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Large-sphere and small-sphere limits
of the Brown—York mass

XU-QIAN FAN, YUGUANG SHI AND LUEN-FAT TAM

In this paper, we will study the limiting behavior of the Brown-—
York mass of the coordinate spheres in an asymptotically flat mani-
fold. Limiting behaviors of volumes of regions related to coordinate
spheres are also obtained, including a discussion on the isoperimet-
ric mass introduced by Huisken [14]. We will also study expansions
of the Brown—York mass and the Hawking mass of geodesic spheres
with center at a fixed point p of a 3-manifold. Some geometric con-
sequences will be derived.

1. Introduction

In this work, we will discuss the large-sphere limit of the Brown—York mass
in an asymptotically flat (AF) manifold and the small-sphere limit of the
Brown—York mass near a point in a three-dimensional manifold. We will also
discuss the behaviors of large-sphere limit and small-sphere limit of other
interesting quantities.

Let us first recall some definitions. In general relativity, AF manifolds
have great interests in many problems. In this paper, we adopt the following
definition of AF manifolds.

Definition 1.1. A complete 3-manifold (M, g) is said to be AF of order 7
(with one end) if there is a compact subset K such that M \ K is diffeomor-
phic to R?\ Bg(0) for some R > 0 and in the standard coordinates in R?,
the metric g satisfies:

(1.1) 9ij = 0ij + 0ij
with
(1.2) |O’Z‘j| + T|8U¢j‘ + 7‘2|380ij‘ + 7’3|8880'ij| = O(T*T)7

for some constant 1 > 7 > %, where r and 0 denote the Euclidean distance
and standard derivative operator on R3, respectively.
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A coordinate system of M near infinity so that the metric tensor in
these coordinates satisfies the decay conditions in the definition is said to
be admissible. Note that some of the results in the following do not need
decays of the third-order derivatives of o;;.

Definition 1.2. The Arnowitt—Deser—Misner (ADM) mass (see [1]) of an
AF manifold M is defined as:

. 1 ;
(1.3) mapm(M) = lim - g (9iji — 9iij) V/dZ,

r

where S, is the Euclidean sphere with Fuclidean radius r and center at the
origin, d%¥ is the volume element induced by the Euclidean metric, v is the
outward unit normal of S, in R3 and the derivative is the ordinary partial
derivative.

We always assume that the scalar curvature is in L'(M) so that the
limit exists in the definition. Under the decay conditions in the definition
of AF manifold, the definition of ADM mass is independent of the choice of
admissible coordinates by the result of Bartnik [2].

Let (€, g) be a compact 3-manifold with smooth boundary 0f2. Suppose
the Gauss curvature of 0€) is positive, then the Brown—York quasi-local mass
of 09 is defined as (see [6,7]):

Definition 1.3.

(1.4) mey 09) = - [ (o - H)az.

8T
where H is the mean curvature of 02 with respect to the outward unit
normal and the metric g, d3 is the volume element induced on 9f) by g and

Hy is the mean curvature of 02 with respect to the outward unit normal
when embedded in R3.

The Brown—York mass is well-defined because by the result of Nirenberg
[18], OS2 can be isometrically embedded in R? and the embedding is unique
by Cohn—Vossen [8] (see also [13,19,20]). In particular, Hy is completely
determined by the metric on 9f). However, this is a global property. In
contrast, the norm of the mean curvature vector of an embedding of 92 into
the light cone in the Minkowski space can be expressed explicitly in terms
of the Gauss curvature, see [5]. Hence, in the study of Brown—York mass,
one of the difficulties is to estimate faﬂ HydX. We will use the Minkowski
formulae [16] and the estimates of Nirenberg [18] in this regard.
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In the first part of this paper, we want to study limiting behaviors of
Brown—York mass on large spheres. We will verify the following;:

Theorem 1.1. Let (M, g) be an AF manifold of order T > % with one end
and let S, be the coordinate spheres in some admissible coordinates. Then

lim mpy(S,) = mapm(M).

r—00
Here mpy(S;) is the Brown—York quasi-local mass of Sy, and mapnm (M) is
the ADM mass of M.

Theorem 1.1 was observed and proved to be true by many people, see the
works of Brown—York [7], Hawking—Horowitz [12], Braden-Brown-Whiting—
York [4] and Baskaran-Lau-Petrov [3], see also [23]. However, in this paper,
we will use a different method to derive Theorem 1.1. Interestingly, our
method leads to the following volume comparison result. Let V(r) be the
volume with respect to an AF metric g of the region inside S, and let Vj(r)
be the Euclidean volume inside the surface S, when embedded in R3.

Theorem 1.2. Let (M, g) be an AF manifold of order T > % with one end.
Then

(1.5) Vo(r) = V(r) = =2mapm(M)mr? + o(r?).

Hence if the ADM mass is non-negative, then lim, . r~2(V (r) — Vo(r)) >
0. Combining this with positive mass theorem, if we further assume that the
scalar curvature is non-negative, then the limit is zero if and only if M is
isometric to R3.

In [14], a notion of isoperimetric mass miso(M) of an AF manifold is
introduced by Huisken. It is defined as:

. 2 1 s
miso = timsup 7 (V(r) = L 4k0)).
where V (r) is as before and A(r) is the area of the coordinate sphere with
respect to the AF metric. Using the method of the proof of Theorem 1.2,
Miao [17] proves that the isoperimetric mass and the ADM mass of an AF
manifold are equal. We would like to thank Miao for allowing us to include
his result in this work.

In the second part of the paper, we will consider the small-sphere limit
of the Brown—York mass. Let r be the distance to the fixed point p, and
R(p) is the scalar curvature evaluated at p. We have the following:
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Theorem 1.3. Let (N,g) be a Riemannian manifold of dimension 3, p be
a fixed interior point on N and S, be the geodesic sphere of radius r center
at p. For r small enough, we have

(1.6) 5

mpy (S,) = %R(p) n 12—40 [24[Ric[?(p) — 13R2(p) + 12AR(p)] + O(+°),

where A is Laplacian operator of (M, g) and |Ric| is the norm of the Ricci
curvature.

