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Tunnel number one, genus-one fibered knots
Kenneth L. Baker, Jesse E. Johnson and

Elizabeth A. Klodginski

We determine the genus-one fibered knots in lens spaces that have
tunnel number one. We also show that every tunnel number one,
once-punctured torus bundle is the result of Dehn filling a compo-
nent of the Whitehead link in the 3-sphere.

1. Introduction

A null homologous knot K in a 3-manifold M is a genus-one fibered knot
(GOF-knot for short), if M − N(K) is a once-punctured torus bundle over
the circle whose monodromy is the identity on the boundary of the fiber and
K is ambient isotopic in M to the boundary of a fiber.

We say the knot K in M has tunnel number one if there is a properly
embedded arc τ in M − N(K) such that M − N(K) − N(τ) is a genus-two
handlebody. An arc such as τ is called an unknotting tunnel. Similarly, a
manifold with toroidal boundary is tunnel number one if it admits a genus-
two Heegaard splitting. Thus a knot is tunnel number one if and only if its
complement is tunnel number one.

In the genus 1 Heegaard surface of L(p, 1), p �= 1, there is a unique link
that bounds an annulus in each solid torus. This two-component link is
called the p-Hopf link and is fibered with monodromy p Dehn twists along
the core curve of the fiber. We refer to the fiber of a p-Hopf link as a
p-Hopf band. In this terminology, the standard positive and negative Hopf
bands in S3 = L(+1, 1) = L(−1, 1) are the (+1)- and (−1)-Hopf bands,
respectively.

González-Acuña [10] shows that the trefoil (and its mirror) and the figure
eight knot are the only GOF-knots in S3. These knots arise as the boundary
of the plumbing of two (±1)-Hopf bands. For both knots, a transverse arc
on one of the plumbed Hopf bands is an unknotting tunnel, so both have
tunnel number one.
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GOF-knots in lens spaces were first studied by Morimoto in [14], and
were classified by the first author of the present article in [2]. Unlike in S3,
these knots do not all have tunnel number one. In particular we prove the
following:

Theorem 1.1. Every tunnel number one, GOF-knot in a lens space is
the plumbing of an r-Hopf band and a (±1)-Hopf band which is contained
in the lens space L(r, 1), with one exception. Up to mirroring, this excep-
tion is the GOF-knot in L(7, 2) that arises as (−1)-Dehn surgery on the
plumbing of a 7-Hopf band and a (+1)-Hopf band.

Every GOF-knot has tunnel number 1 or 2. Thus Theorem 1.1 deter-
mines the tunnel number of every GOF-knot in a lens space.

We also obtain:

Theorem 1.2. Every tunnel number one, once-punctured torus bundle is
the complement of a GOF-knot in a lens space of the form L(r, 1).

Theorem 1.3. Every tunnel number one, once-punctured torus bundle is
the (r/1)-Dehn filling of a boundary component of the exterior of the White-
head link for some integer r.

This article begins by determining the monodromy of a tunnel num-
ber one, once-punctured torus bundle in Section 2. We then translate these
monodromies into the language of closed 3-braids in Section 3. In particular
we determine which 3-braids in a solid torus have double branched covers
producing tunnel number one, once-punctured torus bundles. In Section 4,
we discuss the presentations of two bridge links as closed 3-braids in S3. In
Section 5, we determine which of the braids from Section 3 are two bridge
links. The proof of Theorem 1.1 is presented in Section 6, and Theorems 1.2
and 1.3 are proved in Section 7.

We refer the reader to [4] for background regarding fibered knots, braids,
two bridge links, lens spaces, and double coverings of S3 branched over a
link. Also, recall that plumbing is a local operation generalizing the connect
sum. In particular, the plumbing of a fibered link in S3 with a fibered link
in another 3-manifold M produces a new fibered link in M . See for example
Gabai’s geometric description of the yet more generalized Murasugi sum
in [9].

