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On characterization for a class of pseudo-convex
domains with positive constant pseudo-scalar

curvature on their boundaries
Song-Ying Li

For any compact strictly pseudoconvex pseudo-Hermitian CR man-
ifold (M, θ0) in the sense of Webster, the solution of CR-Yamabe
problem concludes that there is a contact form θ which conformally
equivalent to θ0 so that the psudo scalar curvature for (M, θ) is a
constant. The current article gives a natural and easily verified suf-
ficient condition, and proves that if (M, θ) satisfies the condition
and has a positive constant pseudo scalar curvature on M , then
(M, θ) must be CR equivalent to the unit sphere.

1. Introduction and main results

Let (M, θ) be a strictly pseudo-convex pseudo-Hermitian compact hyper-
surface in Cn+1 in the sense of Webster [36] with a pseudo-Hermitian real
one-form θ on M . Let Rθ be the Webster pseudo-scalar curvature for M
with respect to θ. By the solution of the CR Yamabe problem given by
Jerison and Lee [18], Gamara and Yacoub [10] and Gamara [9] (for n = 1),
there is a pseudo-Hermitian real one-form θ so that (M, θ) has constant
Webster pseudo-scalar curvature Rθ. Let ρ be a defining function for M .
Then θ = 1

2i(∂ρ − ∂ρ) is a pseudo-Hermitian one-form for M , and any Her-
mitian one-form can be constructed in this way by using defining function
of M . When M = S2n+1, the unit sphere in Cn+1, if ρ(z) = |z|2 − 1, then
Rθ = n(n + 1) on M . The main purpose of the paper is to give some charac-
terizations on ρ so that the pseudo-scalar curvature Rθ is a positive constant
on M if and only if M is CR-equivalent to the sphere S2n+1.

Let D be a smoothly bounded pseudo-convex domain in Cn. Let u be a
strictly plurisubharmonic exhaustion function for D (u = +∞ on ∂D). Let
ρ(z) = −e−u(z). Then the Fefferman’s functional J(ρ) of ρ is defined as:

J(ρ) = − det
[

ρ ∂ρ

(∂ρ)∗ H(ρ)

]
,(1.1)
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where H(ρ) is the complex Hessian matrix of ρ, ∂ρ = (∂1ρ, . . . , ∂nρ) is a
1 × n matrix and (∂ρ)∗ is its adjoint matrix.

Let f(z) be a positive function on D. It was known (see, for example,
[7, 25]) that

J(ρ) = f(z) > 0 in D; ρ = 0 on ∂D(1.2)

if and only if

det H(u)(z) = f(z)e(n+1)u in D; u = +∞ on ∂D.(1.3)

When f(z) ∈ C∞(D) is positive for all z ∈ D, the existence and unique-
ness of a strictly plurisubharmonic solution of (1.3) were given by Cheng
and Yau in [7]. In particular, when f(z) ≡ 1, they proved that the plurisub-
harmonic solution u of (1.3) defines a complete Kähler–Einstein metric on
D: ∂2u

∂zi∂zj
dzi ⊗ dzj .

When D is strictly pseudo-convex, uniqueness and a formal approxima-
tion solution ρ of (1.2) with u = − log(−ρ) being plurisubharmonic in D
were given by Fefferman [8] earlier; the existence of such a solution was
proved by Cheng and Yau [7] with ρ ∈ Cn+3/2(D). Lee and Melrose [22]
gave an asymptotic expansion solution for ρ. In particular, they proved
that ρ ∈ Cn+2−ε(D) for any ε > 0. In general, ρ fails to be in Cn+2(D).
Further informations about complex Monge-Ampère equations and pseudo-
Hermitian manifolds can be found (for examples) in: [1–6, 11–17, 23, 26–35]
and [38].

When M = {z ∈ Cn+1 : ρ(z) = 0} is hypersurface in Cn+1, using the
notation of J(ρ), the following formula for the Webster pseudo-Ricci cur-
vature of (M, θ) was given by Li and Luk in [30]:

Ricz(w, v) = −Llog J(ρ)(z)(w, v) + (n + 1)
det H(ρ)(z)

J(ρ)(z)
Lρ(z)(w, v)(1.4)

for v, w ∈ Hz(M), holomorphic tangent space of M at z, where

Lu(z)(w, v) =
n+1∑
j,k=1

∂2u(z)
∂zj∂zk

wjvk.(1.5)
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Assume that φ : D → Bn+1 is a biholomorphic mapping, and if ρ(z) =
|φ(z)|2 − 1, then detH(ρ) = J(ρ) = | det φ′(z)|2 on D and log J(ρ) is pluri-
harmonic in D. By (1.4), we have Rθ = n(n + 1) on ∂D.

