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Manifolds with weighted Poincaré inequality and
uniqueness of minimal hypersurfaces

Xu Cheng and Detang Zhou

In this paper, we obtain results on rigidity of complete Riemannian
manifolds with weighted Poincaré inequality. As an application, we
prove that if M is a complete n−2

n -stable minimal hypersurface in
R

n+1 with n ≥ 3 and has bounded norm of the second fundamental
form, then M must either have only one end or be a catenoid.

1. Introduction

In this paper, we will discuss complete Riemannian manifolds with weighted
Poincaré inequality and minimal hypersurfaces with δ-stability in the Euclid-
ian space R

n+1 with n ≥ 3. We first recall some backgrounds.
Let M be an n-dimensional Riemannian manifold. Given a Schrödinger

operator L = Δ + q(x) on M , we consider the eigenvalue problem on a com-
pact subdomain D ⊂ M :

{
Lf + λf = 0, in D;
f |∂D = 0.

It has discrete spectrum and the number of negative eigenvalues is finite. The
(Morse) index of L on M is defined as the supremum, over compact domains
of M , of the number of negative eigenvalues (counted with multiplicity) of
L with Dirichlet boundary condition.

If M is a complete connected immersed minimal hypersurface in R
n+1,

n ≥ 2 and if L is the Jacobi operator L = Δ + |A|2, where |A| denotes the
norm of the second fundamental form of M , then the index of L is said
to be the (Morse) index of M . M is said to be stable if the index of M
is 0, which is equivalent to say that, for all compactly supported piecewise
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smooth function f ∈ C∞
o (M),

(1.1)
∫

M

(
|∇f |2 − |A|2f2) ≥ 0.

It is known that a complete stable minimal surface in R
3 is plane, which

was proved by do Carmo and Peng and Fischer-Cobrie and Schoen indepen-
dently [6, 7]; and that only index one complete minimal surfaces in R

3 are
the catenoid and Enneper surface, which was proved by Lopez and Ros [9].

While it is unknown that a complete stable minimal hypersurface in R
n+1

is a hyperplane when n ≤ 7, Cao et al. [1] proved that a complete stable
minimal hypersurface in R

n+1 must have only one end for all dimension
n ≥ 3. Tam and Zhou [16] recently showed that an (n-dimensional) catenoid
in the Euclidean space R

n+1 with n ≥ 3 has index one (see the definition of
n-dimensional catenoid in R

n+1 in [5], also in [16]).
Now let us assume L = Δ + δ|A|2 on minimal hypersurface M in R

n+1

for some number 0 < δ ≤ 1 . We may similarly define that M is δ-stable if

(1.2)
∫

M

(
|∇f |2 − δ|A|2f2) ≥ 0

for all f ∈ C∞
o (M).

Obviously, given δ1 > δ2, δ1-stable implies δ2-stable. So M is stable
implies that M is δ-stable for all 0 < δ ≤ 1. Hyperplane is δ-stable for all
0 < δ ≤ 1.

There are some work on δ-stable minimal hypersurfacs. Kawai [8] proved
a δ-stable, δ > 1

8 complete minimal surface in R
3 must be plane. Recently,

Meeks et al. [14] showed that any complete embedded δ-stable minimal
surface in R

3 with finite genus is flat. In the case of higher dimension n ≥ 3,
we have, directly from the argument in [1], that the result of Cao, Shen and
Zhu also holds for n−1

n -stable. Recently, Tam and Zhou [16] showed that a
catenoid in R

n+1 is n−2
n -stable. Also they proved that if M is an n−2

n -stable
complete immersed minimal hypersurface in R

n+1 and if

lim
R→+∞

1
R2

∫
B(2R)\B(R)

|A|2(n−2)/n = 0,

then M is either a hyperplane or a catenoid.
In this paper, we prove that if an n−2

n -stable complete minimal hyper-
surface in R

n+1 with n ≥ 3 and the norm of its second fundamental form
satisfies some growth condition, then it either has only one end or is a
catenoid. More precisely, we show
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Theorem 1.1. Let M be an n−2
n -stable complete minimal hypersurface in

R
n+1 for n ≥ 3 and the norm of its second fundamental form satisfies

lim
R→+∞

sup
B(R)

|A|/R(n−3)/2 = 0 for n ≥ 4;

lim
R→+∞

sup
B(R)

|A|/ln R = 0 for n = 3,(1.3)

then M either has only one end or is a catenoid.

