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A quadratic inequality for sum of co-adjoint orbits
Naichung Conan Leung and Xiaowei Wang

We obtain an effective lower bound on the distance of the sum
of co-adjoint orbits from the origin. Even when the distance is
zero (thus the symplectic quotient is well defined) our result gives
a nontrivial constraint on these co-adjoint orbits. In the particu-
lar case of unitary groups, we obtain the quadratic inequality for
eigenvalues of Hermitian matrices satisfying

A + B = C.

This quadratic inequality can be interpreted as the Chern number
inequality for semi-stable reflexive toric sheaves.

1. Introduction

Given any rank r Hermitian matrix A, we may order its eigenvalues in such
a way that

λ1(A) ≥ λ2(A) ≥ · · · ≥ λr(A)

and denote λ (A) := (λ1(A), . . . , λr(A)) ∈ R
r as its spectrum. In [6] (also

see [3] for an excellent account of the subject), Klyachko discovered fol-
lowing series of linear inequalities for Hermitian matrices A, B, C satisfying
A + B = C: ∑

k∈K

λk (C) ≤
∑

i∈I

λi(A) +
∑

j∈J

λj(B)

for all triple of subsets I, J, K ⊂ {1, 2, . . . , r} of the same cardinality and
such that the associated Schubert cycle sK is a component of sI · sJ . This
result can be interpreted as describing the linear inequalities that determine
the intersection of the sum of co-adjoint orbits Oλ(A) + Oλ(B) + Oλ(−C) with
the positive Weyl chamber for the unitary group, which is a convex polytope
by Kirwan’s convexity theorem. Klyachko’s result was generalized to any
compact Lie group by Berenstein and Sjamaar in the beautiful paper [2],
they are able to relate above eigenvalue inequalities to the convexity of the
image of the moment map. All above inequalities are linear on eigenvalues
of matrices.
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In [7], we find a natural quadratic inequality on these eigenvalues by
relating the Hermitian matrices to stable reflexive sheaves over the projective
spaces (c.f. [5]). More precisely, we have found the following

Theorem 1.1. Suppose A1, . . . , AN are rank r Hermitian matrices
satisfying

N∑

α=1

Aα = 0.

Then the following inequality holds true;

(1.1)
N∑

α=1

λ (Aα)2 ≤
∑

1≤α �=β≤N

λ (Aα) λ (−Aβ) .

Moreover, the equality holds if and only if all but two of Aα’s are scalar
matrices.

We have explained in [7] the relationship between this quadratic inequal-
ity and the classical Chern number inequality for Gieseker polystable vector
bundles over a projective manifold (not necessarily being toric). Our dream
is to find a universal “Chern number inequality” for stable objects in the
sense of geometric invariant theory such that the classical Chern number
inequality for vector bundles will be a consequence. In order to do so, we
made our first step, that is, we extend the above results to the case of sum
of co-adjoint orbits for ANY compact Lie group.

Main Theorem. Let O′
λα

s be co-adjoint orbits of a compact Lie group G
with α = 1, 2, . . . , N. If we choose λα be the unique point of the intersec-
tion of Oλα

with the positive Weyl chamber. Then for any λ in the sum of
co-adjoint orbits

λ ∈
N∑

α=1

Oλα

we have

(1.2) |λ|2 ≥
N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉

where w0 is the longest element in the Weyl group W .
Furthermore, the equality holds if and only if all except at most two of

λ′
αs, 1 ≤ α ≤ N are in the center of g.
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Notice that
∑N

α=1 Oλα
⊂ g∗ is the image of the moment map for the

diagonal G-action on
∏N

α=1 Oλα
. If we want to construct the symplectic

quotient
(∏N

α=1 Oλα

)
//G, we need the origin to be inside of the image of

moment map. Thus our main theorem gives a necessary constraint for this
to happen, namely

∑N
α=1 |λα|2 +

∑
α �=β 〈λα, w0 · λβ〉 must be nonpositive.

Suppose
∑N

α=1 |λα|2 +
∑

α �=β 〈λα, w0 · λβ〉 is positive, then our main the-
orem gives an effective lower bound on the distance between

∑N
α=1 Oλα

and
the origin in g∗. If we define

r2 =
N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉

R2 =
N∑

α=1

|λα|2 +
∑

α �=β

〈λα, λβ〉 =

∣∣∣∣∣

N∑

α=1

λα

∣∣∣∣∣

2

.

