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Conformal metrics with constant (Q-curvature
for manifolds with boundary

CHEIKH BIRAHIM NDIAYE

In this paper we prove that, given a compact four-dimensional
smooth Riemannian manifold (M, g) with smooth boundary, there
exists a metric in the conformal class [g] of the background met-
ric g with constant @Q-curvature, zero T-curvature and zero mean
curvature under generic conformally invariant assumptions. The
problem is equivalent to solving a fourth-order non-linear elliptic
boundary value problem (BVP) with boundary condition given by
a third-order pseudodifferential operator and homogeneous
Neumann condition. It has a variational structure, but since the
corresponding Euler-Lagrange functional is in general unbounded
from above and below, we need to use min—max methods combined
with a new topological argument and a compactness result for the
above BVP.

1. Introduction

In the last decades, much work has been done in the study of conformally
covariant differential (pseudodifferential) operators on compact smooth Rie-
mannian manifolds with smooth boundary, their associated curvature invari-
ants, the corresponding boundary operators and curvatures in order to
understand the relationships between analytic and geometric properties of
such objects.

A model example is the Laplace—Beltrami operator on compact surfaces
with boundary (3, g) and the Neumann operator on the boundary. Under a
conformal change of metric, the couple constitued by the Laplace—Beltrami
operator and the Neumann operator governs the transformation laws of the
Gauss curvature and the geodesic curvature. In fact, under the conformal

1049



1050 Cheikh Birahim Ndiaye

change of metric g, = e?“g, we have

Ay, = e A, —Aju+ K, =Ky e*in X,
o ) and )
— U , au + kg = kg, e" on 0%,
ong, ong ong

where A, (resp. Ag,) is the Laplace-Beltrami operator of (¥,g) (resp.
(X,94)) and K, (resp. K, ) is the Gauss curvature of (X, g) (resp. of (2. g4)),
a%g (resp. ﬁ) is the Neumann operator of (¥, g) (resp. of (£, ¢,)) and k,
(resp. kg, ) is the geodesic curvature of (0%, g) (resp. of (0¥ g,)). Moreover,
we have the Gauss-Bonnet formula which relates [y, Ky dVy + [, kg dSg and

the topology of X

(1.1) /Kngng/ kg dSy = 2mx (%),
b ox

where x(X) is the Euler-Poincaré characteristic of ¥, dVj is the element
area of ¥ and dS, is the line element of 9. Thus, [ K,dVy + [4 kg dS,
is a topological invariant, hence a conformal one.

There exists also an other example of conformally covariant differential
operator on four-dimensional compact smooth Riemannian manifolds with
smooth boundary called the Paneitz operator and to which is associated a
natural concept of curvature. This operator discovered by Paneitz in 1983
(see [19]) and the corresponding Q-curvature introduced by Branson [3] are
defined in terms of Ricci tensor Ric, and scalar curvature R, of the manifold
(M, g) as follows:

2
Pg4<p = Aggp + divy (<3Rgg — 2Rz'cg> dcp) ;

1 .
Qy = —15(AgRy — R + 3[Ric|*),

where ¢ is any smooth function on M, div, is the divergence and d is the
De Rham differential.

Likewise Chang and Qing, see [6], have discovered a boundary operator
Pg’ defined on the boundary of compact four-dimensional smooth Rieman-
nian manifolds and a natural third-order curvature Tj associated to Pg3 as
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follows:
Plo= ;%Aggo A (;9 —2HgAzp + (Lg)an(V)a(Vg)e
+ViH, Vo + (F — R) (;9;;
T, = —112(355 + %RgHg— < Gg,Ly > +3H} — éTr(LB) + AgHy,

where ¢ is any smooth function on M, § is the metric induced by ¢ on

OM, Ly = (Lg)ap = —5% is the second fundamental form of OM, H,
-1

2tr(Lg) = g™ Ly (90 are the entries of the inverse g1 of the metric g)
is the mean curvature of M, R’gcd is the Riemann curvature tensor F' =
R s Rabed = gakR’gcd (ga,k are the entries of the metric g) and < Gy, Ly >=
Ranbn(Lg)ab-

On the other hand, as the Laplace—Beltrami operator and the Neumann
operator govern the transformation laws of the Gauss curvature and the
geodesic curvature on compact surfaces with boundary under conformal
change of metric, we have that the couple (Pg4, Pg’) does the same for (Qg4, Tj)
on compact four dimensional smooth Riemannian manifolds with boundary.
In fact, after a conformal change of metric g, = e?“g, we have that

P;u = 6_4“Pg4; P; +2Q4 = 2que4u in M;
P;’u = e’gngS; Pg + T, =T,,e* on OM.

Apart from this analogy, we have also an extension of the Gauss—Bonnet
formula (1.1) which is known as the Gauss-Bonnet—Chern formula

(1.2) / (Qg W '2) av, + /aM(T+ 2)dS, = 4x*(M),

where W, denote the Weyl tensor of (M, g) and ZdS, (for the definition of
Z, see [6]) are pointwise conformally invariant. Moreover, it turns out that
Z vanishes when the boundary is totally geodesic (by totally geodesic we
mean that the boundary dM is umbilic and minimal). Setting

HP;Z/ di‘/:q, HpgsZ/ ngSg;
M oM

we have that, thanks to (1.2), and to the fact that W,dV, and Z dS, are
pointwise conformally invariant, £ps + £ps is conformally invariant and will
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be denoted by
(1.3) K(p+,p3) = Kps + Kp3.

To mention some geometric applications, we discuss two results which
can be found in the survey [12]. The first one is a rigidity-type result,
more precisely it says that if (M,g) has a constant positive scalar cur-
vature and OM has zero second fundamental form, then rps psy < 472,
and equality holds if and only if (M,0M) is conformally equivalent to
the upper hemisphere (S%,53). The second one is a classification of the
pairs (M,0M) with @ =0, and 7" = 0. Indeed it says that, if (M,0M) is
locally conformally flat with umbilic boundary OM, Q@ = 0,7 =0, Y(g) >0
(where Y (g) = inf < L;u,u > where the infimum is taken over all metrics
conformal to g with the same volume as g and zero mean curvature and
L.=—-6A,+ R is the conformal Laplacian) and x(M) =0, then either
(M,0M) = (S' x 53,8 x §?), or (M,0M) = (I x 53,01 x S3), where I is
an interval.

A natural question to ask is whether every compact four-dimensional
smooth Riemannian manifold with smooth boundary (M, g) carries a con-
formal metric g, for which the corresponding @Q-curvature @, is constant,
the corresponding T-curvature Ty, is zero and such that (A, g,,) has minimal
boundary. A related question was posed for the Yamabe problem, see [16].

