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Large-sphere and small-sphere limits
of the Brown–York mass

Xu-Qian Fan, Yuguang Shi and Luen-Fai Tam

In this paper, we will study the limiting behavior of the Brown–
York mass of the coordinate spheres in an asymptotically flat mani-
fold. Limiting behaviors of volumes of regions related to coordinate
spheres are also obtained, including a discussion on the isoperimet-
ric mass introduced by Huisken [14]. We will also study expansions
of the Brown–York mass and the Hawking mass of geodesic spheres
with center at a fixed point p of a 3-manifold. Some geometric con-
sequences will be derived.

1. Introduction

In this work, we will discuss the large-sphere limit of the Brown–York mass
in an asymptotically flat (AF) manifold and the small-sphere limit of the
Brown–York mass near a point in a three-dimensional manifold. We will also
discuss the behaviors of large-sphere limit and small-sphere limit of other
interesting quantities.

Let us first recall some definitions. In general relativity, AF manifolds
have great interests in many problems. In this paper, we adopt the following
definition of AF manifolds.

Definition 1.1. A complete 3-manifold (M, g) is said to be AF of order τ
(with one end) if there is a compact subset K such that M \ K is diffeomor-
phic to R

3 \ BR(0) for some R > 0 and in the standard coordinates in R
3,

the metric g satisfies:

(1.1) gij = δij + σij

with

(1.2) |σij | + r|∂σij | + r2|∂∂σij | + r3|∂∂∂σij | = O(r−τ ),

for some constant 1 ≥ τ > 1
2 , where r and ∂ denote the Euclidean distance

and standard derivative operator on R
3, respectively.
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A coordinate system of M near infinity so that the metric tensor in
these coordinates satisfies the decay conditions in the definition is said to
be admissible. Note that some of the results in the following do not need
decays of the third-order derivatives of σij .

Definition 1.2. The Arnowitt–Deser–Misner (ADM) mass (see [1]) of an
AF manifold M is defined as:

(1.3) mADM(M) = lim
r→∞

1
16π

∫
Sr

(gij,i − gii,j) νjdΣ0
r ,

where Sr is the Euclidean sphere with Euclidean radius r and center at the
origin, dΣ0

r is the volume element induced by the Euclidean metric, ν is the
outward unit normal of Sr in R

3 and the derivative is the ordinary partial
derivative.

We always assume that the scalar curvature is in L1(M) so that the
limit exists in the definition. Under the decay conditions in the definition
of AF manifold, the definition of ADM mass is independent of the choice of
admissible coordinates by the result of Bartnik [2].

Let (Ω, g) be a compact 3-manifold with smooth boundary ∂Ω. Suppose
the Gauss curvature of ∂Ω is positive, then the Brown–York quasi-local mass
of ∂Ω is defined as (see [6, 7]):

Definition 1.3.

(1.4) mBY (∂Ω) =
1
8π

∫
∂Ω

(H0 − H)dΣ,

where H is the mean curvature of ∂Ω with respect to the outward unit
normal and the metric g, dΣ is the volume element induced on ∂Ω by g and
H0 is the mean curvature of ∂Ω with respect to the outward unit normal
when embedded in R

3.

The Brown–York mass is well-defined because by the result of Nirenberg
[18], ∂Ω can be isometrically embedded in R

3 and the embedding is unique
by Cohn–Vossen [8] (see also [13, 19, 20]). In particular, H0 is completely
determined by the metric on ∂Ω. However, this is a global property. In
contrast, the norm of the mean curvature vector of an embedding of ∂Ω into
the light cone in the Minkowski space can be expressed explicitly in terms
of the Gauss curvature, see [5]. Hence, in the study of Brown–York mass,
one of the difficulties is to estimate

∫
∂Ω H0dΣ. We will use the Minkowski

formulae [16] and the estimates of Nirenberg [18] in this regard.
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In the first part of this paper, we want to study limiting behaviors of
Brown–York mass on large spheres. We will verify the following:

Theorem 1.1. Let (M, g) be an AF manifold of order τ > 1
2 with one end

and let Sr be the coordinate spheres in some admissible coordinates. Then

lim
r→∞

mBY(Sr) = mADM(M).

Here mBY(Sr) is the Brown–York quasi-local mass of Sr, and mADM(M) is
the ADM mass of M .

Theorem 1.1 was observed and proved to be true by many people, see the
works of Brown–York [7], Hawking–Horowitz [12], Braden–Brown–Whiting–
York [4] and Baskaran-Lau-Petrov [3], see also [23]. However, in this paper,
we will use a different method to derive Theorem 1.1. Interestingly, our
method leads to the following volume comparison result. Let V (r) be the
volume with respect to an AF metric g of the region inside Sr and let V0(r)
be the Euclidean volume inside the surface Sr when embedded in R

3.

Theorem 1.2. Let (M, g) be an AF manifold of order τ > 1
2 with one end.

Then

(1.5) V0(r) − V (r) = −2mADM(M)πr2 + o(r2).

Hence if the ADM mass is non-negative, then limr→∞ r−2(V (r)−V0(r)) ≥
0. Combining this with positive mass theorem, if we further assume that the
scalar curvature is non-negative, then the limit is zero if and only if M is
isometric to R

3.
In [14], a notion of isoperimetric mass mISO(M) of an AF manifold is

introduced by Huisken. It is defined as:

mISO = lim sup
r→∞

2
A(r)

(
V (r) − 1

6π
1
2

A 3
2 (r)

)
,

where V (r) is as before and A(r) is the area of the coordinate sphere with
respect to the AF metric. Using the method of the proof of Theorem 1.2,
Miao [17] proves that the isoperimetric mass and the ADM mass of an AF
manifold are equal. We would like to thank Miao for allowing us to include
his result in this work.

In the second part of the paper, we will consider the small-sphere limit
of the Brown–York mass. Let r be the distance to the fixed point p, and
R(p) is the scalar curvature evaluated at p. We have the following:
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Theorem 1.3. Let (N, g) be a Riemannian manifold of dimension 3, p be
a fixed interior point on N and Sr be the geodesic sphere of radius r center
at p. For r small enough, we have
(1.6)

mBY(Sr) =
r3

12
R(p) +

r5

1440
[
24|Ric|2(p) − 13R2(p) + 12ΔR(p)

]
+ O(r6),

where Δ is Laplacian operator of (M, g) and |Ric| is the norm of the Ricci
curvature.

Let M be an AF manifold with non-negative scalar curvature. Suppose
the Brown–York mass of the coordinate spheres converge to zero, then M
must be the Euclidean space by Theorem 1.1 and the positive mass theorem
in [21, 24]. By Theorem 1.3, we have similar result near a point p. Namely,
assume R ≥ 0 in a neighborhood of p, then

(1.7) lim
r→0

mBY(Sr)
r5 ≥ 0.

Equality holds if and only if (N, g) is flat at p and R vanishes up to second
order at p.

There are results on the small-sphere limits obtained by Brown–Lau–
York [5]. They consider a cut Sr with an affine radius r of the light cone at
a point p in a Lorentz manifold. Using the light cone of reference, they show
that the expansion of the quasi-local energy is:

E =
4πr3

3
Tabn

anb + o(r3),

where Tab is the energy momentum tensor and n is the unit future pointing
time like vector defining the choice of the affine parameter. In our case, if we
consider the Lorentz manifold R × N with metric g̃ = −dt2 + g, and suppose
the metric satisfies the Einstein equation:

R̃ab − 1
2
R̃g̃ab = 8πTab.

