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Regularity of polyharmonic maps in the critical
dimension

ANDREAS GASTEL AND CHRISTOPH SCHEVEN

We prove regularity of weakly m-polyharmonic maps (extrinsic or
intrinsic) from domains in R" of dimension n = 2m >4 to com-
pact Riemannian manifolds, thus extending a previous result by
Wang for the case m = 2. Moreover, we prove smoothness of Hélder
continuous weakly polyharmonic maps for domains in R" of dimen-
sion n > 2m.

1. Introduction and statement of results

Higher order geometric variational problems have attracted quite some
attention in recent years. A common feature that makes them interesting for
the analyst is the fact that they tend to be associated to systems of higher
order partial differential equations with critical growth nonlinearities. For
such partial differential equations, regularity of weak solutions is an issue,
since we are in a borderline case where classical methods just fail to apply.

For mappings u : M — N between Riemannian manifolds, the by now
classical variational problem is the one associated to the energy E(u):=
% f M |Dul?, the critical points of that are harmonic maps. Regularity ques-
tions for harmonic maps are quite well understood, in spite of some open
questions. In two dimensions (of the domain) the energy is conformally
invariant, and harmonic maps are smooth. For higher-dimensional domains
only partial regularity holds, and only for harmonic maps that are station-
ary with respect to variations in the domain. Therefore, in more than two
dimensions, minimizing the energy does not seem to be the best choice
in order to produce smooth minimizers. This is the main reason why the
p-energy EP(u) := %fM |DulP for p > 1 has been introduced. Minimizers
are Cb® as long as p > n, but for p # 2 this cannot be improved to give
C®, due to the non-quadratic growth of the functional. Moreover, the reg-
ularity for critical points of EP is still an open problem in the general
case.

In order to get more natural variational problems with quadratic growth,
higher order functionals seem to be a good choice. There has been a quickly
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growing literature on biharmonic maps for some years now. Biharmonic
maps are critical points of the bi-energy Eo(u) := % S |Au|?. They come in
two different flavors, depending on whether one reads Awu as the full Lapla-
cian of mappings M — R¥ (assuming N C R¥) or as its variant using
covariant differentiation also with respect to N, i.e., as the tension field
of u. The critical points of the respective bi-energies are called extrinsi-
cally, respectively, intrinsically biharmonic maps. While the intrinsic vari-
ant is to be considered more geometric because it does not depend on the
embedding N < IR it is less natural from the variational point of view,
because sequences bounded in energy are not necessarily bounded in W22,
On the other hand, the W?2-norm (for compact domains and targets) can
be bounded by the extrinsic bi-energy, which in turn does depend on the
embedding of N. In any case, bi-energies have good scaling properties on
four-dimensional domains.

For biharmonic maps from R? to a compact Riemannian manifold, both
intrinsic and extrinsic, Wang [23] (extending [4]) has proved smoothness.
Moreover, he also proves [24] that stationary extrinsically biharmonic maps
from R™ are smooth outside a closed singular set of vanishing (m — 4)-
dimensional Hausdorff measure. The second author [17] recently has impro-
ved the co-dimension to be at least 5 in the case of minimizers. Lamm and
Riviere [12] have given a different proof of continuity of weakly biharmonic
maps in four dimensions using a completely different point of view based on
conservation laws.

While the bi-energy gives a nice functional on R*, there is a similarly
nice one on R?*™, namely the m-polyenergy E,,(u) := % R2m |D™u|?. Again,
there is an extrinsic variant depending on the embedding N — R* and an
intrinsic one interpreting D as the covariant derivative with respect to both
M and N. We will restrict ourselves to flat domains € R?™. Tt should be
noted, that on M with curvature, the polyenergy is probably not the most
natural choice (nor is the bi-energy) due to the lack of conformal invariance
in 2m dimensions. There is a conformally invariant version of the polyener-
gies which is obtained by replacing | D™u|? by (Papu, u) with the 2mth order
Paneitz-type operator. This functional differs from the polyenergy only by
lower-order terms, and on R?™ they coincide. Since we work on R?™ any-
way, we do not have to bother and can work with the polyenergies. See [17]
for some reasons why the Paneitz bi-energy should be preferred over the
bi-energy.

Since in the extrinsic case, the bi-energy and the 2-polyenergy on R*
differ only by a null Lagrangian, extrinsically biharmonic maps are exactly
the extrinsically 2-polyharmonic maps.
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Intrinsically polyharmonic maps have been proposed by Eells and
Lemaire [6, Problem (8.8)] who asked about existence results in the critical
dimension 2m. We will cover regularity results in this dimension for both
intrinsically and extrinsically polyharmonic maps, which is a closely related
question. Two recent papers have studied regularity issues for (extrinsically)
polyharmonic maps. In [7], the corresponding evolution equation is studied
for the critical dimension. It is proven that the flow has eternal solutions
which develop only finitely many distinct point singularities. There are no
singularities at all if the initial polyenergy is below some threshold. In [2],
Angelsberg and Pumberger prove that polyharmonic maps (for any domain
dimension) are regular at points where w is small in some natural Morrey—
Sobolev norm and where for some reason D" u has slightly better integra-
bility than L?. The latter condition is a strong one, allowing to make a proof
using only growth properties, but basically no structure of the nonlinearities.

In this paper, we are concerned with 2m-dimensional domains only.
For lower domain dimension, smoothness of m-polyharmonic maps can be
inferred by standard methods. For higher domain dimension, a variant of
Wang’s biharmonic proof [24] should be expected to apply. However, there
is a major obstacle to trying this, which is the lack of a suitable monotonic-
ity formula for polyharmonic maps. Such a monotonicity formula has been
proven by Chang et al. [4], with present form due to Angelsberg [1], for
extrinsically biharmonic maps, but their proof does not seem to carry over
to the polyharmonic case.

Before stating our main result, let us first give a precise definition of
the objects mentioned above. Let N C R¥ be a smooth compact subman-

ifold. We define the extrinsic and the intrinsic m-polyenergy on a domain
Q Cc R* as

1 ~ 1
Ep(u):= = [ |D™u|?dz and E,(u):= - [ |V 'Du*dz
2 Jo 2 Jo

for all uw € W™2(Q2, N), where m > 2 and V denotes the Levi-Civita con-
nection on N. Here, the space of Sobolev maps with values in N ¢ R¥ is
defined as

Wm™2(Q,N) = {ue W™*Q,R") : u(z) € N for almost every z € Q}.

We point out that the extrinsic polyenergy depends on the embedding N —
RX , while the intrinsic variant makes sense also for abstract manifolds V.
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A map u € W™2(Q,N) is called weakly extrinsically (or intrinsically)
m-polyharmonic if

d d ~
7 t:OEm(ut) =0, respectively, 7 1t:OEm(ut) =0

holds for all variations u; := wn(u + tW) of w, with an arbitrary test vec-
tor field W € Cg°(Q, RE). Here, my denotes the nearest-point retraction
onto N.

We prove the following theorem.

Theorem 1.1 (Regularity in the critical dimension). Let m > 2 and
Q C R?™ open, and let N C R¥ be a smooth compact Riemannian manifold.
Then every weakly (extrinsically or intrinsically) m-polyharmonic map u €
Wm2(Q, N) is smooth on Q.

We point out that in the case m = 2, this result was established by
Wang [23]. Meanwhile, further related results have been accomplished.
Lamm and Wang [13] have proven the corresponding boundary regularity
theorem for polyharmonic maps with Dirichlet data. Goldstein et al. [9] have
pointed out that the special case of N = S™ allows a simpler proof without
gauge fixing.

For Hélder continuity of u, our proof follows Wang’s proof [23] for the
biharmonic case which is partially based on ideas by Shatah and Struwe [18].
In particular, we use moving frames gauged with the help of Uhlenbeck’s
gauge theorem [22]. It turns out that Uhlenbeck’s gauge is good enough
to obey higher order estimates beyond W?22. A suitable formulation of
the Euler-Lagrange equation in that frame allows to derive Lorentz space
growth estimates quite analogous to Wang’s. We avoid Wang’s continuation
constructions from [23, Lemma 4.3] (which could be difficult to verify) by
applying Hodge decomposition to a slightly modified term. Also, compared
to Wang’s proof, we write the Euler-Lagrange equations for extrinsically
and intrinsically polyharmonic maps in a form rather similar to each other,
which again allows some simplification.