Our goal in this paper is to give a positive answer to this question under
generic conformally invariant assumptions. Writing g, = €?“g, the problem
is equivalent to solving the following BVP:

P;u +2Q4 = 2Qe* in M,

PgB’u—i-Tg:O on OM,
0

—”—ng:o on OM,
ong

where Q is a fixed real number and a%q is the inward normal derivative with
respect to g.

Due to a result by Escobar [16] and to the fact that we are interested
to solve the problem under conformally invariant assumptions, it is not
restrictive to assume H, = 0, since this can be always obtained through a
conformal transformation of the background metric. Thus we are led to solve
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the following BVP with the Neumann homogeneous boundary condition:

P;u +2Q4 = 2Qe*" in M,

(1.4) Plu+Ty =0 on M,
Ju =0 on OM.
ong

Defining Hy oy, as

ou
Hpon = {u € H* (M) : 5 = 0} :
g

and P;’g as follows, for every u,v € Hy g,

2
<P;’3U, /U>L2(M) = /M <AgUAgU + 3Rgvguvgv> dVg

— 2/ Ricy(Vgu, Vyv)dVy — 2/ Ly(Vgu, Vav)dSy,
M oM
we have that by the regularity result in Proposition 2.4 below, critical points
of the functional

II(U) = <_F)473u7 u)LQ(M) + 4/ qu dVg + 4/ Tgu ng
M oM
— K(ps,ps) log /M et dVyg;  uw € Hy/pp,

which are weak solutions of (1.4) are also smooth and hence strong solutions.

To the best of our knowledge, the first existence result for problem (1.4)
has been obtained by Chang and Qing, see [7] under the assumptions that
Pg4’3 is non-negative, Ker Pg4’3 ~ R and K(ps psy < 42,

In the case of closed four-dimensional Riemannian manifold M, it is
well-known that the Q-curvature equation is intimately related to a fully
non-linear PDE (the o2-equation), see [10,11]. A study of the latter PDE
has given important geometric applications of the Q-curvature. In [10,11], it
is proven that if the underlying Riemannian manifold has a conformal metric
of positive constant scalar curvature and | v Qg dVy > 0, then its first Betti
number vanishes. Moreover, up to a conformal metric it has positive Ricci
tensor, and hence M has a finite fundamental group. Furthermore, if the
quantitative assumption [y, Qg dVy > £ [}, [Wy[*dV, holds, then M must
be diffeomorphic to the four-sphere or to the projective space.
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For the case where M has a boundary, Chen [13] has studied an analogue
of the og-equation, which turns out to be a fully non-linear BVP. Among
others results, she obtained that if the Yamabe invariant Y (M, oM, [g]) (for
the definition, see [13]) and k(ps ps) are both positive and M umbilic, then
there exists a metric g, in the conformal class of g such that o2(A,,) (the
second symmetric function of the Shouten tensor A,, ) is a positive constant
H,, = 0. Furthermore, g, can be taken so that the Ricci curvature Ricg, is
positive, hence M has a finite fundamental group.

Here we extend the uniformization result of Chang and Qing mentioned
above, namely we prove existence of solutions to (1.4) under more general
conditions. Precisely we obtain the following result, which is the main the-
orem in this paper:

Theorem 1.1. Suppose KerPg‘l’3 ~ R. Then assuming kps ps)y # kan? for
k=1,2,..., we have that (M,g) admits a conformal metric with constant
Q-curvature, zero T-curvature and zero mean curvature.

Remark 1.2. (a) Our assumptions are conformally invariant and gene-
ric, so the result applies to a large class of compact four-dimensional
manifolds with boundary.

(b) From the Gauss—Bonnet—Chern formula, see (1.2), we have that Theo-
rem 1.1 does NOT cover the case of locally conformally flat manifolds
with totally geodesic boundary and positive integer Euler—Poincaré
characteristic.

(c) For the boundary Yamabe problem in low dimension (less than 5),
existence of solutions was obtained only under the assumption of local
conformal flatness of the manifold and umbilicity of the boundary.
However, in our theorem, we point out that no umbilicity condition
for the boundary dM and no flatness condition for M are assumed.

Our assumptions include the following two situations:

K(ps,p3) < 47% and (or) Pg4’3 possesses k negative eigenvalues

(1.5) (counted with multiplicity),
K(ps,psy € (4km?, 4(k +71)7r2), for some k € N* and (or) Pg4’3
(1.6) possesses k negative eigenvalues (counted with multiplicity).

Remark 1.3. Case (1.5) includes the condition (k = 0) under which Chang
and Qing have proved existence of solutions to (1.4), hence will not be
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considered here. However, due to a Moser—Trudinger-type inequality (see
Proposition 2.7 below) it can be achieved using direct method of calculus
of variations.

In order to simplify the exposition, we will give the proof of Theorem
1.1 in the case where we are in situation (1.6) and k = 0 (namely P; 3 s
non-negative). At the end of Section 4, a discussion to settle the general
case (1.6) and also case (1.5) is made.

To prove Theorem 1.1, we look for critical points of II. Unless k(p1 ps) <
47% and k = 0, this Euler-Lagrange functional is unbounded from above
and below (see Section 4), so it is necessary to find extremals which are
possibly saddle points. To do this, we will use a min—max method: by
classical arguments in critical point theory, the scheme yields a Palais—Smale
sequence, namely a sequence (u;); € Hy /on satistying the following properties

M(u) — c€R; 1I' () — 0 as | — +oo.

Then, as is usually done in min—max theory, to recover existence one should
prove that the so-called Palais—Smale condition holds, namely that every
Palais—Smale sequence has a converging subsequence or a similar compact-
ness criterion. Since we do not know if the Palais—Smale condition holds,
we will employ Struwe’s monotonicity method, see [20], also used in [14]
and [18]. The latter yields existence of solutions for arbitrary small pertur-
bations of the given equation, so to consider the original problem one is led
to study compactness of solutions to perturbations of (1.4). Precisely, we
consider

Pg4u1 +2Q; = 2Qe*™  in M,

(1.7) g%7+ﬂ:0 OnaM,
a—ng =0 on OM,

where

(1.8)

Qr — Qo >0in C*(M); Q; — Qo in C*(M); T, — Tp in C*(OM).

Adopting the standard terminology in geometric analysis, we say that a
sequence (u;) of solutions to (1.7) blows up if the following holds:

(1.9) there exist z; € M such that u;(x;) — +o0 as | — +o0,

and we prove the following compactness result.
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Theorem 1.4. Suppose Ker Pg4’3 ~ R and that (u;) is a sequence of solu-
tions to (1.7) with Q;, Q; and T} satisfying (1.8). Assuming that (u;); blows
up (in the sense of (1.9)) and

(1.10) /QodVng/ ngSg—i-ol(l):/ Qie* dVy;
M oM M

then there exists N € N\ {0} such that

/ Qo dVy + / TodS, = AN
M oM

From this, we derive a corollary which will be used to ensure compact-
ness of some solutions to a sequence of approximate BVPs produced by the
topological argument combined with Struwe’s monotonicity argument. Its
proof is a trivial application of Theorem 1.4 and Proposition 2.4 below.

