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Elliptic genera, transgression and loop space
Chern–Simons forms
Qingtao Chen and Fei Han

We compute the Chern–Simons transgressed forms of some charac-
teristic forms with modular properties, which are related to ellip-
tic genera. We study the modularity properties of these secondary
characteristic forms and the relations among them. We also com-
pute the Chern–Simons forms of some vector bundles over free loop
space.
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1. Introduction

Connections in vector bundles play a very important role in differential
geometry. The famous Chern–Weil theory relates connections to the the-
ory of characteristic classes, which provides a geometric way to understand
characteristic classes and therefore play a fundamental role in global differ-
ential geometry. Let ∇ be a connection on an n-dimensional real or complex
vector bundle E → M , where M is a compact smooth manifold. The basic
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local invariant of ∇ is its curvature, which is a closed 2-form with values
in the gl(n)-bundle associated to E. Invariant polynomials of the curvature
give us Chern–Weil characteristic forms, which are closed and thus represent
cohomology classes in the de Rham cohomology of M [8]. These classes do
not depend on the choice of the connections and are actually topological
invariants of E. Particular invariant polynomials give us the famous Chern
classes and Pontryagin classes.

The Chern-Simons theory studies the dependence of characteristic forms
on ∇, which, by transgression method, leads to secondary geometric invari-
ants, called the Chern–Simons forms. Chern and Simons [10] are led to
this theory by concrete geometric questions in combinatorial and conformal
geometry. Cheeger and Simons go further along this clue to define some
refined secondary invariants called the Cheeger-Simons differential charac-
ters [9]. It turns out that these secondary invariants are very useful in many
areas of mathematics and physics. For example, Witten [32] uses the sec-
ondary invariant associated to a particular characteristic form to construct
a topological quantum field theory in three dimension and obtains some
quantum invariants including the Jones polynomial of knots as well as new
invariants of 3-manifolds. The Chern–Simons forms or more generally the
geometric invariants of connections have special advantages to study flat
vector bundles. A flat bundle is the vector bundle equipped with a connec-
tion whose curvature vanishes identically. Hence, by the Chern–Weil theory,
all characteristic forms vanish. Thus we cannot read off any information
from this theory. However, based on the idea of Chern–Simons and the
method of transgression, one is able to construct certain cohomology classes
by using flat connections, which turn out to be useful tools to study flat
vector bundles. In Section 2 of this paper, we briefly review the method of
the Chern–Simons transgression and give Theorem 2.2, which serves as a
convenient tool to do transgressions on the characteristic forms that we are
going to use.

A lesson we have learned from the above stories is that one may apply the
Chern–Simons transgression to particularly chosen characteristic forms and
obtain interesting secondary characteristic forms, which might have poten-
tial applications. In this paper, we apply the Chern–Simons transgression to
some characteristic forms related to elliptic genera to derive secondary char-
acteristic characteristic forms with modular properties. The characteristic
forms that we use here are related to the theory of elliptic genera. Ocha-
nine [28] first introduced the notion of elliptic genera from the topological
point of view. He was motivated by a study of S1-action on Spin mani-
folds by Landweber and Stong [19], who attempted to answer a question
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raised by Witten [31] on rigidity of certain twisted Dirac operators on Spin
manifold. In [33] Witten reinterpreted the Landweber–Stong elliptic genus
as the index of the formal signature operator on loop space as well as intro-
duced the formal index of the Dirac operator on loop space (called the
Witten operator), which is the Witten genus. In Section 3 of this paper,
we apply the Chern–Weil theory to express the local indices of some formal
elliptic operators on loop spaces by connections (or curvatures), which are
characteristic forms with modular properties. Then in Section 4, we apply
the Chern–Simons transgression to these characteristic forms to obtain some
interesting secondary characteristic forms. Most of these secondary charac-
teristic forms have modular properties except for the one associated to the
Witten operator. However, it turns out that this specific secondary charac-
teristic form is a modular form over SL2(Z) when it is associated to two flat
connections on a flat manifold. Moreover, this secondary characteristic form
cannot be of weight 2 over SL2(Z), which agrees with the standard fact in the
theory of modular forms. As the original characteristic forms, the secondary
characteristic forms we obtain are also modularly related. We would like to
point out that the modularities of these secondary characteristic forms are
not a direct consequence of the modularities of the original characteristic
forms. See details in Section 4. We hope that these new geometric invariants
of connections with modularity properties obtained here could be applied
somewhere.

Motivated by string theory, people have been attempting to generalize
many things like vector bundles, Dirac operators, the Atiyah–Singer index
theory and so on to loop spaces. The relevant vector bundles over loop
space are constructed from ordinary finite-rank vector bundles V → M . For
example, in Section 5, we will consider vector bundles V and V ′ over loop
space:

V :=
∞⊗

j=1

Λ−qj−1/2(VC), V ′ :=
∞⊗

j=1

Λqj−1/2(VC).

As Witten remarked in his lecture notes [34] that physically, this analogue
is very important because it arises in heterotic string theory. Following [21],
in our discussion section (Section 5), we describe the Atiyah–Singer index
theory on loop spaces. Then for flat bundles on loop space, we compute
their Chern–Simons forms, which turn out to have modular properties.
This could be understood as certain generalization of the Chern–Simons
forms for flat bundles on finite-dimensional smooth manifolds to free loop
spaces.
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2. Construction of the Chern–Simons transgressed forms

Let us briefly review the construction of the Chern–Simons transgressed
forms in this section.

Let M be a compact smooth manifold and T ∗M denote the cotangent
bundle of M . We denote by Λ∗(T ∗M) the (complex) exterior algebra bundle
of T ∗M , and

Ω∗(M, C) � Γ(Λ∗(T ∗M))

the space of smooth sections of Λ∗(T ∗M). In particular, for any integer p
such that 0 ≤ p ≤ dim M , we denote by

Ωp(M, C) � Γ(Λp(T ∗M))

the space of smooth p-forms over M . Let E be a smooth complex vector
bundle over M . We denote by Ω∗(M ; E) the space of smooth sections of the
tensor product vector bundle Λ∗(T ∗M) ⊗ E obtained from Λ∗(T ∗M) and E,

Ω∗(M ; E) � Γ(Λ∗(T ∗M) ⊗ E).

Let End(E) be the bundle of endomorphisms of E. On Ω∗(M ; End(E)),
one can define a super Lie bracket (cf. [36]) by extending the Lie bracket
operation on End(E) as follows: if ω, η ∈ Ω∗(M) and A, B ∈ Γ(End(E)),
then we use the convention that

[ωA, ηB] = (ωA)(ηB) − (−1)(deg ω)(deg η)(ηB)(ωA).

It is not hard to see that: for any A, B ∈ Ω∗(M ; End(E)), the trace of [A, B]
vanishes (cf. [32, Lemma 1.7]).

Let ∇E be a connection on E and A ∈ Ω∗(M ; End(E)). One has the
following result.

Lemma 2.1 (cf. [36, Lemma 1.8]). The following identity holds,

(2.1) d tr[A] = tr[[∇E , A]].

Let
f(x) = a0 + a1x + · · · + anxn + · · ·

be a power series in one variable. Let RE = (∇E)2 be the curvature of ∇E on
E. The trace of f(RE) is an element in Ω∗(M, C). A form of the Chern–Weil
theorem (cf. [32, Theorem 1.9]) can be stated as follows.
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Theorem 2.1. (1) The form tr[f(RE)] is closed. That is,

d tr[f(RE)] = 0;

(2) If ∇̃E is another connection on E and R̃E is its curvature. For
any t ∈ [0, 1], let ∇E

t be the deformed connection on E given by ∇E
t = (1 −

t)∇E + t∇̃E . Let RE
t , t ∈ [0, 1], denote the curvature of ∇E

t . Let f ′(x) be the
power series obtained from the derivative of f(x) with respect to x. Then the
following identity holds,

(2.2) tr[f(R̃E)] − tr[f(RE)] = d

∫ 1

0
tr

[
d∇E

t

dt
f ′(RE

t )
]

dt.

Proof. (1) From Lemma 2.1, one verifies directly that

d tr[f(RE)] = tr[[∇E , f(RE)]]

= tr[a1[∇E , RE ] + · · · + an[∇E , (RE)n] + · · · ] = 0,

as for any integer k ≥ 0 one has the obvious Bianchi identity

(2.3) [∇E , (RE)k] = [∇E , (∇E)2k] = 0.