Once we have Holder continuity, higher regularity of polyharmonic maps
is a matter of methods that have been sketched for the biharmonic case by
Chang et al. [4]. However, since this point is not completely trivial (and
even less in the polyharmonic case), we think it deserves a more detailed
presentation, which we will give in Section 7. We prove a proposition (see
Proposition 7.1) that holds for rather general critical growth p.d.e. and
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also in supercritical dimensions. For polyharmonic maps, it implies as a
particular case

Theorem 1.2 (Higher regularity). Let m >2, Q CR" (n>2m) be
open, and let N C RX be a Riemannian manifold. Then every weakly
(extrinsically or intrinsically) m-polyharmonic map  — N that is locally
Hélder continuous is smooth on €.

This theorem also allows to pass from Holder continuity to smoothness
in [2], where the reader is referred to “elliptic bootstrapping arguments”.

It should be remarked that existence of weakly polyharmonic maps is
accessible in the extrinsic case, where the direct method of the Calculus
of Variations produces minimizers in W2, In contrast to this, the direct
method does not immediately apply to the intrinsic polyenergies. However,
Moser [14] recently proved existence of intrinsically polyharmonic maps by
minimizing the polyenergy in some variant of W2 which is based on intrin-
sic higher derivatives. While such minimizers are not known to be weak solu-
tions of the polyharmonic map equation in general, for the special case of
biharmonic maps in four dimensions, Moser can prove they are. Therefore,
including also intrinsically weakly polyharmonic maps in this paper seems
to make sense.

2. Preliminaries on Lorentz spaces

We will make extensive use of Lorentz spaces and their properties. A good
source is Ziemer’s book [25, Sections 1.8 and 2.10].

For measurable functions f: 2 — R, we have the nonincreasing rear-
rangement of |f|, f*: Ry — Ry with

fr) =inf{y > 0: {z € Q:[f(z)] > y}| < t},
which we use to define
1 xT
ACE Y WaOr

for x > 0. For 1 < p < oo and 1 < ¢ < oo, the Lorentz space LP(Q) is the
space of functions f :  — R with

o dt\ 14
1£llzrae) = (/0 <t1/pf**<t>>qf> < o0
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if ¢ < 00, or

£l () == sup /P f**(t) < o0.
t>0

For 1 <p<ooand1<gq <g <oo we have LP(Q2) = LPP(Q2), LP9(Q) C
LP%(Q)), and

(2.1) [ £l ooz () < Cll fl|Loar ()

for all f € LP9(Q2), where the constant C' depends only on p, ¢; and go. For
the proofs we refer to the Lemmas 1.8.10 and 1.8.13 in [25].

If |Q| < oo, then LP9(Q) D L™(Q) for I <p<r <oo,1<g¢q,s <oo.In
particular, we have the estimate

(22) 1£lls0(@) < Crp 11D ] e

for all f € L™*°(Q2) and 1 < p < r < co. The estimate follows from the defi-
nition of the Lorentz spaces by an elementary computation.

Sobolev—-Lorentz embedding theorems. The Sobolev embedding the-
orem can be generalized to the scale of Lorentz spaces as follows. If f €
WFR",R) with D¥f € LP4(IR™) for some k € IN, 1 <p < ? and 1 < ¢ <
00, then f € L™/("=kP)4(R™) and

(2.3) £ zrrr-smaqgey < CID* Loy

A proof can be found in [21]. On balls, the analogous statement holds with
the full “Sobolev—Lorentz” norm on the right-hand side,

.
(2.4) £l prrrnsmasy < C Y ND? Fllpeacsy
7=0

This can be checked easily in the case k =1 by extending f to a function
fe WH(R™) with [ Df|pra@ey < CUIfllzra(py + 1D fllLra(p)) and apply-
ing the estimate (2.3) to f. Successive applications of this result then yield
the above estimate for all £ € IN.

Moreover, we have a Lorentz version of Poincaré’s inequality. For 1 <
p < 0o, we have

(2.5) If = fllpee() < CID S|l Lo ()
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for all f € W'P(B), where f denotes the mean value of f over B. To prove
this, we use (2.1), the usual Sobolev embedding and (2.2) to find

If = ey < CIf = Flley < CIDfl w3y < CIDfll e (5)-

Convolution inequalities. In the regularity proofs, convolution inequali—
ties will play a central role. Assume that for 1 < py, p2 < oo with pl p— >1
and 1 < ¢1,q2 < 0o, we have f € LPr@(R") and g € LP»%2(IR"™). Then there
holds

(2.6) frgeL™R") with |[[fxglLr < ClfllzevallgllLe

1f —|— -~ =1 + and s > 1 is any number with q—ll + q% > % In the case

that we only have g € L'(R™), we have the analogous result
(27) f*g € LP1,(I1(RTL) with Hf*g”Lm-,tn < CHf”Lm-,tn HgHLl

For the proofs, see [25, Theorem 2.10.1] or [16, Theorem 2.6]. By classi-
cal results, Calderon-Zygmund operators map LP*Z(R"™) continuously into
itself, see [20, Theorems V.3.15 and VI.3.1]. Therefore, if K is a Calderon—
Zygmund kernel, then

(28) K * g € L (Rn) with ”K * gHLpz,tm < CK”g”LPQ»‘Z2.

Multiplication rules. Similarly, we have the following multiplication rules
between Lorentz spaces. Assume f € LP»%(R") and g € LP>%(R"), where
here 1 < p1,p2 < oo with p% + p% <land 1 < gq,q2 < oo. Then we have the
inequality

(2.9) 1fgllzre < CllfllLovarllgll Loz

1f —l——:fand ql +qlz>1fors>1 Inthecase——l———l an analo-

=
gous 1nequahty holds in the sense

(2.10) Ifgllzs < [ fllzevallgllzesa

whenever q% + q% > 1. For a proof, cf. [16, Theorems 3.4 and 3.5]. Finally,
we will need

Lemma 2.1 (Fundamental elliptic inequality for Lorentz norms).
On the unit ball B CR" we consider a function f & W?>*P(B) with
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Af e LP1(B), where 1 <p<oo and 1 < g <oo. Then we have for any
O0<r<l

ID*fllzoacs,y < CUASFLras) + IDflliracs) + £l Loacs))

where the constant C' depends only on r,n,p and q.

Proof. Let 1 € Cgy(B) be a cut-off function with ¢ = 1 on B, and [|¢)||cx <

C = C(r). We define g € W2P(IR") by g := 4 f, which is to be interpreted
as zero outside of B. By the choice of v, there holds

|Agl < C(IAfI+|Df|+[f]) ae. onB.
By the classical Calderon—Zygmund estimates, see (2.8), we know

ID? fl| poap,) < 1D?gllra@ry < ClAGI oo gry-

Combining the last two estimates, we establish the lemma. O
3. Hodge decomposition on IR" in Lorentz spaces

Hodge decomposition has been one of the key techniques for regularity proofs
even for harmonic maps. What we need are higher order estimates in Lorentz
spaces.

Lemma 3.1. Letw € WFP(R™, A'R") be an [-form with |D*w| € LP4(R™),
where heren > 2,1 <1 <n,k €Ny, 1 <p<ooandl <q<oo. Then there
is a decomposition

w=df +d*g withd"f=0 and dg=0

for some f € WEHLP(R™ AIR™) and g € WFHLP(R", AIFYR™). The forms
df and d*g are unique and we have the estimates

ID** fll Lo < CIID* " d*w] Lo
ID* gl prs < CID*dw]| o

for k> 1, while in the case k =0 we have

(3.1) IDf[Lra + [1Dgllzea < Cllwl|zoa
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Proof. Uniqueness follows from the result of Iwaniec and Martin, cf. [11,
Section 6], which also includes the estimate (3.1) for p = ¢. Inequality (3.1)
extends to the scale of Lorentz spaces by a standard interpolation method,
see, e.g. [20, Theorem V.3.15]. In order to prove existence, we write Gy for
the fundamental solution of the Laplace operator and let

f=Gyxd'w and g¢:= Gy x*dw.
This definition implies
df +d*g = Gy * (dd*w + d*dw) = Go * Aw = w
and

d*f=Goxd*d*w =0 aswellas dg= Gg*ddw = 0.

For the Lorentz estimate, we calculate at a point € R"

D*f(z) = | D2Ga(y)DF d*w(z —y)dy
Rn

for k> 1, and since D?Gy is a Calderon-Zygmund kernel, we infer as
in (2.8) that

||Dk+1f“LP,q S C”Dk_ld*WHLp,q.