Then we have

N∑

α=1

Oλα
⊂ B (R) − B (r) ⊂ g

∗

where B (R) and B (r) are balls centered at origin of radii R and r, respec-
tively. As it was found in [7], that Equation (1.1) is closely related to the
Chern number inequality for stable vector bundles, the main motivation of
the generalization made in this paper is to obtain the analogy of Chern
number inequality for the zeros of moment map.

Finally, let us close this section by introducing our notations for the
remaining sections.

G; T ; Z compact Lie group; its maximal torus; its center
g; t; z Lie algebra of G; T ; Z
〈·, ·〉 bi-invariant inner product on g, which identifies g

with g∗

t+ positive Weyl chamber
W; w0 Weyl group of G; a longest element in the Weyl group
(Oλ, ΩOλ

) ⊂ g; adjoint orbit throughλ ∈ t+ with ΩOλ
being its

symplectic form
cλ ⊂ g centralizer of λ ∈ t

cssλ , zλ ⊂ cλ semi-simple part of cλ, center of cλ



268 Naichung Conan Leung and Xiaowei Wang

Cλ, Css
λ ⊂ G closed subgroups of G with Lie algebra cλ and cssλ

(·)� : g → zλ orthogonal projection to zλ with respect to 〈·, ·〉g
(·)⊥ : g → z⊥

λ projection to the orthogonal completement of zλ with
respect to 〈·, ·〉g

2. Convexity of moment map

Let us consider the diagonal G-action on the symplectic manifold
∏N

α=1 Oλα

with Kostant–Kirillov–Souriau symplectic form, then the map

i∗ :
N∏

α=1

g −→ g

(ξ1, . . . , ξN ) −→
N∑

α=1

ξα

being dual to the diagonal embedding i : G ↪→ GN is the moment map of
the diagonal G-action. We define

ΔN := i∗
(

N∏

α=1

Oλα

)
∩ t+

i.e., ΔN is the moment polytope inside the positive Weyl chamber. If we
restrict the G-action to its maximal torus, then the moment map for the
T -action is given by Π := j∗ ◦ i∗|∏N

α=1 Oλα
, where j∗ : g → t is the projection

induced from j : T → G. That is,

Π :
N∏

α=1

Oλα
−→ t

(ξ1, . . . , ξN ) −→ j∗
(

N∑

α=1

ξα

)
.

In this section, we prove

Theorem 2.1. For any λ ∈ ΔN = i∗
(∏N

α=1 Oλα

)
∩ t+, we have

(2.1)

〈
λ,

N∑

α=1

λα

〉
≥ |λ|2 .
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Moreover, the equality holds if and only if

λ =
N∑

α=1

λα or λ = 0.

The proof of the above theorem based on the convexity property of
moment maps. Let us first state the following elementary lemma and the
proof will be left to the readers.

Lemma 2.1. For any λ, η ∈ t+, we have

〈λ, w0 · η〉 ≤ 〈λ, w · η〉 ≤ 〈λ, η〉

for any w ∈ W. Moreover, we have

1. 〈λ, η〉 = 〈λ, w0 · η〉 if and only if η or λ ∈ z.

2. If λ lies in the interior of t+ then 〈λ, w0 · η〉 = 〈λ, w · η〉 if and only if
w0 · η = w · η.

The next lemma describes the convex hull Hull(W · λ) of a Weyl
group orbit.

Lemma 2.2. Suppose λ, η ∈ t+ satisfying 〈λ, ζ〉 = 〈η, ζ〉 for any ζ ∈ z and
〈ξ, λ〉 ≥ 〈ξ, η〉 for any ξ ∈ t+, then

η ∈ Hull (W·λ) .

Proof. First, we have a Lie algebra decomposition g = z ⊕ z⊥. By our assump-
tion 〈λ, ζ〉 = 〈η, ζ〉 for any ζ ∈ z and the fact that z is invariant under W,
we may reduce to the case that z = 0. By assumption 〈ξ, λ − η〉 ≥ 0 for
any ξ ∈ t+, precisely means that η always lies in one side of the supporting
hyperplane of the convex set Hull (W·λ) ⊂ t, hence

η ∈ Hull (W · λ) .