Let M be an AF manifold with non-negative scalar curvature. Suppose
the Brown—York mass of the coordinate spheres converge to zero, then M
must be the Euclidean space by Theorem 1.1 and the positive mass theorem
in [21,24]. By Theorem 1.3, we have similar result near a point p. Namely,
assume R > 0 in a neighborhood of p, then

(1.7) Jiag 7BY(57)

> 0.
r—0 ro -

Equality holds if and only if (N, g) is flat at p and R vanishes up to second
order at p.

There are results on the small-sphere limits obtained by Brown—Lau—
York [5]. They consider a cut S, with an affine radius r of the light cone at
a point p in a Lorentz manifold. Using the light cone of reference, they show
that the expansion of the quasi-local energy is:

47r?

E = Tupn®n® + o(r?),

where Ty, is the energy momentum tensor and n is the unit future pointing
time like vector defining the choice of the affine parameter. In our case, if we
consider the Lorentz manifold R x N with metric § = —dt? + g, and suppose
the metric satisfies the Einstein equation:

1~_
R, — §Rgab = 8T

Let n = % be the future pointing unit normal, then

R 473
1(5) — 3 Tabnanb.
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Hence, 7 term of the expansion in our case is similar to that in [5]. However,
we are using Euclidean reference and we only consider the time symmetric
case.

In the case of vacuum space-time, Brown-Lau—York [5] also obtain the
r® term in the expansion of E as follows:

B — T5 T a, b _c d
5~ 90 abed™ LA,
where T,pcq is the Bel-Robinson tensor, which depends only on the curva-
ture tensor (and the metric). In Theorem 3.1, the space-time is not vacuum
in general and is time symmetric. The coefficient of the term 7° depends
not only on the curvature tensor, but also on the derivative of the scalar
curvature. For the sake of comparison, in our case, one can compute that
Toooo = 5 (4[Ric|> — R?). We use the definition of Bel-Robinson tensor as in
(5) of [9].

Next we want to compare the expansion of the Hawking mass with the
expansion of the Brown—York mass for small spheres. Recall the definition
of the Hawking mass. Let (£2, g) be a smooth 3-manifold with boundary 02
and let H be the mean curvature on 92 with respect to the outward unit
normal, the Hawking quasi-local mass is defined as (see [11]):

Definition 1.4.

10Q|/2 )
1.8 o)) = ——~ [ 167 — H*d>»
( ) mH( ) (1677)3/2 ™ 50 )

where d¥ is the volume element induced on 92 by g and |0€)] is the area of
o9.

With the same notations and assumptions in Theorem 1.3, the expansion
of my(S,) is given by:

3 5
(L9 my(S,) = 5 R(p) + o~ (BAR(p) — 5R2(p)) + O(r).
12 720

One can see that mpy (S;) and my(S,) are equal up to the term with order
r3. However, the terms of order 7° are different. In particular, if the scalar
curvature is zero near p, but it is non-flat at p, then r ®mpy(S,) > 0 and
mu(S,) = O(r%) for small r.

As in the large-sphere case, one can also compare V (r) and Vj(r), where
V' (r) is the volume of the geodesic ball of radius r at p and Vp(r) which is
the volume of the region bounded by S, when embedded in R3.
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The paper is organized as follows. In Section 2, the limit of behavior
of Brown—York mass in large spheres and volume comparison are proved;
in Section 3, small-sphere limit of the Brown—York mass and the Hawking
mass and small-sphere volume comparison are proved.

The authors would like to thank Robert Bartnik, Yanyan Li and Pengzi
Miao for useful discussions.

2. Large-sphere limit
In this section, we will first prove the following theorem (Theorem 1.1).

Theorem 2.1. Let (M, g) be an AF manifold of order T > % with one end
and let S, be the coordinate spheres in some admissible coordinates. Then

lim. mgy (Sr) = mapm(M).

Here mpy (S;) is the Brown—York quasi-local mass of S, and mapm(M) is
the ADM mass of M.

Consider an AF manifold (M, g) with coordinates (z!, 2%, 23) so that g;;
satisfies the decay conditions in Definition 1.3. Let n = nZ% be the unit
outward normal of S, and n; = g;;n’. Then

on1/2
where r = (Zf?:l (:L’Z)Q) . The metric induced on S, is h;; = g;; — nin;

and the second fundamental form is A4;; = hfhé-nk;l, where ny; is the covari-
ant derivative of ny with respect to g.

Lemma 2.1. With the above notations and assumptions, on S, we have
the following:

(i)

hi; 1 2 1 1 o
AijZTJ—i_O(rlT): H:;—FO(TlT),K:ﬁ—I—O(TQT),

where H is the mean curvature and K is the Gauss curvature of Sy.
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ds, = (14 hgy; +0(r27)) /2 s,

Hence,

A(r) = 4mr? + ;/

R g dY, + O(r*—27),
S,

where A(r) is the area of S, with respect to g.

Proof. (i) is well-known, see [15]. For the sake of completeness, we derive it
as follows:

P 1
(2.2) Vi =1 255 4 06
and
0 iyl
2y Y 1)
Ok (Ivl) Oxk (g 72 )
(2.3) 0 ii ziad
e L (9" = 0y) 72
=0 7).
So
(2.4) n' = % +0(r™")
and
Ny = @ — Fljnk
0 xi —1-7
(2.5) = 0w (M) +O(r )
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where Ffj are the Christoffel symbols. Let hg = ¢’%hy;. Using the fact that
n has unit length, we have

hij gy hij
AZ]_TZh’Lh]n 7l—7
hii
= hgni;l -
(2.6) 57" ;
i Tt C1r
= n;; <r’— r3>+0(7"1 )

From this and the fact that the curvature of M decays like r—2~7, the
estimates of H and K follow.

