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Incompressible surfaces, hyperbolic volume,
Heegaard genus and homology

Marc Culler, Jason Deblois and Peter B. Shalen

We show that if M is a complete, finite-volume, hyperbolic
3-manifold having exactly one cusp, and if dimZ2 H1(M ; Z2) ≥ 6,
then M has volume greater than 5.06. We also show that if M is
a closed, orientable hyperbolic 3-manifold with dimZ2 H1(M ; Z2) ≥
4, and if the image of the cup product map H1(M ; Z2) ⊗
H1(M ; Z2) → H2(M ; Z2) has dimension at most 1, then M has
volume greater than 3.08. The proofs of these geometric results
involve new topological results relating the Heegaard genus of a
closed Haken manifold M to the Euler characteristic of the kishkes
of the complement of an incompressible surface in M .

1. Introduction

If S is a properly embedded surface in a compact 3-manifold M , let M \\ S
denote the manifold that is obtained by cutting along S; it is homeomorphic
to the complement in M of an open regular neighborhood of S.

The topological theme of this paper is that the bounded manifold ob-
tained by cutting a topologically complex closed simple Haken 3-manifold
along a suitably chosen incompressible surface S ⊂ M will also be topolog-
ically complex. Here the “complexity” of M is measured by its Heegaard
genus, and the “complexity” of M \\ S is measured by the absolute value of
the Euler characteristic of its “kishkes” (see Definitions 1.1 below).

Our topological theorems have geometric consequences illustrating a
longstanding theme in the study of hyperbolic 3-manifolds — that the vol-
ume of a hyperbolic 3-manifold reflects its topological complexity. We obtain
lower bounds for volumes of closed and one-cusped hyperbolic manifolds
with sufficient topological complexity, extending work of Culler and Shalen
along the same lines. Here “topological complexity” is measured in terms of
the mod-2 first homology, or the mod-2 cohomology ring.
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Definitions 1.1. We shall say that a 3-manifold M is simple if

(i) M is compact, connected, orientable, irreducible and boundary irre-
ducible;

(ii) no subgroup of π1(M) is isomorphic to Z × Z; and

(iii) M is not a closed manifold with finite fundamental group.

Let X be a simple 3-manifold with ∂X �= ∅. According to [10] or [11],
the characteristic submanifold ΣX of X is well defined up to isotopy, and
each component of ΣX is either an I-bundle meeting ∂X in its horizontal
boundary (see Definition 3.1), or a solid torus meeting ∂X in a collection of
disjoint annuli that are homotopically non-trivial in X. We define kish(X)
(the “kishkes” of X, or “guts” in the terminology of [2]) to be the union
of all components of X − ΣX that have negative Euler characteristic. The
components of kish(X) ∩ ΣX are essential annuli in X.

If X is a compact 3-manifold whose components are all bounded and
simple and if X1, . . . , Xk denote the components of X, we define kish(X) =
kish(X1) ∪ · · · ∪ kish(Xk) ⊂ X.

Definition 1.2. Let g be an integer ≥ 2, let h be a positive real number,
and let M be an orientable, irreducible 3-manifold. We shall say that M is
(g, h)-small if every connected closed incompressible surface in M has genus
at least h and every separating connected closed incompressible surface in
M has genus at least g.

We shall denote the Heegaard genus of a 3-manifold Q by Hg(Q).

Theorem 5.1. Suppose M is a closed, simple 3-manifold containing a
separating connected closed incompressible surface of some genus g, that
Hg(M) ≥ g + 4, and that M is (g, g

2 + 1)-small. Then M contains a sep-
arating connected closed incompressible surface S of genus g satisfying at
least one of the following conditions:

(1) at least one component of M \\ S is acylindrical; or

(2) for each component B of M \\ S we have kish(B) �= ∅.

The key idea in the proof is an organizing principle for cylinders properly
embedded in the complement of a separating connected closed incompress-
ible surface. This is discussed in Sections 4 and 5. We apply Theorem 5.1
in conjuction with the theorem below concerning non-separating surfaces,
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which is proved in Section 3. For a manifold M with (possibly empty)
boundary, let χ(M) denote the Euler characteristic of M , and let χ̄(M) =
−χ(M).

Theorem 3.1. Let M be a closed, simple 3-manifold containing a non-
separating connected closed incompressible surface S of genus g. Suppose that
χ̄(kish(M \\ S)) < 2g − 2, and that M is (2g − 1, g)-small. Then Hg(M) ≤
2g + 1.

In a closed, simple 3-manifold, every connected closed incompressible
surface has genus at least 2. Thus any such manifold is (2, 2)-small. Hence
applying Theorems 5.1 and 3.1 to a manifold containing an embedded surface
of genus 2, we will easily obtain the following corollary.

Corollary 5.1. Suppose that M is a closed, simple 3-manifold which
contains a connected closed incompressible surface of genus 2, and that
Hg(M) ≥ 6. Then M contains a connected closed incompressible surface
S of genus 2 such that either M \\ S has an acylindrical component, or
χ̄(kish(M \\ S)) ≥ 2.

This corollary will suffice for the geometric applications in this paper.
In a future paper, we will apply Theorems 3.1 and 5.1 to the case of a genus
3 surface.

In combination with work of Agol–Storm–Thurston [2] and Kojima–
Miyamoto [12], Corollary 5.1 implies the following volume bound for suffi-
ciently complex hyperbolic Haken manifolds.

Theorem 6.1. Let M be a closed, orientable hyperbolic 3-manifold con-
taining a closed connected incompressible surface of genus 2, and suppose
that Hg(M) ≥ 6. Then M has volume greater than 6.45.

Theorem 6.1 implies Theorems 6.2 and 6.3 below, which extend earlier
work of Culler–Shalen.

Theorem 6.2. Let M be a complete, finite-volume, orientable hyperbolic
3-manifold having exactly one cusp, and suppose that

dimZ2 H1(M ; Z2) ≥ 6.

Then M has volume greater than 5.06.
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Theorem 6.1 is an improvement on [7, Proposition 10.1]. There, the
stronger lower bound of 7 on the dimension of Z2-homology gives only a
conditional conclusion: either the volume bound above holds, or M contains
an embedded connected closed incompressible surface of genus 2. The weak-
ening of the lower bound on the dimension of homology in the hypothesis is
made possible by the results of [6]. In the case where M contains an embed-
ded connected closed incompressible surface of genus 2 and H1(M ; Z2) has
dimension at least 6, a Dehn filling argument combined with Theorem 6.1
gives a better volume bound of 6.45.

Theorem 6.3. Let M be a closed, orientable hyperbolic 3-manifold with

dimZ2H1(M ; Z2) ≥ 4

and suppose that the image of the cup product map H1(M ; Z2) ⊗
H1(M ; Z2) → H2(M ; Z2) has dimension at most 1. Then M has volume
greater than 3.08.

Theorem 6.3 should be compared with Theorem 3.1 of [6], which gives
the same conclusion under the hypothesis that the Z2-homology of M has
dimension at least 6, and with no restriction on cup product. As with that
theorem, the proof of Theorem 6.3 uses the fact that if π1(M) is 3-free,
M has volume greater than 3.08 (see Corollary 9.3 of [1]). If π1(M) has
a 3-generator subgroup G which is not free, the homological hypotheses of
Theorem 6.3 ensure that M has a two-sheeted cover ˜M to which G lifts, with
dimZ2H1(˜M ; Z2) ≥ 6. Then Theorem 5.1 of [6] implies that ˜M contains a
connected closed incompressible surface of genus 2, and Theorem 6.1 implies
that ˜M has volume greater than 6.45, hence that M has volume greater
than 3.22.

2. Topological preliminaries

In general we will follow [9] for standard terminology concerning 3-manifolds.
(This includes, for example, the terms “irreducible” and “boundary irre-
ducible” which were used in the Introduction.) Here we will explain a few
special conventions and collect some preliminary results used throughout
this paper.

We will work in the PL category in Sections 2–5, and in the smooth
category in Section 6. The only result from the earlier sections quoted in
Section 6 is Corollary 5.1, and the smooth version of this result follows
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from the PL version. We will also use, generally with explicit mention, the
well-known fact that a closed, orientable hyperbolic 3-manifold is simple.