Corollary 1.5. Suppose KerP;’?’ ~ R.

(a) Let (u;) be a sequence of solutions to (1.7) with Q;, Q; and T} satisfying
(1.8). Assume also that

/ Qo d‘/g-i-/ ngSg—l—ol(l) :/ Ql€4ul dVg,
M oM M

and
ko=/ QodVg+/ TodS, # 4kn?, k=1,2,3,...,
M oM

then (w;); is bounded in C*T%(M) for any o € (0,1).
(b) Let (w) be a sequence of solutions to (1.4) for a fized value of the
constant Q. Assume also that

H(p47p3) 7& 4]{57‘1’2.

Then (up); is bounded in C™ (M) for every positive integer m.

(c) Let (up,) pr — 1 be a family of solutions to (1.4) with T, replaced by

Ty, Qg by prQq and Q by prQ for a fized value of the constant Q.
Assume also that

H(p47p3) 7'5 4]{?7‘(2.

Then (up, )i is bounded in C™ (M) for every positive integer m.
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(d) If k(ps,psy # 4km? k =1,2,3,..., then the set of metrics conformal to
g with constant Q-curvature, zero T-curvature, zero mean curvature
and of unit interior volume is compact in C™ (M) for every positive
integer m.

We are going to describe our method to prove the above results. Since
the proof of Theorem 1.1 relies on the compactness result of Theorem 1.4 (see
Corollary 1.5), it is convenient to discuss first the latter. We use a strategy
related to that in [15], but in our case we have to consider possible blow-ups
at the boundary. In [18], a variant of this method was used, which relies
strongly on the Green representation formula, transforming (1.4) into an
integral equation. Here we will employ a similar strategy since, for the BVP
one can prove the existence of a Green representation formula as well (using
the method of the parametrix) with the difference that we have a boundary
term, see Lemma 2.3. We consider the same scaling as in [15] and [18].
When we deal with the situation of interior blow-up points, we adopt the
same strategy as in [18] to get that the limit function V{ which describes the
profile near the blow-up point satisfies the following conformally invariant
integral equation

2]

) = [ S 1) g, 1
(1.11) Vo(z) = v log ( ) e dz 1 log(3).

|z — 2|
Hence using the same argument as in [18], based on a classification result
of Xu [22], we deduce that Vp is a standard bubble and the local volume
is 872. On the other hand, when the blow-up phenomenon happens at the
boundary, we obtain that the limiting function satisfies the integral equation
on the upper half-space Ri

3 z z . 1
Vo(z) = /R <log ]x—‘z| + log \x‘ |2’> etV 2) gz — 1 log(3).

y 4n? -
So from this, we are able to deduce that the normal derivative of V{ vanishes.
Thus using Alexandrov reflection principle, we infer that the even reflection
across BRi Vo of Vg solves the conformally invariant integral equation on
the entire space R* as in (1.11).

So we can use the classification result of Xu (mentioned above) to deduce
that Vp is a standard bubble and that the local volume associated is 872.
Hence we find that the profile near such blow-up point (boundary) is half
of a standard bubble and that the local volume associated is 472. At this
stage, to finish we argue as in [18] to show that the residual volume tends to
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zero and obtain quantization. We point out that, by the above discussion,
the volume of an interior blow-up is double with respect to the one at the
boundary.

Now having this compactness result, we can describe the proof of The-
orem 1.1 assuming (1.6) and that Pg4’3 is non-negative. In [14] and [18],
the existence theorem was proved considering the formal barycenters of the
manifold M (which we will describe below), together with the differences
with respect to the present case, which are mainly two. The arguments
in [14] (similarly in [18]) can be summarized as follows. First of all from
kps € (872, (k4 1)872) and considerations coming from an improvement
of Moser—Trudinger inequality, it follows that if II(u) attains large neg-
ative values, then e?" has to concentrate near at most k points of M.
This means that, if we normalize u so that [ M etv dVy =1, then naively
et ~ Zle tibz,, x; € M,t; >0, Zle t; = 1. Such a family of convex com-
bination of Dirac deltas are called formal barycenters of M of order k, see
Section 2 in [14], and will be denoted by Mj. With a further analysis (see
Proposition 3.1 in [14]), it is possible to show that the sublevel {II < —L}
for large L has the same homology as Mj. Using this fact and the non-
contractibility of M} (which is a crucial ingredient), existence of solutions
was found.

The differences with the present case are the fact that M might be
contractible and also boundary concentration can appear, hence new ideas
are needed. We first perform a more refined study of how big can be the
number of possible boundary and interior blow-up points for the confor-
mal volume e, u € {v € Hyjy, [,,€* dVy, = 1;11(v) < —L} with L large
enough. In doing this, we first prove a Moser—Trudinger-type inequality
using blow-up analysis techniques, see Proposition 2.7. Next we derive an
improvement of it by following basically the same arguments as in [15, 18]
and taking into account that far from the boundary we can use the Moser—
Trudinger inequality for closed manifolds (see Lemma 2.1). As a corollary,
we derive that if £ is as in (1.6) and if II(u;) — —oo along a sequence wu;
with f M et dV, =1, then e*™ has to concentrate near at most h interior
points and [ boundary points with 2h 4+ < k and e*“ ~ ¢ = ZLI tilz, +
Zizl 8i0y,,t; > 0, Z?:l t; + Zizl si=1lyx; € int(M),y; € OM. Therefore,
instead of My, it is natural to consider the barycentric set (My)y (for the
definition, see Section 2) which is a good candidate for describing the homol-
ogy of large negative sublevels of II. In order to do this, one needs to map
(non-trivially) the large negative sublevels into (My)x, and to do the oppo-
site, namely to map (Mpy); (non-trivially) onto low sublevels of II. If the
composition of these two maps is homotopic to the identity, we derive the



Conformal metrics with constant Q-curvature 1059

topology of the low sublevels of II, in terms of the number of concentration
points of the conformal volume e**. To find the projection onto (Mp),
we can use some of the arguments in [14], but with evident differences,
because of the presence of the boundary. Taking advantage of the fact
that the functions we are dealing with have zero normal derivatives, we
use a doubling argument, which consists of constructing a new C! mani-
fold DM, and using the Alexandrov reflection principle (see Proposition
4.8 below). We then use some suitable test functions to find the desired
homotopy equivalence.