(2) Note that ∇E
t is a connection on E such that ∇E

0 = ∇E and ∇E
1 =

∇̃E . Moreover,

d∇E
t

dt
= ∇̃E − ∇E ∈ Ω1(M, End(E)).

We deduce that

d

dt
tr

[
f(RE

t )
]

= tr
[
dRE

t

dt
f ′(RE

t )
]

= tr
[
d(∇E

t )2

dt
f ′(RE

t )
]

= tr
[[

∇E
t ,

d∇E
t

dt

]
f ′(RE

t )
]

= tr
[[

∇E
t ,

d∇E
t

dt
f ′(RE

t )
]]

,

where the last equality follows from the Bianchi identity (2.3).
Combining with Lemma 2.1, we have

(2.4)
d

dt
tr

[
f(RE

t )
]

= d tr
[
d∇E

t

dt
f ′(RE

t )
]

,
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from which one obtains

tr[f(R̃E)] − tr[f(RE)] = d

∫ 1

0
tr

[
d∇E

t

dt
f ′(RE

t )
]

dt.
�

The transgressed term

(2.5)
∫ 1

0
tr

[
d∇E

t

dt
f ′(RE

t )
]

dt

is usually called a Chern–Simons term.
In particular, let M be a 3-dimensional oriented compact smooth mani-

fold. It is known that TM is trivial. If we take ∇TM
0 to be the trivial connec-

tion dTM associated to some global basis of Γ(TM) and ∇TM
1 = dTM + A,

(2.5) gives us the well-known Chern–Simons form (cf. [10, 36])

(2.6) CS(A) � tr[A ∧ dTMA + 2
3A ∧ A ∧ A],

which plays a very important role in quantum field theory and low-
dimensional topology [32].

In this paper, we are going to use the following theorem, which we obtain
by modifying Theorem 2.1.

Theorem 2.2. Assume a0 	= 0. The following identity holds,

det1/2(f(R̃E)) − det1/2(f(RE))

= d

∫ 1

0

1
2

det1/2(f(RE
t )) tr

[
d∇E

t

dt

f ′(RE
t )

f(RE
t )

]
dt.(2.7)

Proof. Observe that det1/2(f(RE
t )) = e(1/2) tr[ln f(RE

t )]. Hence by (2.4),

d

dt
det1/2(f(RE

t )) =
d

dt
e(1/2) tr[ln f(RE

t )]

=
1
2

e(1/2) tr[ln f(RE
t )] d

dt
tr[ln f(RE

t )]

=
1
2

e(1/2) tr[ln f(RE
t )]d tr

[
d∇E

t

dt

f ′(RE
t )

f(RE
t )

]

= d

{
1
2

e(1/2) tr[ln f(RE
t )] tr

[
d∇E

t

dt

f ′(RE
t )

f(RE
t )

]}

= d

{
1
2

det1/2(f(RE
t )) tr

[
d∇E

t

dt

f ′(RE
t )

f(RE
t )

]}
.

(2.8)

Therefore (2.7) follows. �
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Remark 2.1. In the above Theorem 2.1(2) and Theorem 2.2, one can
actually choose different paths connecting the two connections ∇0 and ∇1.
The corresponding Chern–Simons terms then differ by an exact form. A good
reference is Theorem B.5.4 in [26]. The path (1 − t)∇E + t∇̃E , 0 ≤ t ≤ 1 is
the canonical path.

3. The Chern–Weil forms for elliptic genera

In this section, we identify the Chern–Weil forms of some important elliptic
genera.

Let M be a Riemannian manifold. Let ∇TM be the associated Levi-
Civita connection on TM and RTM = (∇TM )2 be the curvature of ∇TM .
Let Â(TM, ∇TM ) and L(TM, ∇TM ) be the Hirzebruch characteristic forms
defined, respectively, by (cf. [36])

Â(TM, ∇TM ) = det1/2

(
(
√

−1/4π)RTM

sinh
(
(
√

−1/4π)RTM
)
)

,

L(TM, ∇TM ) = det1/2

(
(
√

−1/2π)RTM

tanh
(
(
√

−1/2π)RTM
)
)

.

(3.1)

Let E, F be two Hermitian vector bundles over M carrying Hermitian
connections ∇E , ∇F , respectively. Let RE = (∇E)2 (resp. RF = (∇F )2) be
the curvature of ∇E (resp. ∇F ). If we set the formal difference G = E − F ,
then G carries an induced Hermitian connection ∇G in an obvious sense.
We define the associated Chern character form as (cf. [36])

(3.2) ch(G, ∇G) = tr
[
exp

(√
−1
2π

RE

)]
− tr

[
exp

(√
−1
2π

RF

)]
.

Sometimes we also need to use the following modified Chern character (cf.
[11])

(3.3) c̃h(G, ∇G) = tr
[
exp

(√
−1
π

RE

)]
− tr

[
exp

(√
−1
π

RF

)]
.

For any complex number t, let

Λt(E) = C|M + tE + t2Λ2(E) + · · · , St(E) = C|M + tE + t2S2(E) + · · ·
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denote, respectively, the total exterior and symmetric powers of E, which
live in K(M)[[t]]. The following relations between these two operations
[3, Chapter 3] hold,

(3.4) St(E) =
1

Λ−t(E)
, Λt(E − F ) =

Λt(E)
Λt(F )

.

The connections ∇E ,∇F naturally induce connections on StE, ΛtE, etc.
Moreover, if {ωi}, {ωj

′} are formal Chern roots for Hermitian vector bundles
E, F , respectively, then [15, Chapter 1]

(3.5) ch
(
Λt(E),∇Λt(E)

)
=

∏

i

(1 + eωit).

Therefore, we have the following formulas for Chern character forms:

ch(St(E),∇St(E)) =
1

ch(Λ−t(E),∇Λ−t(E))
=

1∏
i(1 − eωit)

,(3.6)

ch(Λt(E − F ),∇Λt(E−F )) =
ch(Λt(E),∇Λt(E))
ch(Λt(F ),∇Λt(F ))

=
∏

i(1 + eωit)∏
j(1 + eωj

′t)
.(3.7)

If W is a real Euclidean vector bundle over M carrying a Euclidean
connection ∇W , then its complexification WC = W ⊗ C is a complex vector
bundle over M carrying a canonically induced Hermitian metric from that
of W , as well as a Hermitian connection ∇WC induced from ∇W . If E is a
vector bundle (complex or real) over M , set Ẽ = E − dim E in K(M) or
KO(M).

Let q = e2π
√

−1τ with τ ∈ H, the upper half complex plane. Set (cf. [20,
33])

Θ1(TCM) =
∞⊗

n=1

Sqn(T̃CM) ⊗
∞⊗

m=1

Λqm(T̃CM),(3.8)

Θ2(TCM) =
∞⊗

n=1

Sqn(T̃CM) ⊗
∞⊗

m=1

Λ−qm−1/2(T̃CM),(3.9)

Θ3(TCM) =
∞⊗

n=1

Sqn(T̃CM) ⊗
∞⊗

m=1

Λqm−1/2(T̃CM),(3.10)

Θ(TCM) =
∞⊗

n=1

Sqn(T̃CM).(3.11)
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Θ1(TCM), Θ2(TCM), Θ3(TCM) and Θ(TCM) admit formal Fourier
expansion in q1/2 as

Θ1(TCM) = A0(TCM) + A1(TCM)q1/2 + · · ·,(3.12)

Θ2(TCM) = B0(TCM) + B1(TCM)q1/2 + · · ·,(3.13)

Θ3(TCM) = C0(TCM) + C1(TCM)q1/2 + · · ·,(3.14)

Θ(TCM) = D0(TCM) + D1(TCM)q1/2 + · · ·,(3.15)

where the Aj ’s, Bj ’s, Cj ’s and Dj ’s are elements in the semi-group formally
generated by complex vector bundles over M . Moreover, they carry canoni-
cally induced connections denoted by ∇Aj , ∇Bj , ∇Cj and ∇Dj , respectively,
and let ∇Θi(TCM), ∇Θ(TCM) be the induced connections with q1/2-coefficients
on Θi, Θ from the ∇Aj , ∇Bj , ∇Cj and ∇Dj .