The main purpose of the current paper is to prove the converse is also
true, we state it as the following theorem.

Theorem 1.1. Let ρ ∈ C3(D) be a defining function for D ⊂ Cn+1 so that
u(z) = − log(−ρ(z)) is strictly plurisubharmonic in D. Let M = ∂D and θ =
1
2i(∂ρ − ∂ρ). Assume log J(ρ) is harmonic in the Kähler metric ∂2u

∂zi∂zj
dzi ⊗

dzj, we have the following two statements hold:

(a) If Rθ ≡ c > 0, constant on ∂D, then D is biholomorphic to the unit
ball Bn+1 in Cn+1.

(b) Webster pseudo-scalar curvature

Rθ = n(n + 1)
det H(ρ)

J(ρ)
on ∂D.(1.6)

Notice that if u(z) = − log(−ρ(z)) is the potential function for the
Kähler–Einstein metric for D, then J(ρ) = 1 on D. By Theorem 1.1 and
Theorem 3.1 in [24], we have the following corollary.

Corollary 1.2. Let D be a smoothly bounded strictly pseudo-convex domain
in Cn+1. Assume that u(z) = − log(−ρ(z)) is the potential function for the
Kähler–Einstein metric for D (defined by (1.3) with f ≡ 1) and θ = 1

2i(∂ρ −
∂ρ) on M = ∂D. If Rθ ≡ c > 0, constant on ∂D, then there is a biholomor-
phic map φ : D → Bn+1 so that det φ′(z) is a constant on D.

The paper is organized as follows: In Section 2, we provide several main
lemmas. In Section 3, we will prove part (b) of Theorem 1.1. Finally, the
proofs of Part(a) of Theorem 1.1 and Corollary 1.2 are given in Section 4.

2. Main lemmas

Let D = {z ∈ Cn : ρ(z) < 0} with C2 defining function ρ. Let u(z) = − log
(−ρ(z)) be plurisubharmonic in D. Then the relation between J(ρ) and
det H(u) is given by the following lemma.

Lemma 2.1. Let u ∈ C2(D) and let ρ(z) = −e−u. Then

det H(u) = J(ρ)e(n+1)u.(2.1)
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Proof. By viewing ∂u as a 1 by n matrix and (∂u)∗ is its adjoint matrix,
one has that

∂ρ = −ρ∂u, H(ρ)(z) = −ρ(z)H(u) + ρ(z)(∂u)∗ ∂u.(2.2)

Thus

J(ρ) = − det
[

ρ −ρ∂u

−ρ(∂u)∗ −ρH(u) + ρ(∂u)∗∂u

]

= −(ρ)n+1 det
[

1 −∂u

−(∂u)∗ −H(u) + (∂u)∗∂u

]

= −(ρ)n+1 det
[
1 −∂u

0 −H(u) + (∂u)∗∂u − (∂u)∗∂u

]

= −(ρ)n+1 det(−H(u))

= e−(n+1)u det H(u).

Therefore, (2.1) holds and the lemma is proved. �

Assume that u is strictly plurisubharmonic in D, we let [uij ]t = H(u)−1,
and use the following notations:

uij =
∂2u

∂zi∂zj
, ui =

∂u

∂zi
, uj =

∂u

∂zj
(2.3)

and

|∂u|2u := uij∂iu∂ju, T (z) := |∂u|2u + e−u.(2.4)

Then if ρ(z) = −e−u(z), then by Lemma 2.2 in [24],

det H(ρ) = e−nu det H(u)(1 − |∂u|2u) = J(ρ)eu(1 − |∂u|2u).(2.5)

Since u is strictly plurisubharmonic in D, by (2.1), we have J(ρ) > 0 on D.
Thus

det H(ρ)
J(ρ)

− 1 = eu(1 − T (z)).(2.6)

Then the following lemma was included in the proof of part(b) of Theorem
2.4 in [24], given in pages 468–470.
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Lemma 2.2. Let D be a bounded pseudo-convex domain in Cn. Let u ∈
C4(D) be strictly plurisubharmonic in D, and let ρ(z) = −e−u. If − log J(ρ)
is subharmonic in the metric uijdzi ⊗ dzj, then

n∑
i,j=1

uij∂ij

(
−det H(ρ)

J(ρ)

)
(z) ≥ 0, z ∈ D.(2.7)

The next result is the main theorem of this section.