Let n = ∂
∂t be the future pointing unit normal, then

R(p)
12

=
4πr3

3
Tabn

anb.
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Hence, r3 term of the expansion in our case is similar to that in [5]. However,
we are using Euclidean reference and we only consider the time symmetric
case.

In the case of vacuum space-time, Brown–Lau–York [5] also obtain the
r5 term in the expansion of E as follows:

E5 =
r5

90
Tabcdn

anbacnd,

where Tabcd is the Bel–Robinson tensor, which depends only on the curva-
ture tensor (and the metric). In Theorem 3.1, the space-time is not vacuum
in general and is time symmetric. The coefficient of the term r5 depends
not only on the curvature tensor, but also on the derivative of the scalar
curvature. For the sake of comparison, in our case, one can compute that
T0000 = 1

8(4|Ric|2 − R2). We use the definition of Bel–Robinson tensor as in
(5) of [9].

Next we want to compare the expansion of the Hawking mass with the
expansion of the Brown–York mass for small spheres. Recall the definition
of the Hawking mass. Let (Ω, g) be a smooth 3-manifold with boundary ∂Ω
and let H be the mean curvature on ∂Ω with respect to the outward unit
normal, the Hawking quasi-local mass is defined as (see [11]):

Definition 1.4.

(1.8) mH(∂Ω) =
|∂Ω|1/2

(16π)3/2

(
16π −

∫
∂Ω

H2 dΣ
)

,

where dΣ is the volume element induced on ∂Ω by g and |∂Ω| is the area of
∂Ω.

With the same notations and assumptions in Theorem 1.3, the expansion
of mH(Sr) is given by:

mH(Sr) =
r3

12
R(p) +

r5

720
(
6ΔR(p) − 5R2(p)

)
+ O(r6).(1.9)

One can see that mBY(Sr) and mH(Sr) are equal up to the term with order
r3. However, the terms of order r5 are different. In particular, if the scalar
curvature is zero near p, but it is non-flat at p, then r−5mBY(Sr) > 0 and
mH(Sr) = O(r6) for small r.

As in the large-sphere case, one can also compare V (r) and V0(r), where
V (r) is the volume of the geodesic ball of radius r at p and V0(r) which is
the volume of the region bounded by Sr when embedded in R

3.



42 Xu-Qian Fan, Yuguang Shi and Luen-Fai Tam

The paper is organized as follows. In Section 2, the limit of behavior
of Brown–York mass in large spheres and volume comparison are proved;
in Section 3, small-sphere limit of the Brown–York mass and the Hawking
mass and small-sphere volume comparison are proved.

The authors would like to thank Robert Bartnik, Yanyan Li and Pengzi
Miao for useful discussions.

2. Large-sphere limit

In this section, we will first prove the following theorem (Theorem 1.1).

Theorem 2.1. Let (M, g) be an AF manifold of order τ > 1
2 with one end

and let Sr be the coordinate spheres in some admissible coordinates. Then

lim
r→∞

mBY(Sr) = mADM(M).

Here mBY(Sr) is the Brown–York quasi-local mass of Sr and mADM(M) is
the ADM mass of M .

Consider an AF manifold (M, g) with coordinates (x1, x2, x3) so that gij

satisfies the decay conditions in Definition 1.3. Let n = ni ∂
∂xi be the unit

outward normal of Sr and ni = gijn
j . Then

(2.1) ni =
gijxj

r|∇r| and ni =
xi

r|∇r| ,

where r =
(∑3

i=1
(
xi

)2
)1/2

. The metric induced on Sr is hij = gij − ninj

and the second fundamental form is Aij = hk
i h

l
jnk;l, where nk;l is the covari-

ant derivative of nk with respect to g.

Lemma 2.1. With the above notations and assumptions, on Sr we have
the following:

(i)

Aij =
hij

r
+ O(r−1−τ ), H =

2
r

+ O(r−1−τ ), K =
1
r2 + O(r−2−τ ),

where H is the mean curvature and K is the Gauss curvature of Sr.
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(ii)

dΣr =
(
1 + hijσij + O(r−2τ )

)1/2
dΣ0

r .

Hence,

A(r) = 4πr2 +
1
2

∫
Sr

hijσij dΣr + O(r2−2τ ),

where A(r) is the area of Sr with respect to g.

Proof. (i) is well-known, see [15]. For the sake of completeness, we derive it
as follows:

(2.2) |∇r|2 = 1 − σijx
ixj

r2 + O(r−2τ )

and

∂

∂xk

(
|∇r|2

)
=

∂

∂xk

(
gij xixj

r2

)

=
∂

∂xk

[
1 +

(
gij − δij

) xixj

r2

]

= O(r−1−τ ).

(2.3)

So

(2.4) ni =
xi

r
+ O(r−τ )

and

ni;j =
∂ni

∂xj
− Γk

ijnk

=
∂

∂xj

(
xi

r|∇r|

)
+ O(r−1−τ )

=
(

δij

r
− xixj

r3

)
+ O(r−1−τ ),

(2.5)
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where Γk
ij are the Christoffel symbols. Let hj

i = gjkhki. Using the fact that
n has unit length, we have

Aij − hij

r
= hk

i h
l
jnk;l − hij

r

= hl
jni;l − hij

r

= ni;j −
(

δij

r
− xixj

r3

)
+ O(r−1−τ )

= O(r−1−τ ).

(2.6)

From this and the fact that the curvature of M decays like r−2−τ , the
estimates of H and K follow.

(ii) Let e1 and e2 be orthonormal frames on Sr with respect to the
Euclidean metric, then

dΣr =
(
g(e1, e1)g(e2, e2) − g2(e1, e2)

)1/2
dΣ0

r

=
(
1 + σ(e1, e1) + σ(e2, e2) + O(r−2τ )

)1/2
dΣ0

r

=
[
1 +

(
e1(xi)e1(xj) + e2(xi)e2(xj)

)
σij + O(r−2τ )

]1/2
dΣ0

r

=
[
1 +

(
∇0x

i · ∇0x
j − ∂xi

∂r

∂xj

∂r

)
σij + O(r−2τ )

]1/2

dΣ0
r

=
[
1 +

(
δij − ∂xi

∂r

∂xj

∂r

)
σij + O(r−2τ )

]1/2

dΣ0
r

=
(
1 + hijσij + O(r−2τ )

)1/2
dΣ0

r ,

(2.7)

where ∇0 is the derivative with respect to the Euclidean metric and ‘·’
is the standard inner product in R

3. The last statement follows from this
immediately. �

Lemma 2.2.