If ω is a differential form on M , we denote by ω(i) its degree i component.

Definition 3.1.

(3.16) ΦL(∇TM , τ) � L(TM, ∇TM ) c̃h(Θ1(TCM),∇Θ1(TCM))

is called the Landweber–Stong form of M with respect to ∇TM;

ΦW(∇TM , τ) � Â(TM, ∇TM )ch(Θ2(TCM),∇Θ2(TCM)),(3.17)

Φ′
W(∇TM , τ) � Â(TM, ∇TM ) ch(Θ3(TCM),∇Θ3(TCM)),(3.18)

ΨW(∇TM , τ) � Â(TM, ∇TM ) ch(Θ(TCM),∇Θ(TCM))(3.19)

are called the Witten forms of M with respect to ∇TM .

The four Jacobi theta functions are defined as follows (cf. [7]):

θ(v, τ) = 2q1/8 sin(πv)
∞∏

j=1

[(1 − qj)(1 − e2π
√

−1vqj)(1 − e−2π
√

−1vqj)],

(3.20)

θ1(v, τ) = 2q1/8 cos(πv)
∞∏

j=1

[(1 − qj)(1 + e2π
√

−1vqj)(1 + e−2π
√

−1vqj)],

(3.21)
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θ2(v, τ) =
∞∏

j=1

[(1 − qj)(1 − e2π
√

−1vqj−1/2)(1 − e−2π
√

−1vqj−1/2)],

(3.22)

θ3(v, τ) =
∞∏

j=1

[(1 − qj)(1 + e2π
√

−1vqj−1/2)(1 + e−2π
√

−1vqj−1/2)].

(3.23)

They are all holomorphic functions for (v, τ) ∈ C × H, where C is the com-
plex plane and H is the upper half plane.

Let θ′(0, τ) = ∂
∂vθ(v, τ)|v=0. The Jacobi identity [7],

θ′(0, τ) = πθ1(0, τ)θ2(0, τ)θ3(0, τ)

holds.
Applying the Chern–Weil theory, we can express the Landweber–Stong

forms and the Witten forms in terms of theta functions and curvatures,
which look new in the literature (cf. [16, 20,23,36]).

Proposition 3.1. The following identities hold:

ΦL(∇TM , τ) = det1/2
(

RTM

2π2
θ′(0, τ)

θ(RTM/2π2, τ)
θ1(RTM/2π2, τ)

θ1(0, τ)

)
,(3.24)

ΦW(∇TM , τ) = det1/2
(

RTM

4π2
θ′(0, τ)

θ(RTM/4π2, τ)
θ2(RTM/4π2, τ)

θ2(0, τ)

)
,(3.25)

Φ′
W(∇TM , τ) = det1/2

(
RTM

4π2
θ′(0, τ)

θ(RTM/4π2, τ)
θ3(RTM/4π2, τ)

θ3(0, τ)

)
,(3.26)

ΨW(∇TM , τ) = det1/2
(

RTM

4π2
θ′(0, τ)

θ(RTM/4π2, τ)

)
.(3.27)

Let

SL2(Z) :=
{(

a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad − bc = 1
}

as usual be the modular group. Let

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)

be the two generators of SL2(Z). Their actions on H are given by

S : τ → −1
τ
, T : τ → τ + 1.
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Let

Γ0(2) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod 2)
}

,

Γ0(2) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ b ≡ 0 (mod 2)
}

,

Γθ =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣

(
a b
c d

)
≡

(
1 0
0 1

)
or

(
0 1
1 0

)
(mod 2)

}

be the three modular subgroups of SL2(Z). It is known that the generators
of Γ0(2) are T, ST 2ST , the generators of Γ0(2) are STS, T 2STS and the
generators of Γθ are S, T 2. (cf. [7]).

If we act theta-functions by S and T , the theta functions obey the fol-
lowing transformation laws (cf. [7]):

θ(v, τ + 1) = eπ
√

−1/4θ(v, τ),

θ(v,−1/τ) =
1√
−1

(
τ√
−1

)1/2

eπ
√

−1τv2
θ (τv, τ);

(3.28)

θ1(v, τ + 1) = eπ
√

−1/4θ1(v, τ),

θ1 (v,−1/τ) =
(

τ√
−1

)1/2

eπ
√

−1τv2
θ2(τv, τ);

(3.29)

θ2(v, τ + 1) = θ3(v, τ), θ2 (v,−1/τ) =
(

τ√
−1

)1/2

eπ
√

−1τv2
θ1(τv, τ);

(3.30)

θ3(v, τ + 1) = θ2(v, τ), θ3 (v,−1/τ) =
(

τ√
−1

)1/2

eπ
√

−1τv2
θ3(τv, τ).

(3.31)

Definition 3.2. Let Γ be a subgroup of SL2(Z). A modular form over Γ is
a holomorphic function f(τ) on H ∪ {∞} such that for any

g =
(

a b
c d

)
∈ Γ,

the following property holds

f(gτ) := f

(
aτ + b

cτ + d

)
= χ(g)(cτ + d)kf(τ),
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where χ : Γ → C∗ is a character of Γ and k is called the weight of f .

If Γ is a modular subgroup, let MR(Γ) denote the ring of modular forms
over Γ with real Fourier coefficients. Writing simply θj = θj(0, τ), 1 ≤ j ≤ 3,
we introduce six explicit modular forms (cf. [18, 20]),

δ1(τ) = 1
8(θ4

2 + θ4
3), ε1(τ) = 1

16θ4
2θ

4
3,

δ2(τ) = −1
8(θ4

1 + θ4
3), ε2(τ) = 1

16θ4
1θ

4
3,

δ3(τ) = 1
8(θ4

1 − θ4
2), ε3(τ) = − 1

16θ4
1θ

4
2.

They have the following Fourier expansions in q1/2:

δ1(τ) = 1
4 + 6q + 6q2 + · · · , ε1(τ) = 1

16 − q + 7q2 + · · · ,

δ2(τ) = −1
8 − 3q1/2 − 3q + · · · , ε2(τ) = q1/2 + 8q + · · · ,

δ3(τ) = −1
8 + 3q1/2 − 3q + · · · , ε3(τ) = −q1/2 + 8q + · · · ,

where the “· · · ” terms are the higher degree terms, all of which have integral
coefficients. They also satisfy the transformation laws (cf. [18, 20,21]),

δ2

(
−1

τ

)
= τ2δ1(τ), ε2

(
−1

τ

)
= τ4ε1(τ).(3.32)

δ2 (τ + 1) = δ3(τ), ε2 (τ + 1) = ε3(τ).(3.33)

Lemma 3.1 (cf. [20]). One has that δ1(τ) (resp. ε1(τ)) is a modular form
of weight 2 (resp. 4) over Γ0(2), δ2(τ) (resp. ε2(τ)) is a modular form of
weight 2 (resp. 4) over Γ0(2), while δ3(τ) (resp. ε3(τ)) is a modular form of
weight 2 (resp. 4) over Γθ(2) and, moreover, MR(Γ0(2)) = R[δ2(τ), ε2(τ)].

Acting the transformations S, T on the Landweber–Stong forms and the
Witten forms, we have (cf. [14, 20,21])

Proposition 3.2. For any integer i ≥ 0, one has that

(1)
{
ΦL(∇TM , τ)

}(4i) is a modular form of weight 2i over Γ0(2);
{
ΦW(∇TM , τ)

}(4i) is a modular form of weight 2i over Γ0(2);
{
Φ′

W(∇TM , τ)
}(4i) is a modular form of weight 2i over Γθ;

moreover, if the first Pontryagin form p1(M, ∇TM ) = 0, then
{
ΨW(∇TM , τ)

}(4i) is a modular form of weight 2i over SL2(Z).
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(2) The following equalities hold:

{
ΦL(∇TM ,−1/τ)

}(4i)
= (2τ)2i

{
ΦW(∇TM , τ)

}(4i)
,(3.34)

ΦW(∇TM , τ + 1) = Φ′
W(∇TM , τ).(3.35)

The modularities in Proposition 3.2 have some interesting applications.
For example, let M be 12-dimensional and i = 3.

{
ΦL(∇TM , τ)

}(12) is a
modular form of weight 6 over Γ0(2),

{
ΦW(∇TM , τ)

}(12) is a modular form
of weight 6 over Γ0(2) and

{
ΦL(∇TM ,−1/τ)

}(12)
= (2τ)6

{
ΦW(∇TM , τ)

}(12)
.

