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Regularity of polyharmonic maps in the critical
dimension

Andreas Gastel and Christoph Scheven

We prove regularity of weakly m-polyharmonic maps (extrinsic or
intrinsic) from domains in IRn of dimension n = 2m ≥ 4 to com-
pact Riemannian manifolds, thus extending a previous result by
Wang for the case m = 2. Moreover, we prove smoothness of Hölder
continuous weakly polyharmonic maps for domains in IRn of dimen-
sion n ≥ 2m.

1. Introduction and statement of results

Higher order geometric variational problems have attracted quite some
attention in recent years. A common feature that makes them interesting for
the analyst is the fact that they tend to be associated to systems of higher
order partial differential equations with critical growth nonlinearities. For
such partial differential equations, regularity of weak solutions is an issue,
since we are in a borderline case where classical methods just fail to apply.

For mappings u : M → N between Riemannian manifolds, the by now
classical variational problem is the one associated to the energy E(u) :=
1
2

∫
M |Du|2, the critical points of that are harmonic maps. Regularity ques-

tions for harmonic maps are quite well understood, in spite of some open
questions. In two dimensions (of the domain) the energy is conformally
invariant, and harmonic maps are smooth. For higher-dimensional domains
only partial regularity holds, and only for harmonic maps that are station-
ary with respect to variations in the domain. Therefore, in more than two
dimensions, minimizing the energy does not seem to be the best choice
in order to produce smooth minimizers. This is the main reason why the
p-energy Ep(u) := 1

p

∫
M |Du|p for p > 1 has been introduced. Minimizers

are C1,α as long as p ≥ n, but for p �= 2 this cannot be improved to give
C∞, due to the non-quadratic growth of the functional. Moreover, the reg-
ularity for critical points of Ep is still an open problem in the general
case.

In order to get more natural variational problems with quadratic growth,
higher order functionals seem to be a good choice. There has been a quickly

185



186 Andreas Gastel and Christoph Scheven

growing literature on biharmonic maps for some years now. Biharmonic
maps are critical points of the bi-energy E2(u) := 1

2

∫
M |Δu|2. They come in

two different flavors, depending on whether one reads Δu as the full Lapla-
cian of mappings M → IRK (assuming N ⊂ IRK) or as its variant using
covariant differentiation also with respect to N , i.e., as the tension field
of u. The critical points of the respective bi-energies are called extrinsi-
cally, respectively, intrinsically biharmonic maps. While the intrinsic vari-
ant is to be considered more geometric because it does not depend on the
embedding N ↪→ IRK , it is less natural from the variational point of view,
because sequences bounded in energy are not necessarily bounded in W 2,2.
On the other hand, the W 2,2-norm (for compact domains and targets) can
be bounded by the extrinsic bi-energy, which in turn does depend on the
embedding of N . In any case, bi-energies have good scaling properties on
four-dimensional domains.

For biharmonic maps from IR4 to a compact Riemannian manifold, both
intrinsic and extrinsic, Wang [23] (extending [4]) has proved smoothness.
Moreover, he also proves [24] that stationary extrinsically biharmonic maps
from IRm are smooth outside a closed singular set of vanishing (m − 4)-
dimensional Hausdorff measure. The second author [17] recently has impro-
ved the co-dimension to be at least 5 in the case of minimizers. Lamm and
Rivière [12] have given a different proof of continuity of weakly biharmonic
maps in four dimensions using a completely different point of view based on
conservation laws.

While the bi-energy gives a nice functional on IR4, there is a similarly
nice one on IR2m, namely the m-polyenergy Em(u) := 1

2

∫
IR2m |Dmu|2. Again,

there is an extrinsic variant depending on the embedding N ↪→ IRK and an
intrinsic one interpreting D as the covariant derivative with respect to both
M and N . We will restrict ourselves to flat domains Ω ⊆ IR2m. It should be
noted, that on M with curvature, the polyenergy is probably not the most
natural choice (nor is the bi-energy) due to the lack of conformal invariance
in 2m dimensions. There is a conformally invariant version of the polyener-
gies which is obtained by replacing |Dmu|2 by 〈P2mu, u〉 with the 2mth order
Paneitz-type operator. This functional differs from the polyenergy only by
lower-order terms, and on IR2m they coincide. Since we work on IR2m any-
way, we do not have to bother and can work with the polyenergies. See [17]
for some reasons why the Paneitz bi-energy should be preferred over the
bi-energy.

Since in the extrinsic case, the bi-energy and the 2-polyenergy on IR4

differ only by a null Lagrangian, extrinsically biharmonic maps are exactly
the extrinsically 2-polyharmonic maps.
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Intrinsically polyharmonic maps have been proposed by Eells and
Lemaire [6, Problem (8.8)] who asked about existence results in the critical
dimension 2m. We will cover regularity results in this dimension for both
intrinsically and extrinsically polyharmonic maps, which is a closely related
question. Two recent papers have studied regularity issues for (extrinsically)
polyharmonic maps. In [7], the corresponding evolution equation is studied
for the critical dimension. It is proven that the flow has eternal solutions
which develop only finitely many distinct point singularities. There are no
singularities at all if the initial polyenergy is below some threshold. In [2],
Angelsberg and Pumberger prove that polyharmonic maps (for any domain
dimension) are regular at points where u is small in some natural Morrey–
Sobolev norm and where for some reason Dmu has slightly better integra-
bility than L2. The latter condition is a strong one, allowing to make a proof
using only growth properties, but basically no structure of the nonlinearities.

In this paper, we are concerned with 2m-dimensional domains only.
For lower domain dimension, smoothness of m-polyharmonic maps can be
inferred by standard methods. For higher domain dimension, a variant of
Wang’s biharmonic proof [24] should be expected to apply. However, there
is a major obstacle to trying this, which is the lack of a suitable monotonic-
ity formula for polyharmonic maps. Such a monotonicity formula has been
proven by Chang et al. [4], with present form due to Angelsberg [1], for
extrinsically biharmonic maps, but their proof does not seem to carry over
to the polyharmonic case.

Before stating our main result, let us first give a precise definition of
the objects mentioned above. Let N ⊂ IRK be a smooth compact subman-
ifold. We define the extrinsic and the intrinsic m-polyenergy on a domain
Ω ⊂ IR2m as

Em(u) :=
1
2

∫

Ω
|Dmu|2 dx and Ẽm(u) :=

1
2

∫

Ω
|∇m−1Du|2 dx

for all u ∈ Wm,2(Ω, N), where m ≥ 2 and ∇ denotes the Levi–Civita con-
nection on N . Here, the space of Sobolev maps with values in N ⊂ IRK is
defined as

Wm,2(Ω, N) :=
{
u ∈ Wm,2(Ω, IRK) : u(x) ∈ N for almost every x ∈ Ω

}
.

We point out that the extrinsic polyenergy depends on the embedding N ↪→
IRK , while the intrinsic variant makes sense also for abstract manifolds N .
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A map u ∈ Wm,2(Ω, N) is called weakly extrinsically (or intrinsically)
m-polyharmonic if

d

dt

∣
∣
∣
t=0

Em(ut) = 0, respectively,
d

dt

∣
∣
∣
t=0

Ẽm(ut) = 0

holds for all variations ut := πN (u + tW ) of u, with an arbitrary test vec-
tor field W ∈ C∞

0 (Ω, IRK). Here, πN denotes the nearest-point retraction
onto N .

We prove the following theorem.

Theorem 1.1 (Regularity in the critical dimension). Let m ≥ 2 and
Ω ⊂ IR2m open, and let N ⊂ IRK be a smooth compact Riemannian manifold.
Then every weakly (extrinsically or intrinsically) m-polyharmonic map u ∈
Wm,2(Ω, N) is smooth on Ω.

We point out that in the case m = 2, this result was established by
Wang [23]. Meanwhile, further related results have been accomplished.
Lamm and Wang [13] have proven the corresponding boundary regularity
theorem for polyharmonic maps with Dirichlet data. Goldstein et al. [9] have
pointed out that the special case of N = Sn allows a simpler proof without
gauge fixing.

For Hölder continuity of u, our proof follows Wang’s proof [23] for the
biharmonic case which is partially based on ideas by Shatah and Struwe [18].
In particular, we use moving frames gauged with the help of Uhlenbeck’s
gauge theorem [22]. It turns out that Uhlenbeck’s gauge is good enough
to obey higher order estimates beyond W 2,2. A suitable formulation of
the Euler–Lagrange equation in that frame allows to derive Lorentz space
growth estimates quite analogous to Wang’s. We avoid Wang’s continuation
constructions from [23, Lemma 4.3] (which could be difficult to verify) by
applying Hodge decomposition to a slightly modified term. Also, compared
to Wang’s proof, we write the Euler–Lagrange equations for extrinsically
and intrinsically polyharmonic maps in a form rather similar to each other,
which again allows some simplification.

Once we have Hölder continuity, higher regularity of polyharmonic maps
is a matter of methods that have been sketched for the biharmonic case by
Chang et al. [4]. However, since this point is not completely trivial (and
even less in the polyharmonic case), we think it deserves a more detailed
presentation, which we will give in Section 7. We prove a proposition (see
Proposition 7.1) that holds for rather general critical growth p.d.e. and
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also in supercritical dimensions. For polyharmonic maps, it implies as a
particular case

Theorem 1.2 (Higher regularity). Let m ≥ 2, Ω ⊆ IRn (n ≥ 2m) be
open, and let N ⊂ IRK be a Riemannian manifold. Then every weakly
(extrinsically or intrinsically) m-polyharmonic map Ω → N that is locally
Hölder continuous is smooth on Ω.

This theorem also allows to pass from Hölder continuity to smoothness
in [2], where the reader is referred to “elliptic bootstrapping arguments”.

It should be remarked that existence of weakly polyharmonic maps is
accessible in the extrinsic case, where the direct method of the Calculus
of Variations produces minimizers in Wm,2. In contrast to this, the direct
method does not immediately apply to the intrinsic polyenergies. However,
Moser [14] recently proved existence of intrinsically polyharmonic maps by
minimizing the polyenergy in some variant of Wm,2 which is based on intrin-
sic higher derivatives. While such minimizers are not known to be weak solu-
tions of the polyharmonic map equation in general, for the special case of
biharmonic maps in four dimensions, Moser can prove they are. Therefore,
including also intrinsically weakly polyharmonic maps in this paper seems
to make sense.

2. Preliminaries on Lorentz spaces

We will make extensive use of Lorentz spaces and their properties. A good
source is Ziemer’s book [25, Sections 1.8 and 2.10].

