)).

This decomposition is compatible with the Hodge decomposition. Since
NS(E3) = H2(E3,Z) ∩ H1,1(E3) by the Lefschetz (1, 1)-theorem, we have
then

NS(E3) =
3⊕

i=1

pr∗
i H

2(E,Z) ⊕
⊕

1≤i<j≤3

pr∗
ij(H

1(E,Z) ⊗H1(E,Z) ∩H1,1(E2)).

Again, by the Lefschetz (1, 1)-theorem, the groups pr∗
k H2(E,Z) (k = i, j)

and pr∗
ij(H

1(E,Z) ⊗ H1(E,Z) ∩ H1,1(E2)) are subgroups of pr∗
ij NS(E2), in

which E2 is the product of ith and jth factors of E3. This implies (2). �

Recall that X = E3/〈ζ〉. In particular, X is Q-factorial. A bit more
precisely, the divisor 3D is Cartier for any Weil divisor D on X. Let N1(X)
be the group of the numerically equivalent classes of Weil divisors on X.
Note that Cartier divisors and Weil divisors are the same on E3 or on X
(as E3 and X are smooth) and the numerical equivalence and the algebraic
equivalence of divisors are also the same on E3 or on X (as their Néron–
Severi groups are torsion free).

Proposition 3.2. The group homomorphism q∗ : N1(X) −→ NS(E3) is an
isomorphism.

Proof. Our argument here is similar to [12]. Since X is Q-factorial and q is
finite, the group homomorphism q∗ is indeed well defined and injective.

Let [H] ∈ NS(E3). We need to find D ∈ N1(X) such that [H] = q∗D.
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Claim 1. We can (and will) choose the representative H ∈ Pic E3 of the
class [H], such that ζ∗H = H as line bundles.

Proof. Take the origin of E as polarization of E. One can then identify
Pic0(E) = E in an equivariant way with respect to the action of ζ. Under
this identification, we have an identification Pic0(E3) = E3 in which the
action of ζ∗ on Pic0(E3) is the same as the diagonal action (ζ, ζ, ζ) on E3.
Note also that ζ∗ = id on NS(E3) as ζ∗ = id on the wider space H1,1(E3).

Put T = ζ∗H − H. Here the equality is as line bundles. Then T = (T1, T2,
T3) is an element of Pic0(E3) = E3, as ζ∗[H] = [H]. Note that there is a
point P = (P1, P2, P3) ∈ Pic0(E3) = E3 such that

(P1, P2, P3) − (ζP1, ζP2, ζP3) = (T1, T2, T3).

The line bundle H + P is a desired representative. �

From now, we regard H as an effective divisor in |H| rather than the
line bundle.

Claim 2. We may (and will) assume that there is an effective divisor H
in |H| such that ζ∗H = H as divisors.

Proof. Since q is finite, the divisor q∗A is ample if A is ample. Thus, by
adding q∗A with sufficiently ample A to H, we may assume that |H| is a
free linear system. Since ζ∗H = H as line bundles, ζ acts on the projec-
tive space |H|. This action certainly has a fixed points. Let H be a divi-
sor corresponding to (one of) the fixed point. Then ζ∗H = H as divisors
on E3. �

Let H = q∗H as Weil divisors. Since ζ∗H = H as divisors and (E3)〈ζ〉

consists of finitely many points, there is a divisor D such that H = 3D as
Weil divisors. For this D, we have

3q∗D = q∗H = H + ζ∗H + (ζ∗)2H = 3H.

Since NS(E3) is torsion free, this implies q∗D = H. �

Proposition 3.3. Let D̃ijl (1 ≤ l ≤ 4) be the divisors on E3, which are pull
back of the four divisors E × {0}, {0} × E, Δ and Γ on E2 by pij (1 ≤ i <
j ≤ 3). Let Dijl := (q∗D̃ijl)red. Then, the (classes of ) 12 Weil divisors Dijl

generate N1(X).
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Proof. We note that ζ∗D̃ijl = D̃ijl as divisors on E3. Thus D̃ijl = π∗Dijl (cf.
Proof of Proposition 3.2). Since D̃ijl generate NS(E3) by Proposition 3.1,
the result follows from Proposition 3.2. �

Let Dijl be the proper transform of Dijl on X by π : X −→ X.