Then by Lemma 3.1, we have

(3.36)
{
ΦW(∇TM , τ)

}(12)
= h0(8δ2)3 + h1(8δ2)ε2,

and by (3.32) and (3.34),

(3.37)
{
ΦL(∇TM , τ)

}(12)
= 26[h0(8δ1)3 + h1(8δ1)ε1],

where by comparing the q1/2-expansion coefficients in (3.36), h0 = −{Â(TM,
∇TM )}(12) and h1 = {60Â(TM, ∇TM ) + Â(TM, ∇TM )ch(TCM, ∇TCM}(12).
Then comparing the constant coefficients of the q-expansions of both sides of
(3.37), one obtains that {L(TM, ∇TM )}(12) = 23(26h0 + h1), consequently

{L(TM, ∇TM )}(12) = {8Â(TM, ∇TM ) ch(TCM, ∇TCM )

− 32Â(TM, ∇TM )}(12),
(3.38)

which is just the gravitational anomaly cancellation formula derived by
Alvarez-Gaumé and Witten [1] from very nontrivial computations. Liu [20]
generalizes the miraculous cancellation formula (3.38) to arbitrary 8k + 4-
dimensional smooth manifolds by developing modular invariance properties
of characteristic forms. Formulas of this type have interesting applications in
the study of divisibility and congruence phenomena for characteristic num-
bers. We refer interested readers to [4, 12,13,20,27,35].

Let M be a 4k-dimensional closed oriented smooth manifold and [M ]
is the fundamental class. φL(M, τ) � 〈ΦL(∇TM , τ), [M ]〉 is a modular form
of weight 2k over Γ0(2) with integral q-expansion coefficients and called
the Landweber–Stong genus of M . φW(M, τ) � 〈ΦW(∇TM , τ), [M ]〉 and φ′

W
(M, τ) � 〈Φ′

W(∇TM , τ), [M ]〉 are modular forms of weight 2k over Γ0(2) and
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Γθ, respectively. If the first Pontryagin class of M vanishes, then ψW(M, τ) �
〈ΨW(∇TM , τ), [M ]〉 is a modular form over SL2(Z). They are modular forms
with rational q-expansion coefficients and called the Witten genera of M .
These are all examples of the elliptic genera, which were first defined by
Ochanine [28].

Let ds be the signature operator of M . According to the Atiyah–Singer
index theorem, we can express the Landweber–Stong genus analytically by
the index of the twisted signature operator as

φL(M, τ) = Ind(ds ⊗ Θ1(TCM)).

Moreover, let M be spin and D be the Atiyah–Singer Dirac operator over
M . The Witten genera can also be analytically expressed by the indices of
the twisted Dirac operators as follows:

φW(M, τ) = Ind(D ⊗ Θ2(TCM)),
φ′

W(M, τ) = Ind(D ⊗ Θ3(TCM)),
ψW(M, τ) = Ind(D ⊗ Θ(TCM)).

Heuristically, these twisted operators are viewed as elliptic operators on the
smooth loop space LM from the view point of string theory. See details
in Section 5. The elliptic operators ds ⊗ Θ1(TCM), D ⊗ Θ2(TCM) and D ⊗
Θ3(TCM) are all rigid according to the Witten rigidity theorem, which is
proved by Taubes [30], Bott and Taubes [6] and Liu [22].

4. Modular transgressions

Consider the following functions defined on C × H:

fΦL(z, τ) = 2z
θ′(0, τ)
θ(2z, τ)

θ1(2z, τ)
θ1(0, τ)

,

fΦW(z, τ) = z
θ′(0, τ)
θ(z, τ)

θ2(z, τ)
θ2(0, τ)

,

fΦ′
W

(z, τ) = z
θ′(0, τ)
θ(z, τ)

θ3(z, τ)
θ3(0, τ)

,

fΨW(z, τ) = z
θ′(0, τ)
θ(z, τ)

.
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For the 4k-dimensional manifold M , by Proposition 3.1, we have

ΦL(∇TM , τ) = det1/2
(

fΦL

(
RTM

4π2 , τ

))
,

ΦW(∇TM , τ) = det1/2
(

fΦW

(
RTM

4π2 , τ

))
,

Φ′
W(∇TM , τ) = det1/2

(
fΦ′

W

(
RTM

4π2 , τ

))
,

ΨW(∇TM , τ) = det1/2
(

fΨW

(
RTM

4π2 , τ

))
.

From now on, let M be a 4k − 1-dimensional smooth manifold. Let
∇TM

i , i = 0, 1 be two connections on TM and RTM
i , i = 0, 1 be their cur-

vatures, respectively. Let ∇TM
t = (1 − t)∇TM

0 + t∇TM
1 and RTM

t be the cor-
responding curvature. Let A = ∇1 − ∇0 ∈ Ω1(M, End(TM)).

By Theorem 2.2, one has

det1/2
(

fΦL

(
RTM

1
4π2 , τ

))
− det1/2

(
fΦL

(
RTM

0
4π2 , τ

))

= d

∫ 1

0

1
8π2 det1/2

(
fΦL

(
RTM

t

4π2 , τ

))
tr

[
A

f ′
ΦL

(RTM
t /4π2, τ)

fΦL(RTM
t /4π2, τ)

]
dt.

(4.1)

We define

CS ΦL(∇TM
0 ,∇TM

1 , τ)

� 1
4π2

∫ 1

0
ΦL(∇TM

t , τ) tr

×
[
A

(
1

RTM
t /2π2 − θ′(RTM

t /2π2, τ)
θ(RTM

t /2π2, τ)
+

θ′
1(R

TM
t /2π2, τ)

θ1(RTM
t /2π2, τ)

)]
dt,

(4.2)

which is in Ωodd(M, C)[[q]]. Since M is 4k − 1-dimensional, {CS ΦL(∇TM
0 ,

∇TM
1 , τ)}(4k−1) represents an element in H4k−1(M, C)[[q]].
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Similarly, we can compute the transgressed forms for ΦW, Φ′
W and ΨW,

respectively, and define

CS ΦW(∇TM
0 ,∇TM

1 , τ)

� 1
8π2

∫ 1

0
ΦW(∇TM

t , τ)

× tr
[
A

(
1

RTM
t /4π2 − θ′(RTM

t /4π2, τ)
θ(RTM

t /4π2, τ)
+

θ′
2(R

TM
t /4π2, τ)

θ2(RTM
t /4π2, τ)

)]
dt,

(4.3)

CS Φ′
W(∇TM

0 ,∇TM
1 , τ)

� 1
8π2

∫ 1

0
Φ′

W(∇TM
t , τ)

× tr
[
A

(
1

RTM
t /4π2 − θ′(RTM

t /4π2, τ)
θ(RTM

t /4π2, τ)
+

θ′
3(R

TM
t /4π2, τ)

θ3(RTM
t /4π2, τ)

)]
dt,

(4.4)

and

CS ΨW(∇TM
0 ,∇TM

1 , τ)

� 1
8π2

∫ 1

0
ΨW(∇TM

t , τ)

× tr
[
A

(
1

RTM
t /4π2 − θ′(RTM

t /4π2, τ)
θ(RTM

t /4π2, τ)

)]
dt,

(4.5)

which lie in Ωodd(M, C)[[q1/2]] and their top degree components represent
elements in H4k−1(M, C)[[q1/2]].

Remark 4.1. In (4.2) to (4.5) and in the following, to make sense, 1
z −

θ′(z,τ)
θ(z,τ) should be understood as the z-expansion of [θ(z,τ)−zθ′(z,τ)]/z2

θ(z,τ)/z , where
both the numerator and the denominator have nonzero constant terms in
their z-expansions.