The Lorentz norm of D**1g can be estimated analogously. (]

4. The Euler—Lagrange equation

For most of the paper, we will deal with extrinsically polyharmonic maps
only. For intrinsically harmonic maps, only few changes are necessary, and
we will discuss them in Section 8.

An extrinsically polyharmonic map is easily seen to satisfy A™wu L N.
We will start by deriving a weak formulation of the Euler—Lagrange equation.
We can reformulate the above orthogonality relation as

(4.1) / (D™u, D™ (I(w)V)) da: = 0

for every vectorfield V' € Cg5 (€, RY), where TI(y) : RX —T,N denotes the

orthogonal projection. Applying Leibniz’ rule in the above equation, we
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compute

—_

/ (D™, TI(w) D™V da = — mi: <T/Z> / (D™, D™ (I1(w)) D*V) da.

k=0

On the other hand, we have
/ (D™u, D"V dx = / (D™ Y (TI(u) Du), D™V dx

_S (Y [ ook ) D, DY de
")/

Combining the last two equations, we arrive at

m—2

/ (D™, D™V da = kz (mk_ 1> / (D™=1F(TI(u)) D"+, D™V) da

(4.2) - T:z: (Z‘) / (D™u, D™ *(I1(w)) D*V) da.

By approximation, this holds for every V € W;" 20 L®(Q,RX). Any u e
Wm™2(Q, N) satisfying (4.2) will be called a weakly extrinsically (m-)poly-
harmonic map. This weak form of the Euler-Lagrange equation is a rather
simplified version of [2, Lemma 2.2].

To make proper use of the structure of the equation, we will make use
of another reformulation that allows to read the equation “in coordinates
adapted to u”. Let u:  — N be a map of class W2, and n: Q — R¥ a
vectorfield along u, i.e., n(z) € Ty(z)N for almost all z € Q2. We have

A(Au,n) = (A%u,n) + (DAu, Dn) + div(Au, Dn)

which we can iterate to get

m—1
AN A, ) = (Au,n) + > [A™ YDA, D)
k=1
+ AR div(AFu, D)
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by induction. This implies

A" div(Du, ) = (A™u,n) + A (Du, Dn)

m—1
(4.3) + Y [A™ Y DARY, D) + AT div(ARu, D).

k=1
Iterating

<diVU, f> = diV<U7 f> - <U7Df>
we find

k
(divFo, f) =) (-1)*" l<’;) divt (v, DF7L ).
=0

Plugging that into (4.3), we find

A"V div(Du, n) = (A™u,n) + A™ " (Du, Dn)
—1

m k
k
+ (_1)kl<l> [Amfkfl divl<Dk+1u7Dkfl+1n>
k=1 1=0
+ Am—k—l diVl+1 (Dku, Dk_l+177>].

Here, all derivatives of order >m are to be interpreted as distributional
derivatives. This is no problem because of the divergence structure of the
above terms. Now we assume that u is weakly extrinsically m-polyharmonic.
This is equivalent to the first term on the right-hand side vanishing for all
n € W(;n’Q N L>(Q,RY) that are tangential along w.

Thus, we have derived the Euler-Lagrange equation for extrinsically
polyharmonic maps in the following form: for all n € Wy" 20 L>®(Q,RE)
tangential along u, we have

A"V div(Du,n) = A™ Y Du, Dn)
m—1 k

+ Z Z ( > Am k— 1d1V <Dk+1 Dk_l+17’]>
k=1 1=0
(4.4) + A™TRL Qiv L DRy, DR L)

This form of the equation turns out to be useful when 7 stands for the
elements of some frame of u*TN adapted to u, which we will construct in
the section that follows.
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5. Construction of a Coulomb frame along W™ 2-maps

This section adds higher order estimates to the arguments from Section 3
of [23] which is based on Section 4 of [18].

For the construction of the Coulomb frames, we will apply Uhlenbeck’s
theorem and combine it with the higher order estimates of the following

Lemma 5.1. Let u € W™2(B, N) satisfy |Dullym-12 < k for some k €
(0,1). Assume further that for an orthonormal frame {e,}"_, C W™
(B,TN) along u and the connection form A = ((eq,deg))q,s, there holds

(5.1) d*A=0 and ||Alwinp) + Y [Deallwing < K

a=1
for some k € (0,1). Then we have the estimate
m .
(52) Z HD]AHL’zm/(j+1>,1(31/2) S CH
j=0

with a constant C' depending only on m and N.

The proof relies on the following two lemmas. We recall that the curva-
ture of a connection form is defined by F(A) := dA + [A, A].

Lemma 5.2. Let 0<k<m—1 and assume that A€ Wk’Qm/(kH)(B,
AR?*™ @ so(dim N)) satisfies d*A=0 on B and |D*F(A)| € L*™/#+2).1(B).
Then for every 0<r <1 there holds |D*1A| e [2m/(k+2)m/(k+1) (B )
with

||Dk+1AHLgm/(k+2),nl/(k+1>(Br)
< C(|D*F(A)|

L2m/(k+2),1 + |’A"%/[/k,27rz/(k+l) + HAHWk.zm/(kJrl))-
Here, the constant C depends only on m and r.
Proof. Since d*A = 0 and by the definition of F'(A), we have

IDF"TAA| < C|D*dA| < C|D¥F(A)| + C|D*[A, A]).
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For the last term, we have the estimate

||Dk[A, A} HLZm/(k+2),m/(k+l)
k
< O D Al gemsiinamoein | DF LA pam i 2y
=0
< CHA”%/Vk,zm/(kﬂ)

by the multiplication rule (2.9) and the Sobolev embedding (2.4). We
conclude

||ADk71A||L27n/(k+2),7n/(k+1) < C(HDkF(A)HL27n/(k+2),1 + HA||I2/V7€Y2M/U€+1>)'

From this, the claim follows by the fundamental elliptic estimate in Lorentz
spaces, see Lemma 2.1. U

Lemma 5.3. Assume that {e,}3™N is an orthonormal frame along u €
W™2(B,N) and that A = ({en, deg)) satisfies A € WF12M/E for some 1 <
k<m. Then e, € Wk’zm/k(B,RK) foralll < a < dim N, and we have the

following pointwise estimates on B:

k
(5.3) |Deq| < CY (1D7 Al + |DIu))*/
Jj=1

for all1 < a < dim N. In particular, we have for every 1 < p < oo

n k
k -1 l k/l
S 1D eqllppmies < CS (||D Al pamsioes + | D u||L2m/L,pk/l) .
a=1 =1

Proof. The pointwise estimates are a consequence of the identity

n

De, = Z(Dea,65>eg + (I ou)(Du,e,) forl <a<dimN
B=1

which readily implies (5.3) in the case k = 1. Here, I denotes the second
fundamental form of the embedding N «— RX. Now we assume (5.3) for all
1<k<luptosomel € {l,...,m}, and differentiate the above identity in
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order to get

-1
Dol <30 YD) Dbey
k=0 3

+C > > [DMu/M DI | |DPeq).

itjtk=l—1h=1
i,J, k>0

Applying Young’s inequality, we arrive at

l -1
|Dlea| < CY (IDITAMT 4 |DIuftlT) + €Y " [Dreg|*.
j=1 k=1 8

Using the assumption (5.3) for 1 < k <[ — 1, we establish the estimate (5.3)
for k=1. The Lorentz norm estimate is an immediate consequence

of (5.3). O

Proof of Lemma 5.1. First of all, note that the assumption (5.1) and the
properties of u imply by the Sobolev embedding theorem

dim N m
(5.4) Al 2ms) + Y IDeallpemp) + > D0 p2mms) < Ck.
a=1 k=1

The curvature of A satisfies
(5.5) F(A)ap = <(RNo u)(du A du)eg,eq) on B

with the Riemannian curvature tensor R™ on N, cf. [23, Section 3]. This
implies in particular, using (2.9) and (2.4),

(5.6) 1F(A) ]| ma 8y < ClDullFana(p) < CllDulfym-12(5) < O
For 2<k<m+1 we let 7}, :=22=R/0m=1 and Dy := B, (0), so that

Bijp=Dmt1 C Dy, C--- C Dy = B. By induction, we will prove that
A€ WEL2ME(Dy, NTRP™ @ s0(n)) and eq € WHPMH(Dy, RY) for all
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1 <a<nand?2<k<m with the estimate
(5.7)
n
ID*2F(A) || 2mma(p,) + 1 DF Al pomn(pyy + D 1D eqll pemn(p,) < C.

a=1

For k = 2, this follows from (5.6) and the assumption (5.1). Now assume that
we know (5.7) for all 2 < k <l up tosomel € {2,...,m — 1}. Identity (5.5)
implies, by the chain rule and Young’s inequality,

i
DT FApl <0 Y max {1, 30D
12

x | D=y | D% y| | Deg| | D 4.