�

Let us recall the following convexity theorem due to Atiyah [1], Guillemin
and Sternberg [4].
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Theorem 2.2. Let (X, ω) be a symplectic manifold with a Hamiltonian
T -action such that fixed points are all isolated and μ : X −→ t be its moment
map. Then

Im (μ) = Hull ({c1, . . . , cp})

with {ci}’s being the fixed points of the T -action.

In order to apply the above theorem, we restrict our G-action to its max-
imal torus, then the moment map is given by Π := j∗ ◦ i∗|∏N

α=1 Oλα
, where

j∗ : g → t is the map induced from j : T → G. That is,

Π :
N∏

α=1

Oλα
−→ t

(ξ1, . . . , ξN ) −→ j∗
(

N∑

α=1

ξα

)
.

Then we obtain

Theorem 2.3.

ImΠ=Hull

(
W ·

N∑

α=1

λα

)

where W·
(∑N

α=1 λα

)
is the orbit of

∑N
α=1 λα under the action of W. Fur-

thermore, we have

Π−1

(
w ·

N∑

α=1

λα

)
∈

N∏

α=1

t

for any w ∈ W.

Proof. First, we notice that the fixed points of the adjoint action of T on g

is t, this implies that the image of the fixed point set under Π is
{

N∑

α=1

wα · λα ∈ t

∣∣∣∣∣ (w1, . . . , wN ) ∈ W
N

}
.

By Lemma 2.1, we have
〈

N∑

α=1

λα, ξ

〉
=

N∑

α=1

max
w∈W

〈w · λα, ξ〉 = max
(w1,...,wN )∈WN

〈
N∑

α=1

wα · λα, ξ

〉
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for ξ ∈ t+. This implies that, for any ξ ∈ t+

〈
N∑

α=1

λα, ξ

〉
≥

〈
N∑

α=1

wα · λα, ξ

〉
.

So we deduce

Hull

(
W ·

N∑

α=1

λα

)
�

N∑

α=1

wα · λα

for any (w1, . . . , wN ) ∈ WN by Lemma 2.2. Combining this with Theorem
2.2, we have

Im Π=Hull

(
N∑

α=1

wα · λα

∣∣∣∣∣ (w1, . . . , wN ) ∈ W
N

)
= Hull

(
W·

N∑

α=1

λα

)
.

�

Corollary 2.1. Suppose λ ∈ ΔN . Then for any 0 
= η ∈ t+, we have
〈

η,
N∑

α=1

λα

〉
≥ 〈η, λ〉 .

Moreover, the equality holds if and only if λ =
∑N

α=1 λα.

Proof of Theorem 2.1. Let η = λ then the inequality follows from the above
corollary. �

3. Proof of the main result

By using the co-adjoint action of G, it is enough for us to prove the inequality
for λ ∈ ΔN . Since we are going to prove the main theorem by induction, for
any positive integer N, we introduce the following statement(∗N ) to indicate
its dependence on N.

Statement (∗N ). Let G be a compact Lie group and {λ1, . . . , λN} ⊂ t+. For
any λ ∈ ΔN , we have

|λ|2 ≥
N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉
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with the equality holds if and only if there are w1, . . . , wN ∈ W, the Weyl
group of G, such that

λ :=
N∑

α=1

wα · λα

and

〈λα, w0 · λβ〉 = 〈wα · λα, wβ · λβ〉 for1 ≤ α, β ≤ N.

Before we proceed let us verify that the existence of w1, . . . , wN ∈ W

with

〈λα, w0 · λβ〉 = 〈wα · λα, wβ · λβ〉 for 1 ≤ α, β ≤ N

is equivalent to the condition that all but at most two of λα’s are in z.
For simplicity, let us assume that wN = id and λN is semisimple, that

is, it is not fixed by any element in W. The identities

〈λN , w0 · λα〉 = 〈λN , wα · λα〉 for1 ≤ α ≤ N − 1

and the semisimplicity of λN imply w0 · λα = wα · λα for 1 ≤ α ≤ N − 1 due
to Lemma 2.1. Hence for 1 ≤ α, β ≤ N − 1, we have

〈λα, w0 · λβ〉 = 〈wα · λα, wβ · λβ〉 = 〈w0 · λα, w0 · λβ〉 = 〈λα, λβ〉 .