Theorem 2.3. Let ρ ∈ C3(D) be a defining function for D ⊂ Cn so that
u(z) = − log(−ρ(z)) is strictly plurisubharmonic in D. If − log J(ρ) is sub-
harmonic in Kähler metric uijdzi ⊗ dzj, and if there is a positive constant
c so that

det H(ρ)
J(ρ)

≡ c on ∂D,(2.8)

then

det H(ρ)
J(ρ)

≡ c on D.(2.9)

Proof. Since det H(ρ)/J(ρ) ≡ c > 0 on ∂D, replacing ρ by cρ if it is neces-
sary, without loss of generality, we may assume that c = 1. We can write

det H(ρ)
J(ρ)

:= 1 + A(z)ρ(z), z ∈ D.(2.10)

Since − log J(ρ) is subharmonic in the metric uijdzi ⊗ dzj , by Lemma 2.2,
we have that det H(ρ)/J(ρ) attains its minimum over D at some point in
∂D. Thus (2.10) holds with A(z) ≤ 0 in D. By (2.6), one has

1 − T (z) =
det H(ρ)

J(ρ)
e−u − e−u = (1 + A(z)ρ)(−ρ) + ρ.(2.11)

Thus, by (2.10),

T (z) = 1 − ρ(z) + (1 + Aρ)ρ = 1 + A(z)ρ(z)2.(2.12)

We claim that T (z) ≡ 1 on D (i.e., detH(ρ)/J(ρ) ≡ 1 on D).
By Lemma 2.2, if there is z0 ∈ D so that det H(ρ)(z0)/J(ρ)(z0) = 1, then

det H(ρ)/J(ρ) ≡ 1 on D (i.e., A ≡ 0). Otherwise, we have A(z) < 0 on D,
we will prove there is a contradiction.
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Let C = max{−A(z) : z ∈ D}. Then C ∈ (0,∞), and by (2.12), we have

0 < (1 − T ) ≤ Cρ(z)2 = Ce−2u, on D.(2.13)

By (2.12) again, one has T (z) := |∂u|2u + e−u < 1 on D. Since e−u = 0 on
∂D and e−u > 0 in D, one can easily see that

b := max{e−u(z) : z ∈ D} < 1, z ∈ D.(2.14)

By (2.13), we have

(1 − T )−3/4 ≥ C−3/4e3u/2,
1

1 − eu(z) ≤ 1
1 − b

.(2.15)

Note: This is a key place we use the condition det H(ρ)/J(ρ) = 1 on ∂D.
For any fixed positive integer m satisfying

m ≥ C3/4 (n + 1)2

(1 − b)2
,(2.16)

it is easy to see that

m(1 − T )−3/4 − (1 + n)
(1 − e−u)

− (1 + n)2|∂u|2
4(1 − e−u)2

eu ≥ 0, z ∈ D.(2.17)

Let

Ln := uij ∂2

∂zi∂zj
− n Re (uijui∂j)(2.18)

and

Lm,n = Ln + m(1 − T )−3/4Re (∂iTuij∂j).(2.19)

For any z0 ∈ D, we will show Lm,nT (z0) ≥ 0. By a holomorphic change of
coordinates, without loss of generality, we may assume that

uijk(z0) = 0, 1 ≤ i, j, k ≤ n.(2.20)

It was proved by the author in [24] that if T (z) ≤ 1 on D and if u is the
strictly plurisubharmonic solution for the Monge–Ampère equation:

det H(u) = Je(n+1)u in D; u = ∞ on ∂D(2.21)
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with − log J is subharmonic in the metric uijdzi ⊗ dzj , then

uij∂ijT (z0) = uij(uk�uku� + e−u)

≥ n(1 − T ) − |∂u|2u(1 − e−u) + uijuk�uikuj�.(2.22)

Note: This is (2.24) in [24] while (2.21) in [24] becomes inequality with our
assumption uij∂ij log J(ρ)(z0) ≤ 0.

By (2.20), one has that ∂ku
ij(z0) = 0. Thus, for 1 ≤ j ≤ n, one has

∂jT (z0) = uk�ukuj� + uj(1 − e−u), ∂iT (z0) = uk�uikuj + ui(1 − eu).
(2.23)

Thus,

uijui∂jT (z0) = uijuiu
k�ukuj� + |∂u|2u(1 − e−u)(2.24)

and

uij∂ijT (z0) ≥ n(1 − T ) − uijui∂jT + uijuiu
k�ukuj� + uijuk�uikuj�.(2.25)

Thus,

LnT ≥ n(1 − T ) − Re (1 + n)uijui∂jT + Re uijuiu
k�ukuj� + uijuk�uikuj�.