Using the Mayers—Vietoris theorem, one can prove that (My)y is non-
contractible, see Proposition 4.6, and define a min—-max scheme for a per-
turbed functional II,, p close to 1, finding a P-S sequence to some levels c,,.
Applying the monotonicity procedure of Struwe, we can show existence of
critical points of II, for a.e p, and we reduce ourselves to the assumptions
of Theorem 1.5.

The structure of the paper is the following. In Section 2 we collect some
notations and give some preliminaries like the existence of the Green function
for (P;,Pg’) with homogeneous Neumann conditions, a Moser—Trudinger-
type inequality and a regularity result for BVPs of the type of (1.4). In
Section 3 we prove Theorem 1.4 (from which the proof of Corollary 1.5
becomes a trivial application). In Section 4 we finally prove Theorem 1.1.
The latter section is divided into four subsections. The first one concerns
an improvement of the Moser—Trudinger-type inequality and applications.
The second deals with the existence of a non-trivial projection from negative
sublevels of IT onto (Mp)g. The third is concerned about mapping (Mpy)x
into negative sublevels, and the last deals with the min—max scheme.

2. Notation and preliminaries

In this brief section, we collect some useful notations, state a lemma giving
the existence of the Green function of the operator (P;, Pg3) with its asymp-
totics near the singularity and an analog of the well-known Moser—Trudinger
inequality for the operator Pg4 3 when it is non-negative.

In the following, B,(r) stands for the metric ball of radius r and cen-
ter p, B (r) = By(r) N M if p € OM. Sometimes we use B, (r) to denote
B,(r)N M even if p ¢ OM. For a given integer n, we denote by R" the
standard n-dimensional Euclidean space and R” = {x = (x1,...,z,) € R™:
xn > 0}. In the sequel, B*(r) will stand for the Euclidean ball of center x
and radius r, B% (r) = B*(r) NR% if z € ORY. We use also BY(r) to denote
B®(r)NRY even if z ¢ ORY. We denote by dgy(x,y) the metric distance
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between two points x and y of M. H?(M) stands for the usual Sobolev
space of functions on M which are of class H? in each coordinate system.
Large positive constants are always denoted by C, and the value of C' is
allowed to vary from formula to formula and also within the same line. M2
stands for the Cartesian product M x M, while Diag(M) is the diagonal
of M2. Given a function u € L*(M), @ denotes its average on M, that is,
u = (Volg(M))™! [}, u(x) dVy(z), where Volg(M) = [,, dV,.
Given two subsets S1, Sy of M, we set

dg(Sl, Sg) = inf{dg(y:,y):c €S, y€ SQ};
and for z € M fixed we define
dg(x,S1) = inf{dy(z,y) y € Si}.

int(M) denotes the topological interior of M.

N denotes the set of non-negative integers.

N* stands for the set of positive integers.

A; = 0;(1) means that A; — 0 as the integer | — +o0.

A¢ = 0c(1) means that A — 0 as the real number e — 0.

As = 05(1) means that As; — 0 as the real number § — 0.

A; = O(B;) means that A; < CB; for some fixed constant C.

inj, (M) stands for the injectivity radius of M.

dV, denotes the Riemannian measure associated to the metric g.

dS, stands for the Riemannian measure associated to the metric § induced
by g on OM.

dog stands for the surface measure on boundary of balls, | - |4 stands for the
norm associated to g.

f = f(a,b,c,...) means that f isa quantity which depends only on a,b,c,....
Given an operator P acting on functions u(z,y) defined on M?, P, means
the action of P with respect to the variable y € M.

Given a metric g on M, |g(x)|, z € M, stands for determinant of the matrix
with entries g; j(x), where g; j(x) are the components of g(z), in some sys-
tem of coordinates.

For € > 0, we set

(OM)* ={x € Mdy(xz,0M) < €}.

We also set
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where [g] stands for the integer part of %

Now given § > 0 a small positive constant, we set
Ms= M\ OM x [0,4].

Next we let (OM);, denote the family of formal sums

k k
(2.1) (aM)k:{Zti&vi,tiZO,Ztizl;ZL‘iE@M},

=1 =1

It is known in the literature as the formal set of barycenters relative to dM
of order k. We recall that (OM)y, is a stratified set, namely a union of sets
of different dimensions with maximum one equal to 4k — 1.

Now given h € N, [ € N such that h < l;:, [ <kand2h+1 <k, we define
My, as follows:

h I h
M,y = {Ztiéw + Zsiéymti >0, th‘
i=1 i=1 i=1

l
(2.2) —i—Zs,-:l;:cieint(M),yie@M};
i=1
We set also
(Mp) = Up  Mp.

(My)y will be endowed with the weak topology of distributions. To carry
out some computations, we will use on (Mp)x the metric given by C(M)*,
which induces the same topology, and which will be denoted by d; (-, -).

Now let us introduce some further definitions.

Given o € (My)g, 0 = Z?:l ti0q; + 2221 si0y, with z; € int(M), y; €
OM and 2h +1 < k, we set

h
Oint = th‘&pi,
i=1
and

l
Obdry — E Si(syi.
=1
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Next for o € C1(M) and 0 = oy + Obdry € (Mp)k, we denote the action of
o on ¢ as

h l
<o, >= tip(ri) + > sip(yi),
=1 =1

where ot = Z?:l ti0z, and opdry = 22:1 570y, -
Next if f is a non-negative L' function on M with [, , fdVy =1 and
S C (My)k, we define the distance of f from S as follows:

dM(f7 S) = ;_Ielng(fva)
To finish the part of the notations, we define
B = {0 € (M), : da(o, (OM)y,) < €}.

Now we recall the following Moser—Trudinger-type inequality for closed
four-dimensional smooth Riemannian manifolds. Its proof can be found
in [9, Lemma 1.6].

Lemma 2.1. Let (N,g) be a four dimensional compact closed manifold.
Assume that Pg4 18 non-negative and that KerPg4 ~ R, then there exists a
constant C = C(N) > 0 such that

/ 3272 dVy < C  forallue H*(N) such that <Pg4u, u)r2(vy =1,
N

and hence

- 1
1 4(u—7a) < P2 ) )
og/Ne _C+787T2< Uy U) L2(N)

Remark 2.1. We remark that the constant C = C'(N) in the lemma above
is an increasing function of Volg(N). This fact will be used in the proof of
Lemma 4.1 below.

Next we give a Lemma which can be found in [7, Proposition A.1].

Lemma 2.2. There exists an extension of (M,g) into (M,§) which is a
closed smooth four-dimensional Riemannian manifold such that

1) M is an open submanifold of M,
2) 9IM =g,
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3) In M, OM has a nice tubular neighborhood T of width &y such that,
for any x € TN M, there exists a unique & € T \ M with dg(x,0M) =
dg(z,0M), and for x € OM, x = T, where dg denotes the Riemannian
distance associated to g.