(2.8)
∫

Sr

H dΣr =
A(r)

r
+ 4πr − 8πmADM(M) + o(1)

as r → ∞.
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Proof. Let m = mADM(M). By Lemma 2.1 and the first variational formula,
we have

d

dr
A(r) =

∫
Sr

1
|∇r|H dΣr

=
∫

Sr

H dΣr +
∫

Sr

σijx
ixj

r3 dΣr + O(r1−2τ )
(2.9)

where we have used (2.2).
On the other hand, by Lemma 2.1, we have

d

dr
A(r) = 8πr +

1
2

∫
Sr

∂

∂r

(
hijσij

)
dΣr +

1
r

∫
Sr

hijσij dΣr + O(r1−2τ )

(2.10)

= 8πr +
1
2

∫
Sr

hijσij,k
xk

r
dΣr +

1
r

∫
Sr

hijσij dΣr + O(r1−2τ )

= 8πr +
1
2

∫
Sr

σii,kx
k

r
dΣ0

r − 1
2

∫
Sr

σij,kx
ixjxk

r3 dΣ0
r

+
1
r

∫
Sr

hijσij dΣr + O(r1−2τ ),

where σij,k = ∂σij

∂xk . Now, as in [15, (5.17)]:

∫
Sr

σij,kx
ixjxk

r3 dΣ0
r

=
∫

Sr

∂

∂xk

(
σijx

j

r

)
xixk

r2 dΣ0
r

= −
∫

Sr

(
δik − xixk

r2

)
∂

∂xk

(
σijx

j

r

)
dΣ0

r +
∫

Sr

∂

∂xi

(
σijx

j

r

)
dΣ0

r

= −2
∫

Sr

σijx
ixj

r3 dΣ0
r +

∫
Sr

σij,ix
j

r
dΣ0

r +
∫

Sr

σij

(
δij

r
− xixj

r3

)
dΣ0

r

= −2
∫

Sr

σijx
ixj

r3 dΣr +
∫

Sr

σij,ix
j

r
dΣ0

r +
1
r

∫
Sr

hijσijdΣr + O(r1−2τ ).

(2.11)
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Combining this with (2.10), by Lemma 2.1 and the definition of ADM mass,
we have

(2.12)
d

dr
A(r) =

A(r)
r

+ 4πr +
∫

Sr

σijx
ixj

r3 dΣ0
r − 8πm + o(1).

By (2.9) and (2.12), the lemma follows. �

By Lemma 2.1, if r is large enough, then the Gauss curvature of Sr

is positive. So Sr can be isometrically embedded in R
3 uniquely up to an

isometry of R
3 by [13,18–20]. The following lemma says that the embedded

surface (rescaled) is very close to the standard sphere as r → ∞.

Lemma 2.3. Let (M, g) be an AF 3-manifold with (1.1) and (1.2) for
τ > 1

2 , and let Sr be coordinate spheres. For r large enough, there is an
isometrical embedding Xr of Sr in R

3 such that:

Xr · n0 = r + O
(
r1−τ

)
H0 =

2
r

+ H1 with H1 = O
(
r−1−τ

)(2.13)

as r → +∞, where n0 is the unit outward normal to the surface Xr, ‘·’ is
the inner product in R

3 and H0 is the mean curvature of Xr.

Proof. For r > 0, define a map x = ry and pull back the metric to the y
space. Let the pull back metric be ĝ. Let ĥ be the induced metric on the
coordinate spheres in y.

ĥij = ĝij − n̂in̂j

= r2gij − n̂in̂j

(2.14)

where ĥij = ĥ( ∂
∂yi ,

∂
∂yj ), etc. and gij = g( ∂

∂xi ,
∂

∂xj ) etc. Also n̂i = yi/(ρ|∇̂ρ|ĝ)

is the unit normal on
{

ρ =
(∑3

i=1
(
yi

)2
)1/2

= constant
}

. Then

|∇̂ρ|2ĝ = r−2gij yiyj

ρ2 .
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Consider the following metric on Σρ = {y| |y| = ρ}:

ds2
r = r−2ĥij

= gij − r−2n̂in̂j

= gij − yiyj

gklykyl
.

(2.15)

Clearly, the standard metric h0
ij on Σρ is

(2.16) ds2
0 = h0

ij = δij − yiyj

ρ2 .

Direct computations show

(2.17) ||ds2
r − ds2

0||C3(Σρ) = O
(
r−τ

)

for 1
2 ≤ ρ ≤ 2. Note that Σ1 is the unit sphere. By [18, p. 353], we can find

an isometric embedding X̂r of (S2, ds2
r) into R

3 such that

(2.18) ‖X̂r − X0‖C2(S2) = O
(
r−τ

)
,

where X0 is the identity map. Since X0 · n0 = 1, where n0 is the unit outward
normal of the unit sphere, we have X̂r · n0,r = 1 + O(r−τ ), where n0,r is the
unit outward normal of the surface X̂r. If we identify Sr with metric induced
by g with (S2, ĥ), then Xr = rX̂r is an isometric embedding of Sr with metric
induced by g. From this it is easy to see that the first part of (2.13) is true.

By (2.18), we know that Ĥ0 − 2 = O (r−τ ), where Ĥ0 is the mean cur-
vature of X̂r. After rescaling rX̂r, we can get the second part of (2.13). �

Lemma 2.4. Let (M, g) be an AF manifold with the properties (1.1) and
(1.2), and let Sr be coordinate spheres. We have

(2.19)
∫

Sr

H0 dΣr = 4πr +
A(r)

r
+ O(r1−2τ ).

Proof. By Lemma 2.3, for r large enough, we can find an isometric embed-
ding Xr of Sr in R

3 such that Xr · n0 = r + O(r1−τ ). Let H0 be the mean
curvature with respect to the outward unit normal when Sr is embedded
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in R
3. By Lemma 2.1(i),

K̄ � K − 1
r2 = O(r−2−τ ).

By one of the Minkowski integral formulae [16, Lemma 6.2.9], we have
∫

Sr

H0 dΣr = 2
∫

Sr

KXr · n0 dΣr

= 2
∫

Sr

(
1
r2 + K̄

)
Xr · n0 dΣr

=
2
r2

∫
Sr

Xr · n0 dΣr + 2
∫

Sr

K̄Xr · n0 dΣr

=
6V0(r)

r2 + 2
∫

Sr

K̄
(
r + O

(
r1−τ

))
dΣr

=
6V0(r)

r2 + 2r

∫
Sr

K̄ dΣr + O(r1−2τ )

=
6V0(r)

r2 + 2r

∫
Sr

(
K − 1

r2

)
dΣr + O(r1−2τ )

=
6V0(r)

r2 + 8πr − 2A(r)
r

+ O(r1−2τ ),

(2.20)

where V0(r) is the volume of the interior of the surface Xr in R
3. On

the other hand, from Lemma 2.3, H0 = 2
r + H1 with H1 = O

(
r−1−τ

)
. By

another Minkowski integral formula, we have

2A(r) =
∫

Sr

H0X · n0 dΣr

=
6V0(r)

r
+

∫
Sr

H1X · n0 dΣr

=
6V0(r)

r
+ r

∫
Sr

H1 dΣr + O
(
r2−2τ

)

=
6V0(r)

r
− 2A(r) + r

∫
Sr

H0 dΣr + O
(
r2−2τ

)
.

(2.21)

So

(2.22)
∫

Sr

H0 dΣr = −6V0(r)
r2 +

4A(r)
r

+ O(r1−2τ ).

From (2.20) and (2.22), the lemma follows. �
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Proof of Theorem 2.1. The theorem follows immediately from Lemmas 2.2
and 2.4. �

In Theorem 2.1, Sr can be replaced by slightly deformed spheres. More
precisely, we have:

Corollary 2.1. Same assumptions as in Theorem 2.1. Suppose ρ is a
smooth function on M such that

(2.23) |ρ − r| + r|∂(ρ − r)| + r2|∂∂(ρ − r)| + r3|∂∂∂(ρ − r)| = O(rκ)

for some 0 < κ < 1 − τ . Then

lim
ρ→∞

mBY(Σρ) = mADM(M),

where Σρ is the level set of the smooth function ρ.