In Sections 2–5 we will use the following conventions concerning regular
neighborhoods. Let K be a compact polyhedron in a PL n-manifold M .
We define a semi-regular neighborhood of K in M to be a neighborhood
of K which is a compact PL submanifold of M and admits a polyhedral
collapse to K. We define a regular neighborhood of K in M to be a semi-
regular neighborhood N of K in M such that N ∩ ∂M is a semi-regular
neighborhood of K ∩ ∂M in ∂M .

Let Y be a subset of a topological space X, and suppose that X and
Y are locally path connected. We will say that Y is π1-injective in X if
whenever A and B are components of X and Y , respectively, such that
B ⊂ A, the inclusion homomorphism π1(B) → π1(A) is injective. We will
refer to Y ∩ X − Y as the frontier of Y in X.

A closed orientable surface S in the interior of an orientable 3-manifold
M will be termed incompressible if S is π1-injective in M and no component
of S is a sphere. We shall not use the term “incompressible” for bounded
surfaces.

We follow the conventions of [16] regarding Heegaard splittings and com-
pression bodies. The following standard fact is a direct consequence of the
definitions.

Lemma 2.1. Let Q be an orientable 3-manifold with boundary, and suppose
S is a Heegaard surface in Q.

(1) Let Q′ be obtained from Q by attaching a 2-handle to a component of
∂Q. Then S is a Heegaard surface in Q′.

(2) Let Q′ be obtained from Q by attaching a handlebody to Q along a
component of ∂Q. Then S is a Heegaard surface in Q′.

The lemma below is also standard, and will be used in Sections 3 and 5.

Lemma 2.2. Let Q be an orientable 3-manifold with boundary, and suppose
S is a Heegaard surface in Q of genus g. Let Q′ be obtained from Q by adding
a 1-handle with both attaching disks in the same component of Q − S. Then
Hg(Q′) ≤ g + 1.

Proof. By definition we have Q = C1 ∪ C2 where C1 and C2 are compression
bodies such that ∂+C1 = S = ∂+C2 and C1 ∩ C2 = S. After relabeling we
may assume that Q′ is obtained by attaching a 1-handle H to ∂−C1. We
may write C1 as (S × I) ∪ D ∪ T where S is identified with S × {1}, D is
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a union of disjoint 2-handles attached along annuli in S × {0}, and T is a
union of 3-handles. Since D ∩ ∂C1 is a union of disjoint disks, there is an
ambient isotopy of C1 which is constant on S and which moves the two
attaching disks of H so that they are disjoint from D. We may thus assume
that the attaching disks for H are contained in S × {0}.

Let N0 be a regular neighborhood in H of its core. We have N0 ∩ ∂−C1 =
(E × {0}) ∪ (E′ × {0}), where E and E′ are disjoint disks in S = ∂+C1. Let
N = N0 ∪ (E × I) ∪ (E′ × I), so that E = E × {1} and E′ = E′ × {1} are
contained in ∂N . Set

S ′ = S − (E ∪ E′) ∪ ∂N − (E ∪ E′).

The surface S ′ has genus g + 1 by construction. To complete the proof we
will show that it is a Heegaard surface for Q ∪ H.

Let P = (S − (E ∪ E′) × I) ∪ H − N0 and set C ′
1 = P ∪ D. Note that P

is a semi-regular neighborhood of S ′ in C ′
1, and hence homeomorphic to

S ′ × I. The attaching annuli of the 2-handles in D lie in the component of
∂P which is disjoint from S ′. It follows that C ′

1 is a compression body with
∂+C ′

1 = S ′.
Next let C ′

2 = C2 ∪ N . From the dual description of C2 as (∂−C2) × I
with a collection of 1-handles attached, it follows that C2 ∪ N is a compres-
sion body with ∂+C ′

2 = S ′.
By construction we have Q′ = C ′

1 ∪ C ′
2 and C ′

1 ∩ C ′
2 = ∂+C ′

1 = ∂+C ′
2 =

S ′. Thus S ′ is indeed a Heegaard surface for Q′. �

The following relatively straightforward result will be used in Sections 3
and 5.

Proposition 2.1. Let g ≥ 2 be an integer. Let M be an irreducible, ori-
entable 3-manifold which is (g, g+1

2 )-small. Let V be a compact, connected,
irreducible 3-dimensional submanifold of M which is π1-injective. Suppose
that either

(i) χ̄(V ) < g − 1, or

(ii) χ̄(V ) ≤ g − 1 and V is boundary-reducible.

Then V is a handlebody.

Proof. Choose a properly embedded (possibly empty) submanifold D of V
such that
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(1) each component of D is an essential disk,

(2) no two components of D are parallel, and

(3) D is maximal among all properly embedded submanifolds of V satis-
fying (1) and (2).

(Since V is irreducible, (1) and (2) imply that the components of ∂D are
non-trivial and pairwise non-parallel simple closed curves in ∂V ; hence a
submanifold D satisfying (1) and (2) has at most 3χ̄(V ) components, and
hence a maximal submanifold with these properties exists.)

Let N be a regular neighborhood of D in V , and set Q = V − N . In
order to complete the proof it suffices to show that every component of Q
is a ball.

Let us denote by B1, . . . , Bν the components of Q that are balls, and
by R1, . . . , Rk the remaining components of Q. A priori we have k ≥ 0 and
ν ≥ 0. We must show that k = 0.

If Q contains an essential disk D we may assume after an isotopy that
D ∩ N = ∅; then D ∪ D is a properly embedded submanifold of V satisfying
(1) and (2), a contradiction to the maximality of D. This shows that Q is
boundary irreducible, so that ∂Q is π1-injective in Q. But Q is π1-injective
in V since every component of D is a disk, and V is π1-injective in M by
hypothesis. Hence:

2.1(a). ∂Q is π1-injective in M .

The manifold Q is obtained from the irreducible V by splitting along a
collection of disjoint properly embedded disks. Hence:

2.1(b). Each component of Q is irreducible.

It follows from 2.1(b) that each Ri is irreducible. Since by definition no
Ri is a ball, we deduce:

2.1(c). No boundary component of any Ri can be a sphere.

Let n denote the number of components of D, and observe that χ̄(Q) =
χ̄(V ) − n. Next we note that by properties (1) and (2) of D, each component
of Q which is a ball must contain at least three components of the frontier
F of N in V . Since each component of N contains exactly two components
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of F , the number ν of components of Q that are balls is at most 2n/3. Hence

χ̄(V ) − n = χ̄(Q)

= −ν +
k

∑

i+1

χ̄(Ri)

≥ −(2n/3) +
k

∑

i+1

χ̄(Ri)

so that

(2.1)
k

∑

i+1

χ̄(Ri) ≤ χ̄(V ) − (n/3).

If alternative (i) of the hypothesis holds we have χ̄(V ) < g − 1 and n ≥ 0; if
alternative (ii) holds, we have χ̄(V ) ≤ g − 1 and n > 0. Thus in either case,
(2.1) implies that

(2.2)
k

∑

i+1

χ̄(Ri) < g − 1.

On the other hand, 2.1(c) implies that χ̄(Ri) ≥ 0 for each i with 1 ≤ i ≤
k. In view of (2.2) it follows that

(2.3) χ̄(Ri) < g − 1

for each i with 1 ≤ i ≤ k.
We now proceed to the proof that k = 0. Suppose that k ≥ 1, and con-

sider the manifold R1. By 2.1(a), the boundary of R1 is π1-injective in M .
By 2.1(c), no component of ∂R1 is a sphere. Hence every component of ∂R1
is incompressible in M . Furthermore, we have

χ̄(∂R1) = 2χ̄(R1) < 2g − 2

by (2.3). If ∂R1 is connected, it is a separating connected closed incompress-
ible surface with χ̄(∂R1) < 2g − 2, so that its genus is strictly less than g.
This contradicts the hypothesis.

Now suppose that ∂R1 is disconnected. Since χ̄(∂R1) < 2g − 2 and no
component of ∂R1 is a sphere, we have χ̄(S) < g − 1 for some component S of
∂R1. This means that S is a connected closed incompressible surface of genus
strictly less than g+1

2 . Again we have a contradiction to the hypothesis. �
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3. Non-separating surfaces

The purpose of this section is to prove Theorem 3.1, which was stated in
the Introduction.

Definition 3.1. If a 3-manifold X has the structure of an I-bundle over
a surface T and p : X → T is the bundle projection, we will call ∂vX

.=
p−1(∂T ) the vertical boundary of X and ∂hX

.= ∂X − ∂vX the horizontal
boundary of X.