Now we state a proposition which asserts the existence of the Green
function of (P;, Pg?’) with homogeneous Neumann condition. Moreover, we
give its asymptotics near the singularities.

Proposition 2.3. Assume that Ker P;’s ~R, then the Green function G(x,
y) of (P;, Pg’) exists in the following sense:
a) For all functions u € C*(M), 597“ =0, we have
_ﬂhz/cxy WAVy(y) +2 [ Clany)PPu(t)aS,(y), =< M
oM
b)
G(z,y) = H(z,y) + K(z,y)
is smooth on M?\ Diag(M?), K extends to a C*T® function on M?

and
1 1 .

Wf(’f‘) log; ’Lf Bg(ﬂj‘) ﬂaM = @)

—f(r) | log = + log — otherwise

82 r T ’
where f(-) =1 in [-3,3] and f(- ) € C5°(=6,6), 6 < 3 min{d1, 62}, 61
is the injectivity radius of M in M and &9 = 52—“ =dy(x,y) and 7 =
dg(z, 7).

Proof. Let x € M be fixed, it is well known that in normal coordinate around
x the following holds

1(y)| =14+ O(r*) for y close to z.
Now working in this normal coordinate system around z, we have that
|PyH (z,y)| < Cr™2 for r < CVinjy(M).

and
]PSH(x,y)] <Cr7t forr < C*Iinjg(M).
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On the other hand, by considering the expression
| H@wPuwavie) - [ )P pu)avi),
M\B,(€) M\B.(€)
we have by integration by parts that
[ H@wPuwavie) - [ )P uw)m)
M\B(¢€) M\B,(€)

- [ B yuave) <2 [ He)PS) o)
OB, (e) o1

ong

Now by using the fact that close to x in conformal normal coordinate
Ay is close to Ags, we obtain by letting € go to 0

/H:L"y)Pu )dVy(y /P4 (z, y)u(y)dVs(y)
+2

H(z,y )P u(y')dSy(y).
oM

Hence, for every x € M, we obtain

/H:Uy)Pu )dVy(y /P4 (2, y)u(y)dVy(y)
+2

H(z,y") Pyuly')dS,(y/).
oM

(2.3)
Now we can apply the same method as in [2, Theorem 4.13] to construct

parametrix for Green’s function. We set

q

G(J"?y) = H(Q?,y) + ZZz(xay) + F(:U,y),
=1

where g > 2,
a@mzﬂnmommwwq

and I'; are defined inductively as follows:

nﬂmwzﬁnu@nmmw@,

with
Fl(a:,y) = F(:c,y) = —P;yH(a:,y),



Conformal metrics with constant Q-curvature 1065

and F being the solution of the equation

(4 - 1 )
Pg,yF(xvy) = Fk+1($,y) — W in M,
3 — 3
Pg,yF(x, y) - _Pg,yH(xv y) on 8M,
OF@y) _, o
Ong,y :

Now from (2.3) we have that Z; satisfies

P;yZi(x,y) =T(z,y) —Tiza(z,y) in M,

3 —
Py, Zi(z,y) =0 on OM,
0Z(zy) _ 0 on OM
gy ’

We observe that the following estimate holds for I'(z, y),
(2, y)| < Cr%;

hence by using the results in [2, Proposition 4.12], we obtain the following
estimate for I';(x,y),

(2.4) Ty (x, )| < Cr?,

So arriving at this stage by still the same result in [2, Proposition 4.12],
we have that I'y(z,y) and Iqy1(z,y) are continuous, hence using elliptic
regularity we get Z,(z,y) and F(z,y) are in C3t*(M?). The regularity in
both the variables z and y can be deduced by the symmetry of GG, which
follows from the self-adjointness of Pg4 3 and reasoning as in [2, Proposition
4.13]. Further from (2.4) we deduce that I'; € LP with < p <2 for all
i=1,...,q— 1. Hence by using standard elliptic regularity, we infer that
Zi(z,y) € H*P. So from the Sobolev embedding theorem and the fact that
3 <p<2, we get Z(z,y) € C*T*(M?) for all i = 1,...,q — 1 for some a.
Hence setting K(z,y) = >.1_ | Zi(z,y) + F(z,y), the lemma is proved. 0O

Next we give a regularity result corresponding to BVPs of the type of
BVP (1.4) and high-order a priori estimates for sequences of solutions to
BVP like (1.7) when they are bounded from above.
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Proposition 2.4. Let u € Hyo, be a weak solution to

4 _ FoAu
Piu+ f=fe™ in M,
Pg:"u =h on OM,
with f € C®(M), h € C®(OM) and f a real constant. Then we have that
u e C®(M).
Let wy € Hyjo, be a sequence of weak solutions to
Pluy + f; = fie*  in M,
P;’ul =N on OM,

with fi — fo in CK(M), fi — fo in C*(OM) and h — hg in CK(OM) for
some fived k € N*. Assuming supy; u; < C, we have that

|[w|grrstaan < C
for any o € (0,1).

Before making the proof of Proposition 2.4, we give some lemmas that
will be needed. We first state a lemma which is a direct consequence of
Lemma 2.2. Next we recall a lemma giving the existence of a Green func-
tion for the Paneitz operator on compact closed four-dimensional smooth
Riemannian manifold.

Lemma 2.5. Adopting the same notations as in Lemma (2.2), we have
that there exists a closed compact smooth four-dimensional submanifold N
of (M, §) such that M C N. Moreover, the following holds: if Vo € N\ M,
there exists a unique * € M NT such that

dg(x,(‘)M) = dg(i‘, 8M)

As said above, we state a lemma giving the existence of the Green func-
tion for P§4 . Its proof can be found in [9] or ([18] where it is done for every
dimension).

Lemma 2.6. Suppose Ker Pg ~ R. Then the Green function G(m, y) of P;
exists in the following sense:
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a) For all functions u € C%(N), we have

u@) == [ Glam)Pluly)avils) Vo e Ny

G(z,y) = Ho(z,y) + Ko(z,y) Yz #uy,

is smooth on N?\ Diag(N?), K extends to a C** function on N?
and

1 1
H($, y) = Wf(r) log ;7
where r = dg(x,y) is the geodesic distance from x toy, f(r) is a C*>
positive decreasing function, f(r) =1 in a neighborhood of r =0 and
f(r)y=0 forr > inj;(N).
Now we are ready to make the proof of Proposition 2.4.

Proof of Proposition 2.4. We have that by assumption u € Hg, is a weak
solution to
4 _ FoAu s
Piu+ f=fe™ in M,
Pg?’u =h on OM.