Proof. Let y = ρ
r x = F (x). Then one can show that y is also a coordinate

system of M at infinity so that the metric tensor in this coordinates satis-
fies the decay conditions (1.1) and (1.2). Note that Σρ is nothing but the
coordinate spheres in the y-coordinates. Hence, the corollary follows from
the uniqueness of ADM mass by [2]. �

With the notations as in the proof of Theorem 2.1. Let V (r) be the
volume with respect to an AF metric g of the region inside Sr. We can
compare V (r) and V0(r) (Theorem 1.2):

Theorem 2.2. With the above notations. Let (M, g) be an AF manifold of
order τ > 1

2 with one end. Then

(2.24) V0(r) − V (r) = −2mADMπr2 + o(r2).

Proof. Let m = mADM . With the same notations as in the proof of Theorem
2.1, by (2.2) and the co-area formula we have

V ′(r) =
∫

Sr

1
|∇r| dΣr

= A(r) +
1
2

∫
Sr

σijx
ixj

r2 dΣr + O(r2−2τ ).
(2.25)
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Here and below is the derivative with respect to r. On the other hand, by
(2.8) and (2.9) we have

A′(r) =
A(r)

r
+ 4πr − 8πm +

∫
Sr

σijx
ixj

r3 dΣr + o(1).(2.26)

Eliminating the term
∫
Sr

σijxixj

r3 dΣr from (2.25) and (2.26), we have

(2.27) A′(r) =
A(r)

r
+ 4πr − 8πm +

1
r

(
2V ′(r) − 2A(r)

)
+ o(1).

Hence,
(rA(r))′ = 4πr2 − 8πmr + 2V ′(r) + o(r)

and

(2.28) V (r) =
1
2
rA(r) − 2πr3

3
+ 2πmr2 + o(r2).

On the other hand, by (2.20) and (2.21), we have

(2.29) V0(r) =
1
2
rA(r) − 2πr3

3
+ O(r3−2τ ).

Hence
V0(r) − V (r) = −2πmr2 + o(r2)

because τ > 1
2 . �

Combine this with positive mass theorem, we have the following:

Corollary 2.2. With above notations, let (M, g) be an AF manifold of
order τ > 1

2 . If the scalar curvature is non-negative, then

lim
r→+∞

V (r) − V0(r)
r2 ≥ 0,

and equality holds if and only if (M, g) is isometric to R
3.

From the proof of Theorem 2.2, Miao [17] is able to obtain the following
result. Thanks to Pengzi Miao, we include the result and the proof here.

Corollary 2.3. In an AF manifold M , the ADM mass and the isoperimet-
ric mass introduced by Huisken [14] are equal.
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Proof. Recall that the isoperimetric mass of M is defined as

mISO = lim sup
r→∞

2
A(r)

(
V (r) − 1

6π1/2 A3/2(r)
)

.

Now by (2.28)

2
A(r)

(
V (r) − 1

6π1/2 A3/2(r)
)

= r +
1

A(r)

(
4πmr2 − 4πr3

3

)
− 1

3π1/2 A1/2(r) + o(1)

= r +
(
m − r

3

) (
1 − I + O(r−2τ )

)
− 2r

3

(
1 +

1
2
I + O(r−2τ )

)
+ o(1)

= m + o(1),

(2.30)

where

I =
1

8πr2

∫
Sr

hijσij dΣr = O(r−τ )

so that

A(r) = 4πr2 (
1 + I + O(r−2τ )

)
,

see Lemma 2.1(ii). From this the result follows. �

3. Small-sphere limit

In this section, we will first study the small-sphere limit of the Brown–York
mass of geodesic spheres up to order r5, where r is the geodesic distance from
a fixed point. Let (N3, g) be a three-dimensional manifold and let p ∈ N .
Let {xi} be the normal coordinates near p. By [22, Chapter 5], we have the
following expansion of g near p:

Lemma 3.1. For any point x close to p, the metric components of g in the
normal coordinates can be expressed as

gij(x) = δij +
1
3
Riklj(p)xkxl +

1
6
Riklj;m(p)xkxlxm

+
(

1
20

Riklj;mn(p) +
2
45

Rikls(p)Rjmns(p)
)

xkxlxmxn + O
(
r5)(3.1)
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and

g = det(gij)

= 1 − 1
3
Rij(p)xixj − 1

6
Rij;k(p)xixjxk −

(
1
20

Rij;kl(p)

+
1
90

Rhijm(p)Rhklm(p) − 1
18

Rij(p)Rkl(p)
)

xixjxkxl + O(r5),(3.2)

where r is the geodesic distance from p, Rijkl is the Riemannian curvature
tensor, Rij is the Ricci curvature and R is the scalar curvature with respect
to the metric g, and Riklj;m is the covariant derivative of Rijkl etc.

In our notations, the sectional curvature is non-negative if Rijij ≥ 0. In
the following, we always assume that the normal coordinates are chosen so
that at p the Ricci curvature is of the form Rij = λiδij where λ1, λ2, λ3 are
the eigenvalues of Rij .

Lemma 3.2. Let A(r) be the area of geodesic sphere Sr = {|x| = r} with
radius r in (N, g) with center at p, then:

(3.3) A(r) = 4πr2 + A4 + A6 + O(r7),

where

(3.4) A4 = −2πr4

9
R, A6 =

πr6

675
(
4R2 − 2|Ric|2 − 9ΔR

)
,

where Δ is the Laplacian operator with respect to metric g and |Ric| is the
norm of the Ricci tensor. Here all the terms involving curvature are evaluated
at p.

Proof. By (3.2)

√
g = 1 +

1
2
(b2 + b3 + b4) − 1

8
b2
2 + O(r5),

where

b2 = −1
3
Rijx

ixj ,

b3 = −1
6
Rij,kx

ixjxk,

b4 = −
(

1
20

Rij,kl +
1
90

RhijmRhklm − 1
18

RijRkl

)
xixjxkxl.

(3.5)
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Hence

V (r) =
∫

Br

√
g dv0,

where dv0 is the volume element with respect to Euclidean metric and Br =
{x| |x| < r}. Since | ∂

∂r | = 1 in g metric,

A(r) = V ′(r)

= 4πr2 +
∫

Sr

[
1
2
(b2 + b3 + b4) − 1

8
b2
2 + O(r5)

]
dΣ0

r

= 4πr2 +
1
2

∫
Sr

b2 dΣ0
r +

1
2

∫
Sr

(
b4 − 1

4
b2
2

)
dΣ0

r + O(r7),

(3.6)

where dΣ0
r is the area element of Sr with respect to the Euclidean metric.

Since
∫
Sr

(
xi

)2
dΣ0

r = 4
3πr4, by (3.5) and the fact that Rijx

ixj =
∑3

i=1 λi(xi)2,

(3.7)
1
2

∫
Sr

b2 dΣ0
r = −2πr4

9
R.

Noting that

b4 = − 1
20

Rij;klx
ixjxkxl − 1

90

∑
h,m

⎛
⎝∑

ij

Rhijmxixj

⎞
⎠

2

+
1
18

⎛
⎝∑

ij

Rijx
ixj

⎞
⎠

2

= − 1
20

Rij;klx
ixjxkxl − 1

90

∑
i,j

⎛
⎝∑

k,l

Rikljx
kxl

⎞
⎠

2

+
1
2
b2
2.