Proposition 3.4. NS(X) is contained in the subgroup of NS(X) ⊗ Q
generated by the classes of the following divisors:

Dijl, Eijk, TΛ,Λ′ :=
1
3

∑

(i,j,k)∈Λ

Eijk +
1
3

∑

(i′,j′,k′)∈Λ′

2Ei′j′k′

where Λ and Λ′ are some disjoint subsets (possibly empty) of the product set
{0, 1, 2}3 such that Λ ∩ Λ′ = ∅ and such that both |Λ| and |Λ′| are divisible
by 3.

Proof. Let D be a prime divisor on X. Put D = π∗D as Weil divisors. Then,
by Proposition 3.3, there are integers bijl such that D =

∑
i,j,l bijlDijl in

N1(X). Since 3D and 3Dijl are Cartier, there are integers aijk such that

D =
∑

i,j,l

bijlDijl +
1
3

∑

i,j,k

aijkEijk

in NS(X) 	 Pic X. So, the result follows from the next lemma. �

Lemma 3.1. Let Λ and Λ′ be subset of {0, 1, 2}3 such that Λ ∩ Λ′ = ∅. If

M :=
∑

(i,j,k)∈Λ

Eijk +
∑

(i′,j′,k′)∈Λ′

2Ei′j′k′

is divisible by 3 in Pic X, then both |Λ| and |Λ′| are divisible by 3.

Proof. Let α ∈ {0, 1, 2}. Let Dα be the divisor on X, which is the proper
transform of the divisor Dα = (p∗

3Qα)red on X (See figure 3 and Notation 2.1
for Qα).

Since Dα passes through 9-singular points of X, the surface Dα meets
the 9-exceptional divisors, say,

E00α, E01α, E02α, E10α, E11α, E12α, E20α, E21α, E22α.

We put lijα := Eijα|Dα
. These are all (−3)-curves. The surface Dα is a non-

relatively minimal rational elliptic surface with 3-singular fibers li0α + li1α +
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Figure 3: Dα’s

Figure 4: να : Dα → D′
α

li2α + 3ci (i = 0, 1, 2) as in the figure below (figure 4). Here ci are (−1)-
curves. Let να : Dα −→ D′

α be the contraction of the three (−1)-curves ci.
Let l′ijα = ν(lijα). Then D′

α is a relatively minimal rational elliptic surface
with 3 singular fibers l′i0α + l′i1α + l′i2α (figure 4). Since M is 3-divisible, so
is the divisor

M ′
α := (να)∗(M |Dα

) =
∑

i,j

aijαl′ijα.

Our D′
α belongs to No.39 in the list of [15]. In particular, the Mordell–

Weil group has a torsion element of order 3. Thus, there are three sections
s0, s1 and s2 which meet l′00α, l′01α, l′02α, respectively. On the other hand,
since M ′

α · l′ijα are divisible by 3, the set of three elements {ai0α, ai1α, ai2α}
(counted with multiplicities) is either one of {0, 0, 0} ,{1, 1, 1}, {2, 2, 2},
{0, 1, 2}, for each i = 0, 1, 2. Suppose that for i = 0 we have {a00α, a01α,
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a02α} = {0, 1, 2}. Then, the same holds for i = 1 and 2. This is because s0 ·
M ′

α, s1 · M ′
α and s2 · M ′

α are all divisible by 3. Thus both |Λ ∩ {(i, j, α) | i, j =
0, 1, 2}| and |Λ′ ∩ {(i, j, α) | i, j = 0, 1, 2}| are divisible by 3 for each α ∈
{0, 1, 2}. This implies the result. �

Now we are ready to prove 6-divisibility of the linear from c2(X). It
suffices to check that D · c2(X) ≡ 0 mod 6 for Dijl, Eijk and TΛ,Λ′ in Propo-
sition 3.4.

We have K2
Eijk

= E3
ijk = 9 and c2(Eijk) = 3, as Eijk 	 P2. Thus Eijk ·

c2(X) = −6 by Lemma 2.1. This also implies 6-divisibility of TΛ,Λ′ · c2(X)
as both |Λ| and |Λ′| are divisible by 3.