Equality (4.1) and the modular invariance properties of det1/2(
fΦL

(
RT M

1
4π2 , τ

))
, det1/2

(
fΦL

(
RT M

0
4π2 , τ

))
are not enough to guarantee that

CS ΦL(∇TM
0 ,∇TM

1 , τ) is a modular form. Actually (CS ΦL(∇TM
0 ,∇TM

1 , τ)+
any closed form) will also satisfy (4.1). This is also true for other transgressed
forms (4.3)–(4.5). However, we do have the following results.
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Theorem 4.1. Let M be a 4k − 1-dimensional smooth manifold and ∇TM
0 ,

∇TM
1 be two connections on TM, then for integer i, 1 ≤ i ≤ k, we have

(1)
{
CS ΦL(∇TM

0 ,∇TM
1 , τ)

}(4i−1) is a modular form of weight 2i over
Γ0(2);
{
CS ΦW(∇TM

0 ,∇TM
1 , τ)

}(4i−1) is a modular form of weight 2i over
Γ0(2);
{
CS Φ′

W(∇TM
0 ,∇TM

1 , τ)
}(4i−1) is a modular form of weight 2i over Γθ.

(2) The following equalities hold:

{
CS ΦL(∇TM

0 ,∇TM
1 ,−1/τ)

}(4i−1)
= (2τ)2i

{
CS ΦW(∇TM

0 ,∇TM
1 , τ)

}(4i−1)
,

CS ΦW(∇TM
0 ,∇TM

1 , τ + 1) = CS Φ′
W(∇TM

0 ,∇TM
1 , τ).

Proof. Differentiating the transformation formulas (3.28) to (3.31), we
obtain that

θ′(v, τ + 1) = eπ
√

−1/4θ′(v, τ),

θ′ (v,−1/τ) =
1√
−1

(
τ√
−1

)1/2

eπ
√

−1τv2
(2π

√
−1τvθ (τv, τ) + τθ′(τv, τ));

θ′
1(v, τ + 1) = eπ

√
−1/4θ′

1(v, τ),

θ′
1 (v,−1/τ) =

(
τ√
−1

)1/2

eπ
√

−1τv2
(2π

√
−1τvθ2 (τv, τ) + τθ′

2(τv, τ));

θ′
2(v, τ + 1) = θ′

3(v, τ),

θ′
2 (v,−1/τ) =

(
τ√
−1

)1/2

eπ
√

−1τv2
(2π

√
−1τvθ1 (τv, τ) + τθ′

1(τv, τ));

θ′
3(v, τ + 1) = θ′

2(v, τ),

θ′
3 (v,−1/τ) =

(
τ√
−1

)1/2

eπ
√

−1τv2
(2π

√
−1τvθ3 (τv, τ) + τθ′

3(τv, τ)).

(4.6)

Therefore

(4.7) θ′ (0,−1/τ) =
1√
−1

(
τ√
−1

)1/2

τθ′(0, τ).
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By (3.28), (3.29) and (4.7), we have

2z
θ′(0,−1/τ)
θ(2z,−1/τ)

θ1(2z,−1/τ)
θ1(0,−1/τ)

= 2z
(1/

√
−1)(τ/

√
−1)1/2τθ′(0, τ)

(1/
√

−1)(τ/
√

−1)1/2eπ
√

−1τ(2z)2θ (2τz, τ)

× (τ/
√

−1)1/2eπ
√

−1τ(2z)2θ2(2τz, τ)
(τ/

√
−1)1/2θ2(0, τ)

= 2τz
θ′(0, τ)

θ (2τz, τ)
θ2(2τz, τ)
θ2(0, τ)

.

(4.8)

By (3.28), (3.29) and (4.6), one has

1
2z

− θ′(2z,−1/τ)
θ(2z,−1/τ)

+
θ′
1(2z,−1/τ)

θ1(2z,−1/τ)

=
1
2z

−

(1/
√

−1)(τ/
√

−1)1/2eπ
√

−1τ(2z)2(2π
√

−1(2τz)θ (2τz, τ)
+τθ′(2τz, τ))

(1/
√

−1)(τ/
√

−1)1/2eπ
√

−1τ(2z)2θ (2τz, τ)

+

(
τ/

√
−1

)1/2 eπ
√

−1τ(2z)2(2π
√

−1(2τz)θ2 (2τz, τ) + τθ′
2(2τz, τ))

(
τ/

√
−1

)1/2 eπ
√

−1τ(2z)2θ2(2τz, τ)

=
1
2z

− 2π
√

−1(2τz) − τ
θ′ (2τz, τ)
θ (2τz, τ)

+ 2π
√

−1(2τz) + τ
θ′
2 (2τz, τ)

θ2 (2τz, τ)

= τ

(
1

2τz
− θ′ (2τz, τ)

θ (2τz, τ)
+

θ′
2 (2τz, τ)

θ2 (2τz, τ)

)
.

(4.9)

Therefore

CS ΦL(∇TM
0 ,∇TM

1 ,−1/τ)

=
1

4π2

∫ 1

0
det1/2

(
fΦL

(
RTM

t

4π2 ,−1/τ

))

× tr
[
A

(
1

RTM
t /2π2 − θ′(RTM

t /2π2,−1/τ)
θ(RTM

t /2π2,−1/τ)
+

θ′
1(R

TM
t /2π2,−1/τ)

θ1(RTM
t /2π2,−1/τ)

)]
dt

=
2τ

8π2

∫ 1

0
det1/2

(
fΦW

(
2τRTM

t

4π2 , τ

))

× tr
[
A

(
1

2τRTM
t /4π2 − θ′(2τRTM

t /4π2, τ)
θ(2τRTM

t /4π2, τ)
+

θ′
2(2τRTM

t /4π2, τ)
θ2(2τRTM

t /4π2, τ)

)]
dt.

(4.10)
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Note that the (4i − 1) component of the right-hand side of (4.10) consists
of terms like

∫ 1

0
tr

[(
2τRTM

t

4π2

)p1]
· · · tr

[(
2τRTM

t

4π2

)ps
]

tr
[
A

(
2τRTM

t

4π2

)q]
dt,

where 2p1 + · · · + 2ps + 2q + 1 = 4i − 1, i.e., p1 + · · · + ps + q = 2i − 1 due
to the fact that A ∈ Ω1(M, End(TM)) and RTM

t ∈ Ω2(M, End(TM)). Hence
we have

{
CS ΦL(∇TM

0 ,∇TM
1 ,−1/τ)

}(4i−1)

=
{

2τ

8π2

∫ 1

0
det1/2

(
fΦW

(
2τRTM

t

4π2 , τ

))
tr

[
A

(
1

2τRTM
t /4π2

− θ′(2τRTM
t /4π2, τ)

θ(2τRTM
t /4π2, τ)

+
θ′
2(2τRTM

t /4π2, τ)
θ2(2τRTM

t /4π2, τ)

)]
dt

}(4i−1)

= (2τ)1+2i−1
{

1
8π2

∫ 1

0
ΦW(∇TM

t , τ)tr
[
A

(
1

RTM
t /4π2

− θ′(RTM
t /4π2, τ)

θ(RTM
t /4π2, τ)

+
θ′
2(R

TM
t /4π2, τ)

θ2(RTM
t /4π2, τ)

)]
dt

}(4i−1)

= (2τ)2i
{
CS ΦW(∇TM

0 ,∇TM
1 , τ)

}(4i−1)
.

(4.11)

Similarly, applying the transformation laws (3.28) to (3.31) and (4.6),
we can show that

CS ΦL(∇TM
0 ,∇TM

1 , τ + 1) = CS ΦL(∇TM
0 ,∇TM

1 , τ),

{CS ΦW(∇TM
0 ,∇TM

1 ,−1/τ)}(4i−1) =
(τ

2

)2i
{CS ΦL(∇TM

0 ,∇TM
1 , τ)}(4i−1),

CS ΦW(∇TM
0 ,∇TM

1 , τ + 1) = CS Φ′
W(∇TM

0 ,∇TM
1 , τ),

{CS Φ′
W(∇TM

0 ,∇TM
1 ,−1/τ)}(4i−1) = τ2i{CS Φ′

W(∇TM
0 ,∇TM

1 , τ)}(4i−1),

CS Φ′
W(∇TM

0 ,∇TM
1 , τ + 1) = CS ΦW(∇TM

0 ,∇TM
1 , τ).