For measurable functions f : Ω → IR, we have the nonincreasing rear-
rangement of |f |, f∗ : IR+ → IR+ with

f∗(t) := inf{y > 0 : |{x ∈ Ω : |f(x)| > y}| ≤ t},

which we use to define

f∗∗(x) :=
1
x

∫ x

0
f∗(t) dt

for x ≥ 0. For 1 < p < ∞ and 1 ≤ q ≤ ∞, the Lorentz space Lp,q(Ω) is the
space of functions f : Ω → IR with

‖f‖Lp,q(Ω) :=
(∫ ∞

0
(t1/pf∗∗(t))q dt

t

)1/q

< ∞
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if q < ∞, or

‖f‖Lp,∞(Ω) := sup
t>0

t1/pf∗∗(t) < ∞.

For 1 < p < ∞ and 1 ≤ q1 < q2 ≤ ∞ we have Lp(Ω) = Lp,p(Ω), Lp,q1(Ω) ⊂
Lp,q2(Ω), and

(2.1) ‖f‖Lp,q2 (Ω) ≤ C‖f‖Lp,q1 (Ω)

for all f ∈ Lp,q1(Ω), where the constant C depends only on p, q1 and q2. For
the proofs we refer to the Lemmas 1.8.10 and 1.8.13 in [25].

If |Ω| < ∞, then Lp,q(Ω) ⊃ Lr,s(Ω) for 1 < p < r < ∞, 1 ≤ q, s ≤ ∞. In
particular, we have the estimate

(2.2) ‖f‖Lp,p(Ω) ≤ Cr,p |Ω|(1/p)−(1/r)‖f‖Lr,∞(Ω)

for all f ∈ Lr,∞(Ω) and 1 < p < r < ∞. The estimate follows from the defi-
nition of the Lorentz spaces by an elementary computation.

Sobolev–Lorentz embedding theorems. The Sobolev embedding the-
orem can be generalized to the scale of Lorentz spaces as follows. If f ∈
W k(IRn, IR) with Dkf ∈ Lp,q(IRn) for some k ∈ IN, 1 < p < n

k and 1 ≤ q ≤
∞, then f ∈ Lnp/(n−kp),q(IRn) and

(2.3) ‖f‖Lnp/(n−kp),q(IRn) ≤ C‖Dkf‖Lp,q(IRn).

A proof can be found in [21]. On balls, the analogous statement holds with
the full “Sobolev–Lorentz” norm on the right-hand side,

(2.4) ‖f‖Lnp/(n−kp),q(B) ≤ C

k∑

j=0

‖Djf‖Lp,q(B)

This can be checked easily in the case k = 1 by extending f to a function
f̃ ∈ W 1,p(IRn) with ‖Df̃‖Lp,q(IRn) ≤ C(‖f‖Lp,q(B) + ‖Df‖Lp,q(B)) and apply-
ing the estimate (2.3) to f̃ . Successive applications of this result then yield
the above estimate for all k ∈ IN.

Moreover, we have a Lorentz version of Poincaré’s inequality. For 1 <
p < ∞, we have

(2.5) ‖f − f‖Lp,∞(B) ≤ C‖Df‖Lp,∞(B)
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for all f ∈ W 1,p(B), where f denotes the mean value of f over B. To prove
this, we use (2.1), the usual Sobolev embedding and (2.2) to find

‖f − f‖Lp,∞(B) ≤ C‖f − f‖Lp(B) ≤ C‖Df‖Lnp/(n+p)(B) ≤ C‖Df‖Lp,∞(B).

Convolution inequalities. In the regularity proofs, convolution inequali-
ties will play a central role. Assume that for 1 < p1, p2 < ∞ with 1

p1
+ 1

p2
> 1

and 1 ≤ q1, q2 ≤ ∞, we have f ∈ Lp1,q1(IRn) and g ∈ Lp2,q2(IRn). Then there
holds

(2.6) f ∗ g ∈ Lr,s(IRn) with ‖f ∗ g‖Lr,s ≤ C‖f‖Lp1,q1‖g‖Lp2,q2

if 1
p1

+ 1
p2

= 1 + 1
r and s ≥ 1 is any number with 1

q1
+ 1

q2
≥ 1

s . In the case
that we only have g ∈ L1(IRn), we have the analogous result

(2.7) f ∗ g ∈ Lp1,q1(IRn) with ‖f ∗ g‖Lp1,q1 ≤ C‖f‖Lp1,q1‖g‖L1 .

For the proofs, see [25, Theorem 2.10.1] or [16, Theorem 2.6]. By classi-
cal results, Calderon–Zygmund operators map Lp,q(IRm) continuously into
itself, see [20, Theorems V.3.15 and VI.3.1]. Therefore, if K is a Calderon–
Zygmund kernel, then

(2.8) K ∗ g ∈ Lp2,q2(IRn) with ‖K ∗ g‖Lp2,q2 ≤ CK‖g‖Lp2,q2 .

Multiplication rules. Similarly, we have the following multiplication rules
between Lorentz spaces. Assume f ∈ Lp1,q1(IRn) and g ∈ Lp2,q2(IRn), where
here 1 < p1, p2 < ∞ with 1

p1
+ 1

p2
< 1 and 1 ≤ q1, q2 ≤ ∞. Then we have the

inequality

(2.9) ‖fg‖Lr,s ≤ C‖f‖Lp1,q1‖g‖Lp2,q2

if 1
p1

+ 1
p2

= 1
r and 1

q1
+ 1

q2
≥ 1

s for s ≥ 1. In the case 1
p1

+ 1
p2

= 1, an analo-
gous inequality holds in the sense

(2.10) ‖fg‖L1 ≤ ‖f‖Lp1,q1‖g‖Lp2,q2

whenever 1
q1

+ 1
q2

≥ 1. For a proof, cf. [16, Theorems 3.4 and 3.5]. Finally,
we will need

Lemma 2.1 (Fundamental elliptic inequality for Lorentz norms).
On the unit ball B ⊂ IRn we consider a function f ∈ W 2,p(B) with
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Δf ∈ Lp,q(B), where 1 < p < ∞ and 1 ≤ q ≤ ∞. Then we have for any
0 < r < 1

‖D2f‖Lp,q(Br) ≤ C(‖Δf‖Lp,q(B) + ‖Df‖Lp,q(B) + ‖f‖Lp,q(B))

where the constant C depends only on r, n, p and q.

Proof. Let ψ ∈ C∞
cpt(B) be a cut-off function with ψ ≡ 1 on Br and ‖ψ‖C1 ≤

C = C(r). We define g ∈ W 2,p(IRn) by g := ψf , which is to be interpreted
as zero outside of B. By the choice of ψ, there holds

|Δg| ≤ C(|Δf | + |Df | + |f |) a.e. on B.

By the classical Calderon–Zygmund estimates, see (2.8), we know

‖D2f‖Lp,q(Br) ≤ ‖D2g‖Lp,q(IRn) ≤ C‖Δg‖Lp,q(IRn).

Combining the last two estimates, we establish the lemma. �

3. Hodge decomposition on IRn in Lorentz spaces

Hodge decomposition has been one of the key techniques for regularity proofs
even for harmonic maps. What we need are higher order estimates in Lorentz
spaces.

Lemma 3.1. Let ω ∈ W k,p(IRn,∧lIRn) be an l-form with |Dkω| ∈ Lp,q(IRn),
where here n ≥ 2, 1 ≤ l ≤ n, k ∈ IN0, 1 < p < ∞ and 1 ≤ q ≤ ∞. Then there
is a decomposition

ω = df + d∗g with d∗f = 0 and dg = 0

for some f ∈ W k+1,p(IRn,∧l−1IRn) and g ∈ W k+1,p(IRn,∧l+1IRn). The forms
df and d∗g are unique and we have the estimates

‖Dk+1f‖Lp,q ≤ C‖Dk−1d∗ω‖Lp,q

‖Dk+1g‖Lp,q ≤ C‖Dk−1dω‖Lp,q

for k ≥ 1, while in the case k = 0 we have

(3.1) ‖Df‖Lp,q + ‖Dg‖Lp,q ≤ C‖ω‖Lp,q .
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Proof. Uniqueness follows from the result of Iwaniec and Martin, cf. [11,
Section 6], which also includes the estimate (3.1) for p = q. Inequality (3.1)
extends to the scale of Lorentz spaces by a standard interpolation method,
see, e.g. [20, Theorem V.3.15]. In order to prove existence, we write G2 for
the fundamental solution of the Laplace operator and let

f := G2 ∗ d∗ω and g := G2 ∗ dω.

This definition implies

df + d∗g = G2 ∗ (dd∗ω + d∗dω) = G2 ∗ Δω = ω

and

d∗f = G2 ∗ d∗d∗ω = 0 as well as dg = G2 ∗ ddω = 0.

For the Lorentz estimate, we calculate at a point x ∈ IRn

Dk+1f(x) =
∫

IRn

D2G2(y)Dk−1d∗ω(x − y) dy

for k ≥ 1, and since D2G2 is a Calderon–Zygmund kernel, we infer as
in (2.8) that

‖Dk+1f‖Lp,q ≤ C‖Dk−1d∗ω‖Lp,q .

The Lorentz norm of Dk+1g can be estimated analogously. �

4. The Euler–Lagrange equation

For most of the paper, we will deal with extrinsically polyharmonic maps
only. For intrinsically harmonic maps, only few changes are necessary, and
we will discuss them in Section 8.

An extrinsically polyharmonic map is easily seen to satisfy Δmu ⊥ N .
We will start by deriving a weak formulation of the Euler–Lagrange equation.
We can reformulate the above orthogonality relation as

(4.1)
∫

〈Dmu, Dm(Π(u)V )〉 dx = 0

for every vectorfield V ∈ C∞
cpt(Ω, IRK), where Π(y) : IRK →TyN denotes the

orthogonal projection. Applying Leibniz’ rule in the above equation, we
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compute

∫
〈Dmu, Π(u)DmV 〉 dx = −

m−1∑

k=0

(
m

k

)∫
〈Dmu, Dm−k(Π(u))DkV 〉 dx.

On the other hand, we have
∫

〈Dmu, DmV 〉 dx =
∫

〈Dm−1(Π(u)Du), DmV 〉 dx

=
m−2∑

k=0

(
m−1

k

)∫
〈Dm−1−k(Π(u)) Dk+1u, DmV 〉 dx

+
∫

〈Π(u)Dmu, DmV 〉 dx.