Let us compute Dijl · c2(X). As we have observed in Lemma 3.1, the
surface Dijl is the blow up at three points of a relatively minimal rational
elliptic surface. Thus, K2

Dijl
= −3 and c2(Dijl) = 15, and therefore, Dijl ·

c2(X) = 18 by Lemma 2.1.
This completes the proof Theorem 3.1.

4. Connecting Xφ and XT by projective flat deformation

In this section we shall prove (0.1) in Theorem 0.1, i.e., Xφ and XT are
connected by projective flat deformation. By Theorem 0.3, this follows from:

Theorem 4.1. There are ample divisors Hφ on Xφ and HT on XT such
that

Hφ · c2(Xφ) = HT · c2(XT ) and H3
φ = H3

T .

We shall prove Theorem 4.1 in the sequel. In the proof, we freely use the
notations given in Notation 2.1.

4.1. Construction of a divisor Hφ on Xφ

Recall that Eζ/〈ζ〉 	 P

1. Let Li = p∗
i OEζ/〈ζ〉(1) and Li = π∗Li. Let

Hφ = −
∑

i,j,k

Eijk + xL1 + yL2 + zL3

where x, y and z are positive integers.

Lemma 4.1. (1) For sufficiently large number C, Hφ is ample on Xφ

when x > C, y > C, z > C.
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(2) Hφ · c2(Xφ) = 162.

(3) H3
φ = 54xyz − 243.

Proof. By construction, the divisor −
∑

i,j,k Eijk is π-ample, the divisors Li’s
are nef on X and L1 + L2 + L3 is ample on X. This implies (1). Note that Li

is represented by a smooth abelian surface and Eijk 	 P2. Thus, by Lemma
2.1, we have Li · c2(Xφ) = 0 and Eijk · c2(Xφ) = −6. This implies (2). Note
also that

E3
ijk = 9, L1 · L2 · L3 = 9, Eijk · Ll = L2

i = 0

and Eijk · Elmn = 0 unless (i, j, k) = (l, m, n). Therefore we have

H3
φ =

⎛

⎝−
∑

i,j,k

Eijk

⎞

⎠

3

+ 3

⎛

⎝−
∑

i,j,k

Eijk

⎞

⎠

2

(xL1 + yL2 + zL3)

+ 3

⎛

⎝−
∑

i,j,k

Eijk

⎞

⎠ (xL1 + yL2 + zL3)2

+ (xL1 + yL2 + zL3)3

= −
∑

i,j,k

E3
ijk + 0 + 0 + 6xyzL1 · L2 · L3

= 54xyz − 243.
�

4.2. Construction of a divisor HT on XT

We recall the following commutative diagram:

Xφ
π ��

�� ���
��

��
��

� X
p3��

p12

��

Eζ/〈ζ〉 	 P1

XT pT

�� B g1
�� Eζ/〈ζ〉 	 P1 .

Let l′i = g−1
1 (Qi) and Mi = p−1

T (l′i \ {Qi0, Qi1, Qi2}) (i = 0, 1, 2). Then
Mi is a relatively minimal rational elliptic surface. We denote a general
smooth fiber of the fibration Mi −→ P1 by fMi

. By construction, Mi has 3
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Figure 5: Mi and Fijk’s in XT

Figure 6: ηi

singular fibers of Kodaira type IV :

•
��

��
��

��
� ���������

See figure 5 for Mi and the way Mi intersects with Fijk’s.
Let Sj = (p∗

3(Qj))red on X and Sj be the proper transformation of Sj

on XT (j = 0, 1, 2). Then Sj is a (non-relatively minimal) rational elliptic
surface with three singular fibers (denote them by η1, η2 and η3) that are
composed of one (−1)-curve of multiplicity 3 and three (−3)-curves; ηi =
αi + βi + γi + 3δi. See figure 6. We denote by fSj

a general smooth fiber of
the fibration Sj −→ P1.

See figure 7 for the configuration of Sj , Mi and Fαβγ ’s.