From Theorem 1.1, we have the following result:

Corollary 1.1. Let M be an n−2
n -stable complete minimal hypersurface in

R
n+1, n ≥ 3, with at least two ends. If it has bounded norm of the second

fundamental form, then M must be a catenoid.

Our results for minimal hypersurfaces rely on the study on complete
manifolds with weighted Poincaré inequality which is of independent interest.

Let M be a complete Riemannian manifold. Recall from [13] that a com-
plete Riemannian manifold (M, ds2) is said to satisfy a weighted Poincaré
inequality with non-negative weight function ρ if the inequality

∫
M

|∇f |2 ≥
∫

M
ρf2

holds for all compactly supported piecewise smooth function f ∈ C+∞
o (M).

Further, M is said to satisfy property (Pρ) for non-zero non-negative
weight function ρ(x) if,

(1) M satisfies a weighted Poincaré inequality with ρ; and

(2) the conformal metric ρds2 is complete.

In [13], Li and Wang studied complete manifolds satisfying property
(Pρ) and obtained many theorems on rigidity. Later the first author [3]
discussed complete manifolds with Poincaré inequality and obtain results
on the uniqueness of ends which can be applied to study stable minimal
hypersurfaces in a Riemannian manifold. In this paper, we generalize one
result of Li and Wang [13, Theorem 5.2] to the following:

Theorem 1.2. Let M be a complete n-dimensional (n ≥ 3) Riemannian
manifold with property (Pρ) for some non-zero weight function ρ. Suppose
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the Ricci curvature of M has the lower bound

RicM (x) ≥ −(n − 1)τ(x), x ∈ M,

where τ(x) satisfies Poincaré inequality
∫

M
|∇f |2 ≥ (n − 2)

∫
M

τf2, for all f ∈ C+∞
o (M).

If ρ and τ satisfy the growth condition

lim inf
R→+∞

S(R)e−((n−3)/(n−2))R = 0 for n ≥ 4,

lim inf
R→+∞

S(R)R−1 = 0 for n = 3,(1.4)

where
S(R) = sup

x∈Bρ(R)
(
√

ρ(x),
√

τ(x)),

then either

(1) M has only one non-parabolic end; or

(2) M has two non-parabolic ends and is given by M = R × N with the
warped product metric

ds2
M = dt2 + η2(t)ds2

N ,

for some positive function η(t) and some compact manifold N . More-
over, τ(t) is a function of t alone satisfying

(n − 2)η′′η−1 = τ.

If we choose τ = 1
n−2ρ in Theorem 1.2, it is just Theorem 5.2 of [13]. In

the case of minimal hypersurfaces, we could not find any weight function ρ
in a Poincaré inequality, which satisfies both the completeness of the metric
ρds2 and the lower bound estimate of Ricci curvature of M . Hence, we could
not apply the theorem of Li and Wang. Instead, our Theorem 1.2 is suitable
to our minimal case (see Theorem 1.1).

The work of Li and Wang on complete manifolds satisfying weighted
Poincaré inequality is a generalization of their one on complete manifolds
with positive spectrum [11, 12]; see [13] and the references therein). Let
λ1(M) be the largest lower bound of the spectrum of the Laplacian with
respect to the metric of M . Theorem 1.2 implies the following result.
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Corollary 1.2. Let M be a complete n-dimensional (n ≥ 3) Riemannian
manifold with positive spectrum (i.e., λ1(M) > 0). Suppose the Ricci curva-
ture of M has the lower bound

RicM (x) ≥ −(n − 1)τ(x), x ∈ M,

where τ(x) satisfies Poincaré inequality
∫

M
|∇f |2 ≥ (n − 2)

∫
M

τf2, for all f ∈ C+∞
o (M).