(4.12)
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Acting ST 2ST to CS ΦL(∇TM
0 ,∇TM

1 , τ), we can see from (4.11) and
(4.12) that

{
CS ΦL(∇TM

0 ,∇TM
1 , ST 2STτ)

}(4i−1)

=
{
CS ΦL(∇TM

0 ,∇TM
1 , S(T 2STτ))

}(4i−1)

= (2T 2STτ)2i
{
CS ΦW(∇TM

0 ,∇TM
1 , (T 2STτ))

}(4i−1)

= (2T 2STτ)2i
{
CS Φ′

W(∇TM
0 ,∇TM

1 , (TSTτ))
}(4i−1)

= (2T 2STτ)2i
{
CS ΦW(∇TM

0 ,∇TM
1 , (STτ))

}(4i−1)

= (2T 2STτ)2i

(
Tτ

2

)2i {
CS ΦL(∇TM

0 ,∇TM
1 , (Tτ))

}(4i−1)

=
(

2
2τ + 1
τ + 1

)2i (τ + 1
2

)2i {
CS ΦL(∇TM

0 ,∇TM
1 , (Tτ))

}(4i−1)

= (2τ + 1)2i
{
CS ΦL(∇TM

0 ,∇TM
1 , τ)

}(4i−1)
.

(4.13)

Note that ST 2STτ = − τ+1
2τ+1 . By the first equality in (4.12) and (4.13),

we see that
{
CS ΦL(∇TM

0 ,∇TM
1 , τ)

}(4i−1) is modular invariance under the
actions of T and ST 2ST , which form a basis for Γ0(2). Thus {CS ΦL(∇TM

0 ,
∇TM

1 , τ)}(4i−1) is a modular form of weight 2i over Γ0(2).
We can similarly show that

{
CS ΦW(∇TM

0 ,∇TM
1 , τ)

}(4i−1) is a modular
form of weight 2i over Γ0(2) and

{
CS Φ′

W(∇TM
0 ,∇TM

1 , τ)
}(4i−1) is a modular

form of weight 2i over Γθ. �

Remark 4.2. From the proof of the above theorem, it is not hard to
see that if we use another path connecting ∇TM

0 and ∇TM
1 instead of the

canonical path (1 − t)∇TM
0 + t∇TM

1 , 0 ≤ t ≤ 1, we still get relevant modular
Chern–Simons terms, which differ by exact forms (also modular!) from the
above canonical Chern–Simons terms, respectively.

Let us take a look at a concrete example. Let M be a compact oriented
smooth 3-dimensional manifold. We have

CS ΦL(∇TM
0 ,∇TM

1 , τ)

=
1

4π2

∫ 1

0
ΦL(∇TM , τ)tr

[
A

(
1

RTM
t /2π2 − θ′(RTM

t /2π2, τ)
θ(RTM

t /2π2, τ)

+
θ′
1(R

TM
t /2π2, τ)

θ1(RTM
t /2π2, τ)

)]
dt
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=
1

4π2

∫ 1

0
tr

[
A

(
1

RTM
t /2π2 − θ′(RTM

t /2π2, τ)
θ(RTM

t /2π2, τ)
(4.14)

+
θ′
1(R

TM
t /2π2, τ)

θ1(RTM
t /2π2, τ)

)]
dt

=
1

8π4
∂

∂z

(
1
z

− θ′(z, τ)
θ(z, τ)

+
θ′
1(z, τ)

θ1(z, τ)

)∣∣∣∣
z=0

∫ 1

0
tr[ARTM

t ] dt,

where the second equality holds because the dimension of M is only 3 while

∫ 1

0
tr

[
A

(
1

RTM
t /2π2 − θ′(RTM

t /2π2, τ)
θ(RTM

t /2π2, τ)
+

θ′
1(R

TM
t /2π2, τ)

θ1(RTM
t /2π2, τ)

)]
dt

gives differential forms of degree greater than or equal to 3.
But

∫ 1

0
tr[ARTM

t ] dt =
∫ 1

0
tr[A((1 − t)∇TM

0 + t∇TM
1 )2] dt

=
∫ 1

0
tr[A((1 − t)2(∇TM

0 )2 + (1 − t)t[∇TM
0 ,∇TM

1 ]

+ t2(∇TM
1 )2)] dt

= tr
[
A

(
1
3
(∇TM

0 )2 +
1
6
[∇TM

0 ,∇TM
1 ] +

1
3
(∇TM

1 )2
)]

=
1
3
tr

[
A

(
(∇TM

0 − ∇TM
1 )2 +

3
2
[∇TM

0 ,∇TM
1 ]

)]

=
1
2
tr

[
A[∇TM

0 ,∇TM
1 ] +

2
3
A ∧ A ∧ A

]
.

(4.15)

Note that ∂
∂z

(
1
z − θ′(z,τ)

θ(z,τ) + θ′
1(z,τ)

θ1(z,τ)

)∣∣∣
z=0

is a modular form of weight 2 over
Γ0(2). Then by Lemma 3.1, it should be a scalar multiple of δ1(τ). By direct
computations, we can see that ∂

∂z

(
1
z − θ′(z,τ)

θ(z,τ) + θ′
1(z,τ)

θ1(z,τ)

)∣∣∣
z=0

= −2
3π2 + O(q).

So
∂

∂z

(
1
z

− θ′(z, τ)
θ(z, τ)

+
θ′
1(z, τ)

θ1(z, τ)

)∣∣∣∣
z=0

= −8
3
π2δ1(τ).

Thus we have
(4.16)

CS ΦL(∇TM
0 ,∇TM

1 , τ) = − 1
6π2 δ1(τ) tr

[
A[∇TM

0 ,∇TM
1 ] +

2
3
A ∧ A ∧ A

]
.
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Similarly, we obtain that
(4.17)

CS ΦW(∇TM
0 ,∇TM

1 , τ) = − 1
24π2 δ2(τ) tr

[
A[∇TM

0 ,∇TM
1 ] +

2
3
A ∧ A ∧ A

]
,

and
(4.18)

CS Φ′
W(∇TM

0 ,∇TM
1 , τ) = − 1

24π2 δ3(τ) tr
[
A[∇TM

0 ,∇TM
1 ] +

2
3
A ∧ A ∧ A

]
.

Note that TM is trivial. Let’s take ∇TM
0 to be the trivial connection

dTM associated to some global basis of Γ(TM) and ∇TM
1 = dTM + A. We

therefore have the following proposition.

Proposition 4.1. When M is a compact oriented smooth 3-dimensional
manifold, the following identities hold,

CS ΦL(dTM , dTM + A, τ) = − 1
6π2 δ1(τ) CS(A),(4.19)

CS ΦW(dTM , dTM + A, τ) = − 1
24π2 δ2(τ) CS(A),(4.20)

CS Φ′
W(dTM , dTM + A, τ) = − 1

24π2 δ3(τ) CS(A).(4.21)

Very similar to the application after Proposition 3.2, the modularities
in Theorem 4.1 also imply some relations among transgressed forms, which
might be viewed as anomaly cancellation formulas for odd-dimensional man-
ifolds. For example, let M be 11-dimensional and i = 3. We also similarly
have that

{
CS ΦL(∇TM

0 ,∇TM
1 , τ)

}(11) is a modular form of weight 6 over
Γ0(2),

{
CS ΦW(∇TM

0 ,∇TM
1 , τ)

}(11) is a modular form of weight 6 over Γ0(2)
and

{
CS ΦL(∇TM

0 ,∇TM
1 ,−1/τ)

}(11)
= (2τ)6

{
CS ΦW(∇TM

0 ,∇TM
1 , τ)

}(11)
.

Then still by Lemma 3.1, we have

(4.22)
{
CS ΦW(∇TM

0 ,∇TM
1 , τ)

}(11)
= z0(8δ2)3 + z1(8δ2)ε2,

and by (3.32) and Theorem 4.1,

(4.23)
{
CS ΦL(∇TM

0 ,∇TM
1 , τ)

}(11)
= 26[z0(8δ1)3 + z1(8δ1)ε1],
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where, by comparing the q1/2-expansion coefficients in (4.22),
(4.24)

z0 = −
{∫ 1

0
Â(TM, ∇TM

t )tr

[
A

(
1

2RTM
t

− 1
8π tan

(
RTM

t /4π
)
)]

dt

}(11)

,

z1 =
{∫ 1

0
Â(TM, ∇TM

t ) ch
(
TCM, ∇TCM

t

)

× tr

[
A

(
1

2RTM
t

− 1
8π tan

(
RTM

t /4π
)
)]

dt

+
∫ 1

0
Â(TM, ∇TM

t )tr
[
A

(
− 1

2π
sin

(
RTM

t

2π

)

+61

(
1

2RTM
t

− 1
8π tan

(
RTM

t /4π
)
))]

dt

}(11)

.