By Lemma 2.1 again, this implies that all but at most one of λα’s, 1 ≤ α ≤
N − 1 lie in z. For general λN , the idea is very similar, and we leave it to
the readers.

Now our main theorem stated in the introduction is equivalent to the
following

Theorem 3.1. Statement (∗N ) holds true for any positive integer N .

To make the proof more transparent, let us briefly sketch the main idea
modulo the technical details. As we mentioned earlier, we will argue by
mathematical induction on N. In Proposition 3.1 we show that if λ = 0
then the inequality

0 ≥
N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉

follows from statement (∗N−1). So the argument boils down to reducing the
general case to the case of λ = 0. To do that, we first show in Lemma 3.1 that



Quadratic Inequality for Sum of co-adjoint orbits 273

when |λ| attain its minimum, its necessary that λ ∈ gξ where
ξ ∈ i∗−1 (λ) . Then by introducing a smaller group Css

λ ⊂ G which is essen-
tially perpendicular to λ, we will be able to reduce the problem to the case
with λ = 0 but a smaller group Css

λ ⊂ G to which the Proposition 3.1 is
applicable, hence we have finished the proof.

Proposition 3.1. Suppose statement (∗N−1) holds true, then we have

0 ≥
N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉

provided 0 ∈ ΔN . Moreover, the equality holds if and only if λα = 0 for 1 ≤
α ≤ N or there is a λν 
= 0 such that

(1 − w0) · λν =
N∑

α=1

λα

and

〈λα, w0 · λβ〉 = 〈λα, λβ〉 for α, β 
= ν

that is, all but two of λα’s are in z.

Proof. Without loss of generality, we may assume λN 
= 0. Our assumption
λ = 0 ∈ ΔN implies −w0 · λN ∈ ΔN−1. Then statement (∗N−1) says

|−w0 · λN |2 ≥
N−1∑

α=1

|λα|2 +
∑

α �=β
1≤α,β≤N−1

〈λα, w0 (λβ)〉 .

On the other hand, Theorem 2.1 implies

〈
−w0 · λN ,

N−1∑

α=1

λα

〉
≥ |−w0 · λN |2 .

By adding up above inequalities, we obtain

0 ≥
N∑

α=1

|λα|2 +
∑

α �=β
1≤α,β≤N

〈λα, w0 (λβ)〉
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which is precisely what we want. Moreover, by Theorem 2.1 the equality
holds if and only if

−w0 · λN =
N−1∑

α=1

λα

since λN 
= 0, and statement (∗N−1) implies that equality holds if and only
if there are {wα}N

α=1 ⊂ W satisfying

−w0 · λN :=
N−1∑

α=1

wα · λα

and

〈λα, w0 · λβ〉 = 〈wα · λα, wβ · λβ〉 for1 ≤ α, β ≤ N − 1.

In particular, we have
∑N−1

α=1 wα · λα =
∑N−1

α=1 λα, which is only possible if
wα · λα = λα for 1 ≤ α ≤ N − 1 by Lemma 2.1. So the equality holds if and
only if

−w0 · λN =
N−1∑

α=1

λα

and

〈λα, w0 · λβ〉 = 〈λα, λβ〉 for1 ≤ α, β ≤ N − 1

which is possible only if all but at most one of λα, 1 ≤ a ≤ N − 1 are in z. �

Thus all we need to do is to reduce the general case to the λ = 0 case,
in order to do so we need some preparation from Lie theory and moment
map theory.

Lemma 3.1. Suppose minη∈ΔN
|η|2 is attained by λ ∈ ΔN . Then for any

ξ ∈ i∗−1 (λ) ⊂
∏N

α=1 Oλα
we have λ ∈ gξ, the stabilizer of ξunder the

G-action.

Proof. Notice that the minimum of |η|2 over ΔN = i∗ (
∏

α Oλα
) ∩ t+ and

i∗(
∏

α Oλα
) are the same because of the Ad-invariance of the metric |·| on

g. Hence ξ is a critical point for the norm squared of the moment map i∗ for
the G-action on

∏
α Oλα

. By general theory of moment map [4], λ = i∗ (ξ)
must lie inside stabilizer of ξ. �

From now on, let us assume |λ|2 = minη∈ΔN
|η|2 and ξ := (ξ1, . . . , ξN ) ∈∏N

α=1 Oλα
satisfying λ = i∗ (ξ) ∈ ΔN . By Lemma 3.1 we have λ ∈ gξ, which
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is equivalent to

[λ, ξα] = 0 for 1 ≤ α ≤ N.