Combining the last two equations, we arrive at

∫
〈Dmu, DmV 〉 dx =

m−2∑

k=0

(
m−1

k

)∫
〈Dm−1−k(Π(u)) Dk+1u, DmV 〉 dx

−
m−1∑

k=0

(
m

k

)∫
〈Dmu, Dm−k(Π(u))DkV 〉 dx.(4.2)

By approximation, this holds for every V ∈ Wm,2
0 ∩ L∞(Ω, IRK). Any u ∈

Wm,2(Ω, N) satisfying (4.2) will be called a weakly extrinsically (m-)poly-
harmonic map. This weak form of the Euler–Lagrange equation is a rather
simplified version of [2, Lemma 2.2].

To make proper use of the structure of the equation, we will make use
of another reformulation that allows to read the equation “in coordinates
adapted to u”. Let u : Ω → N be a map of class Wm,2, and η : Ω → IRK a
vectorfield along u, i.e., η(x) ∈ Tu(x)N for almost all x ∈ Ω. We have

Δ〈Δu, η〉 = 〈Δ2u, η〉 + 〈DΔu, Dη〉 + div〈Δu, Dη〉

which we can iterate to get

Δm−1〈Δu, η〉 = 〈Δmu, η〉 +
m−1∑

k=1

[Δm−k−1〈DΔku, Dη〉

+ Δm−k−1 div〈Δku, Dη〉]
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by induction. This implies

Δm−1 div〈Du, η〉 = 〈Δmu, η〉 + Δm−1〈Du, Dη〉

+
m−1∑

k=1

[Δm−k−1〈DΔku, Dη〉 + Δm−k−1 div〈Δku, Dη〉].(4.3)

Iterating

〈div v, f〉 = div〈v, f〉 − 〈v, Df〉

we find

〈divk v, f〉 =
k∑

l=0

(−1)k−l

(
k

l

)

divl〈v, Dk−lf〉.

Plugging that into (4.3), we find

Δm−1 div〈Du, η〉 = 〈Δmu, η〉 + Δm−1〈Du, Dη〉

+
m−1∑

k=1

k∑

l=0

(−1)k−l

(
k

l

)

[Δm−k−1 divl〈Dk+1u, Dk−l+1η〉

+ Δm−k−1 divl+1〈Dku, Dk−l+1η〉].

Here, all derivatives of order >m are to be interpreted as distributional
derivatives. This is no problem because of the divergence structure of the
above terms. Now we assume that u is weakly extrinsically m-polyharmonic.
This is equivalent to the first term on the right-hand side vanishing for all
η ∈ Wm,2

0 ∩ L∞(Ω, IRK) that are tangential along u.
Thus, we have derived the Euler–Lagrange equation for extrinsically

polyharmonic maps in the following form: for all η ∈ Wm,2
0 ∩ L∞(Ω, IRK)

tangential along u, we have

Δm−1 div〈Du, η〉 = Δm−1〈Du, Dη〉

+
m−1∑

k=1

k∑

l=0

(−1)k−l

(
k

l

)

[Δm−k−1 divl〈Dk+1u, Dk−l+1η〉

+ Δm−k−1 divl+1〈Dku, Dk−l+1η〉].(4.4)

This form of the equation turns out to be useful when η stands for the
elements of some frame of u∗TN adapted to u, which we will construct in
the section that follows.
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5. Construction of a Coulomb frame along W m,2-maps

This section adds higher order estimates to the arguments from Section 3
of [23] which is based on Section 4 of [18].

For the construction of the Coulomb frames, we will apply Uhlenbeck’s
theorem and combine it with the higher order estimates of the following

Lemma 5.1. Let u ∈ Wm,2(B, N) satisfy ‖Du‖W m−1,2 ≤ κ for some κ ∈
(0, 1). Assume further that for an orthonormal frame {eα}n

α=1 ⊂ W 2,m

(B,TN) along u and the connection form A := (〈eα, deβ〉)α,β, there holds

(5.1) d∗A = 0 and ‖A‖W 1,m(B) +
n∑

α=1

‖Deα‖W 1,m(B) ≤ κ

for some κ ∈ (0, 1). Then we have the estimate

(5.2)
m∑

j=0

‖DjA‖L2m/(j+1),1(B1/2) ≤ Cκ

with a constant C depending only on m and N .

The proof relies on the following two lemmas. We recall that the curva-
ture of a connection form is defined by F (A) := dA + [A, A].

Lemma 5.2. Let 0 ≤ k ≤ m − 1 and assume that A ∈ W k,2m/(k+1)(B,
∧1IR2m ⊗ so(dimN)) satisfies d∗A = 0 on B and |DkF (A)| ∈ L2m/(k+2),1(B).
Then for every 0 < r < 1 there holds |Dk+1A| ∈ L2m/(k+2),m/(k+1)(Br)
with

‖Dk+1A‖L2m/(k+2),m/(k+1)(Br)

≤ C
(
‖DkF (A)‖L2m/(k+2),1 + ‖A‖2

W k,2m/(k+1) + ‖A‖W k,2m/(k+1)

)
.

Here, the constant C depends only on m and r.

Proof. Since d∗A = 0 and by the definition of F (A), we have

|Dk−1ΔA| ≤ C|DkdA| ≤ C|DkF (A)| + C|Dk[A, A]|.
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For the last term, we have the estimate

‖Dk[A, A]‖L2m/(k+2),m/(k+1)

≤ C

k∑

i=0

‖DiA‖L2m/(i+1),2m/(k+1)‖Dk−iA‖L2m/(k−i+1),2m/(k+1)

≤ C‖A‖2
W k,2m/(k+1)

by the multiplication rule (2.9) and the Sobolev embedding (2.4). We
conclude

‖ΔDk−1A‖L2m/(k+2),m/(k+1) ≤ C
(
‖DkF (A)‖L2m/(k+2),1 + ‖A‖2

W k,2m/(k+1)

)
.

From this, the claim follows by the fundamental elliptic estimate in Lorentz
spaces, see Lemma 2.1. �

Lemma 5.3. Assume that {eα}dim N
α=1 is an orthonormal frame along u ∈

Wm,2(B, N) and that A = (〈eα, deβ〉) satisfies A ∈ W k−1,2m/k for some 1 ≤
k ≤ m. Then eα ∈ W k,2m/k(B, IRK) for all 1 ≤ α ≤ dim N , and we have the
following pointwise estimates on B:

(5.3) |Dkeα| ≤ C

k∑

j=1

(|Dj−1A| + |Dju|)k/j

for all 1 ≤ α ≤ dim N . In particular, we have for every 1 ≤ p ≤ ∞

n∑

α=1

‖Dkeα‖L2m/k,p ≤ C

k∑

l=1

(
‖Dl−1A‖L2m/l,pk/l + ‖Dlu‖L2m/l,pk/l

)k/l
.

Proof. The pointwise estimates are a consequence of the identity

Deα =
n∑

β=1

〈Deα, eβ〉eβ + (II ◦ u)(Du, eα) for 1 ≤ α ≤ dim N

which readily implies (5.3) in the case k = 1. Here, II denotes the second
fundamental form of the embedding N ↪→ IRK . Now we assume (5.3) for all
1 ≤ k < l up to some l ∈ {1, . . . , m}, and differentiate the above identity in
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order to get

|Dleα| ≤ C

l−1∑

k=0

∑

β

|Dl−k−1A| |Dkeβ|

+ C
∑

i+j+k=l−1
i, j, k≥0

i∑

h=1

|Dhu|i/h |Dj+1u| |Dkeα|.

Applying Young’s inequality, we arrive at

|Dleα| ≤ C

l∑

j=1

(|Dj−1A|l/j + |Dju|l/j) + C

l−1∑

k=1

∑

β

|Dkeβ|l/k.

Using the assumption (5.3) for 1 ≤ k ≤ l − 1, we establish the estimate (5.3)
for k = l. The Lorentz norm estimate is an immediate consequence
of (5.3). �

Proof of Lemma 5.1. First of all, note that the assumption (5.1) and the
properties of u imply by the Sobolev embedding theorem

(5.4) ‖A‖L2m(B) +
dim N∑

α=1

‖Deα‖L2m(B) +
m∑

k=1

‖Dku‖L2m/k(B) ≤ Cκ.

The curvature of A satisfies

(5.5) F (A)αβ =
〈
(RN ◦ u)(du ∧ du)eβ, eα

〉
on B

with the Riemannian curvature tensor RN on N , cf. [23, Section 3]. This
implies in particular, using (2.9) and (2.4),

(5.6) ‖F (A)‖Lm,1(B) ≤ C‖Du‖2
L2m,2(B) ≤ C‖Du‖2

W m−1,2(B) ≤ Cκ2.

For 2 ≤ k ≤ m + 1 we let rk := 2(2−k)/(m−1) and Dk := Brk
(0), so that

B1/2 = Dm+1 � Dm � · · · � D2 = B. By induction, we will prove that
A ∈ W k−1,2m/k(Dk,∧1IR2m ⊗ so(n)) and eα ∈ W k,2m/k(Dk, IRK) for all
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1 ≤ α ≤ n and 2 ≤ k ≤ m with the estimate

(5.7)

‖Dk−2F (A)‖L2m/k,1(Dk) + ‖Dk−1A‖L2m/k(Dk) +
n∑

α=1

‖Dkeα‖L2m/k(Dk) ≤ Cκ.

For k = 2, this follows from (5.6) and the assumption (5.1). Now assume that
we know (5.7) for all 2 ≤ k ≤ l up to some l ∈ {2, . . . , m − 1}. Identity (5.5)
implies, by the chain rule and Young’s inequality,

|Dl−1F (A)αβ | ≤ C
∑

i1+...+i5=l−1
ij≥0

max
{

1,

i1∑

j=1

|Dju|i1/j
}

× |Di2+1u| |Di3+1u| |Di4eβ| |Di5eα|.