Note that ∂vX inherits the structure of an I–bundle over ∂T , and
∂hX the structure of a ∂I-bundle over T , from the original I-bundle struc-
ture on X.

Theorem 3.1. Let M be a closed, simple 3-manifold containing a non-
separating connected closed incompressible surface S of genus g. Suppose that
χ̄(kish(M \\ S)) < 2g − 2, and that M is (2g − 1, g)-small. Then Hg(M) ≤
2g + 1.

Proof. Let M and S be as in the statement of the theorem. Set M ′ = M \\ S,
and note that χ̄(M ′) = 2g − 2. Since by hypothesis we have χ̄(kish(M ′)) <
2g − 2, the characteristic submanifold of M ′ has a component X which is an
I-bundle over a surface with negative Euler characteristic. We identify M ′

with M − N , where N is a regular neighborhood of S in M ; we then have
X ⊂ M − N ⊂ M . We set Σ = N ∪ X ⊂ M . Since the horizontal boundary
of X has Euler characteristic 2χ(X), we have

χ̄(Σ) = χ̄(N) + χ̄(X) − 2χ̄(X) = 2g − 2 − χ̄(X).

Since χ(X) < 0, it follows that χ̄(Σ) < 2g − 2.
Set K = M − Σ ⊂ M − N = M ′. (It may happen that K = ∅.) Since

∂K = ∂Σ, we have χ̄(K) = χ̄(Σ), and hence

(3.1) χ̄(K) < 2g − 2.

Since the frontier components of K in M ′ are essential annuli, K is
π1-injective in M ′. The incompressibility of S implies that M ′ = M − N is
π1-injective in M . Hence:
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3.1(a). K is π1-injective in M .

Note also that M ′ is irreducible because the surface S is incompressible
in the irreducible 3-manifold M . The manifold K is a union of components of
the manifold obtained by splitting M ′ along a collection of disjoint properly
embedded annuli. Hence:

3.1(b). Every component of K is irreducible.

Since each component of K contains a component of the frontier of the
characteristic submanifold of M ′, which is an essential annulus in M ′, no
component of K is a ball. In view of 3.1(b) it follows that no component of
∂K is a sphere. Hence:

3.1(c). Every component of K has non-positive Euler characteristic.

Now consider any component V of K. Set V ′ = K − V . It follows from
3.1(c) that χ̄(V ′) ≥ 0. We have χ̄(V ) = χ̄(K) − χ̄(V ′), and hence by (3.1)

(3.2) χ̄(V ) < 2g − 2.

By hypothesis M is (2g − 1, g)-small. Since g = (2g−1)+1
2 , this means that

M is (2g − 1, (2g−1)+1
2 )-small. In view of 3.1(a), 3.1(b) and (3.2), case (i) of

the hypothesis of Proposition 2.1 holds with 2g − 1 playing the role of g.
Proposition 2.1 therefore implies that V is a handlebody.

Thus we have shown:

3.1(d). Every component of K = M − Σ is a handlebody.

We now turn to the estimation of Hg(M). First note that since N is a
trivial I-bundle over a surface of genus g, it can be obtained from a han-
dlebody J of genus 2g by adding a 2-handle. The boundary S of a collar
neighborhood of ∂J in J is a Heegaard surface of genus 2g in J . Hence by
assertion (1) of Lemma 2.1, S is a Heegaard surface in N . Note that ∂N is
contained in a single component of N − S.

On the other hand, recall that Σ = N ∪ X, where X is an I-bundle over
a connected surface T and N ∩ X = ∂hX is the horizontal boundary of X.
Let E ⊂ T be a disk such that for each boundary component c of T , the set
E ∩ c is a non-empty union of disjoint arcs in c. Let p : X → T denote the
bundle projection, and set Y = p−1(E). Then Y inherits the structure of a
(necessarily trivial) I-bundle over E, and Y ∩ N = Y ∩ ∂hX is the horizontal
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boundary of Y , consisting of two disks. Thus the set Y may be thought of as
a 1-handle attached to the submanifold N . Since S is a genus-2g Heegaard
surface in N , and ∂N is contained in a single component of N − S, it follows
from Lemma 2.2 that Hg(N ∪ Y ) ≤ 2g + 1.

Next, note that each component of (∂T ) − E is an arc, and hence that
each component of the set D .= p−1((∂T ) − E)) is a disk. Note also that D ∩
(N ∪ Y ) = ∂D. Hence if R denotes a regular neighborhood of D relative to
X − Y , saturated in the fibration of X, the manifold N ∪ Y ∪ R is obtained
from N ∪ Y by adding finitely many 2-handles. By assertion (1) of Lemma
2.1 it follows that

Hg(N ∪ Y ∪ R) ≤ Hg(N ∪ Y ) ≤ 2g + 1.

Finally, note that each component of M − (N ∪ Y ∪ R) is either

(a) a component of X − (Y ∪ R) or

(b) a component of M − Σ.

Each component of type (a) is a sub-bundle of X over a bounded subsurface,
and is therefore a handlebody. Each component of type (b) is a handlebody
by virtue of 3.1(d). Since each component of M − (N ∪ Y ∪ R) is a handle-
body, it now follows from assertion (2) of Lemma 2.1 that

Hg(M) ≤ Hg(N ∪ Y ∪ R) ≤ 2g + 1.
�

4. Annulus bodies and shallow manifolds

In the next two sections, we develop an organizing principle for cylinders
properly embedded in the complement of a separating connected closed
incompressible surface.

Definition 4.1. Let Y be a compact, connected 3-manifold, and let S be a
(possibly disconnected) closed, 2-dimensional submanifold of ∂Y . We shall
say that Y is an annulus body relative to S if there is a properly embedded
annulus A ⊂ Y with ∂A ⊂ S, such that Y is a semi-regular neighborhood
of S ∪ A.

Lemma 4.1. Let Y be a compact, connected 3-manifold, and let S ⊂ ∂Y
be a closed 2-manifold. If Y is an annulus body relative to S, then Y is also
an annulus body relative to (∂Y ) − S. Furthermore, we have χ̄(Y ) = χ̄(S) =
χ̄((∂Y ) − S).
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Proof. We set T = (∂Y ) − S.
By the definition of an annulus body, Y is a semi-regular neighborhood

of S ∪ A for some properly embedded annulus A ⊂ Y with ∂A ⊂ S. Let R
be a regular neighborhood of A in Y . Then there is a PL homeomorphism j :
S1 × [−1, 1] × [−1, 1] → R such that j(S1 × {0} × [−1, 1]) = A and j(S1 ×
[−1, 1] × {−1, 1}) = R ∩ S. Let B denote the annulus j(S1 × [−1, 1] × {0}).
Set Q = Y − R, and let N be a regular neighborhood of Q ∩ S in Q, chosen
small enough so that N ∩ B = ∅. Set Y ′ = N ∪ R. Then Y ′ is a compact
3-manifold and S ⊂ ∂Y ′. If we set T ′ = (∂Y ′) − S, then the annulus B is
properly embedded in Y ′ and ∂B ⊂ T ′. Furthermore, Y ′ is a semi-regular
neighborhood of T ′ ∪ B, and hence Y ′ is an annulus body relative to T ′.

On the other hand, Y and Y ′ ⊂ Y are both semi-regular neighborhoods
of S ∪ A, and Y ′ ∩ ∂Y = S. Hence Y − Y ′ is a collar neighborhood of T ⊂
∂Y in Y . In particular the pairs (Y, T ) and (Y ′, T ′) are PL homeomorphic,
and so Y is an annulus body relative to T .

To prove the second assertion, we note that since Y and S ∪ A are homo-
topy equivalent, we have χ(Y ) = χ(S ∪ A); and that since A and A ∩ S = ∂A
have Euler characteristic 0, we have χ(S ∪ A) = χ(S). This proves that
χ̄(S) = χ̄(Y ). Since we have shown that Y is also an annulus body rela-
tive to T , we may substitute T for S in the last equality and conclude that
χ̄(T ) = χ̄(Y ). �

Definition 4.2. Let Z be a compact, connected, orientable 3-manifold, and
let S ⊂ ∂Z be a closed surface. We will say that Z is shallow relative to S if
Z may be written in the form Z = Y ∪ J, where Y ⊃ S and J are compact
3-dimensional submanifolds of Z such that

(1) each component of J is a handlebody,

(2) Y is an annulus body relative to S,

(3) Y ∩ J = ∂J, and

(4) ∂J is a union of components of (∂Y ) − S.