(ii) Let e; and ey be orthonormal frames on S, with respect to the
Euclidean metric, then

1/2
= (g(e1,e1)g(ez, e2) — 92(61762))/ ax?

= (1+o(e1,e1) + (e, e2) + O(r 727))1/2 dx?
= [1+ (ex(a)er (a7) + ea(a)ea(a?)) 03 + O(r~2)]"/? dx0
2.7) _ [1 (voxi Vol — %ﬁ a;) o1+ O(r™ )} v 450
= [1 + <5Z-j - ??) o + O(r‘zT)] v ax?
= (1+ hilgy; + O(r~2))"/? ax?,

where Vg is the derivative with respect to the Euclidean metric and ‘-’
is the standard inner product in R3. The last statement follows from this
immediately. O

Lemma 2.2.

)

+ 4nr — 8mmapm (M) + o(1)

(2.8) / HdY,

as r — o0.
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Proof. Let m = mapm(M). By Lemma 2.1 and the first variational formula,
we have

d 1
— = Hdx,
drA(r) /S |Vr|

b g
:/ HdZT—I—/ Tt 4, + O(r' )
S

r

(2.9)

r

where we have used (2.2).
On the other hand, by Lemma 2.1, we have

(2.10)

d 1[0 _or
JAlr) =81+ 5 /567“<h 0'”) A%, + = /hjoijd2r+0(r1 27y
h'l

Sr
8—1-1/
=8nmr+ —
2

k
:8W+1/ deg_l/ OTALaS,
2 S, T 2 S, T3

1 3
0ij, k dE + - ; / hZ]O'Z‘j X, + O(TI_QT)
Sr

1 g
+ / R g dY, + O(rt—27),
rJs,

where 01, = %‘;’}3. Now, as in [15, (5.17)]:

(2.11)

.
0 kT T T 50

3 T
S, r

s, Oxk r r? r
i\ 0 (o2l 0 (o2
= — Sike — J dx? / R ax?
/S,.(m )amk( )i [ g ()
S, S Sr

] 1 -
- —2/ "”‘” ds, +/ Wd22+/ hilg;;dS, + O(r'=27),
S 73 S r

r T r
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Combining this with (2.10), by Lemma 2.1 and the definition of ADM mass,
we have

d A(r) o'
2.12 — = 4 > — 1).
(2.12) drA(r) " + 777“—1—/& 3 dx, — 8mm + o(1)
By (2.9) and (2.12), the lemma follows. O

By Lemma 2.1, if r is large enough, then the Gauss curvature of S,
is positive. So S, can be isometrically embedded in R3 uniquely up to an
isometry of R? by [13,18-20]. The following lemma says that the embedded
surface (rescaled) is very close to the standard sphere as r — co.

Lemma 2.3. Let (M,g) be an AF 3-manifold with (1.1) and (1.2) for
T > %, and let S, be coordinate spheres. For r large enough, there is an
isometrical embedding X, of S, in R? such that:

Xrng=r+0 (TI_T)
2.13
(2.13) Hy = % + Hy with H; = O (T_l_T)

as r — 400, where ng is the unit outward normal to the surface X, “’ is

the inner product in R? and Hy is the mean curvature of X,.

Proof. For r > 0, define a map =z = ry and pull back the metric to the y
space. Let the pull back metric be §. Let h be the induced metric on the
coordinate spheres in y.

(2.14) Fig = 9y = ity
=TGij — Nyny

where iLij = B(%, 827‘ ), etc. and g;; = g(%, 82_,») etc. Also n; = yi/(p|@p|g)

o\ 1/2
is the unit normal on {p = (Z?:l (yl)z) = constant}. Then

ij y'y
-

Vpl3 =129
p
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Consider the following metric on ¥, = {y| |y| = p}:

2 _ -2
dsy = 1r""hj

(2.15) = gij — 1 i
. Yyl
) gklykyl

Clearly, the standard metric h% on X, is

Lad
(2.16) e %

p
Direct computations show
(217) HdS? — dS%HCB(Ep) = O (T‘_T)

for % < p < 2. Note that ¥; is the unit sphere. By [18, p. 353], we can find
an isometric embedding X, of (S?,ds?) into R3 such that

(2.18) 1X, — Xollcagszy = O (r77),

where X is the identity map. Since X - ng = 1, where ng is the unit outward
normal of the unit sphere, we have X, - no, =14+ O(r~7), where ng, is the
unit outward normal of the surface X,.. If we identify S, with metric induced
by g with (S?, ib), then X, = rX, is an isometric embedding of S, with metric
induced by g¢. From this it is easy to see that the first part of (2.13) is true.

By (2.18), we know that Hy — 2 = O (r~7), where Hy is the mean cur-
vature of X,.. After rescaling rX,, we can get the second part of (2.13). [

Lemma 2.4. Let (M,g) be an AF manifold with the properties (1.1) and
(1.2), and let S, be coordinate spheres. We have

r

(2.19) / Hods, = arnr + 20 4 op1-2),
Sy

Proof. By Lemma 2.3, for r large enough, we can find an isometric embed-
ding X, of S, in R3 such that X, -ng =17+ O(r'~7). Let Hy be the mean
curvature with respect to the outward unit normal when S, is embedded
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in R3. By Lemma 2.1(i),

1 —2—T
K = K—r—2—0(r 2=,

By one of the Minkowski integral formulae [16, Lemma 6.2.9], we have

/ Hodszz/ KX, -nod%,
S, S,

1
:2/ < 2+K>X,-n0d2r
S, \T

2 _
_2/SXT-’I’L0dE7»+2/S KXr'noer

6Vo(r) _ .
(2.20) == +2/s,.K(T+O(T1 ) dZ,
SRLUL | Kdz s o)
_ 6Vo(r) T L 1-27
== +27“/ST<K r2) d¥, +O0(r—°7)
2
= 6‘?2(T) + 8mr — /;( r) +O(r1 727,

where Vo(r) is the volume of the interior of the surface X, in R3. On
the other hand, from Lemma 2.3, Hy = % + Hy with H; = O (r‘l_T). By
another Minkowski integral formula, we have