The authors would like to thank Alan Reid for a helpful conversation
regarding the Whitehead link.
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2. The monodromy of a tunnel number one, once-punctured
torus bundle

Heegaard splittings of closed torus bundles over the circle were studied in
detail by Cooper and Scharlemann [7]. In particular, their work characteri-
zed genus-two Heegaard splittings of such bundles. Their method transfers
almost directly to the case of once-punctured torus bundles which are tunnel
number one.

Lemma 2.1. Let M be a once-punctured torus bundle over the circle with
once-punctured torus fiber T and monodomy φ. Further assume M allows a
genus-two Heegaard splitting. Then there is a pair of simple closed curves
α1, α2 in T such that α1 ∩ α2 is a single point and φ sends α1 onto α2. The
map φ is isotopic to (s2s1s2)±1sn

1 where s1 is a Dehn twist along α1 and s2
is a Dehn twist along α2.

Proof. We will show that the proof for closed torus bundles in Theorem 4.2
of [7] works equally well in the once-punctured case. Because this method
has been described in detail elsewhere, we will give only an outline of the
setup and leave many of the details to the reader. A similar exposition for
general surface bundles can also be found in [1].

Let (Σ, H1, H2) be a genus-two Heegaard splitting for M . Assume H1
is a compression body and H2 a handlebody. A spine K1 for H1 consists
of ∂−H1 and an arc properly embedded in H1 such that the complement
in H1 of K1 is homeomorphic to ∂+H1 × (−1, 0]. A spine K2 for H2 is a
graph whose complement is homeomorphic to ∂H2 × [0, 1). The Heegaard
splitting determines a continuous one-parameter family of embedded, pair-
wise disjoint surfaces {Σx : x ∈ (−1, 1)} such that as x approaches −1, the
surfaces limit to K1 and as x approaches 1, the surfaces limit onto K2. This
family of surfaces is called a sweep-out. For each x, the surface Σx separates
M into a compression body Hx

1 and a handlebody Hx
2 .

The fibers of the bundle structure on M form a continuous one-parameter
family of embedded, pairwise disjoint essential surfaces {Ty : y ∈ S1}.
Assume the surfaces {Σx} and {Ty} are in general position. The Rubinstein–
Scharlemann graphic is the subset R of (−1, 1) × S1 consisting of pairs (x, y)
such that Σx and Ty are tangent at some point in M . General position implies
that this set will be a graph.

At each point (x, y) in the complement of the graphic, the corresponding
surfaces Σx and Ty are transverse. Label each point (x, y) (in (−1, 1) × S1)
with a 1 if some loop component of Σx ∩ Ty is essential in Σx and is the
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boundary component of a disk or an essential annulus in Hx
1 . Note that

for such an essential annulus, its other boundary component is a curve on
∂M isotopic to ∂Ty. Label (x, y) with a 2 if a loop is essential in Σx and
bounds a disk in Hx

2 . Given a second point (x′, y′) in the same component of
the complement of the graphic as (x, y), a piecewise vertical and horizontal
path from (x, y) to (x′, y′) determines an ambient isotopy of M taking Σx

to Σx′ and Ty to Ty′ . Thus any two points in the same component of the
complement of the graphic have the same labels.

Claim 2.2. For a fixed x, there cannot be values y, y′ such that (x, y) is
labeled with a 1 and (x, y′) is labeled with a 2. (In particular, a point cannot
have both labels 1 and 2.)

Proof. Let M ′ be the result of Dehn filling ∂M along the slope of the bound-
ary of a level surface Ty. Then M ′ is a closed torus bundle and the image of
a loop which is boundary parallel in Ty will be trivial in M ′. The induced
Heegaard splitting of M ′ will be irreducible because a torus bundle can-
not be a lens space. Moreover, an irreducible, genus-two Heegaard splitting
is strongly irreducible so the induced Heegaard splitting of M ′ is strongly
irreducible.

Now assume for contradiction the point (x, y) is labeled with a 1 and
(x, y′) is labeled with a 2. Then there is a loop in Σx ∩ Ty that bounds an
essential disk in the filling of Hx

1 (after the filling, an essential annulus is
capped off and becomes a disk) and a loop Σx ∩ Ty′ that bounds an essential
disk in Hx

2 . Because Ty and Ty′ are disjoint, each loop in Σx ∩ Ty′ is disjoint
from each loop in Σx ∩ Ty. Thus the Heegaard surface Σx for M ′ is weakly
reducible and therefore reducible. This contradicts the assumption that M ′

is not a lens space. �

Claim 2.3. No fiber Ty can be made disjoint from Hx
2 .