If τ satisfies the growth condition

lim inf
R→+∞

(
sup

x∈B(R)
τ(x)

)
e−(2(n−3)/(n−2))R = 0 for n ≥ 4,

lim inf
R→+∞

(
sup

x∈B(R)
τ(x)

)
R−2 = 0 for n = 3,(1.5)

then either

(1) M has only one non-parabolic end; or

(2) M has two non-parabolic ends and is given by M = R × N with the
warped product metric

ds2
M = dt2 + η2(t)ds2

N ,

for some positive function η(t) and some compact manifold N . More-
over, τ(t) is a function of t alone satisfying

(n − 2)η′′η−1 = τ.

This corollary generalizes Theorem 2.1 in [11] (just choose τ(x) = λ1(M)
n−2

and use the fact a non-parabolic end with λ1(M) > 0 has infinite volume).
Throughout this paper, all manifolds are assumed to be oriented.

2. Rigidity of complete manifolds

In this section, we will consider the structure of a complete manifold M with
property (Pρ). Since we follow the argument of Li and Wang [13, Theorem
5.2] with some changes of techniques in the proof of our Theorem 1.2, we
recommend [13] as a complement when necessary.
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Let d(x, y) and dρ(x, y) denote the distances between x and y with
respect to ds2 and ρ2ds2, respectively; B(x, R) = {y ∈ M ; d(x, y) < R} and
Bρ(x, R) = {y ∈ M ; dρ(x, y) < R}. For a fixed point p ∈ M , we denote r(x)
and rρ(x) the distance functions with respect to metric ds2 and conformal
metric ρds2 from p, respectively; B(R) = {x ∈ M ; r(x) < R} and Bρ(R) =
{x ∈ M ; rρ(x) < R}.

We need the following construction of harmonic functions [13, §5].
Suppose M has at least two non-parabolic ends E1 and E2. A theory of

Li and Tam [10] asserts that one can get a non-constant bounded harmonic
function f with finite Dirichlet integral by taking a convergent subsequence
of the harmonic functions fR as R → +∞, satisfying

ΔfR = 0 on B(R),

with boundary conditions

{
fR = 1, on ∂B(R) ∩ E1;
fR = 0, on ∂B(R) \ E1.

It follows from the maximum principle that 0 ≤ fR ≤ 1 for all R and hence
0 ≤ f ≤ 1.

Now we prove Theorem 1.2.

Proof. If M has at least two non-parabolic ends, then there exists a bounded
harmonic function f with finite Dirichlet integral constructed as above. We
may assume that inf f = 0 and sup f = 1.

Then the Bochner formula and the lower bound of the Ricci curvature
imply (cf. [13, Lemm 4.1])

(2.1) Δ|∇f | ≥ −(n − 1)τ |∇f | +
1

n − 1
|∇|∇f ||2

|∇f | .

Set α = n−2
n−1 and g = |∇f |α. Equation (2.1) implies

Δg = α(α − 1)|∇f |α−2|∇|∇f ||2 + α|∇f |α−1Δ|∇f |
≥ −(n − 2)τg.

(2.2)
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We will show inequality (2.2) is actually an equality. For any non-
negative compactly supported piecewise smooth function φ on M , we have

∫
M

φ2g(Δg + (n − 2)τg)

= −2
∫

M
φg〈∇g,∇φ〉 −

∫
M

φ2|∇g|2 +
∫

M
(n − 2)τ(φg)2

≤ −2
∫

M
φg〈∇g,∇φ〉 −

∫
M

φ2|∇g|2 +
∫

M
|∇(φg)|2(2.3)

=
∫

M
|∇φ|2|∇f |2(n−2)/(n−1) =

∫
M

|∇φ|2g2.

The inequality in (2.3) holds since τ satisfies Poincaré inequality.
Choose φ = ψχ, where ψ and χ will be chosen later and ψ denotes a

piecewise smooth compactly supported function on M . Then

∫
M

|∇φ|2g2 ≤ 2
∫

M
|∇ψ|2χ2|∇f |2(n−2)/(n−1)

+ 2
∫

M
|∇χ|2ψ2|∇f |2(n−2)/(n−1).