2A(7“) —/ H@X ) er

6V° / H\ X - no dS,
220 6VO / Hy dS, + O (r2777)
- GV(;() —2A(r) + r/s HodS, + O (r*7%7).
So
(2.22) / Ho d%, GVO( ) 4 4“4;(70) O,

From (2.20) and (2.22), the lemma follows. O
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Proof of Theorem 2.1. The theorem follows immediately from Lemmas 2.2
and 2.4. (]

In Theorem 2.1, S, can be replaced by slightly deformed spheres. More
precisely, we have:

Corollary 2.1. Same assumptions as in Theorem 2.1. Suppose p is a
smooth function on M such that

(2:23)  |p—r|+7[0(p — )| +12180(p — )| + 7|00 (p — 7)| = O(r")
for some 0 <k <1—171. Then

plglélo mpy(X,) = mapm(M),

where X, is the level set of the smooth function p.

Proof. Let y = 22 = F(x). Then one can show that y is also a coordinate
system of M at infinity so that the metric tensor in this coordinates satis-
fies the decay conditions (1.1) and (1.2). Note that X, is nothing but the
coordinate spheres in the y-coordinates. Hence, the corollary follows from
the uniqueness of ADM mass by [2]. O

With the notations as in the proof of Theorem 2.1. Let V(r) be the
volume with respect to an AF metric g of the region inside S,. We can
compare V(r) and Vy(r) (Theorem 1.2):

Theorem 2.2. With the above notations. Let (M, g) be an AF manifold of
order T > % with one end. Then

(2.24) Vo(r) = V(r) = —2mapmnr? + o(r?).

Proof. Let m = mappr. With the same notations as in the proof of Theorem
2.1, by (2.2) and the co-area formula we have

1
V'(r :/ ——d>,
)= Js o]

1 oixial 9 or
:A(r)+2/grj7"2d2r+0(r ).

(2.25)
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Here and below is the derivative with respect to . On the other hand, by
(2.8) and (2.9) we have

A(r) oyrted

—|-47T’I“—87Tm+/ 5— dX; + o(1).
s T

(2.26) A(r) =

Eliminating the term [¢ Gijﬁixj d¥, from (2.25) and (2.26), we have

(2.27) Al(r) = Aff) + 4mr — 8Tm + % (2V'(r) = 2A(r)) + o(1).
Hence,
(rA(r)) = 4nr? — 8mmr 4+ 2V'(r) + o(r)
and
1 273 9 9
(2.28) V(r) = 57".,4(7“) — =3 + 2mmr® + o(r).

On the other hand, by (2.20) and (2.21), we have

273
3

(2.29) Vo(r) = %m(r) _ BT o,

Hence
Vo(r) =V(r) = —2rmr? + 0(r2)
because T > % O

Combine this with positive mass theorem, we have the following;:

Corollary 2.2. With above notations, let (M,g) be an AF manifold of
order T > % If the scalar curvature is non-negative, then

fim L) = Volr) S

r—-+o00 7’2 ’

and equality holds if and only if (M, g) is isometric to R3.

From the proof of Theorem 2.2, Miao [17] is able to obtain the following
result. Thanks to Pengzi Miao, we include the result and the proof here.

Corollary 2.3. In an AF manifold M, the ADM mass and the isoperimet-
ric mass introduced by Huisken [14] are equal.
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Proof. Recall that the isoperimetric mass of M is defined as

L A3/2(r)> .

o 67r1/2

miso = liggp A?r) <V(T)

Now by (2.28)

(2.30)
2 1
Y <V(r) = A3/2(r)>

1 2 47T7“3 1 1/2
=r+ A0 (47Tm7’ - 3> — 3771/2A (r) 4+ o(1)
=r+ <m— f) (1-Z+00™™)) - r 1—1—11—1—0(7“*27) +o(1)
3 3 2
— m+o(L),
where
71 / hig,; dS, = O(r™)
= O-’L' ; r = T
812 Jg. /
so that
A(r) =4mr? (1+Z+0(r™ 7)),
see Lemma 2.1(ii). From this the result follows. O

3. Small-sphere limit

In this section, we will first study the small-sphere limit of the Brown—York
mass of geodesic spheres up to order °, where r is the geodesic distance from
a fixed point. Let (N3, g) be a three-dimensional manifold and let p € N.
Let {2} be the normal coordinates near p. By [22, Chapter 5], we have the
following expansion of g near p:

Lemma 3.1. For any point x close to p, the metric components of g in the
normal coordinates can be expressed as

1 1
9ij (%) = 0ij + 5 Rigj (0)a" 2" + 2 Rijom (p)"a'2™

1 2
(3.1) + (Q()Riklj;mn(p) + 45Rikls(p)ll%jﬂms(p)> aFala™a™ 4+ O ()
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and
g = det(gs5)
=1- ng’j(p)-T x! — éRij;k(p)x xlx” — %Rij;kl(p)
1 1 i
(3.2) + %Rhijm(p)thlm(p) - 18Rij(10)1'%14;1(10)> gl bt + O(rP),

where r is the geodesic distance from p, R;j is the Riemannian curvature
tensor, R;j is the Ricci curvature and R is the scalar curvature with respect
to the metric g, and R;yj,m is the covariant derivative of R;j etc.

In our notations, the sectional curvature is non-negative if R;;;; > 0. In
the following, we always assume that the normal coordinates are chosen so
that at p the Ricci curvature is of the form R;; = A\;d;; where A1, Ao, A3 are
the eigenvalues of R;;.

Lemma 3.2. Let A(r) be the area of geodesic sphere S, = {|z| =r} with
radius r in (N, g) with center at p, then:

(3.3) A(r) = 4nr? + Ay + Ag + O(r7),
where
2t b 9 .12
(3.4) Ay =— R, Ag= 67F (4R* — 2|Ric|]* — 9AR),

9

where A is the Laplacian operator with respect to metric g and |Ric| is the
norm of the Ricci tensor. Here all the terms involving curvature are evaluated
at p.