Proof. If a fiber Ty were disjoint from Hx
2 , then it would be contained in

Hx
1 . Since Ty is essential, a non-separating compressing disk of Hx

1 must be
disjoint from Ty. Therefore compressing Hx

1 along such a disk yields a mani-
fold which is homeomorphic to T 2 × I and contains a properly embedded,
essential, once-punctured torus, which cannot occur. �

Claim 2.4. In a component of (−1, 1) × S1 − R that intersects (−1,−1 +
ε) × S1 for suitably small ε, each point is labeled with a 1. In a component
of (−1, 1) × S1 − R that intersects (1 − ε, 1) × S1 for suitably small ε, each
point is labeled with a 2.
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Proof. Fix y. Because Σx limits onto K1, if x is near −1, then Ty ∩ Hx
1 will

be a collection of disks and an essential annulus. Hence (x, y) has label 1.
If x is near 1, then Ty ∩ Hx

2 consists of disks. If none of these disks are
essential in Hx

2 , then Ty can be pushed into Hx
1 , contradicting Claim 2.3.

Hence (x, y) has label 2. �

Claim 2.5. For some value x, the point (x, y) is unlabeled for every y.

Proof. The complement of the graphic is an open set, as is each component
of the complement. The union of all the components labeled with a 1 projects
to an open set in (−1, 1) as does the union of the components labeled with
a 2. By Claim 2.4 the projection of each set is non-empty. By Claim 2.2
the images of these projections are disjoint. Because (−1, 1) is connected,
it cannot be written as the union of two non-empty open sets. Thus there
is a point x in the complement of the projections. This x has the desired
property. �

Fix an x such that for every y, (x, y) is unlabeled as guaranteed by
Claim 2.5. If for some y, Ty is transverse to Σx and each loop of Σx ∩ Ty

is trivial in Ty then Ty can be isotoped into Hx
1 . As noted in Claim 2.3

above, this is impossible. Therefore for each y ∈ S1, if Ty and Σx intersect
transversely, then the intersection Σx ∩ Ty must contain a loop which is
essential in Ty. Since two disjoint, essential loops in a once-punctured torus
are parallel, the essential loops in Σx ∩ Ty are all parallel in Ty, for each y.

For each point p ∈ Σx there is a y ∈ S1 such that p is contained in Ty.
Define the function fx : Σx → S1 such that p is contained in Tf(p) for each
p ∈ Σx. By general position, either fx is a circle-valued Morse function or
fx is a near-Morse function such that the critical points consist of either
a single isolated degenerate critical point or just two critical points at the
same level.

Assume for contradiction fx is a Morse function. Then for each y ∈ S1,
the level set f−1

x (y) contains a loop which is essential in Σx. Thus Σx ∩ Ty

contains a loop which is essential in Σx and therefore essential in Ty. By
continuity, the isotopy class in Σx of the essential loops cannot change as
y varies, so the monodromy φ must send this essential loop onto itself. A
quick calculation shows the homology of this manifold would have rank 3,
contradicting the fact that M admits a genus two Heegaard splitting.

If fx has an isolated degenerate critical point, then once again f−1
x (y)

must contain an essential loop for each y. This leads to the same contra-
diction as when fx is a Morse function; see [7]. Therefore we conclude that
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Figure 1: Σx in the once-punctured torus bundle M cut open along a fiber
Ty, and the sequence of intersections of Σx with the fibers Ty as y passes
through the critical value of fx.

fx must have two critical points on the same level. As described in [7], this
implies that Σx is embedded in M as shown in figure 1.