(The submanifold J may be empty.)

Lemma 4.2. Let Q be a compact orientable 3-manifold, let Z ⊂ Q be a
compact submanifold whose frontier S is a connected closed surface in intQ,
and suppose that Z is shallow relative to S. Then Hg(Q) ≤ 1 + Hg(Q − Z).

Proof. We set Q0 = Q − Z and g = Hg(Q0). We write Z = Y ∪ J , where Y
and J satisfy conditions (1)–(4) of Definition 4.2. Since Y is an annulus body
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relative to S, it follows from Definition 4.1 that there is a properly embedded
annulus A ⊂ Y with ∂A ⊂ S, such that Y is a semi-regular neighborhood,
relative to Y itself, of S ∪ A.

Let α denote a co-core of the annulus A, and fix a regular neighborhood
h of α in Y such that h ∩ A is a regular neighborhood of α in A. The mani-
fold Q0 ∪ h is obtained from Q0 by attaching a 1-handle that has both its
attaching disks in the component S of ∂Q0. Hence it follows from Lemma 2.2
that Hg(Q0 ∪ h) ≤ 1 + Hg(Q0) = 1 + g.

The disk D = A − (h ∩ A) is properly embedded in the manifold Y − h.
Hence if R denotes a regular neighborhood of D relative to Y − h, the mani-
fold X0

.= Q0 ∪ h ∪ R is obtained from Q0 ∪ h by attaching a 2-handle. It
therefore follows from assertion (1) of Lemma 2.1 that Hg(X0) ≤
Hg(Q0 ∪ h) ≤ 1 + g. But X

.= Q0 ∪ Y is a semi-regular neighborhood of X0
relative to X itself, and is therefore homeomorphic to X0. Hence Hg(X) ≤
1 + g.

We have Q = X ∪ J . In view of conditions (1), (3) and (4) of Defini-
tion 4.2, it follows that each component of Q − X is a handlebody whose
boundary is contained in ∂X. From assertion (2) of Lemma 2.1 we deduce
that Hg(Q) ≤ Hg(X) ≤ 1 + g. �

Lemma 4.3. Suppose that Z is a compact, connected, orientable 3-manifold,
that ∂Z is connected, and that Z is shallow relative to ∂Z. Let g denote the
genus of ∂Z. Then Hg(Z) ≤ g + 1.

Proof. Let N be a boundary collar for Z. Then N has a Heegaard splitting
of genus g, the frontier S of N in Z is connected, and Z − N is shallow
relative to S. The result therefore follows upon applying Lemma 4.2, with
Z and Z − N playing the respective roles of Q and Z in that lemma. �

Lemma 4.4. Let g ≥ 2 be an integer. Let Z be a compact, orientable 3-
manifold having exactly two boundary components S0 and S1, both of genus
g. Then Z is shallow relative to S0 if and only if either

(i) Z is an annulus body relative to S0, or

(ii) there is a solid torus K ⊂ Z such that K ∩ ∂Z is an annulus contained
in S1, and the pair (Z − K, S0) is homeomorphic to (S0 × I, S0 × {0}).

Proof. If alternative (i) holds then Z is shallow relative to S0: it suffices to
take Y = Z and J = ∅ in Definition 4.2. If alternative (ii) holds, let J be
a regular neighborhood in intK of a core curve of K and set Y = Z − J .
Then Y is an annulus body relative to S1. (The annulus A appearing in
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Definition 4.1 is bounded by two parallel simple closed curves.) It now follows
from Definition 4.2 that Z is shallow relative to S0.

Conversely, suppose that Z is shallow relative to S0. Let us write Z =
Y ∪ J , where Y and J satisfy conditions (1)–(4) of Definition 4.2, with S0
playing the role of S. Set T = (∂Y ) − S0. Since Y is an annulus body relative
to S0, it follows from Lemma 4.1 that Y is an annulus body relative to T .
This means that Y is a semi-regular neighborhood of T ∪ A, where A is an
annulus with A ∩ T = ∂A. Since Y is connected it follows that T has at most
two components.

The conditions of Definition 4.2 imply that T is the disjoint union of
∂J with S1. Since T has at most two components and S1 has exactly one
component, ∂J has at most one component. If ∂J = ∅ then J = ∅, i.e. Z = Y .
This implies alternative (i) of the present lemma.

Now consider the case in which ∂J has exactly one component. In this
case J is a single handlebody, and ∂J and S1 are the components of T .
According to Lemma 4.1 we have

2g − 2 = χ̄(S0) = χ̄(T ) = χ̄(S1) + χ̄(∂J).

But since S1 is a surface of genus g we have χ̄(S1) = 2g − 2, and hence
χ̄(J) = 0. Thus J is a solid torus.

Now Y is a semi-regular neighborhood of T ∪ A = S1 ∪ A ∪ ∂J . Since Y
is connected, A must have one boundary component in S1 and one in ∂J .
Let R be a regular neighborhood of A in Y . Then R is a solid torus meeting
S1 and ∂J , respectively, in regular neighborhoods of the simple closed curves
A ∩ S1 and A ∩ ∂J . Let K = J ∪ R. Since J is a solid torus and A ∩ J is
parallel in R to its core, K is a solid torus. Furthermore, K ∩ S1 = R ∩ S1
is an annulus.

Now set Q = Y − R = Z − K. If N is a regular neighborhood in Q of
Q ∩ T , then Y ′ = N ∪ R is a semi-regular neighborhood of T ∪ A contained
in Y . Therefore Y − Y ′ is a collar neighborhood of S0 in Y ; that is, the
pairs (Y − Y ′, S0) and (S0 × I, S0 × {0}) are homeomorphic. But by the
definition of N , the pair (Y − Y ′, S0) = (Q − N, S0) is homeomorphic to
(Q, S0) = (Z − K, S0), and alternative (ii) of the present lemma holds in
this case. �

Lemma 4.5. Let g ≥ 2 be an integer. Let Z be a compact, orientable 3-
manifold having exactly two boundary components S0 and S1, both of genus
g. Then Z is shallow relative to S0 if and only if it is shallow relative to S1.
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Proof. By symmetry it suffices to show that if Z is shallow relative to S0
then it is shallow relative to S1. In view of Lemma 4.4, it suffices to show
that if one of the alternatives (i) and (ii) of that lemma holds, then it still
holds when S0 is replaced by S1. For alternative (i) this follows from Lemma
4.1. Now suppose that alternative (ii) of Lemma 4.4 holds. Let c be a core
curve of the annulus ∂K − (K ∩ ∂Z). Since (Z − K, S0) is homeomorphic to
(S0 × I, S0 × {0}), there is a properly embedded annulus α ⊂ Z − K joining
c to a simple closed curve in S0. Let B be a regular neighborhood of K ∪
α in Z. Set P = Z − B, choose a regular neighborhood N of P ∪ S1 in
Z, and set K ′ = Z − N . Then K ′ is a solid torus, K ′ ∩ ∂Z is an annulus
contained in S0, and the pair (Z − K ′, S1) = (N, S1) is homeomorphic to
(S1 × I, S1 × {0}). �

5. Separating surfaces

5.1. In this section we will use the theory of books of I-bundles as developed
in [1]. We recall the definition here, in a slight paraphrase of the form given
in [1].

A book of I-bundles is a triple W = (W, B,P), where W is a (possibly
disconnected) compact, orientable 3-manifold, and B,P ⊂ W are submani-
folds such that

• each component of B is a solid torus;

• P is an I-bundle over a (possibly disconnected) 2-manifold, and every
component of P has Euler characteristic ≤ 0;

• W = B ∪ P;

• B ∩ P is the vertical boundary of P;

• B ∩ P is π1-injective in B; and

• each component of B meets at least one component of P.

As in [1], we shall denote W , B and P by |W|, BW and PW , respectively.
The components of BW will be called bindings of W, and the components
of PW will be called its pages. The submanifold B ∩ P, whose components
are properly embedded annuli in W , will be denoted AW .

An important observation, which follows from the definitions, is that if
W is a simple 3-manifold with kishW = ∅, then W = |W| for some book of
I-bundles W.



170 Marc Culler, Jason Deblois and Peter B. Shalen

Lemma 5.1. If W is any connected book of I-bundles then AW is π1-
injective in |W|. Furthermore, |W| is an irreducible 3-manifold.