Proof. By (3.2)

1 1
VG =14 5(ba+bs + ba) = ébg +0(r%),

where
1 .
bg = —gRiszxJ,
1 .
(35) b3 = —gRij,ka?Zmek,

1 1 1 o
by = — <20Rij,kl + g Tthigm Tthktm — ISRURM> vzl bl
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Hence

= / \/§dvo,
B,

where dvg is the volume element with respect to Euclidean metric and B, =
{z| |z| < r}. Since ]%] =1 in g metric,

A(r) =V'(r)
= 472 +/ [;(bz + b3+ bg) — ébg + O(r5)] dx?
Sy

1 1 1
= 47r? + 2/ by d¥0 + 2/ <b4 — 4b§> dx2 4+ O(r"),
Sr Sr

where dX? is the area element of S, with respect to the Euclidean metric.
Since [ ( ) dx0=3mr by (3.5) and the fact that Ryja'ad =327 | Ai(a?)?,

1 2t
3.7 — | bod¥? =— R.
(37) 5 [ tast= %
Noting that
(3.8)
2 2
1 ikl 1 o
b4 = —%Rij;klazlw]x x — Z Zha]mw a:j + E ZRijle}j
hm
2
1 ) 1
= —%Rij;kmzw]mkajl - — Z ZRzklﬂU 2 + ib%

7.7

Let us first compute fs, (Rijxixjf d¥?. By symmetry,
Nt 04 6 ;
(3.9) (a: ) dy, = ETT fori=1,2,3,
Sr
and for i # 7,

4
(3.10) / (x 1:]) dxl = — .
s, 15
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We have
2
/ (z%iszmj)2 a0 = / (Z /\i(xi)2> dx?
s, s-\5
(3.11) = %eriz}\? —WTGZ)\ i\
i i)

4
=7 (R2—|—2|RIC| )

Since the dim N = 3, by [10, p. 276], at p

1
(312) Rijri = gikRj1 — guRjr — gju R + g Rk — 53 (9ikgj1 — 9u9jk)
) 1
= 0iRj — duRjk — 0 Ry + 05 Rip, — iR (Oirdj1 — dqdjn)

and hence on S;:

(3.13)
R\ R
Rijmaiah = <)\ S 2) wial — 6y (Zk: Ak(zP)? + ()\z‘ - 2> 7“2) .
Using (3.10), we have
(3.14)
N2
/ YUY Ryuaiat dEO / y (A, + A - R) (') ax?

£l \ J.k i#l

—71'7“62 (A, + A — R)

il

4 R?
=S (2Ricl2 — = ).
= < |Ric| 5 >
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Clearly, by (3.13), (3.9) and (3.10), we have

2

/S Z Rijma/z" | dx?
-\ x
(3.15)  _ /S ((2)\1 B 1;) (z))? = Z)\k(xk)z _ (M B ]2%> r2>2 ds?

k
4 8 4 8
. 6 2 _ 2 12
=7r ( —15)\14—*15}3)\1 —15R +f15|Rlc| >

We have similar formula for the case i =1 =2 or 3. So

2
, 20 4
k 0 _ 6 c 12 2
(3.16) /S T Zl jZkRijk,m 450 = <15|Rlc] g ) |
By (3.14) and (3.16) we have
2
: 1
(3.17) /S S D Riualab | dsl = 5 (28|Ric|? — 6R?) mrS.

ril \ gk

Finally, 'let us compute fST Z.i,j,k,l Rij;klx%jxkxldilg. By symmetry
Jo Rijrx'e?z*2!dS? = 0 unless 2’27 % 2! is of the form (2™)*, or (z™)?(2")?
with m # n.

(3.18)

Z / le;kl:clxjxkxl dZ?
Sy

j7k7l

:/ R11;11($1)4d29+/ R11;22($11‘2)2d29+/ R11;33($1l‘3)2d29
S

d r

+ / (Ri2:12 + Riz01)(z'2?)? dx0 + / (Ri3.13 + Riza1)(z'a®)? ax?
s,

r

4 4
= gTFGRn;n + 1—57rr6(R12;12 + Ri2:21 + Ri3.13 + Ri3:31 + Ri1:22 + Ri1:33).

Similarly, one can prove that

. 4 4
E / Ry aaiakal axnl = gW‘GRm;Qz + Bﬂrﬁ(Rm;m + Ra1.12
— /s,
Jike LT

(3.19) + Ra3;23 + Rag;32 + Rooj11 + Ro2;33),
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and

: 4 4
Z/ jo,kl:v?’szckxl dES = 57T7“6R33;33 + f7T7“6(R31;31 + R31;13

k1S 15
(3.20) + R32.32 + R32,23 + R33.11 + R33.22).
Hence,
(3.21) > / Rijz'a’a"a! dE) = E”Tﬁ > (Rigjj + 2Rijiij) -
2,5,k,0 7T %,J

By the second Bianchi identity, we see that
1
> Rijij = 5 ftis-
i

Therefore, we have

o 876
(3.22) Z/ Rijmr'alabal axl = il AR(p).
ig k0 S 7 15

The lemma follows from (3.5), (3.6), (3.7), (3.8), (3.11), (3.15), (3.17) and
(3.22). O

Corollary 3.1. With the notations and assumptions as in Lemma 3.2, let
H be the mean curvature of S, with respect to g, then

444+ 6A
A+ 046

(3.23) / HdY, = 8mr + O(r%).
Sr

Proof. By the fact that |Vr| =1, we have
/ HdY, = i.A(r)
S, T d?" '

The corollary then follows from Lemma 3.2. O

By [18], and the fact that for r small (S,, g|s,) has positive Gauss cur-
vature, one can isometrically embed (S, g|s,) in R3.
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Lemma 3.3. For r small enough, there is an isometric embedding Z of
geodesic sphere S, into R3 such that

3 R @]
(3.24) Z-n=r+ % (2 - 2Rij$> +O@r,

where n is the outward unit normal vector of Z(S,) in R® and “’is the inner
product in R3.