The right side of the figure shows how the loops of Σx ∩ Ty sit in each
Ty. As y passes through the critical value c of fx from c + ε to c − ε, the
isotopy class �c+ε of the essential loops of Σx ∩ Tc+ε is replaced by a new
isotopy class �c−ε of the loops of Σx ∩ Tc−ε which, under the projection
T × (c − ε, c + ε) → T , intersects the original in a single point. Because this
is the only level at which this happens, we conclude that there are essential
loops α1, α2 ⊂ T such that α1 ∩ α2 is a single point and φ(α1) = α2.

Let s1 be a Dehn twist along α1 and s2 a Dehn twist along α2. Either
composition (s2s1s2)±1 takes α1 to α2 and α2 to α1. By choosing +1 or −1
appropriately, we can ensure that the map sends α1 to α2 with the same
orientation as φ. Composing further with sn

1 for some n will take α2 to φ(α2).
Thus (s2s1s2)±1sn

1 is isotopic to φ. �

3. GOF-knots via closed 3-braids

A GOF-knot may be described in terms of a double branched covering of
a closed 3-braid whose word encodes the monodromy of the fibering. This
viewpoint allows us to describe tunnel number one once-punctured torus
bundles.

Lemma 3.1. Every GOF-knot is the image of the braid axis of a closed
3-braid in S3 in the double branched cover of the closed 3-braid. Conversely,
the image of the braid axis of a closed 3-braid in the double branched cover
of the closed 3-braid is always a GOF-knot.

By considering the standard involution of the once-punctured torus T ,
we will show that the set of GOF-knots in 3-manifolds and the set of braid
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axes of closed 3-braids in S3 are in one-to-one correspondence. We sketch
the passage from GOF-knots to axes of closed 3-braids in S3 below. The
return passage is then clear. (See Section 5 of [3], Sections 4 and 5 of [12]
and Section 2 of [2].)

Sketch. The standard involution ι with three fixed points of the once-
punctured torus T extends to an involution of the once-punctured torus
bundle M that takes a fiber to a fiber. Since ι commutes with the mono-
dromy of M , quotienting M by this involution yields a closed 3-braid β̂ in
a solid torus W where the braid β̂ is the image of the fixed set of ι and a
meridional disk of W is the image of a fiber.

The extension of ι is a fixed point free involution on the boundary of M ,
so ι further extends to an involution of the filling M ′ of M by a solid torus
V ′ whose meridians intersect fibers of M just once. In M ′ the core of V ′ is
a GOF-knot K. Since the extension of ι acts as a free involution of V ′, in
the quotient V ′ descends to a solid torus V . The meridian of V intersects
the meridian of W once, as the meridian of V ′ intersects the boundary of
a fiber of M once. Hence under this quotient, K descends to the core of V
which is the axis of the closed 3-braid β̂ in V ∪ W ∼= S3. This defines the
correspondence. �

Lemma 3.2. Every tunnel number one, GOF-knot is the lift of the braid
axis of the closure β̂k,n of the braid βk,n = (σ2σ1σ2)kσn

1 in the double cover
of S3 branched over β̂k,n, where k is odd and n is an arbitrary integer.

A depiction of the braid βk,n = (σ2σ1σ2)kσn
1 is shown in figure 2.

Proof. Let ̂M be a 3-manifold that contains a tunnel number one, GOF-
knot K. Let M be the once-punctured torus bundle exterior ̂M − N(K)
with fiber T .

Figure 2: The braid βk,n = (σ2σ1σ2)kσn
1 .
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By Lemma 2.1, the monodromy of M may be given by (s2s1s2)±1sn
1 up

to Dehn twists along the boundary of a fiber T . Write a single Dehn twist
along ∂T as (s2s1s2)4. Then the monodromy T → T fixing ∂T with an orbit
on ∂M bounding a meridional curve for K is (s2s1s2)4�±1sn

1 for some � ∈ Z.
By Lemma 3.1, ̂M is the double branched cover of a closed 3-braid in

S3 with braid axis lifting to K. Accordingly, M is the double branched
cover of the closed 3-braid in the solid torus exterior of the braid axis. A
meridian of K in ∂M corresponds to a meridian of the braid axis in the solid
torus.