Applying the multiplication rule (2.9) repeatedly, we conclude

‖Dl−1F (A)‖L2m/(l+1),1(Dl) ≤ C

(

1 +
l∑

i=1

‖Diu‖L2m/i

)

×
(

l∑

i=1

‖Diu‖L2m/i,2

)2⎛

⎝1 +
l−1∑

j=1

∑

α

‖Djeα‖L2m/j

⎞

⎠

2

≤ C(1 + κ)3‖Du‖2
W m−1,2(Dl) ≤ Cκ2.(5.8)

Here we used the Sobolev–Lorentz embedding Wm−i,2 ↪→ L2m/i,2. Applying
Lemma 5.2 on the ball Dl, we get A ∈ W l,2m/(l+1)(Dl+1) with

‖DlA‖L2m/(l+1),m/l(Dl+1) ≤ C
(
‖Dl−1F (A)‖L2m/(l+1),1(Dl)

+ ‖A‖2
W l−1,2m/l(Dl) + ‖A‖W l−1,2m/l(Dl)

)
≤ Cκ(5.9)

by the assumption (5.1) and by (5.7) for k = 2, . . . , l. This implies
by Lemma 5.3

‖Dl+1eα‖L2m/(l+1)(Dl+1)

≤ C

l+1∑

j=1

(
‖Dj−1A‖(l+1)/j

L2m/j(Dl+1)
+ ‖Dju‖(l+1)/j

L2m/j(Dl+1)

)
≤ Cκ(5.10)

for all 1 ≤ α ≤ n, by (5.4) and (5.7) for k = 2, . . . , l. Estimates (5.8) to
(5.10) yield the claim (5.7) for k = l + 1. In this manner, we can establish
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the estimate (5.7) successively for all 2 ≤ k ≤ m. This enables us to apply
Lemma 5.2 with k = m − 1 with the result

‖DmA‖L2m/(m+1),1(Dm+1) ≤ Cκ.

Combining this with (5.4) and (5.7) for 2 ≤ k ≤ m, the Sobolev–Lorentz
embedding theorem yields the desired estimate (5.2). �

Now we are able to prove the main theorem of this section.

Theorem 5.1 (Coulomb gauge). There are constants ε1 ∈ (0, 1) and
C1 ∈ IR, both depending only on m and N , such that for every map u ∈
Wm,2(B, N) with ‖Du‖W m−1,2 ≤ ε1 there is an orthonormal frame {eα}dim N

α=1
⊂ Wm,2(B1/4,TN) with eα(x) ∈Tu(x)N for a.e. x ∈ B1/4 such that the
connection form A = (〈eα, deβ〉)α,β satisfies

(5.11)

d∗A = 0 on B and
m∑

k=0

‖DkA‖L2m/(k+1),1(B1/4) ≤ C1‖Du‖W m−1,2(B).

Proof. By arguments due to Schoen and Uhlenbeck [19] we can find an
approximating sequence ui ∈ C∞(B, N) with ui → u strongly in W 2,m

(B, IRK) and almost everywhere as i → ∞. We reproduce the proof for
the reader’s convenience. Let φ ∈ C∞

cpt(B, IR≥0) be a mollifying kernel with
‖φ‖L1 = 1 and let φi(x) := i2mφ(ix) for x ∈ IR2m and i ∈ IN. We define ũi :=
φi ∗ u ∈ C∞(IR2m, IRK), where we have extended u by zero outside of B for
the definition. Then it holds ũi → u in W 2,m(B3/4, IRK), in W 1,2m(B3/4, IRK)
and almost everywhere, as i → ∞. Moreover, for x ∈ B3/4, with the notation
ux;i := −

∫
B1/i(x) u(y) dy, we have

dist(ũi(x), N) ≤ −
∫

B1/i(x)
|ũi(x) − u(y)| dy

≤
∫

B1/i(x)
φi(x − z) −

∫

B1/i(x)
|u(z) − u(y)| dy dz

≤ C−
∫

B1/i(x)
|u(y) − ux;i| dy ≤ C

∫

B1/i(x)
|Du|2m dy ≤ Cε2m

1

by the Sobolev embedding. Thus, if ε1 is chosen sufficiently small depending
on N , we can ensure that ui := πN ◦ ũi ∈ C∞(B3/4, N) is well defined, where
here πN denotes the nearest-point retraction onto N . It is straightforward
to check that ui → u strongly in W 2,m(B3/4, IRK) and almost everywhere,
as i → ∞.
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Now we consider the pulled back bundle u∗
i TN , which is a trivial vector

bundle since the base space B3/4 is contractible. This means that we can
choose a smooth orthonormal frame {ẽi

α}dim N
α=1 ⊂ Γ(u∗

i TN). We want to
apply Uhlenbeck’s gauge theorem to the connection form Ãi := (〈ẽi

α, dẽi
β〉)α,β ,

whose curvature satisfies, cf. [23, Section 3],
∣
∣F

(
Ãi

)∣
∣ = |(RN ◦ ui)(dui ∧ dui)| ≤ C(N)|Dui|2

where here RN denotes the Riemannian curvature tensor associated with N .
In particular, with ε := ‖Du‖W m−1,2(B),

∥
∥F

(
Ãi

)∥
∥

Lm ≤ C(m, N)‖Dui‖2
L2m ≤ C(m, N)ε2 ≤ C(m, N)ε2

1

if i ∈ IN is chosen sufficiently large. Thus, choosing ε1 > 0 small depend-
ing on m and N , Theorem 1.3 of [22] yields a Gauge transformation s ∈
W 2,m(B1/2, S −O (dimN)) such that the connection forms Ai = (〈ei

α, dei
β〉),

taken with respect to the frames ei
α :=

∑
β ẽi

βsβα, satisfy

(5.12) d∗Ai = 0 on B1/2 and ‖Ai‖W 1,m(B1/2) ≤ Cε2

where the constant C depends only on m and N . From Lemma 5.3, we infer

‖Dei
α‖W 1,m(B1/2) ≤ C(‖Ai‖W 1,m(B1/2) + ‖Ai‖2

L2m(B1/2)

+ ‖Dui‖W 1,m(B1/2) + ‖Dui‖2
L2m(B1/2))

≤ Cε(5.13)

for all 1 ≤ α ≤ n and all sufficiently large i ∈ IN. Here we used the Sobolev
embedding and (5.12). The last two estimates ensure that after extracting a
subsequence of {i}, we have convergence ei

α ⇀ eα weakly in W 2,m, strongly
in W 1,m and almost everywhere, as well as Ai ⇀ A weakly in W 1,m and
strongly in Lm, for some vector fields eα ∈ W 2,m(B1/2, IRK) and a connec-
tion form A ∈ W 1,m(B1/2,∧1IR2m ⊗ so(dimN)). By the convergence almost
everywhere, we know that {eα(x)}α is an orthonormal basis of Tu(x)N for
a.e. x ∈ B1/2. Moreover A = (〈eα, deβ〉), and by (5.12) and (5.13), we have

(5.14)

d∗A = 0 on B1/2 and ‖A‖W 1,m(B1/2) +
n∑

α=1

‖Deα‖W 1,m(B1/2) ≤ Cε

where we used the lower semicontinuity of the norms with respect to weak
convergence. The claimed estimate (5.11) now follows from Lemma 5.1. �
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6. Decay estimates

In this section, we use Lorentz spaces, Hodge decomposition and Coulomb
frames to prove

Proposition 6.1 (Decay estimates). There exist ε0 > 0 and θ0 ∈ (0, 1
4),

such that for any r > 0 and any weakly extrinsically (or intrinsically) poly-
harmonic map u ∈ Wm,2(B2r, N) satisfying

m∑

j=1

‖Dju‖L2m/j(B4r) ≤ ε0

we have the estimate

m∑

j=1

‖Dju‖L2m/j,∞(Bθ0r) ≤ 1
2

m∑

j=1

‖Dju‖L2m/j,∞(Br).

Proof. We will give the proof for the extrinsic case here and will discuss the
necessary changes for the intrinsic case in Section 8.

We can assume r = 1. We choose a Coulomb frame {ei}n
i=1 ⊂ Wm,2

(B,TN) along u as in Theorem 5.1 and set Aij := 〈ei, dej〉. The same theorem
yields the estimates

(6.1)
m∑

j=1

‖Dj−1A‖L2m/j,1(B) ≤ C‖Du‖W m−1,2(B4) ≤ Cε0,

as long as we have chosen ε0 sufficiently small. In what follows, we fix i ∈
{1, . . . , n}. Let ϕ ∈ C∞

cpt(B) be a cut-off function with ϕ ≡ 1 on B1/2 and
‖ϕ‖Cm ≤ C.

We perform a Hodge decomposition

〈d(ϕ(u − u)), ei〉 = dfi + d∗gi with dgi = 0

according to Lemma 3.1. Here, ū denotes the mean value of u over B. Apply-
ing Δm−1d∗ to the above decomposition, we find

(6.2) Δmfi = Δm−1 div〈Du, ei〉 on B1/2

because ϕ ≡ 1 holds there.
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For k = 0, . . . , m − 1 and l = 0, . . . , k, we define ωi
k,l and ηi

k,l to be the
solutions of

Δmωi
k,l = (−1)k−l

(
k

l

)

Δm−k−1 divl
(
ϕ〈Dk+1u, Dk−l+1ei〉

)

Δmηi
k,l = (−1)k−l

(
k

l

)

Δm−k−1 divl+1
(
ϕ〈Dku, Dk−l+1ei〉

)

with the exception
ηi
0,0 := 0.

Note that on B1/2, where ϕ ≡ 1, the right-hand sides are simply the terms
from the Euler–Lagrange equation (4.4); hence (6.2) allows us to rewrite the
Euler–Lagrange equation for u as

(6.3) 0 = Δm

⎡

⎣fi −
∑

0≤k≤l<m

(ωi
k,l + ηi

k,l)

⎤

⎦ =: Δm[fi − wi]

in the sense of distributions on B1/2. �

Lemma 6.1. The fundamental solution for Δm on IR2m is G(x) := cm ln |x|.
We have

DkG ∈ L2m/k,∞(IR2m)

for k = 1, . . . , 2m − 1, and D2mG is a Calderon–Zygmund kernel.

Proof. These are straightforward computations. �
Now we are going to estimate Dmωi

k,l and Dmηi
k,l in L2,∞, very closely

to [23, Lemma 4.3]. Unless stated otherwise, all norms are to be taken with
IR2m as domain.

Case 1: m + 1 ≤ 3m − 2k + l − 2 < 2m. We have

ωi
k,l(x) = c

∫

IR2m

G(x − y)Δm−k−1 divl(ϕ〈Dk+1u, Dk−l+1ei〉)(y) dy

= c

∫

IR2m

〈
Δm−k−1DlG(x − y), 〈Dk+1u, Dk−l+1ei〉(y)

〉
ϕ(y) dy.

This implies

|Dmωi
k,l(x)| ≤ C

∫

IR2m

|D3m−2k+l−2G|(x − y) |Dk+1u||Dk−l+1ei|(y)ϕ(y) dy
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which yields by the convolution inequality (2.6)

‖Dmωi
k,l‖L2,∞ ≤ C

∥
∥
∥ϕ|Dk+1u||Dk−l+1ei|

∥
∥
∥

L2m/(2k−l+2),∞

≤ C‖Dk+1u‖L2m/(k+1),∞(B)‖Dk−l+1ei‖L2m/(k−l+1),∞(B).(6.4)

Case 2: 3m − 2k + l − 2 ≥ 2m. In this case we perform only m partial inte-
grations and find

|Dmωi
k,l(x)|

≤ C

∫

IR2m

|D2mG|(x − y)|Dm−2k+l−2(ϕ〈Dk+1u, Dk−l+1ei〉)|(y) dy.