(2.26)

By (2.23), one has

ui(z0) =
1

1 − e−u
[∂iT (z0) − uk�u�uik(z0)].(2.27)

Thus,

− (1 + n)Re uijui∂jT

=
1 + n

1 − e−u
[−uij∂iT∂jT + uijuk�u�uik∂jT ]

≥ −
[

(1 + n)
(1 − e−u)

+
(1 + n)2|∂u|2
4(1 − e−u)2

eu

]
uij∂iT∂jT − e−uuijuk�uikuj�(2.28)

and

Re uijuiu
k�ukuj�(z0) ≥ −|∂u|2uuijuk�uikuj�(z0).(2.29)
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Combining (2.26), (2.28) and (2.29), one has

LnT (z0) ≥ n(1 − T ) + (1 − |∂u|2 − e−u)uijuk�uikuj�

−
[

(1 + n)
(1 − e−u)

+
(1 + n)2|∂u|2
4(1 − e−u)2

eu

]
uij∂iT∂jT.(2.30)

Therefore,

Lm,nT (z0) ≥ n(1 − T ) + (1 − T )uijuk�uikuj�

+
[

m

(1 − T )3/4 − (1 + n)
(1 − e−u)

− (1 + n)2|∂u|2
4(1 − e−u)2

eu

]
uij∂iT∂jT

≥
[

m

(1 − T )3/4 − (1 + n)
(1 − e−u)

− (1 + n)2|∂u|2
4(1 − e−u)2

eu

]
uij∂iT∂jT

≥ 0.(2.31)

Since det H(u) = J(ρ)e(n+1)u, we have
∑n

i=1 ∂i[J(ρ)e(n+1)uuij ] = 0 for
all 1 ≤ j ≤ n. Thus,

Re
n∑

i,j=1

∂i[e−nue−4m(1−T )1/4
J(ρ)e(n+1)uuij∂jT )]

= e(n+1−n)ue−4m(1−T )1/4
[LnT (z0) + m(1 − T )−3/4uij∂iT∂jT ]

= eue−4m(1−T )1/4Lm,nT.(2.32)

Since

uij = (−ρ)

(
ρij − ρiρj

|∂ρ|2ρ − ρ

)
, ρi = ρi�ρ�,(2.33)

we have

eu
n∑

i=1

ρiu
ij∂jT = − ρρj

|∂ρ|2ρ − ρ
∂jT = 0 on ∂D.(2.34)
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Let |∂ρ|20 =
∑n

j=1 |∂jρ(z)|2. Then,

0 = Re
n∑

i,j=1

∫
∂Ω

ρi

|∂ρ|0
e−nue−4m(1−T )1/4

J(ρ)e(n+1)uuij∂jT )dσ(z)

= Re
∫

Ω

n∑
i,j=1

∂i(e−nue−4m(1−T )1/4
J(ρ)e(n+1)uuij∂jT )dv

=
∫

Ω
eue−4m(1−T )1/4Lm,nT (z)dv(z)

(2.31) shows that the integrand in the last integral is non-negative on D.
Thus, the above identity implies that

eue−4m(1−T )1/4Lm,nT (z) = 0, z ∈ D.(2.35)

Therefore,

Lm,nT (z) ≡ 0, in D.

Maximum principle (for both T and −T ) implies that

max{T (z) : z ∈ D} = max{T (z) : z ∈ ∂D} = 1

and

min{T (z) : z ∈ D} = min{T (z) : z ∈ ∂D} = 1.

Therefore,

T (z) ≡ 1, and
det H(ρ)

J(ρ)
≡ 1 in D.

This contradicts to A(z) < 0 on D (i.e., T (z) < 1 on D). Therefore, our
claim T (z) ≡ 1 is proved, and so

det H(ρ)
J(ρ)

≡ 1 in D.(2.36)

Therefore, the proof of Theorem 2.3 is complete. �
The following result essentially is the corollary of the main theorem of

Stoll [33], Burns [3] and Wong [37] in our notation:
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Corollary 2.4. Let ρ ∈ C3(D) be a defining function for D ⊂ Cn so that
u(z) = − log(−ρ(z)) is strictly plurisubharmonic in D. Let M = ∂D and
θ = 1

2i(∂ρ − ∂ρ). If det H(ρ)/J(ρ) is a positive constant on the boundary
∂D of D, then D is biholomorphic to the unit ball Bn in Cn.