Under the quotient of the covering involution, the Dehn twist si along
αi corresponds to the braid σi, a right-handed crossing between the ith and
(i + 1)th strands. Thus K in ̂M corresponds to the braid axis of the closed
braid (σ2σ1σ2)kσn

1 where k = 4� ± 1. �

Remark 3.3. A meridian of the braid axis is a longitudinal curve on the
solid torus containing the closed 3-braid. In the double branched cover it
lifts to two meridians of the GOF-knot. The longitude of the braid axis is
the meridian of the solid torus containing the closed 3-braid. It lifts to the
longitude of the GOF-knot.

In these coordinates for the braid axis, a slope p/q lifts to the slope 2p/q.
If q is even (and p and q are coprime) this slope is to be interpreted as two
parallel curves of slope p/(q/2). It follows that 1/q surgery on a GOF-knot
corresponds to inserting 2q full twists (right-handed if q < 0, left-handed if
q > 0) into the 3-braid.

If q is odd then a p/q slope lifts to a single curve of slope 2p/q. Hence
p/q surgery on the braid axis cannot lift to surgery on the GOF-knot in the
double branched cover unless the core of the surgery solid torus is added to
the branch locus.

4. GOF-knots in lens spaces

By Corollary 4.12 of [11], the lens space L(α, β) is the double cover of S3

branched over a link L if and only if L is equivalent to the two bridge link
b(α, β). Thus to understand GOF-knots in lens spaces using Lemma 3.1
we must consider representations of two bridge links as closed 3-braids;
see [2].

Murasugi and later Stoimenow describe which two bridge links admit
such closed braid representations. These two descriptions may be seen to be
equivalent by working out their corresponding continued fractions. Let b(L)
denote the braid index of the link L.
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Proposition 4.1 (Proposition 7.2, [16]). Let L be a two bridge link of
type b(α, β), where 0 < β < α and β is odd. Then

(1) b(L) = 2 iff β = 1.

(2) b(L) = 3 iff either
(a) for some p, q > 1, α = 2pq + p + q and β = 2q + 1, or
(b) for some q > 0, α = 2pq + p + q + 1 and β = 2q + 1.

Lemma 4.2 (Corollary 8, [17]). If L is a two bridge link of braid index 3,
then L has Conway notation (p, 1, 1, q) or (p, 2, q) for some p, q > 0.

The two bridge link with Conway notation (p, 1, 1, q) is shown in figure 3.
The link with Conway notation (p, 2, q) is shown in figure 4.

In the other direction, we can determine which 3-braids have closures
that are two bridge links.

Lemma 4.3. The closure of a 3-braid β is a two bridge link if and only if
β or its mirror image is conjugate to σ−1

2 σp
1σ

2
2σ

q
1 for some p, q ∈ Z.

Figure 3: The two bridge link (p, 1, 1, q) is equivalent to (p, 2,−q − 1).

Figure 4: Closed 3-braid representatives of the two bridge link (p, 2, q).
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Proof. Assume the closure β̂ of a 3-braid β is a two bridge link. By Lemma 4.2
β̂ may be described with Conway notation (p, 1, 1, q) or (p, 2, q) for some
integers p, q. Figure 3 shows that a two bridge link with Conway notation
(p, 1, 1, q) is equivalent to one with Conway notation (p, 2,−q − 1). Figure 4
shows the expression of a two bridge link with Conway notation (p, 2, q) as
the closure of the braid σ−1

2 σp
1σ

2
2σ

q
1. By Theorem 2.4 in [2] the braid axis

is unique in Case (2) of Proposition 4.1. For Case (1), the braid axes are
classified and have the desired form (see the proof of Theorem 2.4 in [2]).

If a 3-braid β is conjugate to σ−1
2 σp

1σ
2
2σ

q
1 for some p, q ∈ Z, then its

closure can readily be identified with a two bridge link; see figure 4. �

Lemma 4.4. The double branched cover of the closure of the braid
σ−1

2 σp
1σ

2
2σ

q
1 is the lens space L(2pq + p + q, 2q + 1).