Proof. If A is any component of A = AW , then A lies in the frontier of a
unique component P of P = PW and in a unique component B of B = BW .
Since A is an annulus of non-zero degree in the solid torus B, it is π1-injective
in B. It is also π1-injective in P , since A is a vertical boundary annulus of
the I-bundle P and χ(P ) ≤ 0. It follows that A is π1-injective in B and in
P and hence in W = |W|, which is the first assertion.

To prove the second assertion, we note that B is irreducible because its
components are solid tori, and that P is irreducible because its components
are I-bundles over surfaces of Euler characteristic ≤0. Thus W contains the
π1-injective, two-sided, properly embedded 2-manifold A, and the manifold
obtained by splitting W along A is irreducible. It follows that W is itself
irreducible. �

Lemma 5.2. Let M be a closed simple 3-manifold. Suppose that W is a
connected book of I-bundles with W = |W| ⊂ M , and that ∂W is a connected
incompressible surface in M . Let g denote the genus of ∂W . Suppose that
M is (g, g+1

2 )-small. Then W is shallow relative to ∂W .

Proof. We first consider the degenerate case in which W has no bindings,
so that W is an I-bundle over a closed surface T with χ(T ) = 2 − 2g < 0.
We choose an orientation-preserving simple closed curve C ⊂ T and let A
denote the annulus p−1(C), where p is the bundle projection. If Y denotes
a regular neighborhood of (∂W ) ∪ A, then W − Y is homeomorphic to an
I-bundle over a bounded surface, and hence to a handlebody; hence W is
shallow in this case.

Now assume that W has at least one binding, so that every page is an
I-bundle over a bounded surface. The sum of the Euler characteristics of
the pages of W is equal to χ(W ) = 1 − g < 0. In particular, W has a page
P0 with χ(P0) < 0. Then P0 is an I-bundle over some base surface T ; we let
p : P0 → T denote the bundle projection. We choose a component C of ∂T
and set A = p−1(C) ⊂ ∂vP0. (See Definition 3.1.) Since χ(T ) = χ(P0) < 0,
there is an arc α ⊂ T such that ∂α = α ∩ ∂T ⊂ C, and α is not parallel
in T to an arc in C. Now A is a properly embedded annulus in W , and
D = p−1(α) is a properly embedded disk in P0. The boundary of D consists
of two vertical arcs in A ⊂ ∂vP0, and of two properly embedded arcs in
∂hA0, each of which projects to α under the bundle projection. Since α
is not parallel in T to an arc in C, each of the four arcs comprising ∂D
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is essential in either ∂hP0 or A. Hence ∂D is homotopically non-trivial in
A ∪ ∂hP0.

We set X = W \\ A. We may identify P0 with a submanifold of X. Since
∂D ⊂ A ∪ ∂hP0, the disk D is properly embedded in X. Each component of
∂vP0 is an annulus in AW by definition. Since the frontier curves of A ∪ ∂hP0
in ∂X are boundary components of such annuli, it follows from Lemma 5.1
that they are homotopically non-trivial in X. Therefore A ∪ ∂hP0 is π1-
injective in ∂X. Since ∂D is homotopically non-trivial in A ∪ ∂hP0, it is
homotopically non-trivial in ∂X. Hence the disk D is essential in X.

Note that ∂X may have either one or two components. In either case we
have χ̄(X) = χ̄(W ) = g − 1.

The manifold W is irreducible by Lemma 5.1, and X is obtained by
splitting W along a properly embedded surface. Hence:

5.2(a). Each component of X is irreducible.

We shall identify X homeomorphically with W − N , where N is a regular
neighborhood of A in W . With this identification, it follows from Lemma 5.1
that X is π1-injective in W . On the other hand, the incompressibility of ∂W
implies that W is π1-injective in M . Hence:

5.2(b). X is π1-injective in M .

We now claim:

5.2(c). Each component of X is a handlebody.

To prove 5.2(c), we recall that by hypothesis M is (g, g+1
2 )-small. Fur-

thermore each component of X is π1-injective in M by 5.2(b), and is irre-
ducible by 5.2(a). Hence it suffices to show that one of the conditions (i) or
(ii) of Proposition 2.1 holds for each component V of X.

If X is connected, then it is boundary reducible since it contains the
essential disk D. Since χ̄(X) = g − 1, condition (i) of Proposition 2.1 holds
with V = X.

Now suppose that X has two components X0 and X1. Each of these is a
union of pages and bindings of W, and we may suppose them to be indexed
so that P0 ⊂ X0. For i = 0, 1 we have χ̄(Xi) =

∑

χ̄(P ), where P ranges
over the pages contained in Xi. By the definition of a book of I-bundles,
each term χ̄(P ) is non-negative. In particular we have χ̄(X1) ≥ 0, and since
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χ̄(P0) > 0 we have χ̄(X0) > 0. On the other hand, we have

χ̄(X0) + χ̄(X1) = χ̄(X) = g − 1.

It follows that χ̄(X1) < g − 1, so that condition (i) of Proposition 2.1 holds
with V = X1. On the other hand, we have χ̄(X0) ≤ g − 1, and X0 is bound-
ary reducible since it contains the essential disk D. Thus condition (i) of
Proposition 2.1 holds with V = X0. This proves 5.2(c).

If Y denotes a regular neighborhood of (∂W ) ∪ A, then Y is an annulus
body relative to ∂W , and W − Y is homeomorphic to X and is therefore a
handlebody. By Definition 4.2 it follows that W is shallow. �

Definition 5.1. Let M be a closed orientable 3-manifold, and let g be an
integer ≥ 2. We define a g-layering to be a finite sequence (Z0, S1, Z1, . . . , Sn,
Zn), where

• n is a strictly positive integer,

• S1, . . . , Sn are disjoint separating incompressible surfaces in M with
genus g,

• Z0, Z1, . . . , Zn are the closures of the components of M − (S1 ∪ · · · ∪
Sn),

• ∂Z0 = S1, ∂Zn = Sn, and ∂Zi = Si � Si+1 for 0 < i < n, and

• for 0 < i < n, Zi is shallow relative to Si and is not homeomorphic to
Si × I.

We shall call the integer n the depth of the g-layering (Z0, S1, Z1, . . . , Sn, Zn).
We will say that a g-layering (Z ′

0, S
′
1, Z

′
1, . . . , S

′
n′ , Z ′

n′) is a (strict) refinement
of (Z0, S1, Z1, . . . , Sn, Zn) if (S1, . . . , Sn) is a (proper) subsequence of the
finite sequence (S′

1, . . . , S
′
n′). A g-layering will be called maximal if it has no

strict refinement.

Lemma 5.3. Let M be a closed orientable 3-manifold, and let g be an inte-
ger ≥ 2. If (Z0, S1, Z1, . . . , Sn, Zn) is a g-layering, then (Zn, Sn, Zn−1, . . . , S1,
Z0) is also a g-layering. Furthermore, if (Z0, S1, Z1, . . . , Sn, Zn) is maximal,
then (Zn, Sn, Zn−1, . . . , S1, Z0) is also maximal.

Proof. If (Z0, S1, Z1, . . . , Sn, Zn) is a g-layering, then for 0 < i < n, since Zi

is shallow relative to Si, it follows from Lemma 4.5 that Zi is shallow relative
to Si+1. This implies the first assertion.
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To prove the second assertion, suppose that (Zn, Sn, Zn−1, . . . , S1, Z0) is
not maximal, so that it has a strict refinement (Z ′

n′ , S′
n′ , Z ′

n′−1, . . . , S
′
1, Z

′
0).

Then (Z ′
0, S

′
1, . . . , Z

′
n−1, S

′
n, Z ′

n) is a g-layering according to the first asser-
tion, and is a strict refinement of (Z0, S1, . . . , Zn−1, Sn, Zn). Hence
(Z0, S1, . . . , Zn−1, Sn, Zn) is not maximal. �

Lemma 5.4. Let M be a closed orientable 3-manifold, and let g be an
integer ≥ 2. Suppose that M is (g, g

2 + 1)-small. If (Z0, S1, Z1, . . . , Sn, Zn) is
a maximal g-layering, then Zn is either shallow relative to Sn or acylindrical.

Proof. Let us suppose that Zn is not acylindrical. Let A be an essential
annulus in Zn. We set X = Zn \\ A. We shall identify X homeomorphically
with Zn − N , where N is a regular neighborhood of A in Zn.