Proof. Since u = − log(−ρ) is plurisubharmonic in D, we have J(ρ) > 0
on D. Notice that det H(ρ)/J(ρ) is a positive constant on D, we have ρ
is strictly plurisubharmonic in D. Let z0 ∈ D be such that

m = − min{ρ(z) : z ∈ D} = −ρ(z0).(2.37)

Then ∂ρ(z0) = 0 and

J(ρ)(z0) = m det H(ρ)(z0).(2.38)

Let

τ(z) = ρ(z) + m.(2.39)

Then τ : D → [0, m) is smooth, onto and strictly plurisubharmonic in D.
Moreover, since |∂τ |2τ = |∂ρ|2ρ and detH(ρ) = detH(τ), we have

J [τ ] = − det H(τ)[τ − |∂τ |2τ ] = −m det H(ρ) + J(ρ).

Therefore,

det H(ρ)
J(ρ)

≡ constant on D ⇐⇒ J(τ) ≡ 0 on D.(2.40)

Notice that

J(τ) = −τn+1 det H(log τ).(2.41)

Thus

J(τ) = 0 ⇐⇒ det H(log τ) = 0, D \ τ−1(0).(2.42)

Combining the above relations and the main theorem of Stoll [33], Burns
in [3] and Wong [37], the proof of Corollary 2.4 is complete. �
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3. Proof of part(b) of Theorem 1.1

First let us recall some notions and a formula for the Webster pseudo
Ricci curvature and pseudo-scalar curvature proved in [30]. Let M be a
real hypersurface in Cn+1 with a defining function ρ ∈ C3(Cn+1). Let D =
{z ∈ Cn+1 : ρ(z) < 0} and let U be a neighborhood of M . Assume that
u(z) = − log(−ρ(z)) is strictly plurisubharmonic in D ∩ U . From now on,
we always use ρ to denote a defining function for M and θ = 1

2i(∂ρ − ∂ρ)
is the pseudo-Hermitian form for M associated to the defining function
ρ. We define a second-order differential operator Dαβ associated to ρ for
1 ≤ α, β ≤ n as follows:

Dαβ =
∂2

∂zα∂zβ

− ρα

ρn+1

∂2

∂zn+1∂zβ
−

ρβ

ρn+1

∂2

∂zα∂zn+1
+

ραρβ

|ρn+1|2
∂2

∂zn+1∂zn+1
.

(3.1)

The following explicit formula for the Webster pseudo-Ricci curvature and
pseudo-scalar curvature in terms of defining function ρ for (M, θ) was proved
in [30]:

Theorem 3.1. Let M = ∂D be a strictly pseudo-convex hypersurface in
Cn+1. Let ρ ∈ C3(D ∩ U) ∩ C∞(D ∩ U) be a defining function for M with
that J(ρ) > 0 on D ∩ U and u(z) = − log(−ρ) is plurisubharmonic in D ∩ U .
Let θ = (∂ρ − ∂ρ)/(2i). Then for v, w ∈ H(M) = T1,0(M), we have:

Ric(w, v) = −Llog J(ρ)(w, v) + (n + 1)
det H(ρ)

J(ρ)
Lρ(w, v),(3.2)

where Lg(w, v) =
∑n+1

k,j=1 gkj(z)wkvj is the Levi form associated to g.
In a local coordinates, at those z ∈ M1 = {z ∈ M : ρn+1(z) = 0}, we have

the Webster pseudo-scalar curvature

Rθ(z) = −
n∑

α,β=1

hαβDαβ log J(ρ) + n(n + 1)
det H(ρ)

J(ρ)
,(3.3)

where the pseudo-Hermitian metric hαβ = Dαβ(ρ) and [hαβ] = ([hαβ]t)−1.

Proposition 3.2. With the notation above, hαβ = Dαβ(ρ), we have

hαβ(z) = ραβ − ραρβ

|∂ρ|2ρ
, z ∈ M1, 1 ≤ α, β ≤ n.(3.4)
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Proof. Since, for 1 ≤ i, k ≤ n with hkj = Dkj(ρ)

n∑
j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
hkj

=
n∑

j=1

(
ρij − ρiρj

|∂ρ|2ρ

)(
ρkj − ρk

ρn+1
ρn+1 j −

ρj

ρn+1
ρkn+1 +

ρkρj

|ρn+1|2
ρn+1 n+1

)

=
n∑

j=1

ρij

(
ρkj − ρk

ρn+1
ρn+1 j −

ρj

ρn+1
ρkn+1 +

ρkρj

|ρn+1|2
ρn+1 n+1

)