Using again the Calderon–Zygmund estimates from (2.8), we find

‖Dmωi
k,l‖L2,∞ ≤ C

∥
∥
∥Dm−2k+l−2

(
ϕ〈Dk+1u, Dk−l+1ei〉

)∥
∥
∥

L2,∞

≤ C‖ϕ‖Cm

m−1∑

h=1

m−h∑

j=1

‖Dhu‖L2(h+j)/h,∞(B)‖Djei‖L2(h+j)/j,∞(B)

≤ C

m−1∑

h=1

m−h∑

j=1

‖Dhu‖L2m/h,∞(B)‖Djei‖L2m/j,∞(B).(6.5)

Case 3: 3m − 2k + l − 2 = m, that is k = m − 1 and l = 0. Here we have

ωi
k,l(x) =

∫

IR2m

G(x − y)ϕ(y)〈Dmu, Dmei〉(y) dy

and hence

(6.6) |Dmωi
k,l(x)| ≤ C

∫

IR2m

|DmG|(x − y)ϕ(y) |〈Dmu, Dmei〉|(y) dy.

To deal with the term |〈Dmu, Dmei〉|, we introduce the orthogonal projec-
tions Π(y) : IRL →TyN and Π⊥(y) : IRL →T⊥

y N and write

〈Dmu, Dmei〉 = 〈(Π ◦ u)Dmu, Dm−1((Π⊥ ◦ u)Dei)〉
+ 〈(Π ◦ u)Dmu, Dm−1((Π ◦ u)Dei)〉
+ 〈(Π⊥ ◦ u)Dmu, Dmei)〉

=: I + II + III.
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In order to estimate I, we calculate

I =
m−1∑

k=0

(
m−1

k

)
〈(Π ◦ u)Dmu, Dk(Π⊥ ◦ u)Dm−kei〉

=
m−1∑

k=1

(
m−1

k

)
〈(Π ◦ u)Dmu, Dk(Π⊥ ◦ u)Dm−kei〉

where we used 〈(Π ◦ u)Dmu, (Π⊥ ◦ u)Dmei〉 = 0 in the last step. From the
above identity, the chain rule and Young’s inequality we deduce

|I| ≤ C|Dmu|
m−1∑

k=1

k∑

j=1

|Dju|k/j |Dm−kei|.

Here we used ‖Π⊥‖Cm−1 ≤ C(N). Integrating the above inequality, we get

‖ϕ I‖L1 ≤ C‖Dmu‖L2,∞(B)

∥
∥
∥

m−1∑

k=1

k∑

j=1

|Dju|k/j |Dm−kei|
∥
∥
∥

L2,1(B)

≤ C‖Dmu‖L2,∞(B)

m−1∑

k=1

k∑

j=1

‖Dju‖k/j
L2m/j,2(B)‖Dm−kei‖L2m/(m−k),2(B)

≤ C‖Dmu‖L2,∞(B)‖Dei‖W m−1,2(B)

∑

1≤j≤k<m

‖Dju‖k/j
L2m/j,2(B)(6.7)

where we used the estimate

‖|Dju|k/j‖L2m/k,2 = ‖Dju‖k/j
L2m/j,2k/j ≤ C‖Dju‖k/j

L2m/j,2

in the second step and the Sobolev–Lorentz embedding (2.4) in the last
inequality. For the estimate of the second term, we use the identity (Π ◦ u)
Dei =

∑dim N
l=1 Ali el, from which we conclude

|II| ≤ C|Dmu|
m∑

j=1

|Dj−1A||Dm−jei|.

This implies by (2.10)

‖ϕ II‖L1 ≤ C‖Dmu‖L2,∞(B)

∥
∥
∥
∥
∥
∥

m∑

j=1

|Dj−1A||Dm−jei|

∥
∥
∥
∥
∥
∥

L2,1(B)
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≤ C‖Dmu‖L2,∞(B)

×

⎛

⎝‖Dm−1A‖L2,1(B) +
m−1∑

j=1

‖Dj−1A‖L2m/j,2‖Dm−jei‖L2m/(m−j),2

⎞

⎠

≤ C‖Dmu‖L2,∞(B)
(
‖Dm−1A‖L2,1(B) + ‖A‖W m−1,2(B) ‖Dei‖W m−1,2(B)

)
.

(6.8)

Here we have applied the Sobolev–Lorentz embedding theorem in the last
step. Finally, to estimate the third term we use the equality Dm−1((Π⊥ ◦
u)Du) = 0 and Leibniz’ rule to infer

|(Π⊥ ◦ u)Dmu| ≤ C

m−1∑

k=1

|Dk(Π⊥ ◦ u)| |Dm−ku|

≤ C

m−1∑

k=1

k∑

j=1

|Dju|k/j |Dm−ku|

where we used Young’s inequality in the last step. The last estimate yields

|III| ≤ C|Dmei|
m−1∑

k=1

k∑

j=1

|Dju|k/j |Dm−ku|

which implies, similarly to the derivation of (6.7),

(6.9)

‖ϕ III‖L1 ≤ ‖Dmei‖L2(B)

m−1∑

k=1

k∑

j=1

‖Dju‖k/j
L2m/j,2(B)‖Dm−ku‖L2m/(m−k),∞(B).

Now we use DmG ∈ L2,∞ combined with the convolution estimate (2.7)
in (6.6). Putting Equations (6.7) to (6.9) together, we conclude

‖Dmωi
k,l‖L2,∞ ≤ ‖ϕ〈Dmu, Dmei〉‖L1

≤ C

m∑

i=1

‖Diu‖L2m/i,∞(B)‖Dei‖W m−1,2(B)

∑

1≤j≤k<m

‖Dju‖k/j
L2m/j,2(B)

+ C‖Dmu‖L2,∞(B)(‖Dm−1A‖L2,1(B) + ‖A‖W m−1,2(B) ‖Dei‖W m−1,2(B)).
(6.10)
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The estimates for the ηi
k,l are completely analogous to Cases 1 and 2

above. We have

‖Dmηi
k,l‖L2,∞ ≤ C

∥
∥
∥ϕ|Dku||Dk−l+1ei|

∥
∥
∥

L2m/(2k−l+1),∞

≤ C‖Dku‖L2m/k,∞(B)‖Dk−l+1ei‖L2m/(k−l+1),∞(B)(6.11)

in the case 3m − 2k + l − 1 < 2m, and

(6.12) ‖Dmηi
k,l‖L2,∞ ≤

m−1∑

h=1

m−h∑

j=1

‖Dhu‖L2m/h,∞(B)‖Djei‖L2m/j,∞(B)

for 3m − 2k + l − 1 ≥ 2m. Recall that here we need not consider k = 0. We
abbreviate

R∞ :=
m∑

k=1

‖Dku‖L2m/k,∞(B)

S :=
m∑

k=1

(
‖Dku‖L2m/k(B) + ‖Dk−1A‖L2m/k(B)

)m/k
,

Sp :=
m∑

k=1

(
‖Dku‖L2m/k,p(B) + ‖Dk−1A‖L2m/k,p(B)

)m/k
.

Lemma 5.3 yields the estimate ‖Dkei‖L2m/k,∞ ≤ CS
k/m
∞ . Thus, the right-

hand sides of (6.4), (6.5), (6.11) and (6.12) can all be estimated by CS
1/m
∞

R∞, since we can assume S∞ < 1 by (6.1). We combine this with (6.10) to
obtain

‖Dmwi‖L2,∞ ≤ CS1/m
∞ R∞ + CS

1/m
2 ‖Dei‖W m−1,2(B)R∞

+ C(‖Dm−1A‖L2,1(B) + ‖A‖W m−1,2(B)‖Dei‖W m−1,2(B))R∞.(6.13)

Now we apply (6.1) and Lemma 5.3 to find, assuming ε0 < 1,

‖Dm−1A‖L2,1 + ‖A‖W m−1,2 + ‖Dei‖W m−1,2 ≤ Cε0(6.14)
S + S2 + S∞ ≤ Cε0(6.15)

where in the last estimate we have used the Sobolev–Lorentz embedding.
We use this in (6.13) to find

(6.16) ‖Dmwi‖L2,∞ ≤ Cε
1/m
0 R∞
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and, using the Sobolev–Lorentz embedding (2.3),

(6.17)
m∑

k=1

‖Dkwi‖L2m/k,∞(IR2m) ≤ Cε
1/m
0 R∞.

Now we are going to exploit (6.3), i.e., the fact that fi − wi is a polyharmonic
function.

Lemma 6.2 (Growth estimate for polyharmonic functions). Sup-
pose that v ∈ C∞(Bn, IRK), where n ≥ 2m, is a polyharmonic function of
order m, that is Δmv = 0 in Bn. Then there is a constant C depending only
on m and n, such that

(6.18) ‖v‖L∞(B1/2) ≤ C‖v‖L1(B)

and furthermore, for all θ ∈ (0, 1
2) we have

(6.19)
m∑

j=1

‖Djv‖L2m/j,∞(Bθ) ≤ Cθ

m∑

j=1

‖Djv‖L2m/j,∞(B).

Proof. For the proof we employ a mean value identity for polyharmonic
functions, see [3], which reads as follows. For any choice of radii 0 < r1 <
r2 < · · · < rm, there are coefficients λi ∈ IR depending only on m and the
ri, such that every polyharmonic function h ∈ C2m(Brm

(x), IRK) of order m
satisfies

h(x) =
m∑

i=1

λi−
∫

Bri
(x)

h(y) dy.

We apply this identity with x ∈ B1/2 and radii ri ∈ [14 , 1
2 ] to infer

‖h‖L∞(B1/2) ≤ C(m, n)‖h‖L1(B).