If Y denotes a regular neighborhood of (Sn) ∪ A, then Y is an annulus
body relative to Sn, and Zn − Y is ambiently isotopic to X. Hence in order
to show that Zn is shallow, it suffices to show that each component of Zn − Y
is a handlebody.

Note that ∂X has at most two components, and hence that X has at
most two components. We have

(5.1) g − 1 = χ̄(Zn) = χ̄(X) =
∑

V

χ̄(V )

where V ranges over the components of X. The essentiality of A implies
that χ̄(F ) ≥ 0 for each component F of ∂X, and hence that χ̄(V ) ≥ 0 for
each component V of ∂X. It therefore follows from (5.1) that χ̄(V ) ≤ g − 1
for each component V of X.

Since A is an essential annulus, X is π1-injective in Zn. On the other
hand, the incompressibility of Sn implies that Zn is π1-injective in M . Hence:

5.4(a). X is π1-injective in M .

Since M is irreducible, the incompressibility of Sn implies that Zn is
irreducible. Since A is a properly embedded annulus in Zn, we deduce:

5.4(b). Each component of X is irreducible.

We now claim:

5.4(c). For each component V of X, some component of ∂V is compressible
in M .
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To prove 5.4(c), we first consider the case in which ∂V is disconnected.
In this case, since χ̄(∂V ) = 2χ̄(V ) ≤ 2g − 2, there is a component F of ∂V
with χ̄(F ) < g; hence the genus of F is strictly less than g

2 + 1. Since M is
(g, g

2 + 1)-small, the surface F must be compressible.
We next consider the case in which ∂V is connected and χ̄(V ) < g − 1.

In this case we have χ̄(∂V ) < 2g − 2, so that ∂V has genus strictly less than
g. Furthermore, ∂V separates M . Since M is (g, g

2 + 1)-small, the surface
∂V must be compressible.

There remains the case in which ∂V is connected and χ̄(V ) = g − 1. In
this case we set S = ∂V and observe that S is a separating surface of genus
g. We shall assume that S is incompressible and derive a contradiction.
Since X ′ .= Zn − Y is ambiently isotopic to X, some component V ′ of X ′ is
ambiently isotopic to V , and so S′ .= ∂V ′ is a separating connected closed
incompressible surface of genus g.

We distinguish two subcases, depending on whether (a) V is the only
component of X, or (b) X has a second component U . In subcase (a), the
boundary components of Y are Sn and S′. Since Y is an annulus body
relative to Sn, it is in particular shallow relative to Sn. Furthermore, Y
cannot be homeomorphic to Sn × I, because it contains the annulus A, which
is essential in Zn — and hence in Y — and has its boundary contained in
Sn. It now follows from Definition 5.1 that (Z0, S1, Z1, . . . , Sn, Y, S′, X ′) is a
g-layering. This contradicts the maximality of (Z0, S1, Z1, . . . , Sn, Zn).

In subcase (b), it follows from (5.1) that χ̄(U) = 0. Since ∂X has at most
two components, ∂U is a single torus. The simplicity of M implies that ∂U
is compressible in M , and since U is π1-injective in M by 5.4(a), ∂U cannot
be π1-injective in U . As U is irreducible by 5.4(b), it now follows that U is a
solid torus. Hence the component U ′ of X ′ which is ambiently isotopic to U
is a solid torus. According to Definition 4.2, this implies that Z

.= Y ∪ U ′ is
shallow. The boundary components of Z are Sn and S′. The shallow manifold
Z cannot be homeomorphic to Sn × I, because it contains the annulus A,
which is essential in Zn — and hence in Z — and has its boundary contained
in Sn. It now follows from Definition 5.1 that (Z0, S1, Z1, . . . , Sn, Z, S′, V ′)
is a g-layering. This contradicts the maximality of (Z0, S1, Z1, . . . , Sn, Zn).

This completes the proof of 5.4(c).
Next we claim:

5.4(d). Each component of X is boundary-reducible.

In fact, if a component V of X were boundary irreducible, then ∂V would
be π1-injective in V . In view of 5.4(a) it would follow that ∂V is π1-injective
in M . But this contradicts 5.4(c). Thus 5.4(d) is established.
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We now turn to the proof that each component of X is a handlebody,
which will complete the proof of the lemma.

Let V be any component of X. We have observed that χ̄(V ) ≤ g − 1.
By 5.4(a), V is π1-injective in M , by 5.4(b) it is irreducible, and by 5.4(d) it
is boundary-reducible. Since the hypothesis implies in particular that M is
(g, g+1

2 )-small, case (ii) of the hypothesis of Proposition 2.1 holds. It there-
fore follows from Proposition 2.1 that V is a handlebody. �

Lemma 5.5. Let M be a closed orientable 3-manifold, and let g be an
integer ≥ 2. Suppose that M is (g, g

2 + 1)-small. If (Z0, S1, Z1, . . . , Sn, Zn) is
a maximal g-layering, then Z0 is either shallow relative to S1 or acylindrical.

Proof. This is an immediate consequence of Lemmas 5.3 and 5.4. �

Theorem 5.1. Suppose M is a closed, simple 3-manifold containing a
separating connected closed incompressible surface of some genus g, that
Hg(M) ≥ g + 4, and that M is (g, g

2 + 1)-small. Then M contains a separat-
ing connected closed incompressible surface S of genus g satisfying at least
one of the following conditions:

(1) at least one component of M \\ S is acylindrical; or

(2) for each component B of M \\ S we have kish(B) �= ∅.

Proof. It follows from the Haken finiteness theorem [9, Lemma 13.2] that the
set of all depths of g-layerings in M is bounded. In particular, any g-layering
has a refinement that is a maximal g-layering.

By hypothesis M contains some separating connected closed incompress-
ible surface T of genus g. If X and Y denote the closures of the components
of M − T , then (X, T, Y ) is a g-layering of depth 1. In particular M contains
a g-layering, and hence contains a maximal g-layering.

Now suppose that the conclusion of Theorem 5.1 does not hold. Fix
a maximal g-layering (Z0, S1, Z1, . . . , Sn, Zn). Then neither Z0 nor Zn is
acylindrical, since otherwise S = S1 or Sn would satisfy conclusion (1) of
the theorem. In view of Lemmas 5.4 and 5.5, and the hypothesis that M is
(g, g

2 + 1)-small, it follows that Z0 and Zn are both shallow.
For 0 < i ≤ n we define B−

i = Z0 ∪ Z1 ∪ · · · ∪ Zi−1 and B+
i = Zi ∪ · · · ∪

Zn. For each i, we must have either kish(B−
i ) = ∅ or kish(B+

i ) = ∅, since
otherwise S = Si would satisfy conclusion (2) of the theorem. Hence by the
observation made in 5.1, at least one of B−

i or B+
i has the form |W| for

some book of I–bundles W. Since M is in particular (g, g+1
2 )-small, it now

follows from Lemma 5.2 that at least one of B−
i or B+

i is shallow.



176 Marc Culler, Jason Deblois and Peter B. Shalen

Since B−
0 = Z0 is shallow, there is a largest index k ≤ n such that B−

k
is shallow. Since B−

k is shallow, it follows from Lemma 4.3 that Hg(B−
k ) ≤

g + 1. We distinguish two cases depending on whether k < n or k = n.
If k < n then B−

k+1 is not shallow, and hence B+
k+1 is shallow. By the

definition of B−
k+1, the frontier of Zk in B−

k+1 is the closed surface Sk, and
by the definition of a g-layering, Zk is shallow relative to Sk. We may thus
apply Lemma 4.2 with Q = B−

k+1 and Z = Zk to deduce that

Hg(B−
k+1) ≤ 1 + Hg(B−

k ) ≤ g + 2.

Now since B+
k+1 is shallow, we may again apply Lemma 4.2, this time with

Q = M and Z = B+
k+1, to deduce that

Hg(M) ≤ 1 + Hg(B−
k+1) ≤ g + 3.

This contradicts the hypothesis.
Now suppose that k = n. In this case, since B+

n = Zn is shallow, we may
apply Lemma 4.2 with Q = M and Z = Zn to deduce that

Hg(M) ≤ 1 + Hg(B−
n ) ≤ g + 2.