Proof. For r > 0, we define a map x = ry and pull back the metric g to the
y space and let h be the metric r2¢ induced on the unit sphere S? in the
y space. As in the proof of Lemma 2.3, in order to prove the lemma, it is
sufficient to prove that for r small, we can find an isometric embedding Z,
of (S?,h) in R? such that

7“2
(3.25) Zoom =140 <§ Loy Ak<yk>2> Loud),

where n, is the unit outward normal of Z,(S?).
Let h be the induced metric of »~2g on the unit sphere S?, where

~ - 0 0 92 Tz k.l
gij—g<ayi,ayj>—’l“ (5ij+3Rikljyy .

Let h be the metric on S? induced by the pull back of the Euclidean
metric given by the embedding Z = (2!, 22, 2%) in R where

1 r* (R i\2

Y <1+6(2—)\1—Z)\i(9)>>
2 ,

22 =2 (1 + i <}; — A2 —Z)\i(y’)2>>
2 ,

2= (1—1—6(];—)\3—2)\1-(3/1)2)).

Zl

We claim that
(3.26) ||h = hl|cs + ||h — h||cs = O(),

where the norm is computed with respect to the standard metric. Suppose
the claim is true, then by [18], we can conclude that there are isometric
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embeddings Z,, Z and Z for (S2,h), (S2,h) and (SZ,E), respectively, such
that

(327) ||Z7« Ny — Z . ﬁ||co(§2) = O(TS),

where 7 is the unit outward normal of Z(S?). Then we can prove the lemma
by computing Z - .

Let us first prove the claim and then compute Z - f. Ttis easy to see that
| — hl|cs = O(r®) by the expression of ¢ in Lemma 3.1 and the definition
of g.

To find ;L, let 7“_251']' = 52’]’ + 51']', and let >\ij = *()\z + )\]) + % By (313),
we have

2

— T

011 = 3()\12(342)2 + Ai3(y*)?),
2

~ T

o2 = §(>\12(y1)2 + Aas(y?)?),
2

~ T

033 = §(>\13(y1)2 + Aa3(y%)?),

_ r2 o

Oij = _3/\1'3'3/23/]; i J.

In the above last equation, the repeated indices is not taken summation.
Let e1 = 0 = aié?i, ey = (sin 9)_18¢ = b;0;. Then

a; =cosfcosp, ap =-cosfsing, asz= —sind;
by = —sin¢, by =cos¢, b3 =0.

Note that
1_ 2 _ . 3 _
Yy =sinfcos¢, y° =sinfsing, y° = cosd.

Hence, in the basis {e1,e2}, h is given by
~ /’“2
hiv =14 2 (has sin® ¢ + Agy cos® ¢)

7“2

3
~ 2
hoo =1+ % ()\12 sin? 0 + A3 cos® 0sin? ¢ + Aoz cos? 0 cos? (;5) .

(328)  hip = — (—Ai3 + Aa3) cos O cos psin ¢,
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Next we want to compute h.

T
3
T2 R ) 4
:1+§ E—Alcosgb Agsin® ¢ — Az | +O(r?)
2

=1+ ()\13cos & + Aog sin® ¢) + O(r 4,
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Zy Zy= (234 ()] + (2°)]

= w3 (1 + T; (2 ZM%))

%

TQ
-3 2_vilwe (Z&m) +0(r")

¢

.. 92 r? 4
= sin 9—1-? + O(r%)

R . .
3 sin? 6 — Z A ((yz)i + yf sin? 6)

= sin% 0 {1 + 7;32 (g -\ (sim2 ¢ + cos? psin® 9)
— Ao (6082 ¢ + sin? ¢ sin’ 0) — A3 cos? 0)] +0(rh)
= sin?0 [1 + T; ()\12 sin? 0 + A\y3 cos? 6 sin® ¢+ Aog cos? 0 cos® qﬁ)]
+0(r),
and

Ze : Z¢> = (Zl)e(zl)qs + (22)0(22)¢ + (23)9(23)

= Z Z(yi)e(y")aﬁ (S RS Ak(W)

—%(i o) (o) % (gon)

X (ZAi(yiV) + 00
6

i

©

7,2

= =3 LW+ O

2

= % (=13 4+ Ag3) sin  cos 6 cos psin ¢ + O(rh).

Thus, we see that
(3.29) | — hljcs = O@r).

This completes the proof of the claim. Next we want to compute Z - h.
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];_Ai—ZAk(y’“>2> GSme (ZM )
¢

Note that A, B, C are orthonormal and positively oriented in R? for A € S?.
Let e1 = 0 and ey = 0y as before. Then,

sn9

Z-ZyNZy=(A+A)- (B+B)A(C+C)
=A-BANC+A-BANC+A-BAC+A-BAC+0O(rh)
=14C-C+B-B+A-A+0(r?).

Now
- 7’2 R kN2
A‘A:6<2—2;)\k(y)
- (R kN2 kN2
B B—6<2—§Ak((y 7+ ")
2
::3<};—()\10052<Z>+)\gsin2¢+/\3)>.
C.C= o B nzo - > M ((y’“)2 + (y*)? sin? 9)
6sin?6 \ 2 - ¢
2
:%(?—(Al (sin2¢+sin206082¢)
+ A2 (cosQ<Z>+sin29sin2d>)+>\300$29>>.
So

L 2 /R
(3.30) Z-ZiNZy=1+ % (2 - 32)\k(yk)2> +0 (rY).
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Noting that

2
|ZLA Zo> =1+ %[()\13(0082 ¢ + cos? §sin? ¢) + Ajosin? 0
+ o3 (sin? ¢ 4 cos? 0 cos? $))]+ O (7"4)

2
r
=1 M 0 (),
we have
. . 2
(3.31) 124 A Zo| ! :1+%Z)\k(yk)2+0(r4).