(3.8)

Let us first compute
∫
Sr

(
Rijx

ixj
)2

dΣ0
r . By symmetry,

(3.9)
∫

Sr

(
xi

)4
dΣ0

r =
4
5
πr6, for i = 1, 2, 3,

and for i 
= j,

(3.10)
∫

Sr

(
xixj

)2
dΣ0

r =
4
15

πr6.
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We have

∫
Sr

(
Rijx

ixj
)2

dΣ0
r =

∫
Sr

(∑
i

λi(xi)2
)2

dΣ0
r

=
4
5
πr6

∑
i

λ2
i +

4
15

πr6
∑
i�=j

λiλj

=
4
15

πr6 (
R2 + 2|Ric|2

)
.

(3.11)

Since the dimN = 3, by [10, p. 276], at p

Rijkl = gikRjl − gilRjk − gjkRil + gjlRik − 1
2
R (gikgjl − gilgjk)

= δikRjl − δilRjk − δjkRil + δjlRik − 1
2
R (δikδjl − δilδjk) ,

(3.12)

and hence on Sr:

Rijklx
jxk =

(
λi + λl − R

2

)
xixl − δil

(∑
k

λk(xk)2 +
(

λi − R

2

)
r2

)
.

(3.13)

Using (3.10), we have

∫
Sr

∑
i�=l

⎛
⎝∑

j,k

Rijklx
jxk

⎞
⎠

2

dΣ0
r =

∫
Sr

∑
i�=l

(
λl + λi − R

2

)2 (
xixl

)2
dΣ0

r

=
4
15

πr6
∑
i�=l

(
λl + λi − R

2

)2

=
4
15

πr6
(

2|Ric|2 − R2

2

)
.

(3.14)
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Clearly, by (3.13), (3.9) and (3.10), we have

∫
Sr

⎛
⎝∑

jk

R1jk1x
jxk

⎞
⎠

2

dΣ0
r

=
∫

Sr

((
2λ1 − R

2

)
(x1)2 −

∑
k

λk(xk)2 −
(

λ1 − R

2

)
r2

)2

dΣ0
r

= πr6
(

− 4
15

λ2
1 +

8
15

Rλ1 − 4
15

R2 +
8
15

|Ric|2
)

.

(3.15)

We have similar formula for the case i = l = 2 or 3. So

∫
Sr

∑
i=l

⎛
⎝∑

j,k

Rijklx
jxk

⎞
⎠

2

dΣ0
r = πr6

(
20
15

|Ric|2 − 4
15

R2
)

.(3.16)

By (3.14) and (3.16) we have

(3.17)
∫

Sr

∑
i,l

⎛
⎝∑

j,k

Rijklx
jxk

⎞
⎠

2

dΣ0
r =

1
15

(
28|Ric|2 − 6R2) πr6.

Finally, let us compute
∫
Sr

∑
i,j,k,l Rij;klx

ixjxkxldΣ0
r . By symmetry∫

Sr
Rij;klx

ixjxkxldΣ0
r = 0 unless xixjxkxl is of the form (xm)4, or (xm)2(xn)2

with m 
= n.

∑
j,k,l

∫
Sr

R1j;klx
1xjxkxl dΣ0

r

=
∫

Sr

R11;11(x1)4 dΣ0
r +

∫
Sr

R11;22(x1x2)2 dΣ0
r +

∫
Sr

R11;33(x1x3)2 dΣ0
r

+
∫

Sr

(R12;12 + R12;21)(x1x2)2 dΣ0
r +

∫
Sr

(R13;13 + R13;31)(x1x3)2 dΣ0
r

=
4
5
πr6R11;11 +

4
15

πr6(R12;12 +R12;21 +R13;13 +R13;31 +R11;22 + R11;33).

(3.18)

Similarly, one can prove that

∑
j,k,l

∫
Sr

R2j,klx
2xjxkxl dΣ0

r =
4
5
πr6R22;22 +

4
15

πr6(R21;21 + R21;12

+ R23;23 + R23;32 + R22;11 + R22;33),(3.19)



56 Xu-Qian Fan, Yuguang Shi and Luen-Fai Tam

and

∑
j,k,l

∫
Sr

R3j,klx
3xjxkxl dΣ0

r =
4
5
πr6R33;33 +

4
15

πr6(R31;31 + R31;13

+ R32;32 + R32;23 + R33;11 + R33;22).(3.20)

Hence,

(3.21)
∑
i,j,k,l

∫
Sr

Rij;klx
ixjxkxl dΣ0

r =
4
15

πr6
∑
i,j

(Rii;jj + 2Rij;ij) .

By the second Bianchi identity, we see that

∑
i

Rij;ij =
1
2
R;jj .

Therefore, we have

(3.22)
∑
i,j,k,l

∫
Sr

Rij,klx
ixjxkxl dΣ0

r =
8πr6

15
ΔR(p).

The lemma follows from (3.5), (3.6), (3.7), (3.8), (3.11), (3.15), (3.17) and
(3.22). �

Corollary 3.1. With the notations and assumptions as in Lemma 3.2, let
H be the mean curvature of Sr with respect to g, then

(3.23)
∫

Sr

H dΣr = 8πr +
4A4 + 6A6

r
+ O(r6).

Proof. By the fact that |∇r| = 1, we have

∫
Sr

H dΣr =
d

dr
A(r).

The corollary then follows from Lemma 3.2. �

By [18], and the fact that for r small (Sr, g|Sr
) has positive Gauss cur-

vature, one can isometrically embed (Sr, g|Sr
) in R

3.
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Lemma 3.3. For r small enough, there is an isometric embedding Z of
geodesic sphere Sr into R

3 such that

(3.24) Z · n = r +
r3

6

(
R

2
− 2Rij

xixj

r2

)
+ O(r4),

where n is the outward unit normal vector of Z(Sr) in R
3 and ‘·’ is the inner

product in R
3.

Proof. For r > 0, we define a map x = ry and pull back the metric g to the
y space and let h be the metric r−2g induced on the unit sphere S

2 in the
y space. As in the proof of Lemma 2.3, in order to prove the lemma, it is
sufficient to prove that for r small, we can find an isometric embedding Zr

of (S2, h) in R
3 such that

(3.25) Zr · nr = 1 +
r2

6

(
R

2
− 2

∑
λk(yk)2

)
+ O(r3),

where nr is the unit outward normal of Zr(S2).
Let h̃ be the induced metric of r−2g̃ on the unit sphere S

2, where

g̃ij = g̃

(
∂

∂yi
,

∂

∂yj

)
= r2

(
δij +

r2

3
Rikljy

kyl

)
.

Let ĥ be the metric on S
2 induced by the pull back of the Euclidean

metric given by the embedding Ẑ = (z1, z2, z3) in R
3 where

z1 = y1

(
1 +

r2

6

(
R

2
− λ1 −

∑
i

λi(yi)2
))

z2 = y2

(
1 +

r2

6

(
R

2
− λ2 −

∑
i

λi(yi)2
))

z3 = y3

(
1 +

r2

6

(
R

2
− λ3 −

∑
i

λi(yi)2
))

.

We claim that

(3.26) ||h − h̃||C3 + ||ĥ − h̃||C3 = O(r3),

where the norm is computed with respect to the standard metric. Suppose
the claim is true, then by [18], we can conclude that there are isometric
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embeddings Zr, Z̃ and Ẑ for (S2, h), (S2, h̃) and (S2, ĥ), respectively, such
that

(3.27) ||Zr · nr − Ẑ · n̂||C0(S2) = O(r3),

where n̂ is the unit outward normal of Ẑ(S2). Then we can prove the lemma
by computing Ẑ · n̂.