Once again we have a contradiction to the hypothesis. �

Corollary 5.1. Suppose that M is a closed, simple 3-manifold that contains
a connected closed incompressible surface of genus 2, and that Hg(M) ≥ 6.
Then M contains a connected closed incompressible surface S of genus 2 such
that either M \\ S has an acylindrical component, or χ̄(kish(M \\ S)) ≥ 2.

Proof. Since M is simple, it is (2, 2)-small.
First consider the case in which M contains a separating, connected,

closed, incompressible surface of genus 2. Since M is (2, 2)-small, Theorem 5.1
gives a separating connected closed incompressible surface S of genus 2 such
that either at least one component of M \\ S is acylindrical, or for each com-
ponent B of M \\ S we have kish(B) �= ∅. In particular, kish(M \\ S) has at
least two components. By Definition 1.1, each component of kish(M \\ S)
has a strictly negative Euler characteristic. Hence χ̄(kish(M \\ S)) ≥ 2.

Now suppose that M contains no separating, connected, closed, incom-
pressible surface of genus 2. In this case M is (3, 2)-small. By hypothesis,
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M contains a connected, closed, incompressible surface S of genus 2,
which must be non-separating. It now follows from Theorem 3.1 that
χ̄(kish(M \\ S)) ≥ 2. �

6. Volume bounds

Recall that a slope on a torus T is an unoriented isotopy class of homotopi-
cally non-trivial simple closed curves on T . If the torus T is a boundary
component of an orientable 3-manifold N , and r is a slope on T , we denote
by N(r) the “Dehn-filled” manifold obtained from the disjoint union of N
with D2 × S1 by gluing (∂D2) × S1 to ∂N via a homeomorphism which
maps (∂D2) × {point} to a curve representing the slope r.

Lemma 6.1. Let N be a compact 3-manifold whose boundary is a single
torus, let S ⊂ N be a closed connected incompressible surface, and let p be
a prime. Then there exist infinitely many slopes r on ∂N for which the
following conditions hold:

(1) the inclusion homomorphism H1(N ; Zp) → H1(N(ri); Zp) is an iso-
morphism; and

(2) S is incompressible in N(ri).

Proof. There is a natural bijective correspondence between slopes on ∂M
and unordered pairs of the form {c,−c} where c is a primitive element of
L

.= H1(∂N ; Z). If r is a slope, the elements of the corresponding unordered
pair are the homology classes defined by the two orientations of a simple
closed curve representing c. If c is a primitive element of L we shall denote
by rc the slope corresponding to the pair {c,−c}.

Let K ⊂ L denote the kernel of the natural homomorphism
H1(∂N ; Zp) → H1(N ; Zp). If c is a primitive class c ∈ K, it follows from
the Mayer–Vietoris theorem that the inclusion homomorphism H1(N ; Zp) →
H1(N(rc); Zp) is an isomorphism.

We fix a basis {λ, μ} of L such that λ ∈ K, and we identify L with an
additive subgroup of the 2-dimensional real vector space V = H1(∂N ;R).
For each positive integer n, let An ⊂ V denote the affine line Rλ + npμ ⊂ V .
Then An ∩ L ⊂ K, and An ∩ L contains infinitely many primitive elements
of L (for example the elements of the form (knp + 1)λ + npμ for k ∈ Z). In
particular, K contains infinitely many primitive elements of L.

We distinguish two cases, depending on whether there (a) does or (b)
does not exist an annulus in M having one boundary component in S and one
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in ∂M , and having interior disjoint from S ∪ ∂M . In case (a) it follows from
[5, Theorem 2.4.3] that there is a slope r0 such that for every slope r whose
geometric intersection number with r is > 1, the surface S is incompressible
in M(r). (For the application of [5, Theorem 2.4.3] we need to know that S
is not boundary parallel in M , but this is automatic since S has genus 2.)
In particular, there are three affine lines B1, B2 and B3 in V such that for
any primitive class c ∈ L \ (B1 ∪ B2 ∪ B3), the surface S is incompressible
in M(rc). If we choose a natural number n large enough so that An is
distinct from B1, B2 and B3, then An ∩ (B1 ∪ B2 ∪ B3) consists of at most
three points. Hence of the infinitely many primitive elements of L belonging
to An ∩ L, at most three lie in B1 ∪ B2 ∪ B3. For any primitive element
c ∈ (An ∩ L) \ (B1 ∪ B2 ∪ B3), the slope rc satisfies conclusions (1) and (2).

In case (b) it follows from [19, Theorem 1] that there are at most three
slopes r for which S is compressible in M(r). In particular, of the infinitely
many elements c ∈ K which are primitive in L, all but finitely many have
the property that S is incompressible in M(rc). Hence there are infinitely
many slopes c satisfying conclusions (1) and (2). �

Definition 6.1. If X is a compact orientable manifold with non-empty
boundary then by the double of X we shall mean the quotient space DX
obtained from X × {0, 1} by identifying (x, 0) with (x, 1) for each x ∈ ∂X.
The involution of X × {0, 1} which interchanges (x, 0) and (x, 1) induces
an orientation-reversing involution τ : DX → DX, which we shall call the
canonical involution of DX. Define geodvolX = 1

2v3‖[DX]‖, where ‖[DX]‖
denotes the Gromov norm of the fundamental class of DX, and v3 is the
volume of a regular ideal tetrahedron.

The following standard result does not seem to be in the literature.

Proposition 6.1. Let X be a compact connected orientable 3-manifold with
connected boundary S of genus greater than 1. Suppose that X is irreducible,
boundary irreducible and acylindrical. Then X admits a hyperbolic metric
with totally geodesic boundary, and geodvolX is the volume of this metric.

Proof. The closed manifold DX is simple, and the surface S is incompress-
ible in DX. Thus DX admits a complete hyperbolic metric by Thurston’s
Hyperbolization Theorem for Haken manifolds [15]. Let τ : DX → DX be
the canonical involution of DX. Fix a basepoint 	 ∈ S and a basepoint 	̃ in
the universal cover of DX which maps to 	. We identify DX with H

3/Γ,
where Γ is a Kleinian group. Using the basepoint 	̃, we identify π1(DX, 	)
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with Γ. Let p : H
3 → DX be the covering projection, and let τ̃ : H

3 → H
3

denote the lift of τ ◦ p which fixes 	̃. Let ˜S be the component of p−1(S)
which contains 	̃. The map τ̃ is then an orientation-reversing involution of
H

3 which fixes ˜S.
Since τ is a homotopy equivalence, it follows from the proof of Mostow’s

rigidity theorem ( [13], cf. [4]) that τ̃ extends continuously to S2
∞, and that

there is an isometry τ ′ of H
3 whose extension to S2

∞ agrees with that of τ̃ .
In particular, τ ′ is an orientation-reversing isometry of H

3 whose restriction
to S2

∞ normalizes the restriction of Γ to S∞
2 . Thus τ ′ normalizes Γ in the

isometry group of H
3, and consequently τ ′ induces an involution of DX. The

restriction of τ ′ to S2
∞ also commutes with the restriction of each isometry

in the image Δ of the inclusion homomorphism π1(S, 	) → Γ. It follows that
τ ′ must be a reflection through a hyperbolic plane Π, where Π contains the
axis of each element of Δ. In particular Π is invariant under Δ. Moreover,
since the image of Π in DX is contained in the fixed set of an involution of
DX, it must be a compact subsurface F .

Since F is covered by a hyperbolic plane, it is a totally geodesic surface
in DX. Let Δ′ ≤ Γ denote the stabilizer of Π. Then the covering space
˜DX = H

3/Δ′ is homeomorphic to F × R. Let ˜F denote the image of Π in
˜DX, so that ˜F is the image of a lift of the inclusion of F into DX. Since
Δ ≤ Δ′, the inclusion of S into DX lifts to an embedding of S in ˜DX. Let ˜S
denote the image of this lift. The surfaces ˜S and ˜F are π1-injective and can be
isotoped to a pair of disjoint surfaces which cobound a compact submanifold
W of ˜M . According to [9, Theorem 10.5] W is homeomorphic to ˜S × I. This
shows that ˜S is isotopic to ˜F in ˜DX, and hence that S is homotopic to F
in DX. Since S is incompressible in DX, it follows from [18, Corollary 5.5]
that S is isotopic to the totally geodesic surface F .