Then using Lemma 2.3 we obtain that

’

u(a) — 1 = / Glay)(Fe — P avy) +2 [ Gle,)h(y)dS, ().
M oM

Now let us define the following auxiliary functions

w(zx) :/ G(m,y)fe4“(y)dVg(y), x e M,
M
and
25) v = [ Gfd) 2 [ Glay)h)ds,w)
M oM
Then it is trivially seen that
(2.6) w(z) =u(x) —v(z), =€ M.

On the other hand, since f € C*°(M) and h € C*°(0M), then one can easily
check that

(2.7) v e C®(M).
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Now using the relation (2.6) we obtain w satisfies the following integral
equation

(2.8) w@) = [ Gla)e D 0 av ).« e,
and

8711) =0 ondM.

ong

Now let us define the even reflection of w through oM

w(z) ifxe M,

(2:9) () = {w(i) ifze N\ M,

where N is the closed 4-manifold given by Lemma 2.5.

Thanks to the fact that a“’ = 0, we have that @ € H2(N). Moreover, using
the integral equation solved by w (see (2.8)), one can check easily that @
satisfies

— [ Gl BT aviy), we N,
N

where G is the Green function of ng1 (see Lemma 2.6) and v is the even
reflection of v through OM, namely

(2) = v(z) ifxe M,
= v(z) ifxe N\ M.

Furthermore from (2.5) and the fact that f and h are smooth, we derive
that o € C1(N).

On the other hand, from the assumption Ker P; 3~ R, it is easily seen that
Ker Pg ~ R. Hence using Lemma 2.6, we have that @ is a weak solution to

P4 fe—4v 4w on N.

Thus from a regularity result due to Uhlenbeck and Viaclovsky, see [21], we
infer that

w e C(N).

Now restricting back to M, we obtain

(2.10) w e C=(M).
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So using (2.6), (2.7) and (2.10), we have that
ue C®(M).

The last part of the proposition follows from the same argument.
Hence the proof of the proposition is complete. O

Next we give a Moser—Trudinger-type inequality when Pg4 3 is non-
. 4,3
negative and Ker P, ~ R.

Proposition 2.7. Assume P;’S 15 a non-negative operator with KerPg4’3 ~
R. Then we have that for all a < 1672 there exists a constant C = C(M, g, )
such that

[ et ay, < c,
M

for allw € Hypy,, and hence
- 4
log/ A=) < O 4 —(P;’Su, w2y Yu € Hyjop-
M «

In order to make the proof of Proposition 2.7 we will need two technical
lemmas. We start by stating the first one whose proof can be found in [8,
Lemma 2.2 in the Appendix].

Lemma 2.8. For all o < 1672, there exists a constant C = C(M, g,a) > 0
such that

/ ea(u_ﬂ)2/fM |Agu|2dV9d% S C, Vu S H@/an-
M

The next lemma states that under the assumptions Ker Pg4 3 ~ R and
Pg4 3 non-negative, the map

1/2

u € H@/an — HUHP;’3 = <P;73u7 u>L2(M)

induces an equivalent norm to the standard norm of H?(M) on {u € Hy Jon U =
0}. More precisely, we have the following.

Lemma 2.9. Suppose Ker P;"3 ~ R and Pg4’3 non-negative then we have
that || - || pas is an equivalent norm to || - [|g= on {u € Hyg, u = 0}.



1070 Cheikh Birahim Ndiaye

Proof. First of all we have that u — ([}, |Ayu|2dV,)1/? is an equivalent norm
to the standard norm of H?(M) on {u € Hys,, @ = 0}.

Now with this, to prove the lemma it is sufficient to show that [[ul[ps.
and ([, |Agul?dV,)1/? are equivalent norms on {u € Hy/o, = 0}.

To do so, we will use a compactness argument. First of all using the
definition of Pg4 ’3, one can check easily that the following holds

1/2
(2.11) [ullprs < C (/M ’Agu‘QdVg) .

Now let us show that

1/2
(2.12) (/M|Agu2dvg) < Cllullpss ¥ € {u € Hyjp, a=0}.

We argue by contradiction, suppose (2.12) does not hold, then there exists
uy € {u € Hy/p, u = 0} such that

(2.13) / (|1Agul*dVy)/? =1 and ||ul|pss — 0.
u ;

Now using the fact that [, (|Agu|? dV,)'/? = 1, we get that (up to a sub-
sequence) u; — u*. Moreover, using the fact that Ker P; 3~ R, P; 3 s a
non-negative, ||u|[pss — 0 and Rellich compactness theorem, we infer that

(2.14) u* = 0.

Next using again the fact that [|u|[pss — 0 and the definition of P we
infer that \

2
/ |Agw?dVy + = Ry|V gw|dVy — 2 / Ricy(V i, Vgup)dV,
M 3 M
(2.15) - 2/ Ly(Vgur, Vau)dSy = oy(1).
oM
Furthermore, still by the using the Rellich compactness theorem, we obtain

2
(2.16) gRg|Vgul\dVg - 2/ Ricy(Vguy, Vgup)dVy = oy(1).
M
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Now let € > 0 and small, then by Lemma 2.3 in [7] and also the Rellich
compactness theorem we have that

(2.17) —2/ Lg(Vgul,Vgul)ng > 6/ ‘Agu”d‘/:q — 0[(1).
oM M
So using (2.13), (2.15), (2.16) and (2.17), we get

0[(1) >1—c+ 0[(1).

Thus since € is small, we arrive to a contradiction. So (2.12) is true. Hence
(2.11) and (2.12) imply that the lemma is proved. O

Now we are ready to make the proof of Proposition 2.7.

Proof of Proposition 2.7. First of all let us set
H= {u € Ha/an,ﬂ =0, <P;’3u,u>L2(M) = 1}
and for a >0
Jo(u) = / e dV,, e .
M
We have that from Lemma 2.8 and Lemma 2.9 there exists o > 0 such that

sup Jo(u) < +00.
ueH

Hence,

ap = sup{a > 0: sup J,(u) < +o0}
ueH

is well defined and 0 < ag < oo.
To prove the proposition, it is sufficient to show that

o > 1672,

Suppose by contradiction that ag < 1672 and let us argue for a contradiction.
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We have that by definition of ag there exists a family w,, € > 0, such
that

Joote(te) — +o0.

On the other hand, using a covering argument there exists a point p € M
such that for all » > 0

(2.18) / elaoteu dVy — 400 ase— 0.
By(r)

Moreover, from the fact that u. € H and Lemma 2.9, we can assume without
loss of generality that u. — ug. Now we claim that uy = 0. Suppose not,
then by using the property of the inner product, we get

hte — | <
for some 8 < 1 and for € small. Hence using Lemma 2.8 and Lemma 2.9, we

infer that
Jal(ue — UO) S C

for some a1 > . Next using the Cauchy inequality, it is easily seen that
o () < C

for some ay > ag. Thus a contradiction to (2.18). Hence ug = 0.