Applying the multiplication rule (2.9) repeatedly, we conclude

l
IDLF(A)|| pamsasiagpy < C (1 + ||DZU||L2m/i>

=1

l 2 -1
S PCHIAN(ES ) S
i=1

=1 «

(5.8) < C(L+ R Dullfyn-12py < CK2.

Here we used the Sobolev—Lorentz embedding W52 — [2M/42 Applying
Lemma 5.2 on the ball Dy, we get A € Wh2™/U+1)(Dy ) with

1D A| ooyt (py,0y < C (1D F(AY | pomsasns (o
(5.9) AR s 21y + [ Allwi-r2mi(py) < O

by the assumption (5.1) and by (5.7) for k=2,...,l. This implies
by Lemma 5.3

1D eq | pamsasn (D)
I+1 l l
1) 1)
(5.10) <> (I Az, + 1Dl R, ) < ox
7j=1
for all 1 <a <n, by (5.4) and (5.7) for k=2,...,l. Estimates (5.8) to
(5.10) yield the claim (5.7) for k = [+ 1. In this manner, we can establish
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the estimate (5.7) successively for all 2 < k < m. This enables us to apply
Lemma 5.2 with £ = m — 1 with the result

D™ Al Lom/eniva(p,,. ) < COK.

Combining this with (5.4) and (5.7) for 2 < k < m, the Sobolev—Lorentz
embedding theorem yields the desired estimate (5.2). O

Now we are able to prove the main theorem of this section.

Theorem 5.1 (Coulomb gauge). There are constants €1 € (0,1) and
C1 € R, both depending only on m and N, such that for every map u €
W™2(B, N) with | Dul||wm-1.2 < &1 there is an orthonormal frame {eq } 3N

- Wm’Q(B1/4,TN) with eo(r) €Tym)N for a.e. € Byy such that the
connection form A = ((eq,des))a,p satisfies

(5.11)

m
d*A =0 on B and Z HDkA”Lzm/(k+1),1(Bl/4) S ClHDUHWM—L?(B)'
k=0

Proof. By arguments due to Schoen and Uhlenbeck [19] we can find an
approximating sequence u; € C*°(B, N) with u; — u strongly in W?2™
(B,RX) and almost everywhere as i — oo. We reproduce the proof for
the reader’s convenience. Let ¢ € C35 (B, R>0) be a mollifying kernel with
lollz: = 1 and let ¢;(z) := 2™ ¢(ix) for x € R?*™ and i € IN. We define i; :=
bi x u € C°(R* RF), where we have extended u by zero outside of B for
the definition. Then it holds @; — uin W™ (Bs 4, RE), in W2 (Bg 4, RK)
and almost everywhere, as ¢ — co. Moreover, for x € By /4, with the notation
Ugsi = JCBl/i(x) u(y) dy, we have

dist(@;(z), N) < ][ i) —u(y)| dy

Bii(x)
< / bl — 2) ][ lu(z) — uly)| dyd=
Biyi(x) Biyi(z)
<ol ) - umildy < DuP™ dy < CEm
Byji(x) Biji()

by the Sobolev embedding. Thus, if €1 is chosen sufficiently small depending
on N, we can ensure that u; := wy ou; € COO(B3/4, N) is well defined, where
here mn denotes the nearest-point retraction onto N. It is straightforward
to check that u; — u strongly in W?2™ (B /4,IRK ) and almost everywhere,
as i — o0.
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Now we consider the pulled back bundle w;T'N, which is a trivial vector
bundle since the base space Bj)y is contractible. This means that we can
choose a smooth orthonormal frame {&!}4m~N C T'(ufTN). We want to
apply Uhlenbeck’s gauge theorem to the connection form A? := ((e, dég))aﬁ,
whose curvature satisfies, cf. [23, Section 3],

|F(AY)] = [(RN o ;) (dus; A du;)| < C(N)|Duy]?

where here RN denotes the Riemannian curvature tensor associated with N.
In particular, with € := || Dul[yym-12(p),

|F(AY)|,.. <C(m,N)|Duj|3s. <C(m,N)e* < C(m,N)el

Lm

if 4 € IN is chosen sufficiently large. Thus, choosing €1 > 0 small depend-
ing on m and N, Theorem 1.3 of [22] yields a Gauge transformation s €
W2™(B 5,50 (dim N)) such that the connection forms A" = (<ef1,de%>),

taken with respect to the frames e!, := 3" 3 5%85(1, satisfy
(5.12) d*A"=0o0n Byjy and || A'lyrims, ) < Ce?
where the constant C' depends only on m and N. From Lemma 5.3, we infer

IDeglwim (B, < CUA Nwrm(By0) + 1A em (5, )
+ 1Dl (B, 0y + |1 Dl
(5.13) < Ce

Lom(By/2)

for all 1 < a < n and all sufficiently large ¢ € IN. Here we used the Sobolev
embedding and (5.12). The last two estimates ensure that after extracting a
subsequence of {i}, we have convergence e!, — e, weakly in W™, strongly
in WbH™ and almost everywhere, as well as A* = A weakly in W™ and
strongly in L™, for some vector fields e, € Wz’m(Bl/Q, ]RK) and a connec-
tion form A € Wl’m(Bl/Q, ATR?*™ ® so(dim N)). By the convergence almost
everywhere, we know that {e.(z)}q is an orthonormal basis of T\, N for
a.e. T € By/p. Moreover A = ((eq,deg)), and by (5.12) and (5.13), we have

(5.14)
d*A =0 on B1/2 and ||A||W1,m(31/2) + Z ”D6a||W1~m(Bl/2) S CE

a=1

where we used the lower semicontinuity of the norms with respect to weak
convergence. The claimed estimate (5.11) now follows from Lemma 5.1. O
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6. Decay estimates

In this section, we use Lorentz spaces, Hodge decomposition and Coulomb
frames to prove

Proposition 6.1 (Decay estimates). There exist o > 0 and 6y € (0, 1),
such that for any r > 0 and any weakly extrinsically (or intrinsically) poly-
harmonic map u € W"™2(Ba,, N) satisfying

m
Z | D7l p2mri(B,,) < €0
j=1

we have the estimate

L\’)M—t

S 1Dl sy <

m .
E |D'7u||L2m/j,oo(Br).
j=1 j=1

Proof. We will give the proof for the extrinsic case here and will discuss the
necessary changes for the intrinsic case in Section 8.

We can assume 7 = 1. We choose a Coulomb frame {e;} ; C W™?
(B,TN) along u as in Theorem 5.1 and set A;; := (e;, de;). The same theorem
yields the estimates

m
(6.1) D DI Al gy < CllDullym-12(5,) < Ceo,
7j=1

as long as we have chosen g sufficiently small. In what follows, we fix i €
{1,...,n}. Let ¢ € CZ5(B) be a cut-off function with ¢ =1 on By /5 and
lellem < C.

We perform a Hodge decomposition

(d(p(u —m)),e;) =df; +d*g; with dg; =0

according to Lemma 3.1. Here, @ denotes the mean value of u over B. Apply-
ing A™~1d* to the above decomposition, we find

(6.2) A™fi = A" div(Du,e;)  on By

because ¢ = 1 holds there.
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For k=0,...,m—1and I =0,...,k, we define w,il and nzl to be the
solutions of

; k
AT = (—1)k! <Z>Am—k;—1 div! (@(Dk“u, Dk_l+le¢>)

- k
Ay = (—1)F <Z>Amkl divit? (g0<Dku, Dk’l“e,))
with the exception
77670 = 0
Note that on By /o, where ¢ =1, the right-hand sides are simply the terms

from the Euler-Lagrange equation (4.4); hence (6.2) allows us to rewrite the
Euler-Lagrange equation for u as

(63)  0=A"|fi= > (whytnig)| = A" - wi
0<k<i<m
in the sense of distributions on By 5. O

Lemma 6.1. The fundamental solution for A™ on R*™ is G(x) := ¢y, In ||
We have

DkG c LQm/k,OO(RQm)
fork=1,...,2m — 1, and D*"G is a Calderon—Zygmund kernel.