(4.25)

Plugging (4.24) and (4.25) into (4.23) and comparing the constant terms of
both sides, we obtain that

{∫ 1

0
L(TM, ∇TM

t ) tr

[
A

(
1

2RTM
t

− 1
2π sin

(
RTM

t /π
)
)]

dt

}(11)

= 23(26z0 + z1),

consequently
{∫ 1

0
L(TM, ∇TM

t )tr

[
A

(
1

2RTM
t

− 1
2π sin

(
RTM

t /π
)
)]

dt

}(11)

=
{∫ 1

0
Â(TM, ∇TM

t )ch
(
TCM, ∇TCM

t

)

× tr

[
A

(
1

2RTM
t

− 1
8π tan

(
RTM

t /4π
)
)]

dt

+
∫ 1

0
Â(TM, ∇TM

t )tr
[
A

(
− 1

2π
sin

(
RTM

t

2π

)

−3

(
1

2RTM
t

− 1
8π tan

(
RTM

t /4π
)
))]

dt

}(11)

.

(4.26)

We can view (4.26) as a 11-dimensional analogue of the miraculous can-
cellation formula (3.38). We would like to remark that (4.26) cannot be
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obtained directly from (3.38) just by applying Chern–Simons transgression
to both sides as we pointed out right before Theorem 4.1. Hopefully the
odd-dimensional cancellation formula (4.26) could make sense in physics.

As for CS ΨW(∇TM
0 ,∇TM

1 , τ), we have the following results.

Theorem 4.2. Let M be a 4k − 1-dimensional smooth flat manifold, k ≥
2, ∇TM

0 and ∇TM
1 be two flat connections on TM, then for 2 ≤ i ≤ k,{

CS ΨW(∇TM
0 ,∇TM

1 , τ)
}(4i−1) is a modular form of weight 2i over SL2(Z).

Proof. Since both ∇TM
0 and ∇TM

1 are flat, we have

(∇TM
0 )2 = 0,

(∇TM
1 )2 = (∇TM

0 + A)2 = (∇TM
0 )2 + [∇TM

0 , A] + A ∧ A = 0,

which implies

(4.27) [∇TM
0 , A] = −A ∧ A.

One also has

RTM
t =

(
(1 − t)∇TM

0 + t∇TM
1

)2
= (∇TM

0 + tA)2 = (∇TM
0 )2 + t[∇TM

0 , A]

+ t2A ∧ A.

Therefore

(4.28) RTM
t = (t2 − t)A ∧ A.

Thus we obtain (cf. [32, Lemma 1.7])
(4.29)

tr[(RTM
t )n] = (t2 − t)n tr[A2n] =

(t2 − t)n

2
tr[[A, A2n−1]] = 0 ∀n ∈ Z+.

So it is not hard to see that

det1/2
(

fΨW

(
RTM

t

4π2 , τ

))
= e(1/2) tr ln fΨW (RT M

t /4π2,τ) = 1.

We therefore have

CS ΨW(∇TM
0 ,∇TM

1 , τ) =
1

8π2

∫ 1

0
tr

[
A

(
1

RTM
t /4π2 − θ′(RTM

t /4π2, τ)
θ(RTM

t /4π2, τ)

)]
dt.



Elliptic-genera, and transgression 97

Then similar to (4.11), we have

{
CS ΨW(∇TM

0 ,∇TM
1 ,−1/τ)

}(4i−1)

=
{

1
8π2

∫ 1

0
tr

[
A

(
1

RTM
t /4π2 − θ′(RTM

t /4π2,−1/τ)
θ(RTM

t /4π2,−1/τ)

)]
dt

}(4i−1)

=
{

1
8π2

∫ 1

0
tr

[
Aτ

(
1

τRTM
t /4π2 − θ′(τRTM

t /4π2, τ)
θ(τRTM

t /4π2, τ)

)

− A

(
2π

√
−1

τRTM
t

4π2

)]
dt

}(4i−1)

=
{

1
8π2

∫ 1

0
tr

[
Aτ

(
1

τRTM
t /4π2 − θ′(τRTM

t /4π2, τ)
θ(τRTM

t /4π2, τ)

)]
dt

}(4i−1)

,

(4.30)

since 4i − 1 ≥ 7 while
∫ 1
0 tr

[
−A

(
2π

√
−1 τRT M

t

4π2

)]
is only a degree 3 form.

Thus we obtain that

{
CS ΨW(∇TM

0 ,∇TM
1 ,−1/τ)

}(4i−1)

=
{

1
8π2

∫ 1

0
tr

[
Aτ

(
1

τRTM
t /4π2 − θ′(τRTM

t /4π2, τ)
θ(τRTM

t /4π2, τ)

)]
dt

}(4i−1)

,

= τ2i

{
1

8π2

∫ 1

0
tr

[
A

(
1

RTM
t /4π2 − θ′(RTM

t /4π2, τ)
θ(RTM

t /4π2, τ)

)]
dt

}(4i−1)

= τ2iCS ΨW(∇TM
0 ,∇TM

1 , τ).

(4.31)

It is also not hard to see that

(4.32) CS ΨW(∇TM
0 ,∇TM

1 , τ + 1) = CS ΨW(∇TM
0 ,∇TM

1 , τ).

So {CS ΨW(∇TM
0 ,∇TM

1 , τ)}(4i−1) is a modular form of weight 2i over SL2(Z).
�

Remark 4.3. In Theorem 4.2, i has to be greater than or equal to 2 to
get a modular form of weight 2i over SL2(Z). This agrees with a known fact
in number theory that there is no nontrivial modular form of weight 2 over
SL2(Z).

Remark 4.4. In Theorem 4.2, if we use other paths rather than the canon-
ical path (1 − t)∇TM

0 + t∇TM
1 , 0 ≤ t ≤ 1, the resulted Chern–Simons terms
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might not be modular forms because some anomaly terms come out when
we are doing the modular transformation τ → −1/τ . In other words, some
paths may break the modularity of the Chern–Simons term while the canon-
ical one does not (because it avoids the anomaly). We hope to understand
this interesting phenomena further. However, on the level of cohomology
classes, different paths give the same modular cohomology class.

In particular, by Theorem 4.2,
{
CS ΨW(∇TM

0 ,∇TM
1 , τ)

}(7) is a weight 4
modular form over SL2(Z). Actually,

{
CS ΦL(∇TM

0 ,∇TM
1 , τ)

}(7)

=
{

1
8π2

∫ 1

0
tr

[
A

(
1

RTM
t /4π2 − θ′(RTM

t /4π2, τ)
θ(RTM

t /4π2, τ)

)]
dt

}(7)

=
{

1
8π2

∫ 1

0
tr

[
A

(
1

RTM
t /4π2 − θ′(RTM

t /4π2, τ)
θ(RTM

t /4π2, τ)

)]
dt

}(7)

=
1

512π8
1
3!

∂3

∂z3

(
1
z

− θ′(z, τ)
θ(z, τ)

)∣∣∣∣
z=0

∫ 1

0
tr[A(RTM

t )3]dt

=
1

512π8
1
3!

∂3

∂z3

(
1
z

− θ′(z, τ)
θ(z, τ)

)∣∣∣∣
z=0

(∫ 1

0
(t2 − t)3dt

)
tr[A7].

(4.33)

By direct computations, we can see that

1
512π8

1
3!

∂3

∂z3

(
1
z

− θ′(z, τ)
θ(z, τ)

)∣∣∣∣
z=0

(∫ 1

0
(t2 − t)3dt

)

= − 1
3225600π4 + O(q).

Let

E4(τ) = 1 + 240
∞∑

n=1

σ3(n)qn,

be the Eisenstein series, which is a weight 4 modular form over SL2(Z),
where

σk(n) �
∑

d|n
dk.
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It is a fact in number theory that the space of weight 4 modular forms over
SL2(Z) has dimension 1. Thus

{
CS ΦL(∇TM

0 ,∇TM
1 , τ)

}(7)
= − 1

3225600π4 E4(τ)tr[A7].

5. Loop space index theorem and Chern–Simons forms

In this section we first formally describe the loop space version of the Atiyah–
Singer index theory (cf. [2, 5]) and its relation with the theory of elliptic
genera following [21]. Then we compute the Chern–Simons forms of two
formal flat vector bundles on loop space.