Combining (3.30) and (3.31)

Aoa Z . Zl VAN 22 T2 (R k 2) 4
3.32 Z h=—F——>5—=14+—|—=—-2 A +0(r*).
(332) G h = (52 M) +o ()
This completes the proof of the lemma. O

Lemma 3.4. Let K and H be the Gauss curvature and the mean curvature
of S, in g and Hy be the mean curvature of (Sy, gls,) when embedded in R3.
Then,

1 R 4 xlad

(3.33) K=5+5- ng - +O(r),
2 1 tad
(3.34) H==~- gRij% +0(r?)
and
2 R 4 _ ata) 9

Proof. We continue to use the normal coordinates as in Lemma 3.1. Then
n= % is the outward normal of S,. Let h;; = g;; — n;n; be the induced

metric on S, with n; = % By Lemma 3.1, the Christoffel symbols are given
by:

1
(3.36) Ffj =3 (Rkimj + Rijmi) o™ + o(r?).
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where the curvature is evaluated at p. Since V,,n = 0, the second fundamen-
tal form A in these coordinates is given by

Aij = nji
On; k
(3.37) = o LijT
by alad 2 xkgm 9
=, T3 ngiij +O(r7).

Let {e1, ea} be an orthonormal frame with respect to the Euclidean metric
on S, and let Ay and Ao be the eigenvalues of A. Then

N A(Cl, el)A(eg, 62) — A2(€1, 62)

Mz = g(e1,e2)g(e2, e2) — g?(e1, €2)
1 2 xham i j i j

— (7"2 - ngiij (e1(z)er(a?) + ea(a")ea(a?)) + O(r))

(3.38) X (1 - éRikmjxkxm (e1(z")er(27) + ea(2')ea(x)) + O(r3)>
1 1 kg™ i j ; ;
=3~ gftkimi— 35— (er(z")er(a?) + ea(x)ea(x”)) 4+ O(r)
xkgm
= Tig - %kaT + O(T),

where we have used the fact that ), (ea(azi))2 =1 and ea(zi(xi)Q) =0 on
S, for a = 1,2, and the fact that
xlad

5 -

e1(z)er(z?) + ea(at)eg(a?) = dij — .

Hence by the Gauss equation, for z € S,

1 ., .
K(z) =M\ + §hzkhﬂR,-jkl(x)

1 1 o UL P
(3.39) =5~ 35+ 5h "R Rijr(p) + O(r)
11 4 zlxd
=37t S B(p) — ng‘j(p)rT +O(r),
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where h" = g% — ninJ. On the other hand, for z € S,.,

(3.40)
H(CL‘) = hiinj

(0 2 zhxm
=30 (% = 2Ry ™) 0()

J . k,.m
= (&j - le‘kmﬁkl’m — ) (5” - 2Rkimj$:> +0(r?)

3 T 3
2 1 xlad
=——-R;;— +0 2
r 3 J r + (7’ )’

where we have used the fact that h¥/zi2z/ = 0.

It remains to prove the last assertion. Let Z, be the embedding as in the
proof of Lemma 3.3. One may conclude that by an isometry of R?, we have
12 —1d||c2(s2) = O(r?), where Id is the identity map of S*. Let H, and K,
be the mean curvature and the Gauss curvature of Z,.(S?). Let {e1,ea2} be
an orthonormal frames on S? with respect to the standard metric, then the
metric tensor h and the second fundamental form A of the surface Z,(S?)
satisfy:

(3.41) h(ea,ep) = dab + tab,  Al€a,ep) = dab + Ba,
where o,y = O(r?) and B, = O(r?). Hence, we have

K, =1—ai —as + fi1 + B2 + O(r?),
H, =2 — a1 — ag + B + a2 + O(r?).

After rescale to an embedding of (S, g|s.) in R, we conclude that

1
K = — (1— a1 — ag + Bi1 + B2) + O(r?)

,
and
1 3
Hy = . (2 = a11 — agz + Bi1 + Pa2) + O(r7).
From these and (3.33), (3.35) follows. O

We are ready to prove the following (Theorem 1.3):
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Theorem 3.1. Let (N,g) be a Riemannian manifold of dimension 3, p be
a fixed interior point on N and Sy be the geodesic sphere of radius r center
at p. For r small enough, we have

(3.42) i

mpy (Sr) = %R(p) + %40 [24|Ric|?(p) — 13R*(p) + 12AR(p)]| + O(r%);

here A is Laplacian operator of (M, g).

Proof. For r small, let Z be the isometric embedding of (S, g|s,) in R? as
in Lemma 3.3 and let Hy be the mean curvature of Z(S,) in R3. Let

R 4 _ 2l r (R ziad
k():E—gRZ‘j 7'2 s hlzT’ko, ngzg <2_2Rij702>~

By Lemmas 3.4 and 3.3, we have

1 2
Kzﬁ—i-ko—i-O(r), H0:;+h1+0(r2), Z-n=r+nz+0@r").

As in the proof of Theorem 2.1 in Section 2, by one of the Minkowski integral
formulae [16, Lemma 6.2.9] and Lemma 3.4, we have

(3.43

)
/ HOdET:2/ KZ -nds,
S S
1

S, <K - 7’12> (r 4+ nz)d%, + O(r%)

s

= 6r2Vo(r) + 27“/

1
<K — 2> d¥, + 2/ kong dX, + O(r%)
S, r Sy

2
= 6r"2Vy(r) + 877 — /tﬁ(r) + 2/ kons dS, + O(r°),
S

where Vp(r) is the volume inside Z(S,) in R3.
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By another Minkowski integral formula, we obtain

(3.44)
2A(r) :/ HoZ -nd%,
Sr
2 2 -
:/ Z-ndET—F/ Hy— — ) (r +n3)d%, + O(r")
8. T S r