That is, ξα ∈ cλ, the Lie algebra of the centralizer Cλ ⊂ G of λ.
In order to reduce our considerations to the λ = 0 case, we introduce the

Lie algebra decomposition

cλ = c
ss
λ ⊕ zλ

where cssλ ⊂ cλ is the semi-simple part and zλ ⊂ cλ is the center. Correspond-
ingly, for ∀ξ ∈ cλ, we may write ξ = ξ⊥ + ξ� with ξ⊥ ∈ cssλ and ξ� ∈ zλ, note
that this is an orthogonal decomposition of ξ with respect to the bi-invariant
inner product. Let Css

λ be the closed subgroup of G with Lie algebra cssλ and
Oλ⊥

α
’s be the Css

λ -orbits of G -action restricted to Css
λ . Then

(
ξ⊥
1 , . . . , ξ⊥

N

)
∈

N∏

α=1

Oλ⊥
α

=
N∏

α=1

Oλα
∩ (cssλ )N ⊂ g

N

and

(
i∗|css∗

λ

)⊥ :
N∏

α=1

Oλ⊥
α

−→ c
ss∗
λ

is exactly the moment map of the Css
λ -action on

∏N
α=1 Oλ⊥

α
. This implies

(
i∗|css∗

λ

)⊥
(
ξ⊥
1 , . . . , ξ⊥

N

)
=

N∑

α=1

ξ⊥
α = λ⊥ = 0

and

(3.1) λ =

(
N∑

α=1

ξα

)�

=
N∑

α=1

ξ�
α

because λ ∈ zλ. Since the maximal torus of Cλ is a subtori of T, there are
gα ∈ Css

λ for 1 ≤ α ≤ N such that ηα := Adgα
ξα ∈ tλ,+, the positive Weyl

chamber for Cλ. However tλ,+ in general is not a subset of t+, in any case
there are wα ∈ W such that ηα = wα · λα. For any η ∈ zλ of unit length,
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we have

〈ξα, η〉 η =
〈
Adg−1

α
ηα, η

〉
η

= 〈ηα, Adgα
η〉 η

= 〈ηα, η〉 η

which means

(3.2)
N∑

α=1

η�
α =

N∑

α=1

ξ�
α = λ.

The following lemma helps us to reduce the general case to λ = 0
case.

Lemma 3.2. Let λ be as above and w ∈ WCss
λ
, the Weyl group of Css

λ .
Then

(3.3)
N∑

α=1

|ηα|2 +
∑

α �=β

〈ηα, w · ηβ〉 − |λ|2 =
∑

α �=β

〈
η⊥

α , w · η⊥
β

〉
+

N∑

α=1

∣∣∣η⊥
α

∣∣∣
2
.

Proof. The assumption w ∈ WCss
λ

implies that w · ζ = ζ for any ζ ∈ zλ.

Hence we have 〈w · η, ζ〉 = 〈η, ζ〉 for any η ∈ t, ζ ∈ zλ, thus (w · η)� = η�,

or equivalently ((1 − w) · η)� = 0. Moreover, w · η� = (w · η)� since w fixes
zλ. Therefore, w · η⊥ = (w · η)⊥.

Let Λ :=
∑N

α=1 ηα, we calculate, using above formulae and (3.2)

N∑

α=1

|ηα|2 +
∑

α �=β

〈ηα, w · ηβ〉

=
N∑

α=1

〈ηα, (1 − w) · ηα〉 + 〈Λ, w · Λ〉

=
N∑

α=1

〈
η⊥

α , (1 − w) · η⊥
α

〉
+

〈
Λ⊥ + Λ�, w ·

(
Λ⊥ + Λ�

)〉

=
N∑

α=1

∣∣∣η⊥
α

∣∣∣
2
−

N∑

α=1

〈
η⊥

α , w · η⊥
α

〉
+

∣∣∣Λ�
∣∣∣
2
+

〈
Λ⊥, w · Λ⊥

〉

=
N∑

α=1

∣∣∣η⊥
α

∣∣∣
2
−

N∑

α=1

〈
η⊥

α , w · η⊥
α

〉
+ |λ|2 +

〈
Λ⊥, w · Λ⊥

〉
.