Now suppose p € OM.

Let us take a cut-off function n € C3°(Bs(p)), n =1, on Bp(g) where
6 >0 is a fixed positive and small number. Using the Leibniz rule, we
obtain

(2.19) / P53 () (ue)AVy < |l [ pss <1+,
B,(6/2)+

1672
1+¢€

for some ¢ > 0 such that > ag. Now let us set

~ ( t) (nu€) o epr(87 t)u t 2 07
Ue(s,t) =
(nue) o exp,(s, —t), t <0,

Then from (2.19) we derive that
/ |Agtie|? dz < 2+ €”,
B(9)

for some €’ small where Ag denotes the Euclidean Laplacian.
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Hence by Adams inequality, see [1], we get

/ L <C
BO(6)

for some g > 1672, Thus we arrive to

/ el gV, < C et gy < C.
B,(5/2) B°(3)

Hence reaching a contradiction to (2.18).

Now suppose p € int(M).

In this case, following the same method as above (and in a simpler way
since we do not need to use 4, but u, itself) one gets the same contradiction.
Hence the proof of the proposition is complete. O

3. Proof of Theorem 1.4

This section is concerned about the proof of Theorem 1.4. We are going
to use basically the same strategy as in [18]. Hence in many steps we will
be sketchy and referring to the corresponding arguments in [18]. However,
we mention that, since the underlying manifold has a boundary, we have to
give attention to the possible boundary blow-up points, which was not the
case in [18].

Proof of Theorem 1.4. We divide the proof in five-steps as in [18]. O

Step 1. There exists N € N*, N converging points (x;;), i=1,...,N, N
sequences (p;;), ¢ = 1,..., N, of positive real numbers converging to 0 such
that the following hold:

2) dg (@i, 1)
il
b) There exists C' > 0 such that inf;—; dg(xi,l,x)‘le‘l“l(m) <C Vze
M, Vvl eN.

— 400, 1#£7j, 1,j=1,..., N, and Ql(xiyl)uﬁlellul(xivl) =1.

c) For every i =1,..., N, either
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xig — T € int(M);
1
vi () = wi(exp,, , (pigr)) — w(wig) — 1 log(3) — Vo(z)

24
=105 (g o) I Che(R),

1622 + |22
and
lim lim Qu(y)e™ ) dVy(y) = 8%,
R—400 l—400 Bz“(RHq‘,l)
or
c5)

Ti] — T € oM,

1
Vi () = wi(exp,, , (1)) — w(wip) — 1 log(3) — Vo(z)
324 1 sed
= log (16224‘|1’|2> in Cio(RY);
and

li li ) ) qv. (y) = 4n2.
A I fir ey G Vo) = 47

Proof of Step 1. First of all let x; € M be such that w;(z;) = max,en ui(x),
then using the fact that u; blows up we infer w;(x;) — +o0.
Now let p; > 0 be such that Ql(xl)u?e‘l“l(xl) =1. Since Q; — QoC*(M),
Qo > 0 and w(z;) — 400, we have that u; — 0.

Now suppose x; — T € int(M) and let BO(6ul_1) be the Euclidean ball
of center 0 and radius 5“1_17 with § > 0 small fixed . For z € BO((S,ul_l), we
set

(3.1 () = wlexpy, () — () — § log(3),
(3:2) Qi(x) = Qu(exp,, (),
(3.3) Qi(z) = Qulexp,, (1)),
(3.4) gi(x) = (expy, 9) ().
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Now from the Green representation formula, we have

(3.5)

w () — U

- / Gla) Pfu()aVyu) +2 [ G/ )Pl )dS, (o)), Var € M,
M M

where G is the Green function of (Pg47 Pg?’) (see Lemma 2.3).
Now using Equation (1.7) and differentiating (3.5) with respect to x, we
obtain that for k = 1,2

Vil () < /M VEG (2, 9)ly@ily)e™ ¥ avy + 0(1),
since Q) — Qo in CY(M) and T; — T.

Now let y; € By, (Rp), R > 0 fixed, by using the same argument as in [18,
formula 43, page 11], we obtain

(3. [ 19 Gl avi) = 0.
Hence we get

(3.7) VEulg(x) < C.
Furthermore from the definition of v; (see (3.1)), we get
(3.8) v(z) < v (0) = % log(3) Vz e R

Thus we infer that (v;); is uniformly bounded in C?(K) for all compact
subsets K of R*. Hence by the Arzeld—Ascoli theorem, we derive that

(3.9) v — Vp in CL (RY),

On the other hand, (3.8) and(3.9) imply that

(3.10) Vo(z) < Vp(0) = —i log(3) Vo € R*.

Moreover from (3.7) and (3.9) we have that Vj is Lipschitz.
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On the other hand, using the Green’s representation formula for
(P4 Pg?’), we obtain that for x € R* fixed and for R big enough such that
z € B°(R)

wi(expy, (112)) — 1 = /M G (expy, (1), y) Puy(y)dV, ()
(3.11) +2 » G(expy, (1uz),y' ) Piu(y')dSy(y).

Now let us set

L) =2 /B o (D, (7). )~ Gl (0) 1) QW AV (),
I () = 2 / (G(expa, (1)) — Glexpy, (0),1))Qu(y)e ™ WV, (y),
M\Brl(RMz)

I (z) = 2 /M<G<expz, (), ) — Glexpa, (0), 1) Qi) AV, ()
and
I, (2) = /a (Glexpy, (). ) = Glex, 00,5 )TH )4, ()

Using again the same argument as in [18] (see formula (3.15) to formula
(3.21)), we get

(312)  w(z) = L) + (x) — T (x) — T (x) — ilog(?)).

Moreover, following the same methods as in [18](see formula (3.23) to for-
mula (3.32)), we obtain

(3.13) lim () = /BO(R) %bg <|x’2|z|> A(9) g
(3.14) limsup IT;(z) = op(1),

(3.15) lIIIl(a;) = oy(1)

and

(3.16) 1111, (%) = oy(1).

Hence from (3.9), (3.12) to (3.16) by letting [ tends to infinity and after R
tends to infinity, we obtain V[ satisfies the following conformally invariant
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integral equation

3 z . 1
(3.17) Volz) = e log <|x’_’z|> @) gz — 7 log(3).

Now since Vj is Lipschitz then the theory of singular integral operator gives
that Vp € CH(RY).