−
n∑

j=1

ρiρj

|∂ρ|2ρ

(
ρkj − ρk

ρn+1
ρn+1 j −

ρj

ρn+1
ρkn+1 +

ρkρj

|ρn+1|2
ρn+1 n+1

)

= δik − ρin+1ρkn+1 +
ρk

ρn+1
ρin+1ρn+1 n+1 − ρi

ρn+1
ρkn+1 + ρin+1ρkn+1

+
ρiρk

|ρn+1|2
ρn+1 n+1 − ρin+1 ρk

ρn+1
ρn+1 n+1

− ρiρk

|∂ρ|2ρ
+

ρiρn+1

|∂ρ|2ρ
ρkn+1 +

ρiρn+1

|∂ρ|2ρ
ρk

ρn+1
− ρiρn+1

|∂ρ|2ρ
ρk

ρn+1
ρn+1 n+1

+
ρi

ρn+1
ρkn+1 − ρiρn+1

|∂ρ|2ρ
ρkn+1 − ρiρk

|ρn+1|2
ρn+1 n+1 +

ρiρn+1

|∂ρ|2ρ
ρk

ρn+1
ρn+1 n+1

= δik.

Therefore, (3.4) holds, and the proof of the proposition is complete. �

Let Δu be the Beltrami–Laplacian with respect to the metric uijdzi ⊗
dzj . Then

Δu =
n+1∑
i,j=1

uij ∂2

∂zi∂zj
.(3.5)

Since u = − log(−ρ), we have (see [7, 24]) that

uij =
ρij

−ρ
+

ρiρj

ρ2 , and uij = (−ρ)

(
ρij − ρiρj

−ρ + |∂ρ|2ρ

)
.(3.6)
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Then,

Δu = (−ρ)
n+1∑
i,j=1

(
ρij − ρiρj

−ρ + |∂ρ|2ρ

)
∂2

∂zi∂zj
.(3.7)

Thus if f is harmonic in the metric uijdzi ⊗ dzj , then

Δuf =
n+1∑
i,j=1

(
ρij − ρiρj

−ρ + |∂ρ|2ρ

)
∂2f

∂zi∂zj
= 0.(3.8)

Proposition 3.3. With the notation above, for any f ∈ C2(D), we have

n+1∑
i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
fij =

n∑
i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
Dij(f).(3.9)

Proof. Since

n∑
i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
fij −

n∑
i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
Dij(f)

=
n∑

i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)(
ρi

ρn+1
fn+1j +

ρj

ρn+1
fin+1 −

ρiρj

|ρn+1|2
fn+1 n+1

)

=
n∑

j=1

ρj

ρn+1
fn+1 j −

n∑
j=1

ρn+1jfn+1j +
n∑

i=1

ρi

ρn+1
fin+1 −

n∑
i=1

ρin+1fin+1

+
n∑

i=1

(
− ρiρ

i

|ρn+1|2
+ ρin+1 ρi

ρn+1

)
fn+1 n+1

−
∑n

i=1 ρiρi

|∂ρ|2ρ

n∑
j=1

ρj

ρn+1
fn+1j −

∑n
j=1 ρjρj

|∂ρ|2ρ

n∑
i=1

ρi

ρn+1
fi n+1

+
(
∑n

i=1 ρiρi)(
∑n

j=1 ρjρj)

|∂ρ|2ρ |ρn+1|2
fn+1 n+1
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=
(

1 −
∑n

i=1 ρiρi

|∂ρ|2ρ

) n∑
j=1

ρj

ρn+1
fn+1 j −

n∑
j=1

ρn+1jfn+1j

+

(
1 −

∑n
j=1 ρjρj

|∂ρ|2ρ

)
n∑

i=1

ρi

ρn+1
fin+1 −

n∑
i=1

ρin+1fin+1 +

(
−

∑n
i=1 ρiρ

i

|ρn+1|2

+
ρn+1

ρn+1
− ρn+1 n+1 +

(
∑n

i=1 ρiρi)(
∑n

j=1 ρjρj)

|∂ρ|2ρ |ρn+1|2

)
fn+1 n+1

= −
n∑

j=1

[
ρn+1j − ρn+1ρj

|∂ρ|2ρ

]
fn+1j −

n∑
i=1

[
ρi n+1 − ρn+1ρi

|∂ρ|2ρ

]
fi n+1

−
[
ρn+1 n+1 − ρn+1ρn+1

|∂ρ|2ρ

]
fn+1n+1.