Proof. These are straightforward computations. O

Now we are going to estimate me};l and Dmn,il in L?, very closely
to [23, Lemma 4.3]. Unless stated otherwise, all norms are to be taken with
R?™ as domain.

Case 1: m+1<3m —2k+1—2 < 2m. We have

chile) =c | | Gla—y)An a0, D) o) dy

C/RQM <Amfk71DlG(x o y)’ <Dk+1u, Dkil+1€i>(y)>g0(y) dy.

This implies

D7) <O [ | IDPR2G ) Dl D e () (y) dy
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which yields by the convolution inequality (2.6)

ID"w} o < C[lDF [ DF 1 ey

(64) S C”Dk+1u”L2m,/(k+l),oo(B) HDk_H_lei ”LZ'm,/(k—l+1),oo(B).

L2m,/(2k—l+2),oo

Case 2: 3m — 2k +1 — 2 > 2m. In this case we perform only m partial inte-
grations and find

| D™wp ()

<C | |D¥G|(x —y)| D" (p(DF u, DE M ey)) | (y) dy.
RZm

Using again the Calderon-Zygmund estimates from (2.8), we find

”meIZ;:,IHL?’O" < CHDm_Qk—H_2 (@<Dk+1u,Dk_l+lei>>‘
m—1m—~h '
<Cllgllen D D ID" ull p2omsnimee 5y 1D eill oo o )
h=1 j=1
m—1m—~h .
(6.5) <O > DMl ponoe gy | DY €l 2 rs (13)-

h=1 j=1

L2

Case 3: 3m — 2k +1—2=m, that is k =m — 1 and [ = 0. Here we have

wi(z) = - Gz — y)p(y)(D™u, D™e;) (y) dy

and hence

(66)  ID"wly@) < C | DGl y)ply) (D", D"e:) (5) dy

To deal with the term [(D"u, D™e;)|, we introduce the orthogonal projec-
tions I(y) : RY - T, N and TT*(y) : RF —T, N and write

(D™, D™e;) = ((I1 o w) D™u, D™ L ((II* o u) Dey))
+ (I o w) D™u, D™ Y((II 0 u) De;))
+ ((I* 0 u)D™u, D™e;))
=: I+ I+ IIL
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In order to estimate I, we calculate

3

~
Il
—

mk,_l) ((IT o w) D™u, D*(IT+ o uw) D™ *e¢;)

1T
Lo

(" (o w) D™ u, DFAT: 0 u) D™ Fey)

el
Il
—

where we used ((II o v)D™u, (II*+ o u)D™e;) = 0 in the last step. From the
above identity, the chain rule and Young’s inequality we deduce

m—1 k
1] < C1D™a] 3= 37 | Diultd| Dmbes|.
k=1 j=1

Here we used [|II*||cm-1 < C(N). Integrating the above inequality, we get

m—1 k
k 3
Il < CND™ ulgecm| 30 3 107l 107 e
k=1 j=1
m—1 k
< C|[D™ul| 2.~ > D752, 2(B) IIDm_keiHLzmmm—k»z(B)
=1 j=1
k
6.7 < C”DmuHL2~°°(B)||D€i||WM*1v2(B) > 1Dl (B)
1<j<k<m
where we used the estimate
NDIu/* | ez = | DIl sy < CIDu

in the second step and the Sobolev—Lorentz embedding (2.4) in the last
inequality. For the estimate of the second term, we use the identity (IT o u)
De; = EdlmN Ay; ey, from which we conclude

m
1] < C|D™u| Y | DI A D™ ey,
j=1

This implies by (2.10)

lp I1l|zs < CID™ul g2y || 1D AlD™ ey

Jj=1 Lz,l(B)
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< C|[D™ul| 2. ()
m—1 . .
< [ 1D Al gy + 37 1D Al s | D™ | om0
j=1
< CID™u| 2oy (1D All 2 () + | Allwn-r2(5) | Deillwm-r2(s))-
(6.)

Here we have applied the Sobolev—Lorentz embedding theorem in the last
step. Finally, to estimate the third term we use the equality D™ ! ((IT+ o
u)Du) = 0 and Leibniz’ rule to infer

m—1

(T ow)D™u| < C Y [DF(ITH o w)| D™ Ful

3 =
ol
—_

k
<O DIuf Dy
Jj=1

£
Il
—

where we used Young’s inequality in the last step. The last estimate yields

m—1 k
1) < CID™e] Y2 D2 DIl Dkl
k=1 j=1

which implies, similarly to the derivation of (6.7),

(6.9)
m—1 k
o Il 1 < [ D™eillroemy > Y ||D7uHL2m/72(B D™ F || 2 11,00 () -
k=1 j=1

Now we use D™G € L?»* combined with the convolution estimate (2.7)
n (6.6). Putting Equations (6.7) to (6.9) together, we conclude

ID™w) |2 < ll(D™u, D™e;) |10

m
; k
< C’Z | D" ul| p2msice By | Deil[yrm-1.2(B) Z HD]UHLQ«L/J 2(B)

i1 1<j<k<m
+ C|| D™ || oo () (| D Al 20 () + | Allwm-12(5) | Deillwrm-12(5))-
(6.10)
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The estimates for the 772,1 are completely analogous to Cases 1 and 2
above. We have

3 k k—I1
ID" 0 g2 < C el DRul D e|

(6.11) < CHDkuHLzm/k,oc(B) HDkilJrlei HLQm,/(kfl#»l)‘oo(B)

in the case 3m — 2k +1—1 < 2m, and

m—1m—~h
(612) ||Dm77]7;;7lHL2,oo S Z Z HDhuHLZ'm/h,oo(B)||Djei||L2nL/j,oo(B)
h=1 j=1

for 3m — 2k +1 — 1 > 2m. Recall that here we need not consider k£ = 0. We
abbreviate

Reo =Y [ID"ul| o/ ()

k=1

m 3 m/k
8= > (ID*ull sy + 1D Al sy )

k=1

m ) 1 m/k
Spi= 3 (1D ullzomsss ) + 105 Allgonsinii)) ™

B
Il
—

Lemma 5.3 yields the estimate || DFe;||zzm/ro < cskm. Thus, the right-

hand sides of (6.4), (6.5), (6.11) and (6.12) can all be estimated by csim
R, since we can assume Sy, < 1 by (6.1). We combine this with (6.10) to
obtain

D™ wil| 2 < CSH™ R + CSy! ™ | Des|lwronr.2(3) Roo
(6.13) + C(ID™ Al s) + Al v 1 Dedllionr(2)) R

Now we apply (6.1) and Lemma 5.3 to find, assuming o < 1,

(614) ||Dm_1A||L2,1 —+ ||A||Wmfl,2 —+ ||D€i||Wm—1,2 S 080
(6.15) S+ 59 + So < Ce

where in the last estimate we have used the Sobolev—Lorentz embedding.
We use this in (6.13) to find

(6.16) | D™ w; oo < Cel/ ™ Ro
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and, using the Sobolev—Lorentz embedding (2.3),

(6.17) S 1D wil| oo (g2my < O™ Roc
k=1

Now we are going to exploit (6.3), i.e., the fact that f; — w; is a polyharmonic
function.