�



Quadratic Inequality for Sum of co-adjoint orbits 277

Proof of Theorem 3.1. We prove the theorem by applying mathematical
induction on N.

For N = 1, the statement is trivially true. We assume now statement
(∗N−1) holds true, and take G to be Css

λ then Proposition 3.1 says precisely

(3.4)
∑

α �=β

〈
η⊥

α ,−w
Css

λ

0 · η⊥
β

〉
≥

N∑

α=1

∣∣∣η⊥
α

∣∣∣
2

where w
Css

λ

0 is the longest element of WCss
λ
. Moreover, the equality holds if

and only if η⊥
α = 0 for all 1 ≤ α ≤ N or η⊥

N 
= 0

0 
= −w
Css

λ

0 η⊥
N =

N−1∑

α=1

η⊥
α and

〈
η⊥

α , η⊥
β

〉

=
〈
η⊥

α , w
Css

λ

0 · η⊥
β

〉
for 1 ≤ α, β ≤ N − 1.

By applying Lemma 3.2 we see that inequality (3.4) is equivalent to

|λ|2 ≥
N∑

α=1

|ηα|2 +
∑

α �=β

〈
ηα, w

Css
λ

0 · ηβ

〉

=
N∑

α=1

|wα · λα|2 +
∑

α �=β

〈
wα · λα, w

Css
λ

0 · wβ · λβ

〉
.

Since W acts on t isometrically, we have |wα · λα|2 = |λα|2 and

(3.5)
〈
wα · λα, w

Css
λ

0 · wβ · λβ

〉
=

〈
λα, w−1

α · w
Css

λ

0 · wβ · λβ

〉
≥ 〈λα, w0 · λβ〉

by Lemma 2.1. These imply that

|λ|2 ≥
N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉 .

Moreover, it follows from (3.5) that for the equality to hold in the above
inequality, one needs
〈
ηα, w

Css
λ

0 · ηβ

〉
=

〈
wα · λα, w

Css
λ

0 · wβ · λβ

〉
= 〈λα, w0 · λβ〉 for 1 ≤ α, β ≤ N

(3.6)
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and

∑

α �=β

〈
η⊥

α ,−w
Css

λ

0 · η⊥
β

〉
=

N∑

α=1

∣∣∣η⊥
α

∣∣∣
2
.

If η⊥
α = 0 for 1 ≤ α ≤ N then w

Css
λ

0 ηα = ηα for all α, since w
Css

λ

0 λ = λ.
This together with equality (3.6) imply that

λ =
N∑

α=1

η�
α =

N∑

α=1

ηα =
N∑

α=1

wα · λα

and

〈λα, w0 · λβ〉 =
〈
ηα, w

Css
λ

0 · ηβ

〉
= 〈ηα, ηβ〉 = 〈wα · λα, wβ · λβ〉 for1≤α, β ≤N

which is exactly what we need.
If η⊥

N 
= 0 then Proposition 3.1 implies that

−w
Css

λ

0 η⊥
N =

N−1∑

α=1

η⊥
α

and
〈
η⊥

α , η⊥
β

〉
=

〈
η⊥

α , w
Css

λ

0 · η⊥
β

〉
for1 ≤ α, β ≤ N − 1

from which we deduce

〈
η⊥

β , η⊥
N

〉
=

〈
η⊥

β ,−w
Css

λ

0 ·
N−1∑

α=1

η⊥
α

〉
= −

〈
η⊥

β ,

N−1∑

α=1

η⊥
α

〉
=

〈
η⊥

β , w
Css

λ

0 η⊥
N

〉
.

So for 1 ≤ α, β ≤ N, we have

〈ηα, ηβ〉 =
〈
ηα, w

Css
λ

0 · ηβ

〉

and

〈λα, w0 · λβ〉 =
〈
ηα, w

Css
λ

0 · ηβ

〉
= 〈ηα, ηβ〉 = 〈wα · λα, wβ · λβ〉 .
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On the other hand, η�
N ∈ zλ implies w

Css
λ

0 η�
N = η�

N , which means

λ =
N∑

α=1

η�
α + 0

=
N−1∑

α=1

η�
α + w

Css
λ

0 η�
N +

N−1∑

α=1

η⊥
α + w

Css
λ

0 η⊥
N

=
N−1∑

α=1

ηα + w
Css

λ

0 ηN

=
N−1∑

α=1

wα · λα + w
Css

λ

0 wN · λN

and

〈λα, w0 · λN 〉 =
〈
ηα, w

Css
λ

0 · ηN

〉
=

〈
wα · λα, w

Css
λ

0 · wN · λN

〉
.