Moving the right side to the left hand side, we have

n+1∑
i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
fij −

n∑
i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
Dij(f) = 0.(3.10)

Therefore, the proof of (3.9) is complete, and so is the proof of the
proposition. �

Proof of part(b) of Theorem 1.1. Let f(z) = log J(ρ)(z) be harmonic
in the metric uijdzi ⊗ dzj . By (3.8), and then by (3.9), we have for all
z ∈ M = ∂D

0 =
n+1∑
i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
∂2f

∂zi∂zj
=

n∑
i,j=1

(
ρij − ρiρj

|∂ρ|2ρ

)
Dij(f)(z).(3.11)

By (3.4) and f = log J(ρ), we have

n∑
α,β=1

hαβDαβ(log J(ρ)) = 0, z ∈ M1.(3.12)

Applying the formula (3.3) for the Webster pseudo-scalar curvature Rθ, we
have that Rθ = n(n + 1) det H(ρ)/J(ρ), i.e., (1.5) holds, and the proof of
part(b) of Theorem 1.1 is complete. �
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4. Proof of Theorem 1.1 and Corollary 1.2

We have proved part(b) of Theorem 1.1. Now we prove part(a) of
Theorem 1.1.

Proof of part(a) of Theorem 1.1. Since log J(ρ) is harmonic in the met-
ric uijdzi ⊗ dzj in D and the pseudo-scalar curvature Rθ is constant c on
∂D, by part(b) of Theorem 1.1, we have

c = Rθ = n(n + 1)
det H(ρ)

J(ρ)
on ∂D.(4.1)

Therefore,

det H(ρ)
J(ρ)

=
c

n(n + 1)
> 0 on ∂D.(4.2)

This with − log J(ρ) being harmonic in the metric uijdzi ⊗ dzj , we have that
all conditions of Theorem 2.3 hold. By Theorem 2.3, we have

det H(ρ)
J(ρ)

=
c

n(n + 1)
> 0 on D.(4.3)

By Corollary 2.4, we have that D is biholomorphic to Bn+1, and the proof
of part(a) of Theorem 1.1 is complete. �

Proof of Corollary 1.2. Since u is the potential function for D, we have
J(ρ) ≡ 1. Hence, log J(ρ) = 0 is harmonic in uijdzi ⊗ dzj . By part(b) of
Theorem 1.1, we have Rθ = c on ∂D, and then by part(a) of Theorem 1.1
that D is biholomorphic to Bn+1. Moreover, detH(ρ) ≡ c on D. Let ρ0 = cρ.
det H(ρ0)/J(ρ0) ≡ 1 on D. Then by (2.37) and (2.38), there is z0 ∈ D with

ρ0(z0) = min{ρ0(z) : z ∈ D} = −det H(ρ0)(z0)
J(ρ0)(z0)

= −1.(4.4)



32 Song-Ying Li

By (2.6), we have T (z) ≡ 1 on D. By (2.5) in [24], we have

det H(log(1 + ρ0))(z) = 0, for all z ∈ D with ρ0(z) > −1.

Applying part(ii) of Theorem 1.2 in [24], there is a constant Jacobian biholo-
morphic mapping φ : D → Bn+1. The proof of Corollary 1.2 is complete. �

Acknowledgment

A part of this work was done when the author was visiting Fujian Normal
University, China.

References

[1] S.M. Baouendi, P. Ebenfelt and L.P. Rothschild, Real Submanifolds in
Complex Space and their Mappings, Math Series 47, Princeton Univer-
sity Press, Princeton, New Jersey, 1999.

[2] R. Beals, C. Fefferman and R. Grossman, Strictly pseudo-convex
domains in Cn, Bull. Amer. Math. Soc. (N.S.) 8 (1983), 125–322.

[3] D. Burns, Curvatures of Monge–Ampère foliations and parabolic man-
ifolds, Ann. Math. 115 (1982), 349–373.

[4] D. Burns Jr. and S. Shnider, Spherical hypersurfaces in complex mani-
folds, Invent. Math. 33 (1976), 223–246.

[5] L. Caffarelli, J.J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet prob-
lem for nonlinear second-order elliptic equations, II: complex Monge-
Ampère, and uniformly elliptic equations, Comm. Pure Appl. Math. 38
(1985), 209–252.

[6] S.S. Chern and S. Ji, On the Riemann mapping theorem, Ann. Math.
144 (1996), 421–439.