Since S and F are isotopic, there is an ambient isotopy of DX which car-
ries X onto a submanifold of DX bounded by F . Pulling back the hyperbolic
metric by the time-1 map of this isotopy endows X with the structure of a
complete hyperbolic manifold with totally geodesic boundary. The isometry
of DX induced by τ ′ fixes F and exchanges its complementary components.
Hence, with the pulled back metric, X has half the hyperbolic volume of DX.
Since the hyperbolic volume of DX is equal to v3‖[DX]‖ (see [4, Theorem
C.4.2]), this completes the proof. �

The result below follows from a result of Agol–Storm–Thurston [2]

Proposition 6.2. Let M be a closed, orientable hyperbolic 3-manifold
containing a closed connected incompressible surface S such that M \\ S
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has an acylindrical component X. Then

volM ≥ geodvolX.

Proof. Let g : S → M denote the inclusion map. Since S is a two-sided
embedded surface, the family of all immersions of S in M which are homo-
topic to g is non-empty. Since M is P

2-irreducible, the main result of [8]
asserts that this family contains a least area immersion f : S → M , which
is either an embedding or a 2-sheeted covering of a non-orientable surface.
Moreover, the second case arises only if S bounds a twisted I-bundle whose
0-section is isotopic to f(S). Since f is locally area minimizing, f(S) is a
minimal surface.

It follows from [18, Corollary 5.5] that if f is an embedding then f(S)
is ambiently isotopic to S, and if f is a 2-sheeted covering map then f(S) is
isotopic to the 0-section of the twisted I-bundle bounded by S. Hence one
of the components, say X, of M \\ f(S) is acylindrical. We may identify X
with the path completion of a component X0 of M − f(S). Then the natural
map X → M maps the interior of X homeomorphically onto X0 and maps
∂X onto f(S), either by a homeomorphism or by a 2-sheeted cover. The
latter possibility arises exactly when S bounds a twisted I-bundle and f(S)
is a non-orientable surface. In particular, pulling back the hyperbolic metric
on M under the natural map X → M gives X the structure of a complete
hyperbolic manifold whose boundary is a minimal surface. Theorem 7.2 of [2]
states that such a manifold X satisfies vol X ≥ geodvolX.

Clearly we have vol M ≥ volX, so the proof is complete. �

Theorem 6.1. Let M be a closed, orientable hyperbolic 3-manifold con-
taining a closed connected incompressible surface of genus 2, and suppose
that Hg(M) ≥ 6. Then M has volume greater than 6.45.

Proof. According to Corollary 5.1, M contains a connected closed incom-
pressible surface S of genus 2 such that either M \\ S has an acylindrical
component, or χ̄(kish(M \\ S)) ≥ 2. If M \\ S has an acylindrical compo-
nent X, by Proposition 6.1 X admits a hyperbolic metric with totally
geodesic boundary, and the volume of X in this metric is equal to geodvolX.
The main result of [12] asserts that this volume is greater than 6.45; hence
by Proposition 6.2, volM is also greater than 6.45. On the other hand, if
χ̄(kish(M \\ S)) ≥ 2, then Theorem 9.1 of [2] implies that M has volume
greater than 7.32. �
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The following lemma is a strict improvement on Proposition 10.1 of [7].
The improvement is made possible by the results of [6].

Lemma 6.2. Let M be a complete, finite-volume, orientable hyperbolic 3-
manifold having exactly one cusp, such that dimZ2 H1(M ; Z2) ≥ 6. Then
either

(1) volM > 5.06, or

(2) M contains a genus–2 connected incompressible surface.

Proof. This is identical to the proof of [7, Proposition 10.1] except that

• each of the two appearances of the number 7 in the latter proof is
replaced by 6, and

• the reference to the case g = 2 of [1, Theorem 8.13] is replaced by a
reference to the case g = 2 of [6, Theorem 5.1]. �

Theorem 6.2. Let M be a complete, finite-volume, orientable hyperbolic
3-manifold having exactly one cusp, and suppose that

dimZ2H1(M ; Z2) ≥ 6.

Then M has volume greater than 5.06.

Proof. For a hyperbolic manifold satisfying the hypotheses of Theorem 6.2,
Lemma 6.2 asserts that either M has volume greater than 5.06 or M contains
a closed connected incompressible surface of genus 2. In the latter case, let N
denote the compact core of M . According to Lemma 6.1 there is an infinite
sequence of distinct slopes (ri)i≥1 on ∂N such that S is incompressible in
each N(ri), and dimZ2 H1(N(ri); Z2) ≥ 6 for each i. The hyperbolic Dehn
surgery theorem ( [17], cf. [14]) asserts that Mi

.= N(ri) is hyperbolic for all
sufficiently large i, and hence after passing to a subsequence we may assume
that all the Mi are hyperbolic. We now invoke Theorem 1A of [14], which
implies that volMi < volM for all but finitely many i. (The authors of [14]
attribute this particular consequence of their main result to Thurston.)

Now since dimZ2 H1(Mi; Z2) ≥ 6 for each i, we have in particular that
Hg(Mi) ≥ 6 for each i. Since each Mi contains the genus–2 connected closed
incompressible surface S, it now follows from Theorem 6.1 that volMi > 6.45
for each i. Hence vol M > 6.45. �
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Theorem 6.3. Let M be a closed, orientable hyperbolic 3-manifold with

dimZ2H1(M ; Z2) ≥ 4

and suppose that the image of the cup product map H1(M ; Z2) ⊗
H1(M ; Z2) → H2(M ; Z2) has dimension at most 1. Then M has volume
greater than 3.08.

Proof. We recall that a group Γ is said to be k-free for a given positive integer
k if every subgroup of Γ having rank at most k is free. According to Corollary
9.3 of [1], which was deduced from results in [3], if M is a closed, orientable
hyperbolic 3–manifold such that π1(M) is 3-free then vol M > 3.08.

Now suppose that M satisfies the hypotheses of Theorem 6.3, but that
π1(M) is not 3-free. Fix a base point P ∈ M and a subgroup X of π1(M, P )
which has rank at most 3 and is not free. Let X̄ denote the image of X
under the natural homomorphism η : π1(M, P ) → H1(M ; Z2). Then the sub-
space X̄ of H1(M ; Z2) has dimension at most 3. Since dimZ2H1(M ; Z2) ≥ 4,
there is a codimension-1 subspace V of H1(M ; Z2) containing X̄. Then
Y

.= η−1(V ) is an index-2 subgroup of π1(M, P ) containing X. Hence Y

defines a 2-sheeted based covering space p : (˜M, ˜P ) → (M, P ) such that
p� : π1(˜M, ˜P ) → π1(M, P ) maps some subgroup ˜X of π1(˜M, ˜P ) isomorphi-
cally onto X. In particular ˜X has rank at most 3 and is not free, and so
π1(˜M) is not 3-free.

We now invoke Proposition 3.5 of [7], which asserts that if M is a
closed, aspherical 3-manifold, if r = dimZ2 H1(M ; Z2), and if t denotes the
dimension of the image of the cup product map H1(M ; Z2) ⊗ H1(M ; Z2) →
H2(M ; Z2), then for any integer m ≥ 0 and any regular covering ˜M of M

with covering group (Z2)m, we have dimZ2 H1(˜M ; Z2) ≥ (m + 1)r−
m(m + 1)/2 − t. Taking M and ˜M as above, the hypotheses of of [7, Propo-
sition 3.5] hold with m = 1, and by the hypothesis of the present theorem
we have r ≥ 4 and t ≤ 1. Hence dimZ2 H1(˜M ; Z2) ≥ 6.

We next invoke Proposition 7.1 of [6], which implies that if k ≥ 3 is an
integer and if N is a closed simple 3-manifold such that dimZ2 H1(N ; Z2) ≥
max(3k − 4, 6), then either π1(N) is k-free, or N contains a closed connected
incompressible surface of genus at most k − 1. We may apply this with N =
˜M and k = 3, since we have seen that dimZ2 H1(˜M ; Z2) ≥ 6. Since we have
also seen that π1(˜M) is not 3-free, ˜M must contain a closed connected
incompressible surface S of genus at most 2, and in view of simplicity, S
must have genus exactly 2. Again using that dimZ2 H1(˜M ; Z2) ≥ 6 — so
that in particular Hg(˜M) ≥ 6 — we deduce from Theorem 6.1, with ˜M
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playing the role of M , that vol ˜M > 6.45. Hence

volM =
1
2

vol ˜M > 3.225 > 3.08.

�
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