(2.4)

We first consider the case of n ≥ 4. For R > 1, we let ψ(x) be a function
depending on the ρ-distance:

ψ(x) =

⎧⎨
⎩

1 on Bρ(R − 1),
R − rρ on Bρ(R) \ Bρ(R − 1),
0 on M \ Bρ(R).

For σ ∈ (0, 1) and ε ∈ (0, 1
2), we define χ on the level sets of f :

χ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 on L(0, σε) ∪ L(1 − σε, 1),
(ε − σε)−1(f − σε) on L(σε, ε) ∩ (M \ E1),
(ε − σε)−1(1 − σε − f) on L(1 − ε, 1 − σε) ∩ E1,
1 otherwise,

where we denote the set L(a, b) = {x ∈ M |a < f(x) < b}.
Denote the set

Ω = E1 ∩ (Bρ(R) \ Bρ(R − 1)) ∩ (L(σε, 1 − σε)).
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Recall the growth estimate for |∇f | [13, Corollary 2.3]:
∫

Bρ(R+1)\Bρ(R)
|∇f |2 ≤ Ce−2R,

and the decay estimate for f [13, (2.10)]:
∫

E1∩Bρ(R+1)\E1∩Bρ(R)
ρ(1 − f)2 ≤ Ce−2R.

We have

(2.5)
(∫

Ω
|∇f |2

)(n−2)/(n−1)

≤ Ce−(2(n−2)/(n−1))R

and with notation S(R) as in the statement of theorem,
∫

Ω
ρn−1 ≤ (S(R))2(n−2)

∫
Ω

ρ

≤ (σε)−2(S(R))2(n−2)
∫

Ω
ρ(1 − f)2

≤ C(S(R))2(n−2)(σε)−2e−2R.

(2.6)

Hence, by |∇rρ|(x) = ρ(x), (2.5) and (2.6), we have
∫

E1

|∇ψ|2χ2|∇f |2(n−2)/(n−1)

≤
∫

Ω
ρ|∇f |2(n−2)/(n−1)

≤
(∫

Ω
|∇f |2

)(n−2)/(n−1) (∫
Ω

ρn−1
)1/(n−1)

≤ C(σε)−2/(n−1)(S(R))2(n−2)/(n−1)e−2((n−2)/(n−1))R−(2/(n−1))R

≤ C(σε)−2/(n−1)(S(R))2(n−2)/(n−1)e−2R.

(2.7)

Note the assumption that the Ricci curvature of M is bounded from below
by −(n − 1)τ(x). Then the local gradient estimate of Cheng and Yau [2]
(cf. [12]) implies that there exists a constant Cn depending on n such that

|∇f |(x) ≤ Cn

(
sup

y∈B(x,R)

√
τ(y) + R−1

)
|f(x)|, x ∈ M,

for all R > 0.
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Set ρ̄(x) = 1
2ρ(x) + 1

2(n − 2)τ(x), x ∈ M . Then
√

τ ≤
√

2
n−2 ρ̄ and

(2.8) |∇f |(x) ≤ C

(
sup

y∈B(x,R)

√
ρ̄(y) + R−1

)
|f(x)|.

Fix x ∈ M and consider the function η(R) =
√

2R − (supB(x,R)
√

ρ̄)−1.
Observe that η(R) tends to +∞ as R → ∞ and tends to a negative number
as R → 0. There exists a R0 depending on x such that

√
2R0 = (supB(x,R0)√

ρ̄)−1. Hence,

(2.9) |∇f |(x) ≤ C

(
sup

B(x,R0)

√
ρ̄

)
|f(x)|.

For any y ∈ B(x, R0), let γ(s), s ∈ [0, l] be a minimizing geodesic con-
necting x and y with respect to the background metric ds2, where s is the
arc-length of γ in ds2. The distance dρ(x, y) with respect to ρds2 satisfies

dρ(x, y) ≤
∫ l

0

√
ρ(γ(s))ds

≤
∫ l

0

√
2
√

ρ̄(γ(s))ds

≤
(

sup
B(x,R0)

√
ρ̄

)
(
√

2R0) = 1.