Let M be a smooth compact spin manifold of dimension 2k. Let P be a
principle G bundle on M and E an irreducible positive energy representation
of L̃G, which is the central extension of the loop group of G [29]. We decom-
pose E according to the rotation action of the loop to get E =

∑
≥0 En where

each En is finite-dimensional representation of G. Constructing associated
bundles to P from each En, which is still denoted by En, we can define an
element

ψ(P, E) = qmΛ
∑

n

Enqn,

where q = e2π
√

−1τ with τ ∈ H and mΛ (called the modular anomaly of the
representation E) is a rational number depending on the level and weight
of E such that ch(ψ(P, E)) = χ(z, τ), the normalized Kac–Weyl character
of E (cf. [17, 24,25]).

Let us specialize to the case G = Spin(2l). For any positive integer l, the
loop group L̃Spin(2l) has four irreducible level 1 positive representations.
Denote them by S+, S− and S+, S−. Let {±αj} be the roots of Spin(2l).
Then we have the following normalized Kac–Weyl character formulas:

χS+−S− =
l∏

j=1

θ(αj , τ)
η(τ)

, χS++S− =
l∏

j=1

θ1(αj , τ)
η(τ)

,

χS+−S− =
l∏

j=1

θ2(αj , τ)
η(τ)

, χS++S− =
l∏

j=1

θ3(αj , τ)
η(τ)

,

where η(τ) = q1/24 ∏∞
l=1(1 − ql) is the Dedekind eta-function [7].
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Let Q be the spin principle bundle associated to the tangent bundle of
M . We have the following:

ψ(Q, S+ − S−) = q−k/12(Δ+ − Δ−) ⊗
∞⊗

j=1

Λ−qj (TM),

ψ(Q, S+ + S−) = q−k/12(Δ+ + Δ−) ⊗
∞⊗

j=1

Λqj (TM),

ψ(Q, S+ − S−) = q−k/24 ⊗
∞⊗

j=1

Λ−qj−1/2(TM),

ψ(Q, S+ + S−) = q−k/24 ⊗
∞⊗

j=1

Λqj−1/2(TM).

Thus we can view S+ ± S− as the loop group analogues of the finite-
dimensional spinor representations Δ+ ± Δ−, where Δ+, Δ− are the two
irreducible spinor representations of Spin(2l). Similar to the Â-class, the
loop space Â-class is defined as

Θ̂(M) =
e(M)

ch(ψ(Q, S+) − ψ(Q, S−))
= η(τ)k ·

k∏

j=1

xj

θ(xj , τ)
.

Therefore formally one defines the loop space Dirac operator as

DL = q
−k

12 D ⊗
∞⊗

j=1

Sqj (TM)

and the corresponding index formula

Ind(DL) =
∫

M
Θ̂(M).

The twisted version of this index theorem in this loop group setting is

Ind(DL ⊗ ψ(P, E)) =
∫

M
Θ̂(M) ch(ψ(P, E)).

In this sense we thus formally view ψ(P, E) as a vector bundle over the loop
space LM .
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To get modular forms instead of Jacobi forms, let us use virtual versions
of the above story. Denote by

(5.1) DL = D ⊗
∞⊗

j=1

Sqj (T̃CM).

Let V be a 2l-dimensional spin vector bundle over M . Physically,

V :=
∞⊗

j=1

Λ−qj−1/2(ṼC), V ′ :=
∞⊗

j=1

Λqj−1/2(ṼC)

are virtual vector bundles over LM . Let ∇TM , ∇V be two connections over
TM , V and RTM , RV be their curvatures, respectively. By the Atiyah–Singer
index theorem (also cf. [20]), it is not hard to see that

Ind(DL ⊗ V) =
∫

M
det1/2

(
RTM

4π2
θ′(0, τ)

θ(RTM/4π2, τ)
θ2(RV /4π2, τ)

θ2(0, τ)

)

and

Ind(DL ⊗ V ′) =
∫

M
det1/2

(
RTM

4π2
θ′(0, τ)

θ(RTM/4π2, τ)
θ3(RV /4π2, τ)

θ3(0, τ)

)
.

When p1(TM, ∇TM ) = p1(V, ∇V ), Ind(DL ⊗ V) and Ind(DL ⊗ V ′) are mod-
ular forms over Γ0(2) and Γθ, respectively (cf. [21]). Especially, taking V =
TM and ∇V = ∇TM , one has that Ind(DL ⊗ TLM) = φW(M, τ) and Ind(DL ⊗
TLM ′) = φ′

W(M, τ).
Now let us assume that V is flat and ∇V

0 ,∇V
1 are two flat connections

over V . Let ∇V
i , i = 0, 1 be two connections on V and RV

i , i = 0, 1 be their
curvatures, respectively. Let ∇V

t = (1 − t)∇V
0 + t∇V

1 and RV
t be the corre-

sponding curvature. Let A = ∇1 − ∇0 ∈ Ω1(M, End(V )). One can lift these
two connections to V,V ′ and denote them by ∇V

0 ,∇V
1 and ∇V ′

0 ,∇V ′

1 . We
heuristically view V and V ′ as flat vector bundles on the loop space LM .

Applying Theorem 2.2 similarly as in (4.1) to (4.4), one gets that

ch(V,∇V
1 ) − ch(V,∇V

0 )

= det1/2
(

θ2(RV
1 /4π2, τ)

θ2(0, τ)

)
− det1/2

(
θ2(RV

0 /4π2, τ)
θ2(0, τ)

)

= d

∫ 1

0

1
8π2 det1/2

(
θ2(RV

t /4π2, τ)
θ2(0, τ)

)
tr

[
A

(
θ′
2(R

V
t /4π2, τ)

θ2(RV
t /4π2, τ)

)]
dt.

(5.2)
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However, by similar calculations as in the proof of Theorem 4.2, one has

det1/2
(

θ2(RV
t /4π2, τ)

θ2(0, τ)

)
= 1.

Therefore we have

(5.3) ch(V,∇V
1 ) − ch(V,∇V

0 ) = d CS(V,∇V
0 ,∇V

1 , τ),

where
(5.4)

CS(V,∇V
0 ,∇V

1 , τ) � 1
8π2

∫ 1

0
tr

[
A

(
θ′
2(R

V
t /4π2, τ)

θ2(RV
t /4π2, τ)

)]
dt ∈ Ωodd(M)[[q1/2]].

Since ∇V
0 and ∇V

1 are flat connections, ch(V,∇V
1 ) and ch(V,∇V

0 ) are both
vanishing. Thus CS(V,∇V

0 ,∇V
1 , τ) represents an element in Hodd(M, C)

[[q1/2]]. One can similarly define

CS(V ′,∇V ′

0 ,∇V ′

1 , τ) � 1
8π2

∫ 1

0
tr

[
A

(
θ′
3(R

V
t /4π2, τ)

θ3(RV
t /4π2, τ)

)]
dt

∈ Ωodd(M)[[q1/2]],

(5.5)

which also represents an element in Hodd(M, C)[[q1/2]].
Similarly as Theorem 4.1, we obtain that

Theorem 5.1. Let V be a 2l-dimensional flat vector bundle over M and
∇V

0 ,∇V
1 be two flat connections on V, then for any positive integer i ≥ 2, we

have

(1)
{
CS(V,∇V

0 ,∇V
1 , τ)

}(4i−1) is a modular form of weight 2i over Γ0(2);
{
CS(V ′,∇V ′

0 ,∇V ′

1 , τ)
}(4i−1) is a modular form of weight 2i over Γθ;

(2) The following equality holds,

CS (V,∇V
0 ,∇V

1 , τ + 1) = CS(V ′,∇V ′

0 ,∇V ′

1 , τ).
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Heuristically, (5.4) and (5.5) can be viewed as the Chern–Simons trans-
gressed forms of flat vector bundles over loop spaces. We hope they could
play some roles in the study of loop space vector bundles.

Remark 5.1. In Theorem 5.1, if we use other paths rather than the canoni-
cal path (1 − t)∇V

0 + t∇V
1 , 0 ≤ t ≤ 1, the modularity of the resulted

Chern–Simons terms might be broken (similar to what we pointed out in
Remark 4.4). This indicates that the modularity of secondary characteristic
forms involves some subtleties. On the level of cohomology classes, different
paths give the same modular cohomology class.
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