Lemma 4.2. The following divisor is pT -ample;

3(M0 + M1 + M2) + S0 + S1 + S2.
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Figure 7: Mi, Fijk’s and S1 in XT

Proof. Since Sj are sections of pT over B \ {Qαβ

∣
∣ α, β = 0, 1, 2}, we only

need to check that 3(M0 + M1 + M2) + S0 + S1 + S2 is ample on Fαβγ ’s.
This, however, follows from the fact that

(3(M0 + M1 + M2) + S0 + S1 + S2)) |Fαβγ
= 3f + s

where f is the ruling of the ruled surface Fαβγ 	 F1 and s is a positive
section (with s2 = 1) (see figures 5 and 7). �

Let Ak be a general fiber of gk : B −→ Eζ/〈ζ〉 and let Ak = p∗
T Ak (k = 1,

2). Ak is an elliptic curve and Ak is an abelian surface. Note that Ak ∈
|g∗

kOEζ/〈ζ〉(1)|. Put

HT := 3(M0 + M1 + M2) + S0 + S1 + S2 + aA1 + bA2.

Here a and b are positive integers.

Lemma 4.3. (1) For sufficiently large number C, HT is ample on XT

when a > C, b > C.

(2) HT · c2(XT ) = 162.

(3) H3
T = 18ab − 27b − 333.
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Proof. Since A1, A2 are nef and A1 + A2 is an ample on B, the first assertion
follows from Lemma 4.2. By using Lemma 2.1, we compute that

Mi · c2(XT ) = − K2
Mi

+ c2(Mi) = 12

Sj · c2(XT ) = − K2
Sj

+ c2(Sj) = 18

Ak · c2(XT ) = − K2
Ak

+ c2(Ak) = 0.

This implies the second assertion. For the third one, we first expand H3
T as

H3
T = (3(M0 + M1 + M2) + S0 + S1 + S2)

3 (= Q1)

+ (3(M0 + M1 + M2) + S0 + S1 + S2)
2 (aA1 + bA2) (= Q2)

+ (3(M0 + M1 + M2) + S0 + S1 + S2) (aA1 + bA2)2 (= Q3)

+ (aA1 + bA2)3 (= Q4)
= Q1 + Q2 + Q3 + Q4.

We compute Q1, Q2, Q3, Q4 separately.

Q1: Note that

S3
j = K2

Sj
= −3

M3
i = K2

Mi
= 0

Si · Sj = Mi · Mj = 0 for i �= j

M2
i · Sj = (Mi|Sj

)2 = −1

Mi · S2
j = (Sj |Mi

)2 = −1 .

With these, we have Q1 = −333.

Q2: We observe that

−Mi|Mi
∼ −KMi

∼ A1|Mi
∼ fMi

and fMi
· A2 = 3.

From this we have M2
i · (aA1 + bA2) = −3b. Note also that

A1|Sj
∼ fSj

.

It follows that

Mi · Sj · (aA1 + bA2) = Mi|Sj
· (aA1 + bA2)|Sj

= b(δi · A2)
= b.
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See also figure 6. Finally,

S2
j · (aA1 + bA2) = KSj

· (aA1 + bA2)|Sj

= b(−fSj
+ δ1 + δ2 + δ3) · A2

= b(−3 + 1 + 1 + 1)
= 0.

Thus we have Q2 = −27b.

Q3: Note that (aA1 + bA2)2 = 6ab(fiber of pT ). So we have

Mi · (aA1 + bA2)2 = 0

Sj · (aA1 + bA2)2 = 6ab

Thus, Q3 = 18ab.

Q4: Clearly, Q4 = 0.

With all these, we obtain H3
T = Q1 + Q2 + Q3 + Q4 = 18ab − 27b − 333. �

4.3. Synthesis

Now we are ready to prove Theorem 4.1. By Lemmas 4.1 and 4.3, the divisors
Hφ and HT are ample on Xφ and XT , respectively, when x, y, z and a, b are
greater than some sufficiently large C. So, it suffices to find integers x, y, z
and a, b greater than any given positive integer C that satisfy the following
equations:

162 = Hφ · c2(Xφ) = HT · c2(XT ) = 162

and
54xyz − 243 = H3

φ = H3
T = 18ab − 27b − 333.

The first one poses no condition on x, y, z, a, b, and the second one is
simplified to

6xyz = 2ab − 3b − 10.(1)

For a given positive integer C, let

x = 12C2 − 6, y = z = 2C, a = 6C2 + 1, b = 24C2 − 10.

Then x, y, z and a, b are integers which are greater than C and satisfy the
above Equation (1).

This completes the proof of Theorem 4.1.
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