Lemma 6.2 (Growth estimate for polyharmonic functions). Sup-
pose that v € C'OO(B”,]RK), where n > 2m, is a polyharmonic function of
order m, that is A™v =0 in B™. Then there is a constant C' depending only
on m and n, such that

(6.18) [Vl (B,,2) < CllvllL sy

and furthermore, for all 6 € (0, %) we have

(6.19) D D70 amsse () < COY 1D 0] oo ()
j=1 j=1

Proof. For the proof we employ a mean value identity for polyharmonic
functions, see [3], which reads as follows. For any choice of radii 0 < r <
rg < .-+ < Iy, there are coefficients A; € R depending only on m and the
r;, such that every polyharmonic function h € C?*™(B,. (x), R¥) of order m

satisfies
ha) =Y A bl
i—1 B, (x)

We apply this identity with z € By, and radii r; € [%, %] to infer
[Pl (B, ,2) < C(m,n)||h] (B

This proves (6.18) if we choose h = v. Next we choose h = DJv for j =
1,...,m, which are again polyharmonic functions, and estimate

||DjUHL2nL/j,oo(Bg) S CHj||DijLoo(Bl/2) S CQJHDJUHLl(B)
S CHJHD]UHLmn/j,oc(B)

forall j=1,...,m and 0 < %, where the constant C' depends only on m
and n. O
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Returning to the proof of Proposition 6.1, we apply the last lemma to
Ji — w;. Since that function is polyharmonic on By, the lemma can be
applied for 6 € (0, i) to find, using (6.17) twice,

m m
D ID* fill ooy < D UIDM(fi = wi) | amsns (By) + | DFwill pomsice (gzm))
k=1 k=1

<C Z HDk( wz)HLZ’m/k = (Bya) + Cé_l/mRoo
k=1
m

< CGZ HD szLZm/k Oo B1/2) _|_ C&l/mRoo
k=1

On the other hand, using Lemma 3.1 and the arguments from (6.5), as well
as (2.5) and gp < 1, we estimate

Z D fill 2 (g2my < CZ ID* (D ( (= @), e3) || oonsv.oe (m2m)
k=1

< C’R Sl/m + Cllu — @ pame(

X Z 1D ;| Lamssnoe () + Z HDkUHLmM

J=1
< CRx.

Combining the last two estimates, we have proven

(6.20) Z D" fill v () < C(0 + £5/™) R
k=1

Now we turn our attention to estimating g;. Again from Lemma 3.1 we know

m

> D gill pam v remy < C Z ID*2[d(p(u — W) A dei] || pam v (gem)
k=2 k=

3

m
Z D" ul| g2 (| DY €| 2 (1)

e
Cllu =l ooy Y 1D €ill pomsie )
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m—1m—~h
<O > DMl oo gy | DY il o ss ()
h=1 j=1

< CSY™R,
< C’eé/mRoo.

By the Sobolev-Lorentz embedding (2.3), we even know
(621) Z ||DkgiHL27n/k,oo(R21n) § CE(I)/mROO
k=1
From (6.20) and (6.21), we conclude
ST IDE YD, e) | gam ey < C(8 + ey ™) R
k=1

which by Leibniz’ rule for all 1 < k < m implies

D"l Lo v () = HDk_l (ZU)% 6z’>6’¢)

7

L2m/k.20(By)
S HDk_l <Du, 6’L> ||L2m,/k,oo(Be)

k—1
+C Z Z HD£_1<DU, ei>HL2m/"’°°(Bg)

i =1
X ||Dk_eel'||L27n/(k7€),oo(Be)

< C(0 + et/ ™ Roo (1 + SY™).

This is the assertion of Proposition 6.1 if we choose 6 and ¢y small
enough. [l

7. Proof of the regularity theorem

By the absolute continuity of the integral, we find an ry > 0 such that

m
R(xg,7) := Z ”Dku”[ﬂm/k(BT(xo)) <gg forall zg € Qandr <rg.
k=1



Regularity of polyharmonic maps in the critical dimension 211

Therefore and because of the scaling invariance of R(xg,r), we can use and
iterate Proposition 6.1 on all balls B, (xg) with r < ry to infer

Z || D[ 25, (B (zo)) < Cr® forall zp € Q and r <rg

for some a € (0,1). By (2.2), this implies

(7.1) rp—Qm/ [Dul? da < Cpl| Duf[} o < CrP®
B (.T())

By (20))

for all 1 <p < 2m, xp € Q, and r < rg. Then u € C%%(Q). The higher reg-
ularity can now be derived from the following proposition, which is proved
by techniques that have been sketched for the biharmonic map case in [4].

Proposition 7.1. Forn > 2m, any (extrinsically or intrinsically) m-poly-
harmonic map v € CO* N W™2(B", N) satisfies u € C°(B", N).

Remark 7.1. The proof shows that the proposition holds more generally
for maps u € C%* N W™2(B" RX) that satisfy, in the distributional sense,
a differential equation of the form

(7.2)
m—1
u—Zdlv gk, where |gk|<CZ|Dlu| @Em=k)/L for 0 <k <m — 1.
k=0 =1

Extrinsically polyharmonic maps satisfy a differential equation of this form,
as can be checked by performing integration by parts in the first sum of the
Euler equation (4.2) and applying Young’s inequality on the k-linear forms
gk In Section 8, we will show that intrinsically polyharmonic maps satisfy
an equation of the type (7.2) as well.

Before proceeding to the proof of the proposition, we give the following

Lemma 7.1. Assume that for n>2m, the map ue W™?(B" RK)
satisfies

(7.3) Ay = Z divk g, on B"
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i the distributional sense, where the k-linear forms gy satisfy
(2m—k)/2m
(r2m_n/ |gp,| 2/ 2m=k) dm) < Kr7  for any ball B,(z) C B
B, (x

for some 0 <y <m and a constant K. Then for all x € B and 0 < p <
$(1—|z|), we have

1/2
<p2l—n/ ’DZ’U,‘Q dl’)
B,(z)

(7.4) < CpV [1+ (1—|z)) 72| Dlul| 2] fory <1< m.

If the assumptions are satisfied for m <~y < m+ 1, then there holds

1/2
<p2mn / ‘Dmu _ (Dmu)cc,p|2 d:L’)
Bp(x)

(7.5) < CpF [+ (1= Jal)y™ =2 | D™ 2]

forx e Band 0 < p< %(1 —|z|). These estimates hold for any 7 < v, and
in the supercritical case n > 2m even for v = . We employed the notation
(D™u) g p := pr(x) D™u. The constants C' in the above estimates depend
only on m, n and K, and on 4 — v in the critical case.

Proof. Fix x € Band 0 < r < (1 — |z|) and let v € C*(B,(z), R) be the
polyharmonic function with w :=u —v € Wén’z(Br (z), R). In the proof of
L*°-estimates for w, we will use the Green function Gy, , : B — R for A™
on the n-dimensional unit ball B (with Dirichlet boundary data for the solu-
tion and its first m — 1 normal derivatives). This Green function is known
explicitly, and Grunau and Sweers have given the exact growth in [10].

We start by approximating w € W;" ’Q(Br (z), R®) by smooth functions
w; € Coy(By (), RX) in the sense w; — w in W™2(B,.(z), R¥)-norm as i —
o0o. The approximating functions satisfy

/ <Dme,n (z - ”““) ,mei<y)> dy
B, (z) r r

We cannot pass to the limit ¢ — co on the right-hand side pointwise in z,
but we are allowed to read both sides as functions of z and pass to the limit

wi(z)| = ™"
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in the L! sense. Hence we have

/ <Dmcmm<z‘x,y‘w),me@o>dy
B, (z) r r

for almost all z € B,(z). Derivatives of G,,, are to be understood with
respect to the second variable. We would like to test (7.3) with the above
rescaled Green function to find

m—1
e Z—T Yy—<x
w(z)| <> rFmnk /B( )<Dka,n< " 2 " > 79k(y)> dy
k=0 e

and in fact we may do so for almost all z € B,.(z) by the same reasoning as
above, this time approximating Gy,.»(,y) in W™1(B) by smooth functions
with compact support, uniformly in y € B. From [10, Propositions 2.3 and
2.4], we know that

jw(z)| =r

|D*G (X, Y)| < C|X — YPmnh

for all X,Y € B whenever k > 2m — n. Therefore, in the supercritical case
n > 2m,

m—1
\wunsc§j/' 12 — 42" F | gi () dy.
k=0 B, (x)

Integration by parts gives

/ 12— PR g(y)] dy
B, (z

2r
< / p2mnk/ |gk‘ danl dp
0 S,(2)

P

g@m%lnﬁé()muwwy+m+k—zm>

2r
X / prm il / gk (y)| dy dp
0 B,(z)
2r
<Cr + O/ P’ rdp < CrY
0

by the assumptions on gi. Combining the last two estimates, we have estab-
lished

Wl g (B, () < CT7
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whenever n > 2m. In the critical case n = 2m, we only have
|G (X, Y)] < Cllog | X Y|

while for the derivatives the estimates hold as cited above. This allows only
a modified version of the calculation above, to the effect that

|wll (B, () < Cr7|logr|.
In both cases, we have
(7.6) [w]| L= (B, (z)) < CT7
for all ¥ < v resp. ¥ < 7, as in the statement.