(2.10)

This implies B(x, R0) ⊂ Bρ(x, 1). Hence,

(2.11) |∇f |(x) ≤ C

(
sup

Bρ(x,1)

√
ρ̄

)
|f(x)|, x ∈ M.

Similarly, we have

(2.12) |∇f |(x) ≤ C

(
sup

Bρ(x,1)

√
ρ̄

)
|1 − f(x)|, x ∈ M.
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On E1, we have

∫
E1

|∇χ|2ψ2|∇f |2(n−2)/(n−1)

≤ C((1 − σ)ε)−2
∫

L(1−ε,1−σε)∩E1∩Bρ(R)
|∇f |2(n−2)/(n−1)+2(2.13)

≤ C(S(R + 1))2(n−2)/(n−1)((1 − σ)ε)−2

×
∫

L(1−ε,1−σε)∩E1∩Bρ(R)
|∇f |2(1 − f)2(n−2)/(n−1).

Note that [13, Lemma 5.1] asserts that the integral of |∇f | on the level set
l(t) = {x ∈ M |f(x) = t}, 0 ≤ t ≤ 1, is independent of t. Using this conclu-
sion and the co-area formula and [13, Lemma 5.1], we have

∫
L(1−ε,1−σε)∩E1∩Bρ(R)

|∇f |2(1 − f)2(n−2)/(n−1)

≤
∫ 1−σε

1−ε
(1 − t)2(n−2)/(n−1)

∫
l(t)∩E1∩Bρ(R)

|∇f |dA dt

≤ C

∫
l(b)

|∇f |dA

∫ 1−σε

1−ε
(1 − t)2(n−2)/(n−1) dt(2.14)

= C

∫
l(b)

|∇f |dA · (1 − σ2(n−2)/(n−1)+1)ε2(n−2)/(n−1)+1.

Substitute (2.14) into (2.13). Then

∫
E1

|∇χ|2ψ2|∇f |2(n−2)/(n−1) ≤ C(S(R + 1))2(n−2)/(n−1)(1 − σ)−2

× (1 − σ2(n−2)/(n−1)+1)ε(n−3)/(n−1).

(2.15)

Setting σ = 1
2 , we have

∫
E1

|∇φ|2|∇f |2(n−2)/(n−1) ≤ C(S(R + 1))2(n−2)/(n−1)

× (e−2Rε−2/(n−1) + ε(n−3)/(n−1)).
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Let us choose ε = e−2R. Then

∫
E1

|∇φ|2|∇f |2(n−2)/(n−1) ≤ C(S(R + 1))2(n−2)/(n−1)e−2((n−3)/(n−1))R.

(2.16)

Using f instead of 1 − f , similar to the above argument, we have that on
M\E1,

∫
M\E1

|∇φ|2|∇f |2(n−2)/(n−1) ≤ C(S(R + 1))2(n−2)/(n−1)e−2((n−3)/(n−1))R.

(2.17)

Hence,

∫
M

|∇φ|2|∇f |2(n−2)/(n−1) ≤ C(S(R + 1))2(n−2)/(n−1)e−2((n−3)/(n−1))R.

(2.18)

Let R → +∞. By the assumption on S(R), the left in (2.18) is identically
zero. By (2.3), we conclude that (2.2) is actually an equality and hence
the improved Bochner inequality (2.1) must be an equality. Note that [13,
Lemma 4.1] asserts that if equality in inequality (2.1) holds, the metric of
M must be a warped product as described in the theorem. We obtain the
conclusion of theorem in the case of n ≥ 4.

In the case of n = 3, we may choose ψ as above and χ to be

χ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 on L(0, σε) ∪ L(1 − σε, 1),
(− log σ)−1(log f − log(σε)) on L(σε, ε) ∩ (M \ E1),
(− log σ)−1(log(1 − f) − log(1 − σε)) on L(1 − ε, 1 − σε) ∩ E1,
1 otherwise.