Proof. Since the closure of the braid σ−1
2 σp

1σ
2
2σ

q
1 is a two bridge link with

Conway notation (p, 2, q) (see figure 4), it corresponds to the two bridge link
b(α, β) where α/β = p + 1/(2 + 1/q) = 2pq+p+q

2q+1 . Since the double branched
cover of the two bridge link b(α, β) is the lens space L(α, β) the result
follows. �

5. Tunnel number one, GOF-knots in lens spaces

The monodromy of tunnel number one once-punctured torus bundle has a
special form, which can now be connected with lens spaces via two bridge
links.

Lemma 5.1. The closure β̂k,n of the braid βk,n = (σ2σ1σ2)kσn
1 , where k

is odd, is a two bridge link if and only if k = ±1, (k, n) = ±(−3, 3), or
(k, n) = ±(−3, 5).

Proof. If k = ±1 then

β±1,n = (σ2σ1σ2)±1σn
1 = (σ1σ2σ1)±1σn

1 ≡ σ±1
2 σn±2

1 .

Thus β̂±1,n is the two bridge link b(n ± 2, 1) (the (2, n ± 2)-torus link). The
reader may check that β̂k,n is the two bridge knot b(∓5, 1) for (k, n) =
±(−3, 3) and the two bridge knot b(±7, 2) for (k, n) = ±(−3, 5).

If n is even then β̂k,n has one unknotted component and one potentially
knotted component (a (2, k)-torus knot). Since a two bridge link has either
one component or two unknotted components, the (2, k)-torus knot must be
the unknot. Hence k = ±1.
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Assume that n is an odd integer. By taking mirror images, we only
need consider the case that k ≡ 1 mod 4. We will deal with the three cases
n = 1, n = −1, and |n| > 2 separately.

Since k = 4� + 1 for some � ∈ Z we have βk,n = (σ2σ1σ2)4�β1,n. By
Remark 3.3, the double branched cover of β̂k,n may be obtained from the
double branched cover L(n + 2, 1) of β̂1,n by (1/�)-Dehn surgery on the lift
of its braid axis.

If n = −1, then the braid axis of β̂1,n lifts to the right handed trefoil.
A (1/�)-Dehn surgery on this knot is a lens space only when � = 0 [15];
hence k = 1.

To handle the cases when n = +1 and |n| > 2, we must further under-
stand the relationship between the order of the lens space and the braid
structure of β̂k,n. The exponent sum of a braid is the sum of the exponents
of a word in the letters {σ1, σ2} representing the braid. By Lemma 4.3, β̂k,n

is a two bridge link if and only if it is conjugate to σ−1
2 σp

1σ
2
2σ

q
1. Since an

exponent sum is invariant under conjugation, we must have:

(5.1) 3k + n = p + q + 1.

Since the double branched cover of β̂4�+1,n is obtained from L(n + 2, 1) by
(1/�)-Dehn surgery on the lift of the braid axis, its first homology group
must be cyclic of order n + 2. By Lemma 4.4, the double branched cover
of closure of the braid σ−1

2 σp
1σ

2
2σ

q
1 is the lens space L(2pq + p + q, 2q + 1).

Thus the orders of first homology of the double branched covers β̂4�+1,n and
the closure of σ−1

2 σp
1σ

2
2σ

q
1 must agree:

(5.2) |n + 2| = |2pq + p + q|.

Since n is assumed to be odd, Equation (5.2) implies that the integers p and
q have different parity.

Putting Equations (5.1) and (5.2) together, we obtain |p + q + 3 − 3k| =
|2pq + p + q|. Hence either

(5.3) 3k − 3 = 2(pq + p + q) or 3k − 3 = −2pq.

Now consider the case when n = +1. For β̂4�+1,1 to be a two bridge knot,
Equation (5.2) implies that {p, q} = {0, 3}, {0,−3}, {−1, 2}, or {−1,−4}.
Since n = +1, Equation (5.1) then implies that k = 1, −1, 1/3, or −5/3,
respectively. Because k must be an integer, k = ±1.



12 Kenneth L. Baker, Jesse E. Johnson and Elizabeth A. Klodginski

Lastly consider the case when |n| > 2. Denote the lift of the braid axis
of β̂1,n by K1,n. The action of the monodromy on the homology of the fiber
of K1,n is given by

(

1 0
−1 1

) (

1 n + 2
0 1

)

=
(

1 n + 2
−1 −n − 1

)

.