By Nirenberg interpolation, this implies |D*w| € L*™/*(B,(z)) for all
0<k<m-1,

k/2m
<T2m—n/ ‘Dkw‘Zm/k dac)
B, (z)

k/2m
< oriti=a) <r2m—" / |me|2d:c> + Cr7
B, (x)

1 . -
(7.7) < — 1"27”_”_7/ |D™w|? dz + CrY
2m Br(ac)

where we applied Young’s inequality with the exponents 231”2 7 and 27’” in the

second step. Now we test Equation (7.3) withw :=u —v € Wgn’2(BT (z), RE)
and get, because A™v = 0,

rgm_”/ |D™w|? dx = rzm_"/ (D™u, D™w) dx
B, (x) B, (x)

m—1
= p2m=n Z / (gk, D*w) dx
k=0 /B (2)
m—1

k/2m
< T,2m—n/ |Dkw|2m/k dx
2 ( B.(2)

k=0
(2m—k)/2m
> <T2m—n |gk|2m/(2m—k)> )
)

B, (z
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Using estimates (7.6) in the case k = 0 and (7.7) in the cases 1 < k <m — 1,
combined with the assumptions on g, we arrive at

1 .
p2m-n / |D™w|? dx < = r2m_”/ |D™w|? dx + Cr?7.
B.(2) 2 B.(2)
Absorbing the second integral, we conclude

r2m_”/ D™ w|? dz < Cr*Y
B, (z)

which implies by Nirenberg interpolation, cf. (7.7),

m

k/2m
(7.8) Z (er"/ | DFap|2m/k dac) < Cr7.
B, (x)

k=1

Furthermore, by the L>-estimates (6.18) of Lemma 6.2 we know for 1 < <
m, since D'v are polyharmonic functions,

(7.9) / |D'v|?dz < C <p)n/ |D'w|? dx
B, () "7 JB.(x)

for all 0 < p < 5. Letting ¥;(r) := fB,,,(a:) | D'u|? dx, estimates (7.8) and (7.9)
yield

Uy(p) < C(f)n/B o |D'|? dz 4+ Cr" 32 < ¢ (g)n‘l’z(r) L o2+

for 0 <p < 5 and 1 <1< m. Note that for § < p < r, the above inequal-
ity holds trivially with C' = 2". Thus, for [ > =, a standard iteration argu-
ment [8, p.86] implies

wipy<o(?)

\I/l(T‘) + Cpn72l+2’y
r

for all p < r < £(1 — |z[). This implies the claim (7.4). In order to prove the
second claim, we need a Caccioppoli-type inequality for the polyharmonic
function v. Applying the Poincaré inequality repeatedly, one checks

(7.10)

r2in |D(v — P)[*dx < Cr?m—" / |D™ 0 — (D™ )| da
B.(x) Br(x)

for an appropriate polynomial P of degree m and all 1 < j < m. We choose a
cut-off function n € CZ5 (B (), [0,1]) with n = 1 on B, j5(x) and || D71]| e <
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Cr~J for 0 < j < m. This implies | DIn?™+2||p~ < Cr—In?m=i+2 for all 0 <
j < m. Testing A" Dv = 0 with n*"*2D(v — P), we infer

m
/n2m+2|Dm+1v|2 de < Czrjfmfl /nm+1+j ’Dm+1v| ‘Dj(v _ P)| dzr.
j=1

Applying the Cauchy—Schwarz inequality, we infer

|Dm+1'l)’2 dax < T,2j2m2/
/BT/Q(Q?) Z B

i=1 (@
C

r2

|D? (v — P)|* dz
)
(7.11) < / D™ — (D™0),, 2 da
B, (z)

by (7.10). Since D™y is a polyharmonic function, the estimate (7.9) also
holds for | = m + 1, which implies

/ D™y — (D), da < sz/ |D"™ | da
B, (z)

B,(x)
pn+2
<C— / | D™ y|? da
" B (@)
P nt2 m m 2
(7.12) < C(—) D™y — (D™0),, | da
r B, (z)

for all p < %, where we applied the Caccioppoli inequality (7.11) in the last
step. Combining (7.8) and (7.12), we arrive at

O(p) == / |D"™u — (D), ,|* dx
B,(x)
n+2 -
< C’(B) / |D™v — (D™0) | dx + Crm—2m 2
r B, (x)
n+2 -
(7.13) < C(f) O(r) + O ImE2

where we applied estimate (7.8) twice. Since 4 < m + 1, we can iterate this
estimate as above with the result

B(p) < C(’O B(r) + Cpn—2m+2

> n—2m+2%
r

for all 0 < p <7 < (1 — |z[). This implies the claim (7.5). O
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Proof of the Proposition 6.1. First, we want to prove that the Holder conti-
nuity of u implies Morrey space estimates for D"*u. For this, we fix 0 < R < 1
and x € Br. For 0 <r <1 —|z|, we let

O(r) := / |D™u|? d.
Br(x)
From the Holder continuity of u, we know

(7.14) |u — || (B, (2)) < CT%u]a

where [u], denotes the Holder seminorm of u and u := JCB,,(x) udz. Moreover,
using Nirenberg interpolation [15], we know

T?m—n/ ’Dju’2m/j dr
B,.(z)

m—n m 2m
< Cllu— a2 r? /B( D™ da + Cllu — a7

< C(r®u)o) ™ P (r) + Cr2u)?
(7.15)

(z))

for 1 <j<m—1. Here, we used |u]lp~ < C(N)< oo in the last step
together with » < 1 and j < m — 1. Let x € (0,1) be a constant to be chosen
later. For 2 < p < 27’.”, we have a similar estimate

ijn/ DIuf? d < Cllu—al| s P [P ()P
B,.(z)

P
+ Clu uHLOO(B (@)

(2m— m m—n | /2m
< Cllu—al G 0y e ]
+QW_MMM&W)

(7.16) < m“zm_”@(r) +C,. r2 [u]i

where we used p > 2 in the second step and in the last step, we applied
Young’s inequality with exponents 277 and 2737_"].]) and used (7.14). Here, the
constant C,; depends on k, m, p and n. We choose a cut-off function n €

o (Br(x), [0,1]) satisfying n =1 on B, 5(x) and ||D*|z~ < Cr=" for all
0 < k < m. The polyharmonic map wu satisfies an equation of the form (7.2).
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Testing this equation with V := 7*™(u — ), we estimate
/772m|Dmu|2 dr = /n2m<Dmu, D™ (u—u))dx

m—1
<cy / D™l | D™ DI (u — )| dac
§=0

m—1 k

oy Z/ 1gil| DF2™| D9 (u — )|

k=0 j=0
(7.17) =1+ > Iy

Using ||D™ 0™ L < Cri=™y™+) | Young’s inequality, and (7.14), we get
1 2m m, |2 sy 2j—2m 27 1,12 n—2m-+2a 2
ISZ 77" D™ dx—l—C’Zr] | D u|* dx + Cr [u]2

=1

1
<3 / PP D2 d -+ Cr(r) + Cor= 220y 2

«

(7.18)

where we applied (7.16) with p =2 in the second step. For 0 < j <k <
m, the properties of 7, estimates (7.2) for gr and Young’s inequality with

exponents 231% and 277" yield

Iy, < C?“j_k/ 0?7 gl | DIu| da
B, (z)

L/m - 2m| ym, |2 — 2m | nl, 12m/l
SZ 5 " D dm+z n“"™| D u| dx
=1
+ CT’ij/k2m/7]2mj/k|Dju’2m/k dr.
Applying (7.15) and (7.16) with p = 277” in the case j < k, this yields

1 -1
I, < 1 <ZL> /Uszmu‘de

(7.19) +C(k+ (r* [u]a)2/m) B(r) + Cr2mt2ey)2,
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Finally, we have for all 0 < k <m

Iy, < Crk/nmkgkﬂu—mdx

1 —1
< 4<7;> /an\DmUIzdw

m—1
+ Z / (772m|Dlu]2m/l dx + Cr—2™|u — alzm/k) dx
=1

where we applied Young’s inequality with exponents % and QT’” By (7.15)
and (7.14), and since ||u — @/~ < C(N), this implies