By an argument similar to the above one for n ≥ 4 (combining with
the corresponding estimates for n = 3 in [13, Theorem 5.2]), we have the
estimate

(2.19)
∫

M
|∇φ|2|∇f |2(n−2)/(n−1) ≤ CS(R + 1)(σ−1ε−1e−2R + (− log σ)−1).

Choose σ = ε = e−Rq(R) with q(R) =
√

S(R+1)
R . Then using the argu-

ment in [13], we have the right side of (2.19) tends to zero as R → +∞. We
conclude that (2.2) is actually an equality and hence the theorem holds for
n = 3. �
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3. Application to minimal hypersurfaces

Let Mn be a complete minimal hypersurface in R
n+1 for n ≥ 3. We first give

some examples of the metric ρds2 such that M satisfies
property (Pρ).

Example 3.1. Let d̄(x, y), x, y ∈ R
n+1, denote the distance between x and

y in R
n+1. Denote by r̄(x), x ∈ M , the extrinsic distance function d̄(x, o)

from a fixed point o ∈ R
n+1 (o may or may not be in M). It is known that

Δr̄ ≥ (n − 1)r̄−1,

where Δ is the Laplacian on M .

For any φ ∈ C∞
o (M),

(n − 1)
∫

M
r̄−2φ2 ≤

∫
M

r̄−1φ2Δr̄

= −2
∫

M
r̄−1φ〈∇φ,∇r̄〉 +

∫
M

r̄−2φ2|∇r̄|2

≤ 2
∫

M
r̄−1φ|∇φ| +

∫
M

r̄−2φ2.

(n − 2)
∫

M
r̄−2φ2 ≤ 2

∫
M

r̄−1φ|∇φ|

≤ 2
(∫

M
r̄−2φ2

)1/2 (∫
M

|∇φ|2
)1/2

Hence,

(3.1)
∫

M
|∇φ|2 ≥ (n − 2)2

4

∫
M

r̄−2φ2 for all φ ∈ C+∞
o (M).

Let ρ(x) = (n−2)2
4 r̄−2(x), x ∈ M . Inequality (3.1) asserts the Poincaré

inequality holds with weight function ρ.
Further the metric ρds2 is complete. Indeed, take a fixed point p ∈ M

with p �= o. Let r(x), x ∈ M , denote the intrinsic distance from p. Note that
r̄(x) ≤ d̄(o, p) + d̄(x, p) ≤ r0 + r(x), where r0 = d̄(o, p) > 0. Then r̄−2(x) >
(r0 + r(x))−2. It is known that the metric (r0 + r(x))−2ds2 is complete.
Hence ρds2 is complete.

Thus we obtain that M has property (Pρ) for ρ.
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Example 3.2. Using smoothing technique, we may modify ρ = (n−2)2
4 r̄−2

in Example 3.1 to get a bounded smooth positive function ρ1(x) = ρ1(r̄(x)),
x ∈ M , such that M has property (Pρ) for ρ1.

Indeed, let positive number 0 < b ≤ r0 be fixed, we can choose number
a, 0 < a < b, such that function ζ(r̄) = (n−2)2

4 (r̄−2 − e−1/(r̄−b)2) is strictly
decreasing in (a, b) as r̄ tends increasingly to b and construct the smooth ρ1

ρ1(r̄(x)) =

⎧⎨
⎩

h(r̄) for r̄(x) ≤ a,
ζ(r̄) for a < r̄(x) < b,
ρ(r̄) for r̄(x) ≥ b,

where h(r̄) is chosen to be bounded and to satisfy ρ(r̄) ≥ h(r̄) ≥ ρ(b) for
r̄ ≤ a.

Observe that ρ1 ≤ ρ. Hence the Poincaré inequality holds for ρ1. More-
over, ρ1ds2 is complete since ρ1(x) ≥ (n−2)2

4 (r0 + r(x))−2. In fact, for r̄(x) ≥
b, ρ1 = ρ. Note that for r̄(x) < b, ρ1(r̄(x)) ≥ ρ(b) and 0 < b ≤ r0. Hence,
ρ1(r̄(x)) ≥ (n−2)2

4 (r0 + r(x))−2 for r̄(x) < b.