This has trace −n. By [5] this monodromy is pseudo-Anosov for |n| > 2
and therefore by [18] the complement of K1,n is hyperbolic. According to
the Cyclic Surgery Theorem [8], 1/� surgery on K1,n is a lens space only if
� = 0, � = +1, or � = −1. Thus only for k = 1, k = 5 or k = −3, respectively,
could β̂k,n with |n| > 2 be a two bridge link. We complete the proof with an
examination of the latter two possibilities.

Case A: k = 5
By Equation (5.3) either −6 = pq or 6 = pq + p + q. Thus −6 = pq or

7 = (p + 1)(q + 1). Since p and q have opposite parity, −6 = pq, and so
{p, q} = {−2, 3}, {2,−3}, {1,−6}, or {−1, 6}. Hence by Equation (5.1) n =
−13, −15, −19, or −9 respectively. Braid Group Calculator [6] shows that
none of the braids β5,n are conjugate to σ−1

2 σp
1σ

2
2σ

q
1 for corresponding choices

of n and {p, q}. By Lemma 4.3 this implies the braid closure β̂5,n with |n| > 2
is not a two bridge link.

Case B: k = −3
By Equation (5.3) either 6 = pq or −6 = pq + p + q. Thus 6 = pq or

−5 = (p + 1)(q + 1). Since p and q have opposite parity, 6 = pq, and so
{p, q} = {2, 3}, {−2,−3}, {1, 6}, or {−1,−6}. Hence by Equation (5.1) n =
15, 5, 17 or 3, respectively. Braid Group Calculator [6] shows that the
braids β−3,n are not conjugate to σ−1

2 σp
1σ

2
2σ

q
1 for (n, {p, q}) = (15, {2, 3}) and

(n, {p, q}) = (17, {1, 6}). However, these braids are conjugate if (n, {p, q}) =
(5, {−2,−3}) or (n, {p, q}) = (3, {−1,−6}). By Lemma 4.3 this implies the
braid closure β̂−3,n with |n| > 2 is not a two bridge link unless n = 3 or n =
5. �

Lemma 5.2. The braid β−3,5 is not conjugate to a braid βε,n for any choice
of ε = +1 or −1 and integer n; neither is β3,−5.

Proof. The proof of Lemma 5.1 shows that β−3,5 is conjugate to
σ−1

2 σ−2
1 σ2

2σ
−3
1 . By Lemma 4.4, the double branched cover of its closure is

the lens space L(7, 2). For ε = ±1 the double branched cover of the closure
of βε,n is the lens space L(n + 2ε, 1). If β−3,5 were conjugate to βε,n then the
double branched covers of their closures would be equal, but this is not the
case. Similarly, β3,−5 is not conjugate to βε,n for any choice of ε and n. �
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Remark 5.3. As one may check, the braids β−3,3 and β−1,−3 are conjugate
as are β3,−3 and β1,3.

6. Proof of Theorem 1.1

Using our understanding of the braid structure associated to the knot, we
can now determine the precise lens space in which the knot lies, as well as
describe the structure of the knot.

Theorem 1.1. Every tunnel number one, GOF-knot in a lens space is
the plumbing of an r-Hopf band and a (±1)-Hopf band in the lens space
L(r, 1) with one exception. Up to mirroring, this exception is the GOF-knot
in L(7, 2) that arises as (−1)-Dehn surgery on the plumbing of a 7-Hopf
band and a (+1)-Hopf band.

Proof. Let K be a tunnel number one, GOF-knot in a lens space. By Lemma 3.1
K corresponds to the braid axis of the closure of a 3-braid β. As K lies in
a lens space, β̂ must be a 2–bridge link [11]. Since K is tunnel number one,
Lemma 3.2, Lemma 5.1 and Remark 5.3 together imply that β must be
conjugate to βk,n for either k = ±1 and n ∈ Z or (k, n) = ±(−3, 5).