[7] S.Y. Cheng and S.T. Yau, On the existence of a complex Kähler metric
on non-compact complex manifolds and the regularity of Fefferman’s
equation, Comm. Pure Appl. Math. 33 (1980), 507–544.

[8] C. Fefferman, Monge-Ampère equations, the Bergman kernel, and geom-
etry of pseudo-convex domains, Ann. Math. 103 (1976), 395–416.

[9] N. Gamara, The CR Yamabe conjecture the case n = 1, J. Eur. Math.
Soc. 3 (2001), 105–137.



Characterization for a class of pseudo-convex domains 33

[10] N. Gamara and R. Yacoub, CR Yamabe conjecture–the conformally flat
case, Pacific J. Math. 201 (2001), 121–175.

[11] C.R. Graham, Scalar boundary invariants and the Bergman type kernel,
Complex Analysis, II (College Park, Maryland, 1985–85), Lecture Notes
in Math. 1276, Springer, Berlin, 1987, 108–135.

[12] B. Guan, The Dirichlet problem for complex Monge–Ampère equations
and Regularity of the Green’s function, Comm. Anal. Geom. 6 (1998),
687–703.

[13] B. Guan and P. Guan, Convex hypersurfaces of prescribed curvature,
Ann. Math. 156 (2002), 655–674.

[14] P. Guan, Extremal function associated to intrinsic norm, Ann. Math.
156 (2002), 197–211.

[15] X. Huang, On some problems in several complex variables and CR
geometry, First International Congress of Chinese Mathematicians,
Beijing, 1998, 383–396.

[16] X. Huang and S. Ji, Global holomorphic extension of a local map and
a Riemann mapping theorem for algebraic domains, Math. Res. Lett. 5
(1–2) (1998), 247–260.

[17] X. Huang, S. Ji and S.S.T. Yau, An example of a real analytic strongly
pseudo-convex hypersurface which is not holomorphically equivalent to
any algebraic hypersurface, Ark. Mat. 39 (2001), 75–93.

[18] D. Jerison and J. Lee, The Yamabe problem on CR manifolds, J. Diff.
Geom. 25 (1987), 167–197.

[19] ———, Extremal for the Sobolev inequality on the Heisenberg group and
the CR Yamabe problem, J. Amer. Math. Soc. 1 (1) (1988), 1–13.

[20] S.G. Krantz and S.-Y. Li, On the existence of smooth plurisubharmonic
solutions for certain degenerate Monge–Ampère equations, Complex
Vari. 41 (2000), 207–219.

[21] J.M. Lee, The Fefferman metric and pseudo-Hermitian invariants,
Trans. Amer. Math. Soc. 296 (1) (1986), 411–429.

[22] J. Lee and R. Melrose, Boundary behavior of the complex Monge-
Ampère equation, Acta Math. (1982), 159–192.

[23] L. Lempert, Solving the degenerate Monge–Ampère equation with one
concentrated singularity, Math. Ann. 263 (1983), 515–532.



34 Song-Ying Li

[24] S.-Y. Li, Characterization for balls with potential function of Kähler–
Einstein metrics for domains in Cn, Comm. Anal. Geom. 13 (2005),
461–478.

[25] ———, On the existence and regularity of Dirichlet problem for complex
Monge-Ampère equations on weakly pseudo-convex domains, Calc. Var.
PDEs 20 (2004), 119–132.

[26] ———, The Neumann problem for complex Monge-Ampère equation,
Ind. Univ. J. Math. 44 (1995), 1099–1122.

[27] ———, On the Dirichlet problem for symmetric function equations of
eigenvalues of complex Hessian, Asian J. Math. 8 (2004), 87–106.

[28] ———, On pseudo-Hermitian CR manifolds, AMS/IP Stud. Adv.
Math. 42 (2008), 467–481.

[29] S.-Y. Li and H.-S. Luk, The Sharp lower bound for the first positive
eigenvalues of sub-Laplacian on the pseudo-hermitian manifold, Proc.
AMS 132 (2004), 789–798.

[30] ———, An explicit formula for the Webster pseudo Ricci curvature on
real hypersurfaces and its application for characterizing balls in Cn,
Comm. Anal Geom. 14 (2006), 673–701.

[31] ———, An explicit formula for the Webster torsion on real hypersur-
faces and its application to the torsion-free hypersurfaces in Cn, Sci.
China 49 (2006), 1662–1682.

[32] N. Mok and S.T. Yau, Completeness of the Kähler–Einstein metric on
bounded domains and the characterization of domains of holomorphy
by curvature conditions, The mathematical Heritage of Henri Poincarè
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