This proves (6.18) if we choose h = v. Next we choose h = Djv for j =
1, . . . , m, which are again polyharmonic functions, and estimate

‖Djv‖L2m/j,∞(Bθ) ≤ Cθj‖Djv‖L∞(B1/2) ≤ Cθj‖Djv‖L1(B)

≤ Cθj‖Djv‖L2m/j,∞(B)

for all j = 1, . . . , m and θ < 1
2 , where the constant C depends only on m

and n. �
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Returning to the proof of Proposition 6.1, we apply the last lemma to
fi − wi. Since that function is polyharmonic on B1/2, the lemma can be
applied for θ ∈ (0, 1

4) to find, using (6.17) twice,

m∑

k=1

‖Dkfi‖L2m/k,∞(Bθ) ≤
m∑

k=1

(‖Dk(fi −wi)‖L2m/k,∞(Bθ) + ‖Dkwi‖L2m/k,∞(IR2m))

≤ Cθ

m∑

k=1

‖Dk(fi − wi)‖L2m/k,∞(B1/2) + Cε
1/m
0 R∞

≤ Cθ

m∑

k=1

‖Dkfi‖L2m/k,∞(B1/2) + Cε
1/m
0 R∞.

On the other hand, using Lemma 3.1 and the arguments from (6.5), as well
as (2.5) and ε0 ≤ 1, we estimate

m∑

k=1

‖Dkfi‖L2m/k,∞(IR2m) ≤ C

m∑

k=1

‖Dk−1〈D(ϕ(u − u)), ei〉‖L2m/k,∞(IR2m)

≤ CR∞S1/m
∞ + C‖u − u‖L2m,∞(B)

×
m−1∑

j=1

‖Djei‖L2m/j,∞(B) +
m∑

k=1

‖Dku‖L2m,∞(B)

≤ CR∞.

Combining the last two estimates, we have proven

(6.20)
m∑

k=1

‖Dkfi‖L2m/k,∞(Bθ) ≤ C(θ + ε
1/m
0 )R∞.

Now we turn our attention to estimating gi. Again from Lemma 3.1 we know

m∑

k=2

‖Dkgi‖L2m/k,∞(IR2m) ≤ C

m∑

k=2

‖Dk−2[d(ϕ(u − u)) ∧ dei]‖L2m/k,∞(IR2m)

≤ C

m−1∑

h=1

m−h∑

j=1

‖Dhu‖L2m/h,∞(B)‖Djei‖L2m/j,∞(B)

+ C‖u − u‖L2m,∞(B)

m−1∑

j=1

‖Djei‖L2m/j,∞(B)



210 Andreas Gastel and Christoph Scheven

≤ C

m−1∑

h=1

m−h∑

j=1

‖Dhu‖L2m/h,∞(B)‖Djei‖L2m/j,∞(B)

≤ CS1/m
∞ R∞

≤ Cε
1/m
0 R∞.

By the Sobolev–Lorentz embedding (2.3), we even know

(6.21)
m∑

k=1

‖Dkgi‖L2m/k,∞(IR2m) ≤ Cε
1/m
0 R∞.

From (6.20) and (6.21), we conclude

m∑

k=1

‖Dk−1〈Du, ei〉‖L2m/k,∞(Bθ) ≤ C(θ + ε
1/m
0 )R∞

which by Leibniz’ rule for all 1 ≤ k ≤ m implies

‖Dku‖L2m/k,∞(Bθ) =

∥
∥
∥
∥
∥
Dk−1

(
∑

i

〈Du, ei〉ei

)∥
∥
∥
∥
∥

L2m/k,∞(Bθ)

≤ ‖Dk−1〈Du, ei〉‖L2m/k,∞(Bθ)

+ C
∑

i

k−1∑

�=1

‖D�−1〈Du, ei〉‖L2m/�,∞(Bθ)

× ‖Dk−�ei‖L2m/(k−�),∞(Bθ)

≤ C(θ + ε
1/m
0 )R∞(1 + S1/m

∞ ).

This is the assertion of Proposition 6.1 if we choose θ and ε0 small
enough. �

7. Proof of the regularity theorem

By the absolute continuity of the integral, we find an r0 > 0 such that

R(x0, r) :=
m∑

k=1

‖Dku‖L2m/k(Br(x0)) ≤ ε0 for all x0 ∈ Ω and r ≤ r0.
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Therefore and because of the scaling invariance of R(x0, r), we can use and
iterate Proposition 6.1 on all balls Br(x0) with r ≤ r0 to infer

m∑

k=1

‖Dku‖L2m/k,∞(Br(x0)) < Crα for all x0 ∈ Ω and r ≤ r0

for some α ∈ (0, 1). By (2.2), this implies

(7.1) rp−2m

∫

Br(x0)
|Du|p dx ≤ Cp‖Du‖p

L2m,∞(Br(x0))
≤ Crpα

for all 1 ≤ p < 2m, x0 ∈ Ω, and r ≤ r0. Then u ∈ C0,α(Ω). The higher reg-
ularity can now be derived from the following proposition, which is proved
by techniques that have been sketched for the biharmonic map case in [4].

Proposition 7.1. For n ≥ 2m, any (extrinsically or intrinsically) m-poly-
harmonic map u ∈ C0,α ∩ Wm,2(Bn, N) satisfies u ∈ C∞(Bn, N).

Remark 7.1. The proof shows that the proposition holds more generally
for maps u ∈ C0,α ∩ Wm,2(Bn, IRK) that satisfy, in the distributional sense,
a differential equation of the form

(7.2)

Δmu =
m−1∑

k=0

divk gk, where |gk| ≤C

m∑

l=1

|Dlu|(2m−k)/l for 0 ≤ k ≤ m − 1.

Extrinsically polyharmonic maps satisfy a differential equation of this form,
as can be checked by performing integration by parts in the first sum of the
Euler equation (4.2) and applying Young’s inequality on the k-linear forms
gk. In Section 8, we will show that intrinsically polyharmonic maps satisfy
an equation of the type (7.2) as well.

Before proceeding to the proof of the proposition, we give the following

Lemma 7.1. Assume that for n ≥ 2m, the map u ∈ Wm,2(Bn, IRK)
satisfies

(7.3) Δmu =
m−1∑

k=0

divk gk on Bn
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in the distributional sense, where the k-linear forms gk satisfy

(

r2m−n

∫

Br(x)
|gk|2m/(2m−k) dx

)(2m−k)/2m

≤ Krγ for any ball Br(x) ⊂ B

for some 0 < γ < m and a constant K. Then for all x ∈ B and 0 < ρ <
1
3(1 − |x|), we have

(

ρ2l−n

∫

Bρ(x)
|Dlu|2 dx

)1/2

≤ Cργ̃
[
1 + (1−|x|)l−γ− n

2 ‖Dlu‖L2

]
for γ < l ≤ m.(7.4)

If the assumptions are satisfied for m < γ < m + 1, then there holds

(

ρ2m−n

∫

Bρ(x)
|Dmu − (Dmu)x,ρ|2 dx

)1/2

≤ Cργ̃
[
1 + (1 − |x|)m−γ−(n/2)‖Dmu‖L2

]
(7.5)

for x ∈ B and 0 < ρ < 1
3(1 − |x|). These estimates hold for any γ̃ < γ, and

in the supercritical case n > 2m even for γ̃ = γ. We employed the notation
(Dmu)x,ρ := −

∫
Bρ(x) Dmu. The constants C in the above estimates depend

only on m, n and K, and on γ̃ − γ in the critical case.

Proof. Fix x ∈ B and 0 < r ≤ 1
3(1 − |x|) and let v ∈ C∞(Br(x), IRK) be the

polyharmonic function with w := u − v ∈ Wm,2
0 (Br(x), IRK). In the proof of

L∞-estimates for w, we will use the Green function Gm,n : B → IR for Δm

on the n-dimensional unit ball B (with Dirichlet boundary data for the solu-
tion and its first m − 1 normal derivatives). This Green function is known
explicitly, and Grunau and Sweers have given the exact growth in [10].

We start by approximating w ∈ Wm,2
0 (Br(x), IRK) by smooth functions

wi ∈ C∞
cpt(Br(x), IRK) in the sense wi → w in Wm,2(Br(x), IRK)-norm as i →

∞. The approximating functions satisfy

|wi(z)| = rm−n

∣
∣
∣
∣
∣

∫

Br(x)

〈

DmGm,n

(
z − x

r
,

y − x

r

)

, Dmwi(y)
〉

dy

∣
∣
∣
∣
∣
.

We cannot pass to the limit i → ∞ on the right-hand side pointwise in z,
but we are allowed to read both sides as functions of z and pass to the limit
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in the L1 sense. Hence we have

|w(z)| = rm−n

∣
∣
∣
∣
∣

∫

Br(x)

〈

DmGm,n

(
z − x

r
,
y − x

r

)

, Dmw(y)
〉

dy

∣
∣
∣
∣
∣

for almost all z ∈ Br(x). Derivatives of Gm,n are to be understood with
respect to the second variable. We would like to test (7.3) with the above
rescaled Green function to find

|w(z)| ≤
m−1∑

k=0

r2m−n−k

∣
∣
∣
∣
∣

∫

Br(x)

〈

DkGm,n

(
z − x

r
,
y − x

r

)

, gk(y)
〉

dy

∣
∣
∣
∣
∣

and in fact we may do so for almost all z ∈ Br(x) by the same reasoning as
above, this time approximating Gm,n(·, y) in Wm,1(B) by smooth functions
with compact support, uniformly in y ∈ B. From [10, Propositions 2.3 and
2.4], we know that

|DkGm,n(X, Y )| ≤ C|X − Y |2m−n−k

for all X, Y ∈ B whenever k > 2m − n. Therefore, in the supercritical case
n > 2m,

|w(z)| ≤ C

m−1∑

k=0

∫

Br(x)
|z − y|2m−n−k|gk(y)| dy.

Integration by parts gives
∫

Br(x)
|z − y|2m−n−k|gk(y)| dy

≤
∫ 2r

0
ρ2m−n−k

∫

Sρ(z)
|gk| dHn−1 dρ

≤ (2r)2m−n−k

∫

B2r(z)
|gk(y)| dy + (n + k − 2m)

×
∫ 2r

0
ρ2m−n−k−1

∫

Bρ(z)
|gk(y)| dy dρ

≤ Crγ + C

∫ 2r

0
ργ−1 dρ ≤ Crγ

by the assumptions on gk. Combining the last two estimates, we have estab-
lished

‖w‖L∞(Br(x)) ≤ Crγ
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whenever n > 2m. In the critical case n = 2m, we only have

|Gm,n(X, Y )| ≤ C| log |X − Y ‖

while for the derivatives the estimates hold as cited above. This allows only
a modified version of the calculation above, to the effect that

‖w‖L∞(Br(x)) ≤ Crγ | log r|.