Let us first prove the claim and then compute Ẑ · n̂. It is easy to see that
||h − h̃||C3 = O(r3) by the expression of g in Lemma 3.1 and the definition
of g̃.

To find h̃, let r−2g̃ij = δij + σ̃ij , and let λij = −(λi + λj) + R
2 . By (3.13),

we have

σ̃11 =
r2

3
(λ12(y2)2 + λ13(y3)2),

σ̃22 =
r2

3
(λ12(y1)2 + λ23(y3)2),

σ̃33 =
r2

3
(λ13(y1)2 + λ23(y2)2),

σ̃ij = −r2

3
λijy

iyj , i 
= j.

In the above last equation, the repeated indices is not taken summation.
Let e1 = ∂θ = ai∂i, e2 = (sin θ)−1∂φ = bi∂i. Then

a1 = cos θ cos φ, a2 = cos θ sin φ, a3 = −sin θ;
b1 = −sin φ, b2 = cos φ, b3 = 0.

Note that

y1 = sin θ cos φ, y2 = sin θ sin φ, y3 = cos θ.

Hence, in the basis {e1, e2}, h̃ is given by

h̃11 = 1 +
r2

3
(
λ23 sin2 φ + λ31 cos2 φ

)
,

h̃12 =
r2

3
(−λ13 + λ23) cos θ cos φ sin φ,

h̃22 = 1 +
r2

3
(
λ12 sin2 θ + λ13 cos2 θ sin2 φ + λ23 cos2 θ cos2 φ

)
.

(3.28)
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Next we want to compute ĥ.

(z1)θ = (y1)θ

(
1 +

r2

6

(
R

2
− λ1 −

∑
i

λi(yi)2
))

− r2

6
y1

(∑
i

λi(yi)2
)

θ

,

(z2)θ = (y2)θ

(
1 +

r2

6

(
R

2
− λ2 −

∑
i

λi(yi)2
))

− r2

6
y2

(∑
i

λi(yi)2
)

θ

,

(z3)θ = (y3)θ

(
1 +

r2

6

(
R

2
− λ3 −

∑
i

λi(yi)2
))

− r2

6
y3

(∑
i

λi(yi)2
)

θ

,

and

(z1)φ = (y1)φ

(
1 +

r2

6

(
R

2
− λ1 −

∑
i

λi(yi)2
))

− r2

6
y1

(∑
i

λi(yi)2
)

φ

,

(z2)φ = (y2)φ

(
1 +

r2

6

(
R

2
− λ2 −

∑
i

λi(yi)2
))

− r2

6
y2

(∑
i

λi(yi)2
)

φ

,

(z3)φ = (y3)φ

(
1 +

r2

6

(
R

2
− λ3 −

∑
i

λi(yi)2
))

− r2

6
y3

(∑
i

λi(yi)2
)

φ

.

Hence,

Ẑθ · Ẑθ = (z1)2θ + (z2)2θ + (z3)2θ

=
∑

i

(yi)2θ

(
1 +

r2

3

(
R

2
− λi −

∑
k

λk(yk)2
))

− r2

3

∑
i

yi(yi)θ

(∑
i

λi(yi)2
)

θ

+ O(r4)

= 1 +
r2

3

[
R

2
−

∑
i

λi

(
(yi)2θ + (yi)2)

)]
+ O(r4)

= 1 +
r2

3

(
R

2
− λ1 cos2 φ − λ2 sin2 φ − λ3

)
+ O(r4)

= 1 +
r2

3
(
λ13 cos2 φ + λ23 sin2 φ

)
+ O(r4),
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Ẑφ · Ẑφ = (z1)2φ + (z2)2φ + (z3)2φ

=
∑

i

(yi)2φ

(
1 +

r2

3

(
R

2
− λi −

∑
k

λky
2
k

))

− r2

3

∑
i

yi(yi)φ

(∑
i

λiy
2
i

)

φ

+ O(r4)

= sin2 θ +
r2

3

[
R

2
sin2 θ −

∑
i

λi

(
(yi)2φ + y2

i sin2 θ
)]

+ O(r4)

= sin2 θ

[
1 +

r2

3

(R

2
− λ1

(
sin2 φ + cos2 φ sin2 θ

)

− λ2
(
cos2 φ + sin2 φ sin2 θ

)
− λ3 cos2 θ

)]
+ O(r4)

= sin2 θ

[
1 +

r2

3
(
λ12 sin2 θ + λ13 cos2 θ sin2 φ + λ23 cos2 θ cos2 φ

)]

+ O(r4),

and

Ẑθ · Ẑφ = (z1)θ(z1)φ + (z2)θ(z2)φ + (z3)θ(z3)φ

=
∑

i

(yi)θ(yi)φ +
r2

3

∑
i

(yi)θ(yi)φ

(
R

2
− λi −

∑
k

λk(yk)2
)

− r2

6

(∑
i

yi(yi)θ

) (∑
i

λi(yi)2
)

φ

− r2

6

(∑
i

yi(yi)φ

)

×
(∑

i

λi(yi)2
)

θ

+ O(r4)

= −r2

3

∑
i

(yi)θ(yi)φλi + O(r4)

=
r2

3
(−λ13 + λ23) sin θ cos θ cos φ sin φ + O(r4).

Thus, we see that

(3.29) ‖h̃ − ĥ‖C3 = O(r4).

This completes the proof of the claim. Next we want to compute Ẑ · n̂.
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Let A = (y1, y2, y3), B = Aθ, C = 1
sin θAφ, Ā = (Ā1, Ā2, Ā3), B̄ = (B̄1,

B̄2, B̄3) and C̄ = (C̄1, C̄2, C̄3), where

Āi =
r2yi

6

(
R

2
− λi −

∑
i

λk(yk)2
)

,

B̄i =
(yi)θr

2

6

(
R

2
− λi −

∑
k

λk(yk)2
)

− r2

6
yi

(∑
k

λk(yk)2
)

θ

C̄i =
(yi)φr2

6 sin θ

(
R

2
− λi −

∑
k

λk(yk)2
)

− r2

6 sin θ
yi

(∑
k

λk(yk)2
)

φ

.

Note that A, B, C are orthonormal and positively oriented in R
3 for A ∈ S

2.
Let e1 = ∂θ and e2 = 1

sin θ∂φ as before. Then,

Ẑ · Ẑ1 ∧ Ẑ2 = (A + Ā) · (B + B̄) ∧ (C + C̄)

= A · B ∧ C + A · B ∧ C̄ + A · B̄ ∧ C + Ā · B ∧ C + O(r4)

= 1 + C · C̄ + B · B̄ + A · Ā + O(r4).

Now

A · Ā =
r2

6

(
R

2
− 2

∑
k

λk(yk)2
)

.

B · B̄ =
r2

6

(
R

2
−

∑
k

λk

(
(yk)2θ + (yk)2

))

=
r2

6

(
R

2
−

(
λ1 cos2 φ + λ2 sin2 φ + λ3

))
.

C · C̄ =
r2

6 sin2 θ

(
R

2
sin2 θ −

∑
k

λk

(
(yk)2φ + (yk)2 sin2 θ

))

=
r2

6

(
R

2
−

(
λ1

(
sin2 φ + sin2 θ cos2 φ

)

+ λ2
(
cos2 φ + sin2 θ sin2 φ

)
+ λ3 cos2 θ

))
.