So the proof of Theorem 3.1 will be completed if we replace wN by
w

Css
λ

0 · wN . �

Corollary 3.1. Suppose

λ ∈ ΔN

then

(3.7)

〈
λ,

N∑

α=1

λα

〉
≥

N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉 .

Moreover, there are two cases for the equality to hold:

1. Suppose λ 
= 0, then all but at most one of λα lie in z.

2. Suppose λ = 0, then all but at most two of λα’s lie in z.

Proof. By adding up inequalities (2.1) and (1.2), we obtain

〈
λ,

N∑

α=1

λα

〉
≥

N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉 .

Now suppose the equality holds, there are two cases:
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If λ 
= 0, then the identities λ =
∑

λα and 〈λα, w0 · λβ〉 = 〈λα, λβ〉 for
all α, β implies that all but one of λα’s lie in z.

If λ = 0, without loss of generality we may assume λN 
= 0, then the
inequality

0 ≥
N∑

α=1

|λα|2 +
∑

α �=β

〈λα, w0 · λβ〉

is equivalent to

2

〈
λN ,

N−1∑

α=1

λα

〉
≥ |λN |2 +

N−1∑

α=1

|λα|2 +
∑

α �=β
1≤α,β≤N−1

〈λα, w0 · λβ〉

which can be obtained by adding up inequality (2.1) and (3.7) with N
replaced by N − 1. Now the equality would imply both (2.1) and (3.7)
become equality, the assumption λN 
= 0 would then reduces this case to
the previous one. �

In particular, if we let the group G = U (r), hence W = Sr, the per-
mutation group of r letters and w0 =

(12···(r−1)r
r(r−1)···21

)
∈ Sr. Then Corollary 3.1

implies

Corollary 3.2. For any rank r Hermitian matrix A, let λ (A) := (λ1
(A) , . . . , λr(A)) ∈ R

r be the spectrum of A with

λ1(A) ≥ λ2 (A) ≥ · · · ≥ λr(A).

Suppose A1, A2, . . . , AN are Hermitian matrices satisfying

N∑

α=1

Aα = 0

then
N∑

α=1

λ (Aα)2 ≤
∑

1≤α �=β≤N

λ (Aα) λ (−Aβ) .

Moreover, the equality holds if and only if all but possibly two of Aα’s are
scalar matrices.

Finally, let us finish this section by an example that the equality holds.
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Example 3.1. Let

A =
[
a1

a2

]
, B =

[
b2

b1

]
, C =

[
c1

c2

]

such that A + B + C = 0 and a1 ≥ a2, b1 ≥ b2 and c1 ≥ c2. Let λ(A) :=
(a1, a2), λ(B) := (b1, b2), λ (C) := (c1, c2) and

w0 : R
2 −→ R

2

(x, y) �−→ (y, x)

be the permutation of two elements then

|λ(A)|2 + |λ(B)|2 + |λ (C)|2 + 2 〈λ(A), w0 · λ(B)〉
+ 2 〈λ (C) , w0 · λ(B)〉 + 2 〈λ(A), w0 · λ (C)〉

= 2 (a1 − a2) (c2 − c1) ≤ 0

since c1 ≥ c2. Moreover the equality holds if and only if a1 = a2 or c1 = c2,
without loss of generality, let us assume a1 = a2. If we write A + B = −C
then λ (−C) = λ(A) + λ(B) and 〈λ(B), w0 · λ(A)〉 = 〈λ(B), λ(A)〉 , this will
correspond to the first case in the Corollary 3.2. On the other hand if we
write A + B + C = 0, then we have λ(A) + w0 · λ(B) + λ (C) = 0 and

〈λ(A), w0 · λ(B)〉 = 〈λ(A), w0 · λ(B)〉
〈λ(A), w0 · λ (C)〉 = 〈λ(A), λ (C)〉
〈λ (C) , w0 · λ(B)〉 = 〈λ (C) , w0 · λ(B)〉 .

This will correspond to the second case in the Corollary 3.2.
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