Example 3.3. Under the above notations, choose ρ2(x) = (n−2)2
4 (r0

+r(x))−2, x ∈ M . Since ρ2 ≤ ρ, Poincaré inequality holds with weight
function ρ2. By the completeness of the metric ρ2ds2, we know M has
property (Pρ) for ρ2.

Theorem 3.1 (Theorem 1.1). Let M be an n−2
n -stable complete minimal

hypersurface in R
n+1, n ≥ 3, and the norm of its second fundamental form

satisfies

lim
R→+∞

sup
B(R)

|A|/R(n−3)/2 = 0, for n ≥ 4;

lim
R→+∞

sup
B(R)

|A|/ln R = 0, for n = 3,(3.2)

then M either has one end or must be a catenoid.

Proof. For any point q ∈ M and any unit tangent vector v ∈ TqM , we can
choose an orthonormal frame {e1, e2, . . . , en} on M at q such that e1 = v.
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From the Gauss equation, we have

|A|2 ≥ h2
11 +

n∑
i=2

h2
ii + 2

n∑
i=1

h2
1i

≥ h2
11 +

(
∑n

i=2 hii)2

n − 1
+ 2

n∑
i=1

h2
1i

≥ n

n − 1

(
h2

11 +
n∑

i=2

h2
1i

)

≥ − n

n − 1
RicM (e1, e1).

(3.3)

Then RicM (v, v) ≥ −n−1
n |A|2.

Let us choose τ = |A|2
n and ρ = ρ1 (or ρ2) in Theorem 1.2. By the bound-

edness of ρ1 (or ρ2), the growth assumption (1.4) on ρ is satisfied. Now we
will assert that the growth assumption (1.5) on τ is also satisfied.

It can be verified directly that a minimizing geodesic starting from the
fixed point p with respect to ds2 is also a minimizing geodesic starting from
p with respect to ρ2ds2. Then by direct calculation, we have Bρ2(R̄) = B(R),
where R̄ = n−2

2 ln(1 + R
r0

). Then for n ≥ 4

lim
R̄→+∞

sup
Bρ2 (R̄)

|A|e−(n−3)/(n−2)R̄ = C lim
R→+∞

sup
B(R)

|A|R−(n−3)/2 = 0.(3.4)

For n = 3,

(3.5) lim
R̄→+∞

sup
Bρ2 (R̄)

|A|R̄−1 = C lim
R→+∞

sup
B(R)

|A|(ln R)−1 = 0.

If ρ = ρ1, by ρ1 ≥ ρ2, Bρ1(R̄) ⊆ Bρ2(R̄) and hence the growth assump-
tion on τ also holds for ρ1.

Therefore, the conclusion of Theorem 1.2 is valid. Let us assume that M
has at least two ends. Since every end of a complete non-compact minimal
hypersurface in R

n+1 is non-parabolic ( [1], see its proof also in [4]), by
Theorem 1.2, we know that M has exactly two non-parabolic ends and
M = R × N with the warped product metric

ds2
M = dt2 + η2(t)ds2

N ,
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for some compact manifold N and some positive function η(t). Moreover,
|A| is a function of t alone satisfying

(n − 2)η′′η−1 =
|A|
n

.

Hence, M has a rotationally symmetric metric. By a result of do Carmo
and Dajczer [5, Corollary 4.4], it implies that every part of M is a part
of a catenoid. Hence M is contained in a catenoid C by minimality of the
immersion. Since M is complete and the catenoid C is simply connected
because n ≥ 3, M must be an embedded hypersurface, see [15, p. 330]. Hence
M is the catenoid. �

Theorem 3.1 implies directly that

Corollary 3.1 (Corollary 1.1). Let M be an n−2
n -stable complete minimal

hypersurface in R
n+1, n ≥ 3, with at least two ends. If its second fundamental

form is bounded, then M must be a catenoid.
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