=6V 4 [ Hods, —240) + [ mmyds, +007)
S, s,

T

= 6r2Vy(r) + 7“/ Hyd3, —2A(r) + 7‘/ kong dS, + O(r").
s, s

Hence,

(3.45) / Hyd%, = —6r2V(r) + 4r L A(r) — / kons dX, + O(r%).
S, Sy

By (3.43) and (3.45), we have

(3.46)
1
/ HydY, = 4mr +r L A(r) + / kong dX, — B / kong dX, + O(r%)
Sy Sy S,
As+ A 1
= 8mr + # + 2/ kong d¥, + O(r%)
Sr

where we have used Lemma 3.2. Combining this with Lemma 3.1, we have

3A4 + 5Aq 1

(3.47) / (Hy — H)d, = — 221754 1 / kons S + O(r%).
S, r 2 Js,

Now by (3.7) and (3.11)

(3.49 N N
/S,. kons d3, = %3/5 (]; — ;lRijaC:jj) (1; - 2Rijx;§]> %,
= :33/5 (12% —~ ;lRijif) (12% - 2Rij5”;f]> ) + 0(r°)
— 727;; (64|Ric|* — 23R?).
The theorem follows from (3.47),(3.48) and Lemma 3.2. O

As a corollary, we have
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Corollary 3.2. With the assumptions and notation as in Theorem 3.1,
suppose R > 0 in a neighborhood of p, then

> 0.

(3.49) lirg 7BY.(5r)

r—0 r

Equality holds if and only if (N, g) is flat at p and R vanishes up to second
order at p.

Proof. By the result of [23] on the positivity of the Brown—York mass, we
know that (3.49) is true. However, in this special case, one can deduce this
from the theorem. In fact, if R(p) > 0, then by (3.42), we have

lim mByor) (ST)

5 =00 > 0.
r—0 r

In case R(p) = 0, then R(p) is a minimum of R because R > 0. It is easy to
see that (3.49) is still true.

It is obvious that if (N, g) is flat at p and R vanishes up to second order
at p, then equality holds in (3.49). Conversely, if the equality holds in (3.49),
then we must have R(p) = 0, VR(p) = 0, AR(p) = 0 and |Ric|(p) = 0. Since
R has a minimum at p, the Hessian of R has non-negative eigenvalues. So
the Hessian of R must be zero at p because AR(p) = 0. Moreover, since N
has dimension 3, |Ric|(p) = 0 implies that (XN, g) is flat at p. O

Remark 3.1. From the proof, it is easy to see that (3.49) is true if R(p) =0
and AR(p) > 0 and the equality holds only if g is flat at p.

One should compare the corollary to the following fact: If M is an AF
manifold with non-negative scalar curvature, suppose the Brown—York mass
of the coordinate spheres converge to zero, then M must be the Euclidean
space. This follows from Theorem 2.1 and the positive mass theorem in
Schoen—Yau [21] and Witten [24].

For the expansion of the Hawking mass, we have:

Theorem 3.2. With the same notations and assumptions in Theorem 3.1,
we have

3 5

(3.50) mu(Sy) = — R(p) + % (6AR(p) — 5R%(p)) + O(r).
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Proof. By Lemma 3.4, we have
2 2
H = ;—I—H1—|—O(’I" )7
where H; = —%Rija:imj. Hence

H? =42+ 4 'H+ H{ + 0 (%) .

Then
4 4
/HQdET:— A§T)+/ HdEr+/ H2d50 + O(rP)
S, r rJs, S,
4(4mr? + Ay + A 4 44, 6A
_ A A4 6)+_<8 Jr4+6>
T T T T
+/ H? d¥2 + O(r%)
Sy
124, 204
= 167 + T24+ 6 /Hld20+0( ).
Hence,
124 2A
167r—/ H?d%, = -5~ 046 /H1d20+0( ).
T

On the other hand,

AY2(r) 21/ 2y Ay 4
(16m)3/2 ~ (167)3/2 <1 + 872 +olr )>

_ T Ay 1
= 3o (1 + ey +O(r )) .

So
) =——o—— — — H? dy? .
() 8nr  8mr 327r/ !  64m23 +007)
By (3.11) and Lemma 3.2, the result follows. O

Hence, the expansions of the Brown—York mass and the Hawking mass
are equal up to order r3. However, they differ on the term of order 7.

As in the case of large-sphere limit, we can compare V(r) and Vp(r),
where V (r) is the volume of the geodesic ball of radius r at p and Vy(r) is
the volume of the region bounded by S, when embedded in R3.
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Theorem 3.3. With the above notations, we have

(3.51)

7
Vo(r) — V(r) = —%RTS + %(173}22 — 454|Ric|> — 27TAR(p)) + O (1°) .

Proof. By (3.43) and (3.45)

2A(r)

/ HydX, = 6r2Vy(r) + 87r — — + 2/ kons dX, + O(r%),
Sr ST

and

/ Hyd%, = —6r2Vo(r) + 4r L A(r) — / kong d2,,
Sy Sy

where ko is as in (3.43).

We have
r r’ o 2 3 8
Vo(r) = zA(r) — — | kongdX) — —7r° + O (r®)
2 4 Jg. 3
4 2

_ 3. r r r 0 8
_gﬂ")" +2A4+2A64/‘Srkon3dzr+0(7“).

On the other hand,
V(r)= / A(t)dt
0
4 T T
= §7T7‘3 —I—/ A4dt—|—/ Agdt+ O (rg)
0 0

_dsy gA4 + L Ag+ 0 (r%).

3 7
Hence,
Vo(r) = V(r) = i7“A4 + i1”146 — 7ﬂ2/ kons dZS +0 (7"8) )
10 14 1 s,
By (3.48) and Lemma 3.2, the result follows. O

By Theorem 3.3, we see that if scalar curvature is positive at p, then
Vo(r) < V(r), for sufficiently small . More precisely,
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Corollary 3.3. With the assumptions and notations as in Theorem 3.3,
suppose R > 0 in a neighborhood of p, then

o Vo) = V(1)

<0.
r—0 r7 -

Equality holds if and only if (N, g) is flat at p and R vanishes up to second
order at p.

Proof. Similar to the argument of Corollary 3.2, one can derive the result
from Theorem 3.3. O
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