In both cases, we have

(7.6) ‖w‖L∞(Br(x)) ≤ Crγ̃

for all γ̃ < γ resp. γ̃ ≤ γ, as in the statement.
By Nirenberg interpolation, this implies |Dkw| ∈ L2m/k(Br(x)) for all

0 < k ≤ m − 1,

(

r2m−n

∫

Br(x)
|Dkw|2m/k dx

)k/2m

≤ Crγ̃(1− k

m
)

(

r2m−n

∫

Br(x)
|Dmw|2 dx

)k/2m

+ Crγ̃

≤ 1
2m

r2m−n−γ̃

∫

Br(x)
|Dmw|2 dx + Crγ̃(7.7)

where we applied Young’s inequality with the exponents 2m
2m−k and 2m

k in the
second step. Now we test Equation (7.3) with w := u − v ∈ Wm,2

0 (Br(x), IRK)
and get, because Δmv = 0,

r2m−n

∫

Br(x)
|Dmw|2 dx = r2m−n

∫

Br(x)
〈Dmu, Dmw〉 dx

= r2m−n
m−1∑

k=0

∫

Br(x)
〈gk, D

kw〉 dx

≤
m−1∑

k=0

(

r2m−n

∫

Br(x)
|Dkw|2m/k dx

)k/2m

×
(

r2m−n

∫

Br(x)
|gk|2m/(2m−k)

)(2m−k)/2m

.
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Using estimates (7.6) in the case k = 0 and (7.7) in the cases 1 ≤ k ≤ m − 1,
combined with the assumptions on gk, we arrive at

r2m−n

∫

Br(x)
|Dmw|2 dx ≤ 1

2
r2m−n

∫

Br(x)
|Dmw|2 dx + Cr2γ̃ .

Absorbing the second integral, we conclude

r2m−n

∫

Br(x)
|Dmw|2 dx ≤ Cr2γ̃

which implies by Nirenberg interpolation, cf. (7.7),

(7.8)
m∑

k=1

(

r2m−n

∫

Br(x)
|Dkw|2m/k dx

)k/2m

≤ Crγ̃ .

Furthermore, by the L∞-estimates (6.18) of Lemma 6.2 we know for 1 ≤ l ≤
m, since Dlv are polyharmonic functions,

(7.9)
∫

Bρ(x)
|Dlv|2 dx ≤ C

(ρ

r

)n
∫

Br(x)
|Dlv|2 dx

for all 0 < ρ < r
2 . Letting Ψl(r) :=

∫
Br(x) |Dlu|2 dx, estimates (7.8) and (7.9)

yield

Ψl(ρ) ≤ C
(ρ

r

)n
∫

Br(x)
|Dlv|2 dx + Crn−2l+2γ̃ ≤ C

(ρ

r

)n
Ψl(r) + Crn−2l+2γ̃

for 0 < ρ < r
2 and 1 ≤ l ≤ m. Note that for r

2 ≤ ρ ≤ r, the above inequal-
ity holds trivially with C = 2n. Thus, for l > γ, a standard iteration argu-
ment [8, p.86] implies

Ψl(ρ) ≤ C
(ρ

r

)n−2l+2γ̃
Ψl(r) + Cρn−2l+2γ̃

for all ρ < r ≤ 1
3(1 − |x|). This implies the claim (7.4). In order to prove the

second claim, we need a Caccioppoli-type inequality for the polyharmonic
function v. Applying the Poincaré inequality repeatedly, one checks

(7.10)

r2j−n

∫

Br(x)
|Dj(v − P )|2 dx ≤ Cr2m−n

∫

Br(x)
|Dmv − (Dmv)x,r|2 dx

for an appropriate polynomial P of degree m and all 1 ≤ j < m. We choose a
cut-off function η ∈ C∞

cpt(Br(x), [0, 1]) with η ≡ 1 on Br/2(x) and ‖Djη‖L∞ ≤
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Cr−j for 0 ≤ j ≤ m. This implies ‖Djη2m+2‖L∞ ≤ Cr−jη2m−j+2 for all 0 ≤
j ≤ m. Testing ΔmDv = 0 with η2m+2D(v − P ), we infer

∫
η2m+2|Dm+1v|2 dx ≤ C

m∑

j=1

rj−m−1
∫

ηm+1+j |Dm+1v| |Dj(v − P )| dx.

Applying the Cauchy–Schwarz inequality, we infer

∫

Br/2(x)
|Dm+1v|2 dx ≤

m∑

j=1

r2j−2m−2
∫

Br(x)
|Dj(v − P )|2 dx

≤ C

r2

∫

Br(x)
|Dmv − (Dmv)x,r|2 dx(7.11)

by (7.10). Since Dm+1v is a polyharmonic function, the estimate (7.9) also
holds for l = m + 1, which implies

∫

Bρ(x)
|Dmv − (Dmv)x,ρ|2 dx ≤ Cρ2

∫

Bρ(x)
|Dm+1v|2 dx

≤ C
ρn+2

rn

∫

Br/2(x)
|Dm+1v|2 dx

≤ C
(ρ

r

)n+2
∫

Br(x)
|Dmv − (Dmv)x,r|2 dx(7.12)

for all ρ < r
4 , where we applied the Caccioppoli inequality (7.11) in the last

step. Combining (7.8) and (7.12), we arrive at

Φ(ρ) :=
∫

Bρ(x)
|Dmu − (Dmu)x,ρ|2 dx

≤ C
(ρ

r

)n+2
∫

Br(x)
|Dmv − (Dmv)x,r|2 dx + Crn−2m+2γ̃

≤ C
(ρ

r

)n+2
Φ(r) + Crn−2m+2γ̃ ,(7.13)

where we applied estimate (7.8) twice. Since γ̃ < m + 1, we can iterate this
estimate as above with the result

Φ(ρ) ≤ C
(ρ

r

)n−2m+2γ̃
Φ(r) + Cρn−2m+2γ̃

for all 0 < ρ < r ≤ 1
3(1 − |x|). This implies the claim (7.5). �
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Proof of the Proposition 6.1. First, we want to prove that the Hölder conti-
nuity of u implies Morrey space estimates for Dmu. For this, we fix 0 < R < 1
and x ∈ BR. For 0 < r < 1 − |x|, we let

Φ(r) :=
∫

Br(x)
|Dmu|2 dx.

From the Hölder continuity of u, we know

(7.14) ‖u − ū‖L∞(Br(x)) ≤ Crα[u]α

where [u]α denotes the Hölder seminorm of u and ū := −
∫
Br(x) u dx. Moreover,

using Nirenberg interpolation [15], we know

r2m−n

∫

Br(x)
|Dju|2m/j dx

≤ C‖u − ū‖2(m−j)/j
L∞(Br(x)) r2m−n

∫

Br(x)
|Dmu|2 dx + C‖u − ū‖2m/j

L∞(Br(x))

≤ C(rα[u]α)2/m r2m−nΦ(r) + Cr2α[u]2α
(7.15)

for 1 ≤ j ≤ m − 1. Here, we used ‖u‖L∞ ≤ C(N) < ∞ in the last step
together with r < 1 and j ≤ m − 1. Let κ ∈ (0, 1) be a constant to be chosen
later. For 2 ≤ p < 2m

j , we have a similar estimate

rpj−n

∫

Br(x)
|Dju|p dx ≤ C‖u − ū‖(m−j)p/m

L∞(Br(x))

[
r2m−nΦ(r)

]pj/2m

+ C‖u − ū‖p
L∞(Br(x))

≤ C‖u − ū‖(2m−jp)/m
L∞(Br(x))

[
r2m−nΦ(r)

]pj/2m

+ C‖u − ū‖2
L∞(Br(x))

≤ κr2m−nΦ(r) + Cκ r2α[u]2α(7.16)

where we used p ≥ 2 in the second step and in the last step, we applied
Young’s inequality with exponents 2m

pj and 2m
2m−jp and used (7.14). Here, the

constant Cκ depends on κ, m, p and n. We choose a cut-off function η ∈
C∞

cpt(Br(x), [0, 1]) satisfying η ≡ 1 on Br/2(x) and ‖Dkη‖L∞ ≤ Cr−k for all
0 ≤ k ≤ m. The polyharmonic map u satisfies an equation of the form (7.2).
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Testing this equation with V := η2m(u − ū), we estimate
∫

η2m|Dmu|2 dx =
∫

η2m〈Dmu, Dm(u − ū)〉 dx

≤ C

m−1∑

j=0

∫
|Dmu||Dm−jη2m||Dj(u − ū)| dx

+ C
m−1∑

k=0

k∑

j=0

∫
|gk||Dk−jη2m||Dj(u − ū)| dx

=: I +
∑

0≤j≤k<m

IIjk.(7.17)

Using ‖Dm−jη2m‖L∞ ≤ Crj−mηm+j , Young’s inequality, and (7.14), we get

I ≤ 1
4

∫
η2m|Dmu|2 dx + C

m−1∑

j=1

r2j−2m

∫
η2j |Dju|2 dx + Crn−2m+2α[u]2α

≤ 1
4

∫
η2m|Dmu|2 dx + CκΦ(r) + Cκrn−2m+2α[u]2α

(7.18)

where we applied (7.16) with p = 2 in the second step. For 0 < j ≤ k <
m, the properties of η, estimates (7.2) for gk and Young’s inequality with
exponents 2m

2m−k and 2m
k yield

IIjk ≤ Crj−k

∫

Br(x)
η2m+j−k|gk| |Dju| dx

≤ 1
4

(
m

2

)−1 ∫
η2m|Dmu|2 dx +

m−1∑

l=1

∫
η2m|Dlu|2m/l dx

+ Cr2mj/k−2m

∫
η2mj/k|Dju|2m/k dx.

Applying (7.15) and (7.16) with p = 2m
k in the case j < k, this yields

IIjk ≤ 1
4

(
m

2

)−1 ∫
η2m|Dmu|2 dx

+ C
(
κ + (rα[u]α)2/m

)
Φ(r) + Cκrn−2m+2α[u]2α.(7.19)
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Finally, we have for all 0 ≤ k < m

II0k ≤ Cr−k

∫
η2m−k|gk||u − ū| dx

≤ 1
4

(
m

2

)−1 ∫
η2m|Dmu|2 dx

+
m−1∑

l=1

∫ (
η2m|Dlu|2m/l dx + Cr−2m|u − ū|2m/k

)
dx

where we applied Young’s inequality with exponents 2m
m−k and 2m

k . By (7.15)
and (7.14), and since ‖u − ū‖L∞ ≤ C(N), this implies

(7.20)

II0k ≤ 1
4

(
m

2

)−1 ∫
η2m|Dmu|2 dx + C(rα[u]α)2/m Φ(r) + Crn−2m+2α[u]2α.