So

Ẑ · Ẑ1 ∧ Ẑ2 = 1 +
r2

6

(
R

2
− 3

∑
λk(yk)2

)
+ O

(
r4) .(3.30)
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Noting that

|Ẑ1 ∧ Ẑ2|2 = 1 +
r2

3
[
(
λ13(cos2 φ + cos2 θ sin2 φ) + λ12 sin2 θ

+λ23(sin2 φ + cos2 θ cos2 φ)
)
] + O

(
r4)

= 1 − r2

3

∑
λk(yk)2 + O

(
r4) ,

we have

(3.31) |Ẑ1 ∧ Ẑ2|−1 = 1 +
r2

6

∑
λk(yk)2 + O

(
r4) .

Combining (3.30) and (3.31)

Ẑ · n̂ =
Ẑ · Ẑ1 ∧ Ẑ2

|Ẑ1 ∧ Ẑ2|
= 1 +

r2

6

(
R

2
− 2

∑
λk(yk)2

)
+ O

(
r4) .(3.32)

This completes the proof of the lemma. �

Lemma 3.4. Let K and H be the Gauss curvature and the mean curvature
of Sr in g and H0 be the mean curvature of (Sr, g|Sr

) when embedded in R
3.

Then,

K =
1
r2 +

R

2
− 4

3
Rij

xixj

r2 + O(r),(3.33)

H =
2
r

− 1
3
Rij

xixj

r
+ O(r2)(3.34)

and

(3.35) H0 =
2
r

+ r

(
R

2
− 4

3
Rij

xixj

r2

)
+ O(r2).

Proof. We continue to use the normal coordinates as in Lemma 3.1. Then
n = ∂

∂r is the outward normal of Sr. Let hij = gij − ninj be the induced
metric on Sr with ni = xi

r . By Lemma 3.1, the Christoffel symbols are given
by:

(3.36) Γk
ij =

1
3

(Rkimj + Rkjmi) xm + O(r2).
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where the curvature is evaluated at p. Since ∇nn = 0, the second fundamen-
tal form A in these coordinates is given by

Aij = nj;i

=
∂nj

∂xi
− Γk

ijnk

=
δij

r
− xixj

r3 − 2
3
Rkimj

xkxm

r
+ O(r2).

(3.37)

Let {e1, e2} be an orthonormal frame with respect to the Euclidean metric
on Sr and let λ1 and λ2 be the eigenvalues of A. Then

λ1λ2 =
A(e1, e1)A(e2, e2) − A2(e1, e2)
g(e1, e2)g(e2, e2) − g2(e1, e2)

=
(

1
r2 − 2

3
Rkimj

xkxm

r2

(
e1(xi)e1(xj) + e2(xi)e2(xj)

)
+ O(r)

)

×
(

1 − 1
3
Rikmjx

kxm
(
e1(xi)e1(xj) + e2(xi)e2(xj)

)
+ O(r3)

)

=
1
r2 − 1

3
Rkimj

xkxm

r2

(
e1(xi)e1(xj) + e2(xi)e2(xj)

)
+ O(r)

=
1
r2 − 1

3
Rkm

xkxm

r2 + O(r),

(3.38)

where we have used the fact that
∑

i

(
ea(xi)

)2 = 1 and ea(
∑

i(x
i)2) = 0 on

Sr for a = 1, 2, and the fact that

e1(xi)e1(xj) + e2(xi)e2(xj) = δij − xixj

r2 .

Hence by the Gauss equation, for x ∈ Sr,

K(x) = λ1λ2 +
1
2
hikhjlRijkl(x)

=
1
r2 − 1

3
Rkm

xkxm

r2 +
1
2
hikhjlRijkl(p) + O(r)

=
1
r2 +

1
2
R(p) − 4

3
Rij(p)

xixj

r2 + O(r),

(3.39)
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where hij = gij − ninj . On the other hand, for x ∈ Sr,

H(x) = hijAij

= hij

(
δij

r
− 2

3
Rkimj

xkxm

r

)
+ O(r2)

=
(

δij − 1
3
Rikmjx

kxm − xixj

r2

) (
δij

r
− 2

3
Rkimj

xkxm

r

)
+ O(r2)

=
2
r

− 1
3
Rij

xixj

r
+ O(r2),

(3.40)

where we have used the fact that hijxixj = 0.
It remains to prove the last assertion. Let Zr be the embedding as in the

proof of Lemma 3.3. One may conclude that by an isometry of R
3, we have

||Zr − Id||C2(S2) = O(r2), where Id is the identity map of S
2. Let Hr and Kr

be the mean curvature and the Gauss curvature of Zr(S2). Let {e1, e2} be
an orthonormal frames on S

2 with respect to the standard metric, then the
metric tensor h and the second fundamental form A of the surface Zr(S2)
satisfy:

(3.41) h(ea, eb) = δab + αab, A(ea, eb) = δab + βab,

where αab = O(r2) and βab = O(r2). Hence, we have

Kr = 1 − α11 − α22 + β11 + β22 + O(r4),

Hr = 2 − α11 − α22 + β11 + β22 + O(r4).

After rescale to an embedding of (Sr, g|Sr
) in R

3, we conclude that

K =
1
r2 (1 − α11 − α22 + β11 + β22) + O(r2)

and

H0 =
1
r

(2 − α11 − α22 + β11 + β22) + O(r3).

From these and (3.33), (3.35) follows. �

We are ready to prove the following (Theorem 1.3):
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Theorem 3.1. Let (N, g) be a Riemannian manifold of dimension 3, p be
a fixed interior point on N and Sr be the geodesic sphere of radius r center
at p. For r small enough, we have
(3.42)

mBY(Sr) =
r3

12
R(p) +

r5

1440
[
24|Ric|2(p) − 13R2(p) + 12ΔR(p)

]
+ O(r6);

here Δ is Laplacian operator of (M, g).

Proof. For r small, let Z be the isometric embedding of (Sr, g|Sr
) in R

3 as
in Lemma 3.3 and let H0 be the mean curvature of Z(Sr) in R

3. Let

k0 =
R

2
− 4

3
Rij

xixj

r2 , h1 = rk0, n3 =
r3

6

(
R

2
− 2Rij

xixj

r2

)
.

By Lemmas 3.4 and 3.3, we have

K =
1
r2 + k0 + O(r), H0 =

2
r

+ h1 + O(r2), Z · n = r + n3 + O(r4).

As in the proof of Theorem 2.1 in Section 2, by one of the Minkowski integral
formulae [16, Lemma 6.2.9] and Lemma 3.4, we have

∫
Sr

H0 dΣr = 2
∫

Sr

KZ · n dΣr

=
1
r2

∫
Sr

Z · n dΣr + 2
∫

Sr

(
K − 1

r2

)
(r + n3)dΣr + O(r6)

= 6r−2V0(r) + 2r

∫
Sr

(
K − 1

r2

)
dΣr + 2

∫
Sr

k0n3 dΣr + O(r6)

= 6r−2V0(r) + 8πr − 2A(r)
r

+ 2
∫

Sr

k0n3 dΣr + O(r6),

(3.43)

where V0(r) is the volume inside Z(Sr) in R
3.
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By another Minkowski integral formula, we obtain

2A(r) =
∫

Sr

H0Z · n dΣr

=
∫

Sr

2
r
Z · n dΣr +

∫
Sr

(
H0 − 2

r

)
(r + n3)dΣr + O(r7)

= 6r−1V0(r) + r

∫
Sr

H0 dΣr − 2A(r) +
∫

Sr

h1n3 dΣr + O(r7)

= 6r−2V0(r) + r

∫
Sr

H0 dΣr − 2A(r) + r

∫
Sr

k0n3 dΣr + O(r7).