Let us first assume β = β±1,n. Then β is conjugate to σ±1
2 σn±2

1 . Setting
r = n ± 2, the closure β̂ is then the (2, r)-torus link and its double branched
cover is the lens space L(r, 1).

We may now view K as the plumbing of an r-Hopf band and a (±1)-
Hopf band as follows. First observe that β is a Markov stabilization of the
2-braid σr

1: a third string and a single crossing (σ±1
2 ) is added to σr

1 to form
the 3-braid β preserving its closure.

As in Proposition 12.3 of [4], the lens space L(r, 1) can be decomposed
along a torus arising as the double branched cover of a bridge sphere S2 for
the closure ̂σr

1. Isotope the braid axis h of σr
1 to lie on S2, and let D be a

component of S2 − h.
The link ̂σr

1 punctures D twice, and thus in the double branched covering,
D lifts to an annulus A bounded by the preimage of h. By Lemma 11.8
of [4], the braid σr

1 corresponds to r Dehn twists about the core of A. In
other words, the preimage of h lifts to an r-Hopf link.

As demonstrated in Theorem 5.3.1 of [13], the Markov stabilization β
of σr

1 corresponds to the plumbing of a Hopf band onto A in the double
branched cover. Thus we see K as the boundary of the plumbing of an
r-Hopf band and a (±1)-Hopf band in the lens space L(r, 1).
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Now assume β is conjugate to β−3,5. Since β̂−3,5 = b(7, 2), K is a knot
in L(7, 2). By Lemma 5.2, β is not conjugate to β±1,n. Therefore β is not
a Markov stabilization of any 2-braid, and so K is not the boundary of
the plumbing of an r-Hopf band and a (±1)-Hopf band. (Indeed, K is
not the Murasugi sum of any two fibered links.) Nevertheless, observe that
adding two full positive twists to β gives the braid (σ2σ1σ2)4β−3,5 = β1,5.
Remark 3.3 thus implies that K is the core of a (−1)-Dehn surgery on the
lift of the braid axis of β̂1,5 to the double branched cover, i.e. the boundary
of the plumbing of a 7-Hopf band and a (+1)-Hopf band. �

7. Punctured torus bundles as knot complements

Theorem 1.2. Every tunnel number one once-punctured torus bundle is
the complement of a GOF-knot in a lens space of the form L(r, 1).

Proof. Let M be a once-punctured torus bundle with tunnel number one.
Filling ∂M along a slope that intersects each fiber once produces a closed
3-manifold ̂M in which the core of the filling solid torus is a tunnel number
one GOF-knot K. By Lemma 3.2, K is the lift of the braid axis of the closure
of the braid (σ2σ1σ2)kσn

1 where k = 4� ± 1 is odd. Following Remark 3.3, we
may perform −1/� surgery on K to produce a manifold ̂M ′ in which the
core of the surgery solid torus is a tunnel number one GOF-knot K ′. Hence
K ′ is the lift of the braid axis of the closure of the braid (σ2σ1σ2)±1σn

1 . This
closed braid is equivalent to the two bridge link b(r, 1) where r = n ± 2.
Therefore ̂M ′, the double cover of this link, is the lens space L(r, 1), and M
is the complement of K ′. �

Theorem 1.3. Every tunnel number one once-punctured torus bundle is the
(r/1)-Dehn filling of a boundary component of the exterior of the Whitehead
link for some integer r.

Proof. By Theorem 1.2, a tunnel number one once-punctured torus bundle
is the complement of a GOF-knot K in a lens space L(r, 1). By Theorem 1.1,
K is the plumbing of a r-Hopf band and a (±1)-Hopf band.

The r-Hopf band is obtained by r/1 surgery on a circle C that links an
annulus A whose boundary is the unlink in S3. Plumbing a (±1)-Hopf band
onto A produces the unknot U whose union with C forms the Whitehead
link. The r/1 surgery on C transforms U into the plumbing of a (±1)-Hopf
band onto the r-Hopf band in the lens space L(r, 1). Thus the image in
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L(r, 1) of U is our knot K. Therefore the complement of K in L(r, 1) is
obtained from the complement of the Whitehead link U ∪ C by the filling
of the boundary component coming from C. �
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