Putting estimates (7.18) to (7.20) together, inequality (7.17) yields

Φ
(r

2

)
≤

∫
η2m|Dmu|2 dx

≤ 1
2

∫
η2m|Dmu|2 dx + C

(
κ + (rα[u]α)2/m

)
Φ(r) + Cκrn−2m+2α[u]2α.

We absorb the first integral on the right-hand side and choose κ > 0 and
0 < r0 < 1 small enough to ensure 2C

(
κ + (rα

0 [u]α)2/m
)

≤ ε for some ε <

2−(n−2m+2α). Here, r0 may depend on [u]α. As a result, we have

Φ
(r

2

)
≤ εΦ(r) + Crn−2m+2α[u]2α

for all 0 < r < r0. By a standard iteration argument as in [8, p. 86], this
implies

Φ(ρ) ≤ C

(
ρ

r0

)n−2m+2α

Φ(r0) + Cρn−2m+2α[u]2α for all 0 < ρ < r0.

We have thus shown that

sup
Bρ(x)⊂BR

ρ2m−2α−n

∫

Bρ(x)
|Dmu|2 dx < ∞ for all 0 < R < 1.
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Now we will improve this Morrey space estimate with the help of Lemma 7.1.
We claim that for every non-integer γ = [γ] + β ∈ (0, m), we have

u ∈ C [γ],β(B, N) and

sup
Bρ(x)⊂BR

ρ2m−2γ−n

∫

Bρ(x)
|Dmu|2 dx < ∞ for all R ∈ (0, 1).(7.21)

Here, [γ] denotes the largest integer smaller than γ. As shown above, this
holds with γ = α ∈ (0, 1). For the proof of the claim we will show that when-
ever the above property is satisfied for some non-integer 0 < γ < m, then
it is also satisfied for all non-integer γ∗ < min(m+1

m γ, m). We thus assume
that (7.21) holds for γ = [γ] + β < m, where 0 < β < 1. We choose some
arbitrary R ∈ (0, 1) and let S := 1

2(1 + R) > R. Since u ∈ C [γ],β(B, N), we
know that for the Taylor polynomials Px of degree [γ] at the points x,
there holds

(7.22)
[γ]∑

l=1

‖Dlu‖L∞(BS) ≤ C̃ and ‖u − Px‖L∞(Bρ(x)) ≤ C̃ρ[γ]+β = C̃ργ

for all x ∈ BS and all 0 < ρ < S − |x|. Here and in the following, constants
denoted by C̃ may depend on u and R. From the Nirenberg interpolation
estimates, we deduce furthermore for all [γ] + 1 ≤ l ≤ m

ρ2m−n

∫

Bρ(x)
|Dlu|2m/l dx

≤ C‖u − Px‖2(m−l)/l
L∞(Bρ(x))ρ

2m−n

∫

Bρ(x)
|Dmu|2 dx + C‖u − Px‖2m/l

L∞(Bρ(x))

≤ C̃ρ2mγ/l

(7.23)

by estimates (7.21) and (7.22), where here x ∈ BS and ρ < S − |x|. Using
(7.22) and (7.23), we may estimate the multilinear forms gk from the Euler
equation (7.2) as follows. For 0 ≤ k ≤ m − 1 and 0 < ρ < S − |x|, there holds

ρ2m−n

∫

Bρ(x)
|gk|2m/(2m−k) dx

≤ Cρ2m−n
m∑

l=1

∫

Bρ(x)
|Dlu|2m/l dx ≤ C̃ρ2m + C̃

m∑

l=[γ]+1

ρ2mγ/l.
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This means that

(

ρ2m−n

∫

Bρ(x)
|gk|2m/(2m−k) dx

)(2m−k)/2m

≤ C̃ρ2m−k + C̃ρ(2m−k)γ/m ≤ C̃ρm+1 + C̃ργ+γ/m(7.24)

since k ≤ m − 1. Consequently, the assumptions of Lemma 7.1 are satisfied
on BS with the exponent γ̂ := min(m+1, m+1

m γ). The lemma thus yields for
any noninteger γ∗ < min(m+1

m γ, m)

(7.25)
∑

γ∗<l≤m

ρ2l−n

∫

Bρ(x)
|Dlu|2 dx ≤ C̃ρ2γ∗ for all Bρ(x) ⊂ BR.

If we write γ∗ =: [γ∗] + β∗, this implies u ∈ C [γ∗],β∗(BR, N) by the Dirichlet
growth theorem. Since 0 < R < 1 was arbitrary, we thus have established
(7.21) for γ∗ instead of γ. Since it holds for γ = α, we have established (7.21)
for all 0 < γ < m.

Now let γ∗ = m + β, where 0 < β < 1 is arbitrary, and observe that for
γ := m

m+1γ∗ < m, property (7.21) is fulfilled. As above, we deduce estimate
(7.24) for this value of γ, meaning that we can apply Lemma 7.1 with γ∗ =
m + β ∈ (m, m+1). The lemma yields for any 0 < β̃ < β

−
∫

Bρ(x)
|Dmu − (Dmu)x,ρ|2 dx ≤ C̃ρ2β̃ for all balls Bρ(x) ⊂ BR,

where R ∈ (0, 1) is arbitrary. From Morrey’s lemma we thus infer u ∈ Cm,β̃

(B, N) for any 0 < β̃ < 1. The higher regularity can be deduced from clas-
sical Schauder theory [5, Theorem 2’]. �

8. Intrinsically polyharmonic maps

The intrinsic case is somewhat more technical, but it turns out that the reg-
ularity proof carries over with few modifications. The intrinsic m-polyenergy
for mappings u ∈ Wm,2(Ω, N) is

Ẽm(u) =
1
2

∫

Ω
|∇m−1Du|2 dx

where ∇ denotes the covariant derivative with respect to both M and N .
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First of all, we observe that there are IRK-valued �-linear forms Am on
N for each m = (m1, . . . m�) in

A := {(m1, . . . , m�) : � ≥ 2, mi ≥ 1 for all i, m1 + · · · + m� = m}

such that

∇m−1Du = Dmu +
∑

m∈A
(Am ◦ u)(Dm1u, . . . , Dm�u).

With

B := {(m1, . . . , m�) : � ≥ 3, 1 ≤ mi ≤ m for all i, m1 + · · · + m� = 2m}

the above equation implies

|∇m−1Du|2 = |Dmu|2 +
∑

m∈B
(Bm ◦ u)(Dm1u, . . . , Dm�u)

with certain �-linear forms Bm on N depending on N and m only. This
implies that the Euler–Lagrange equation for Ẽm is of the form

(8.1) 〈Δmu, η〉 =
∑

m∈B
(Zm ◦ u)(Dm1η, Dm2u, . . . , Dm�u)

for all vector fields η ∈ Wm,2(Ω, IRK) that are tangential along u, with yet
another set of �-linear forms Zm on N .

Now we repeat the proof of the Euler–Lagrange equation in the form
(4.4), but instead of 〈Δmu, η〉 = 0, we use (8.1). Thus we have derived the
Euler–Lagrange equation for intrinsically polyharmonic maps in the form
suitable for using frames: for all tangential vector fields η ∈ Wm,2 along u,
we have

Δm−1 div〈Du, η〉 = Δm−1〈Du, Dη〉 +
∑

m∈B
(Zm ◦ u)(Dm1η, Dm2u, . . . , Dm�u)

+
m−1∑

k=1

k∑

l=0

(−1)k−l

(
k

l

)

[Δm−k−1 divl〈Dk+1u, Dk−l+1η〉

+ Δm−k−1 divl+1〈Dku, Dk−l+1η〉].

This means there are just a couple of additional terms to be handled com-
pared to the extrinsic case. In (6.3) these are the solutions ζi

m of

Δmζi
m = ϕ (Zm ◦ u)(Dm1ei, D

m2u, . . . , Dm�u)
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to be added in the sum of the left-hand side. As in (6.6) we have

|Dmζi
m(x)| ≤ C

∫

IR2m

ϕ(y)|DmG(x − y)| |Dm1ei(y)|
�∏

i=2

|Dmiu(y)| dy.

Since � ≥ 3, there are at least two factors involving u, which will be cru-
cial in our estimates. Without loss of generality we may assume m2 =
maxi=2,...,� mi, then mi < m for all i ≥ 3. We abbreviate μ := min{2m −
m1 − m2, m − 1}. Then we have

|Dmζi
m(x)|

≤ C

∫

IR2m

ϕ(y)|DmG(x − y)| |Dm1ei(y)| |Dm2u(y)|
�∏

i=3

|Dmiu(y)| dy

≤ C

∫

IR2m

ϕ(y)|DmG(x − y)| |Dm1ei(y)| |Dm2u(y)|

×
μ∑

k=1

|Dku(y)|(2m−m1−m2)/k dy

by Young’s inequality. This implies

‖Dmζi
m‖L2,∞

≤ C
∥
∥
∥ϕ|Dm1ei| |Dm2u|

μ∑

k=1

|Dku|(2m−m1−m2)/k
∥
∥
∥

L1

≤ C‖Dm1ei‖L2m/m1,2(B)‖Dm2u‖L2m/m2,∞(B)

μ∑

k=1

‖Dku‖(2m−m1−m2)/k
L2m/k,2(2m−m1−m2)/k(B)

≤ C‖Dei‖W m−1,2(B)‖Dm2u‖L2m/m2,∞(B)

m−1∑

k=1

‖Dku‖(2m−m1−m2)/k
L2m/k,2(B)

≤ Cε0 R∞ S
(2m−m1−m2)/m
2 ≤ Cε0R∞

under the assumptions of Proposition 6.1, using the notation from Section 6
and the estimates (6.14), (6.15). Therefore, ‖Dmζi

m‖L2,∞ is estimated by the
same terms as ‖Dmwi‖L2,∞ in (6.16), which means the additional terms do
not spoil the proof of Proposition 6.1, and therefore of Hölder continuity, in
the intrinsic case.

All that remains to be done for higher regularity is to check that also
intrinsically harmonic maps satisfy an Euler equation of the form (7.2) in
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the sense of distributions. The weak form of the Euler–Lagrange equation
can now be derived from

∫
〈Dmu, Dm(Π(u)V )〉 dx

= (−1)m
∑

m∈B

∫
(Zm ◦ u)(Dm1(Π(u)V ), Dm2u, . . . , Dm�u) dx

rather than (4.1). In the terms with m1 = m, there holds mi < m for i =
2, . . . , l. Therefore, we may integrate by parts and may thus assume that
m1 < m in all summands. Expanding Dm1(Π(u)V ), we find that the addi-
tional terms compared to the extrinsic case are just of the form that (7.2)
allows. This completes the proof also in the intrinsic case. �
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