(3.44)

Hence,

(3.45)
∫

Sr

H0 dΣr = −6r−2V0(r) + 4r−1A(r) −
∫

Sr

k0n3 dΣr + O(r6).

By (3.43) and (3.45), we have

∫
Sr

H0 dΣr = 4πr + r−1A(r) +
∫

Sr

k0n3 dΣr − 1
2

∫
Sr

k0n3 dΣr + O(r6)

= 8πr +
A4 + A6

r
+

1
2

∫
Sr

k0n3 dΣr + O(r6)

(3.46)

where we have used Lemma 3.2. Combining this with Lemma 3.1, we have
∫

Sr

(H0 − H)dΣr = −3A4 + 5A6

r
+

1
2

∫
Sr

k0n3 dΣr + O(r6).(3.47)

Now by (3.7) and (3.11)

∫
Sr

k0n3 dΣr =
r3

6

∫
Sr

(
R

2
− 4

3
Rij

xixj

r2

) (
R

2
− 2Rij

xixj

r2

)
dΣr

=
r3

6

∫
Sr

(
R

2
− 4

3
Rij

xixj

r2

) (
R

2
− 2Rij

xixj

r2

)
dΣ0

r + O(r6)

=
πr5

270
(
64|Ric|2 − 23R2) .

(3.48)

The theorem follows from (3.47),(3.48) and Lemma 3.2. �
As a corollary, we have
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Corollary 3.2. With the assumptions and notation as in Theorem 3.1,
suppose R ≥ 0 in a neighborhood of p, then

(3.49) lim
r→0

mBY(Sr)
r5 ≥ 0.

Equality holds if and only if (N, g) is flat at p and R vanishes up to second
order at p.

Proof. By the result of [23] on the positivity of the Brown–York mass, we
know that (3.49) is true. However, in this special case, one can deduce this
from the theorem. In fact, if R(p) > 0, then by (3.42), we have

lim
r→0

mBY(Sr)
r5 = ∞ > 0.

In case R(p) = 0, then R(p) is a minimum of R because R ≥ 0. It is easy to
see that (3.49) is still true.

It is obvious that if (N, g) is flat at p and R vanishes up to second order
at p, then equality holds in (3.49). Conversely, if the equality holds in (3.49),
then we must have R(p) = 0, ∇R(p) = 0, ΔR(p) = 0 and |Ric|(p) = 0. Since
R has a minimum at p, the Hessian of R has non-negative eigenvalues. So
the Hessian of R must be zero at p because ΔR(p) = 0. Moreover, since N
has dimension 3, |Ric|(p) = 0 implies that (N, g) is flat at p. �

Remark 3.1. From the proof, it is easy to see that (3.49) is true if R(p) = 0
and ΔR(p) ≥ 0 and the equality holds only if g is flat at p.

One should compare the corollary to the following fact: If M is an AF
manifold with non-negative scalar curvature, suppose the Brown–York mass
of the coordinate spheres converge to zero, then M must be the Euclidean
space. This follows from Theorem 2.1 and the positive mass theorem in
Schoen–Yau [21] and Witten [24].

For the expansion of the Hawking mass, we have:

Theorem 3.2. With the same notations and assumptions in Theorem 3.1,
we have

mH(Sr) =
r3

12
R(p) +

r5

720
(
6ΔR(p) − 5R2(p)

)
+ O(r6).(3.50)
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Proof. By Lemma 3.4, we have

H =
2
r

+ H1 + O(r2),

where H1 = − 1
3rRijx

ixj . Hence

H2 = −4r−2 + 4r−1H + H2
1 + O

(
r3) .

Then ∫
Sr

H2 dΣr = −4A(r)
r2 +

4
r

∫
Sr

H dΣr +
∫

Sr

H2
1 dΣ0

r + O(r5)

= −4(4πr2 + A4 + A6)
r2 +

4
r

·
(

8πr +
4A4

r
+

6A6

r

)

+
∫

Sr

H2
1 dΣ0

r + O(r5)

= 16π +
12A4

r2 +
20A6

r2 +
∫

Sr

H2
1 dΣ0

r + O(r5).

Hence,

16π −
∫

Sr

H2 dΣr = −12A4

r2 − 20A6

r2 −
∫

Sr

H2
1 dΣ0

r + O(r5).

On the other hand,

A1/2(r)
(16π)3/2 =

2π1/2r

(16π)3/2

(
1 +

A4

8πr2 + O(r4)
)

=
r

32π

(
1 +

A4

8πr2 + O(r4)
)

.

So

mH(Sr) = −3A4

8πr
− 5A6

8πr
− r

32π

∫
Sr

H2
1 dΣ0

r − 3A2
4

64π2r3 + O(r6).

By (3.11) and Lemma 3.2, the result follows. �
Hence, the expansions of the Brown–York mass and the Hawking mass

are equal up to order r3. However, they differ on the term of order r5.
As in the case of large-sphere limit, we can compare V (r) and V0(r),

where V (r) is the volume of the geodesic ball of radius r at p and V0(r) is
the volume of the region bounded by Sr when embedded in R

3.
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Theorem 3.3. With the above notations, we have

V0(r) − V (r) = − π

15
Rr5 +

πr7

5670
(173R2 − 454|Ric|2 − 27ΔR(p)) + O

(
r8) .

(3.51)

Proof. By (3.43) and (3.45)

∫
Sr

H0 dΣr = 6r−2V0(r) + 8πr − 2A(r)
r

+ 2
∫

Sr

k0n3 dΣr + O(r6),

and
∫

Sr

H0 dΣr = −6r−2V0(r) + 4r−1A(r) −
∫

Sr

k0n3 dΣr,

where k0 is as in (3.43).
We have

V0(r) =
r

2
A(r) − r2

4

∫
Sr

k0n3 dΣ0
r − 2

3
πr3 + O

(
r8)

=
4
3
πr3 +

r

2
A4 +

r

2
A6 − r2

4

∫
Sr

k0n3 dΣ0
r + O

(
r8) .

On the other hand,

V (r) =
∫ r

0
A(t)dt

=
4
3
πr3 +

∫ r

0
A4 dt +

∫ r

0
A6 dt + O

(
r8)

=
4
3
πr3 +

r

5
A4 +

r

7
A6 + O

(
r8) .

Hence,

V0(r) − V (r) =
3
10

rA4 +
5
14

rA6 − r2

4

∫
Sr

k0n3 dΣ0
r + O

(
r8) .

By (3.48) and Lemma 3.2, the result follows. �

By Theorem 3.3, we see that if scalar curvature is positive at p, then
V0(r) < V (r), for sufficiently small r. More precisely,
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Corollary 3.3. With the assumptions and notations as in Theorem 3.3,
suppose R ≥ 0 in a neighborhood of p, then

lim
r→0

V0(r) − V (r)
r7 ≤ 0.

Equality holds if and only if (N, g) is flat at p and R vanishes up to second
order at p.

Proof. Similar to the argument of Corollary 3.2, one can derive the result
from Theorem 3.3. �
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