(7.20) 1
Iy, < i (?) /772m|Dmu|2 dz + C(r*[u]a)?™ ®(r) + Cr"=2m+2a )2

o

Putting estimates (7.18) to (7.20) together, inequality (7.17) yields

@(%) < /n2m|Dmu]2dw
1
< o /7]2m|Dmu|2 dzr + C’(/—; + (ro‘[u]a)Q/m) d(r) + Cﬁr”_2m+2°‘[u]i.
We absorb the first integral on the right-hand side and choose x > 0 and
0 < 7o <1 small enough to ensure 2C(k + (rg‘[u]a)g/m) < ¢ for some € <
2~ (n=2m+20) Here, 1y may depend on [u],. As a result, we have

f n—2m+42ay,,12
<I><2) <ed(r)+Cr [u]

«

for all 0 <7 < rg. By a standard iteration argument as in [8, p. 86], this
implies

P n—2m-+2a«a
d(p) <C () ®(rg) + Cp"2mT2e ]2 for all 0 < p < 7p.
7o

We have thus shown that

sup ,027”_20‘_”/ |ID™u?dr < 0o forall 0 < R < 1.
BP(I)CBR Bp(,]})
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Now we will improve this Morrey space estimate with the help of Lemma 7.1.
We claim that for every non-integer v = [y] + 5 € (0, m), we have

uwe CMPA(B,N) and

(7.21) sup p2m_27_"/ |D™u|? dz < oo for all R € (0,1).
B,(z)CBr B,(z)

Here, [y] denotes the largest integer smaller than . As shown above, this
holds with 7 = « € (0, 1). For the proof of the claim we will show that when-
ever the above property is satisfied for some non-integer 0 < v < m, then
it is also satisfied for all non-integer v, < min(m“% m). We thus assume
that (7.21) holds for v = [y] + 3 < m, where 0 < 3 < 1. We choose some
arbitrary R € (0,1) and let S := 1(1+ R) > R. Since u € CWB(B,N), w
know that for the Taylor polynomials P, of degree [y] at the points =z,
there holds

bl
(7.22) Z HDZUHLOO Bs) = C and |u—P, (B, (2)) < CpHB = Cpr
=1

for all z € Bg and all 0 < p < S — [z|. Here and in the following, constants
denoted by C may depend on v and R. From the Nirenberg interpolation
estimates, we deduce furthermore for all [y] +1 <1 <m

men/ ‘Dlu|2m/l dr
Bp(x)

<Clu—- P, HLoo B (/m))PQ /B( )\D ul*dz + Cllu — P, ||Loc/(B (@)

IN

éPQm'y/l
(7.23)

by estimates (7.21) and (7.22), where here € Bg and p < S — |z|. Using
(7.22) and (7.23), we may estimate the multilinear forms g, from the Euler
equation (7.2) as follows. For 0 < k <m —1land 0 < p < S — |z|, there holds

pZmn/ ’gk‘Qm/@mfk) dr

o(

<C 2m nZ/ ’Dl ‘Qm/ldx<cp2m+0 Z pZm'y/l
I=[y]+1
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This means that

(2m—k)/2m
<p2m—n/ |gk|2m/(2m—k) dl‘)
By(x)

P

(7.24) < émesz + ép(mek)'y/m < éperl + 5p'y+'y/m

since k < m — 1. Consequently, the assumptions of Lemma 7.1 are satisfied
on Bg with the exponent 4 := min(m+1, Ztly). The lemma thus yields for

any noninteger v, < min(tly m)

(7.25) Z p2l”/ |D'ul? dz < Cp*  for all B,(x) C Bg.

Y. <I<m B,(z)

If we write v, =: [Y«] + («, this implies u € Cl-15-(Bpg, N) by the Dirichlet
growth theorem. Since 0 < R < 1 was arbitrary, we thus have established
(7.21) for . instead of 7. Since it holds for v = «, we have established (7.21)
for all 0 < v < m.

Now let v« = m + 3, where 0 < 8 < 1 is arbitrary, and observe that for
Y i= g Ys < m, property (7.21) is fulfilled. As above, we deduce estimate
(7.24) for this value of v, meaning that we can apply Lemma 7.1 with ~, =
m+ 8 € (m,m+1). The lemma yields for any 0 < B<p

]{3 " |D™u — (D™u), |2 dz < Cp*®  for all balls B,(x) C Bg,

where R € (0,1) is arbitrary. From Morrey’s lemma we thus infer u € cmB
(B, N) for any 0 < # < 1. The higher regularity can be deduced from clas-
sical Schauder theory [5, Theorem 2]. O

8. Intrinsically polyharmonic maps

The intrinsic case is somewhat more technical, but it turns out that the reg-
ularity proof carries over with few modifications. The intrinsic m-polyenergy
for mappings v € W™2(Q, N) is

- 1
By(u) = 2/va—1pu|2dx

where V denotes the covariant derivative with respect to both M and N.
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First of all, we observe that there are R*-valued ¢-linear forms Ay on
N for each m = (my,...my) in

A:={(my,...,myg): € >2,m; >1forall i,m; + - +my=m}
such that

V™ 1Dy = D"u + Z (Amou)(D™u, ..., D).

meA

With
B:={(my,...,mg): £ >3,1<m; <mforall i,m +---+my=2m}
the above equation implies

V™ Dul? = | D™u)? + Z(Bm ou)(D™u,...,D"™u)
meB

with certain /-linear forms By on N depending on N and m only. This
implies that the Euler—-Lagrange equation for E,, is of the form

(8.1) (A™u,m) =Y " (Zm o u)(D™n, D™u, ..., D™ u)
meB

for all vector fields n € W™2(Q, R¥) that are tangential along u, with yet
another set of /-linear forms Z,, on N.

Now we repeat the proof of the Euler-Lagrange equation in the form
(4.4), but instead of (A™uw,n) =0, we use (8.1). Thus we have derived the
Euler-Lagrange equation for intrinsically polyharmonic maps in the form
suitable for using frames: for all tangential vector fields n € W2 along w,
we have

A™ L div(Du,n) = A™ Y (Du, Dn) + Z(Zm ou)(D™n, D"u, ..., D)

meB
m—1 k k
+ Z (_1)k—l <l> [Am—k—l diVl<Dk+1u, Dk_l+177>
k=1 [=0

+ Amfkfl diVl+1<DkU, Dk‘*l+1n>].

This means there are just a couple of additional terms to be handled com-
pared to the extrinsic case. In (6.3) these are the solutions ¢}, of

A" = 0 (Zm o u)(D™e;, D™, ..., D™ )
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to be added in the sum of the left-hand side. As in (6.6) we have

D ¢i(x)] < © / Y)|D"G(z — y)| [D™e; |H!Dml )| dy.

Since £ > 3, there are at least two factors involving u, which will be cru-
cial in our estimates. Without loss of generality we may assume mg =
max;—g . ¢m;, then m; <m for all ¢ > 3. We abbreviate p := min{2m —
mj — mg,m — 1}. Then we have

D™ ()]

<O [ eWID" Gl — )| D™ i)D" u( |H!Dmb )ldy

<C o oY) DGz —y)|[ [ D™ ei(y)| D™ u(y)|

> Z ’Dk ’(Qm mi—ms)/k dy

by Young’s inequality. This implies
ID™ Gl 2

m
< C|plD™ el D] 3 | Dl ) |
k=1

Ll
my mo k n(2m—m;— m2 )/k
<C|D ei”L?m/mﬂ(B)”D U||L2m/'"2°° ZHD HLz 1/k,2(2m=m1—m2)/k ()

m— 1

2 k

< ClDeillwn 2@ D™ ull o (my S [DFul G
k=1

< Ceg Rao SP™™7™)/™ < Ceg Ry

under the assumptions of Proposition 6.1, using the notation from Section 6
and the estimates (6.14), (6.15). Therefore, || D™(: || 2.~ is estimated by the
same terms as ||D™w;||r2.~ in (6.16), which means the additional terms do
not spoil the proof of Proposition 6.1, and therefore of Holder continuity, in
the intrinsic case.

All that remains to be done for higher regularity is to check that also
intrinsically harmonic maps satisfy an Euler equation of the form (7.2) in
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the sense of distributions. The weak form of the Euler-Lagrange equation
can now be derived from

/ (D™, D™ (TT(u)V)) da

=(-)my /(Zm ow)(D™ (I1(w)V), D™, ..., D™w) dx
mel

rather than (4.1). In the terms with m; = m, there holds m; < m for i =
2,...,1. Therefore, we may integrate by parts and may thus assume that
mi1 < m in all summands. Expanding D" (II(u)V'), we find that the addi-
tional terms compared to the extrinsic case are just of the form that (7.2)
allows. This completes the proof also in the intrinsic case. O
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