On the other hand, by using the change of variable y = exp,, (jyx), one
can check that the following holds:

(3.18) lim Qie* dV, =3 / eVodz,
=400 J B, (Ru) Bo(R)
Hence (1.10) implies that e € L4(R%).
Furthermore by a classification result by Xu, see [22, Theorem 1.2] for
the solutions of (3.17), we derive that

(3.19) Vo(z) = log (”)

A2+ |z — x|?

for some A > 0 and z¢ € R*.
Moreover from Vp(z) < Vo(0) = —1 log(3)Vz € R*, we have that A = 162 and

zg = 0, namely
324
Vo(z) = log <1622+|x\2> '

On the other hand by letting R tend to infinity in (3.18), we obtain

2 li li ~ 4w, (y) _ / 4V, .
(320 im G [ Qe vy =8 [ et

Moreover from a generalized Pohozaev-type identity by Xu [22] (see Theorem
1.1), we get

42

hence using (3.20) we derive that

3 / W dy =2,
R4

lim i A(y)etn® = 82,
R B f gy QT AV ) = 8T

Next suppose r; = T € M and let Bi(éufl) be the upper half-euclidean
ball of center 0 and radius §u;1, with § > 0 small fixed . For z € BY (6p; '),

we consider vy(z), Q(x), Qi(z) and g;(z) as in (3.1) to (3.4).
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Repeating the same argument as above, we get v; is uniformly bounded
in C?(K) for every compact set K of R%. Moreover, we obtain

(3.21) w— Vo in Cp.(R}),
|
Vo(w) < Vp(0) = 7 log(3) ¥z € R,

and Vj is Lipschitz.
Now let us define

L) =2 [ + sy GO 11),0) = Gexp2, (0 I  ,)
INy(z) = 2 /M\Bmlmm)("(e}‘pm (1), y) — Glexp, (0),))Q ()™ W) dVy ()
(o) =2 | (Glexpa, (1), ) = Gexpa, (0,1 1)

and
) = [ (Glexpa, (ua).sf) = Glexps, (0).9) T/ S, ).
By still the same argument as above, we obtain
wz) = L) + (x) — TT(z) — T (2) — %log(3).
Moreover, we have that

lim I;(x) :/ iz <10g 12 + log |Z|) o) 2,
! B (R) 4T |z — z| |l — Z|

limsup II;(z) = ogr(1),
!

1L (x) = o1(1)

and
HH[((L’) = Ol(l).

Hence letting ! tends to infinity and after R tending to infinity, we derive
that 1} satisfies the following integral equation

3 1
(3.22) Vy(z) = / — <log 12 + log M) etol?) gz — Zlog(3).
R

4 4m? |z — 2] |z — Z|
+
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On the other hand, from (3.22), it is easily seen that

Vo 4
— =0 ORY .

ot o B

Now using the Alexandrov reflection principle and _denoting Vo the even
reflection of V through the plane GRi, we obtain Vj solves the following
conformally invariant integral equation

~ 3 z 7 (2 1
(3.23) Vo(z) = e log <|x’_’z|> eMVol2) g — 7 log(3).

On the other hand, since Vy was Lipschitz, then :Vo is also. Thus using the
theory of singular integral operator, we infer that Vj is of class C'. Moreover,
using again the change of variable y = exp,, (1), we get

.24 li li A du(y) 4 _ / Vo(®) gy

'

So from (1.10) we infer that [, e*V0(®) dz < +00. Thus et € L1(R). Now
¥

arguing as above, we obtain

~ 324
V =1 [ —
o(w) = log (1622 + |x\2> ’

and

3

ﬁ 64%(y) dy = 2.
/I R4

(3.25)

Hence from the fact the Vj is the even reflection of Vj through OR%, (3.24)
and (3.25), we get

lim i i(y)e ) = 472
R—lg-loo lﬂlinoo B (Rw) Gilv)e qu(y) "

Now for k > 1, we say that (Hy) holds if there exists k converging points
(i)t =1,...,k, ksequences (u; ;)i = 1,.. .,k of positive real numbers con-
verging to 0 such that the following holds:
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(43)
dg(x;f’lxj’l) 400, £, ij=1,....k, and
i,
X Qi) et ) =1,
(A7)
For every i = 1,...,k either
(A%
x| — Z; € int(M),
i) = wilexp,,, (uigz)) — wleig) - 7 0g(3) — Vo(a)
= log (162232—;1\1']2> in CL.(RY)
and
Rl—igloo liigloo B., ,(Rui.) Quly)et ) = s
or
(A7)
xi] — T; € OM;
i) = wlexpy,  (12) ~ w(esr) - 7 0g(3) — Vo(a)
= log (@%) in Clo(RS)
and

lim lim Ql(y)e4“l ®) = 4r.
R—o00 =400 J B (Rp, )

Clearly, by the above arguments (Hp) holds. We now let k£ > 1 and assume
that (Hj) holds. We also assume that

(3.26) sup Ry (x)2e*™ (@ — 400 as 1 — +oo,
M

Now using the same argument as in [15, 18] one can see easily that (Hy1).
Hence since (A1) and (A2) of Hy, imply that

/ Qy)e™ W dVy(y) > (2k1 + ka)4n® + oy(1),
M
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with k1, k2 € N and 2k; 4 k2 = k. Thus we easily get, thanks to (1.10), that
there exists a maximal k, 1 <k < 25 (f,, Qo(y)dVe(y) + [, To(¥)dSe(y')),
such that (Hj) holds. Arriving to this maximal k, we get that (3.26) cannot
hold. Hence setting N = k, the proof of Step 1 is done. (]

Step 2. There exists a constant C' > 0 such that

(3.27) Ri(z)|Vulg(x) <C Vx e M and VI € N,
where
Ri(x) = Z:I{HHN dg(Tiy, ),

and the z;;’s are as in Step 1.

Proof of Step 2. First of all using the Green representation formula for (Pg4,
Pg3)7 see Lemma 2.3, we obtain

w(z) — @ = /M Gl )PV, +2 [ Gla.y ) Pu/ s,

Now using the BVP (1.4), we get

w(e) — =2 /M Gz, ) (Qu(y)e™ W) — Qv (y)

(3.28) =2 [ Gy )Ty )y )dSy(y))-
oM

Thus differentiating with respect to  (3.28) and using the fact that Q; —
Qo, Q1 — Qo and T; — Ty in C*, we have that for 2; € M

|Vuy(z)|g = O (/M W€4ul(y) qu(?J)) +O(1).

Hence at this stage following the same argument as in the proof of Theorem
1.3, Step 2 in [18], we obtain

™ 0 =0 (am)

hence since z; is arbitrary, then the proof of Step 2 is complete. O

Step 3. Set

Ri; = min dg (w1, j1);
i#]

we have that
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1) There exists a constant C' > 0 such that Vr € (0, R;;|Vs € (§,7] if z; €
int(M), then

|ui(expy, , (re)) — w(expy, (sy))| < C
3
(3.29) for all z,y € R* such that |z|,|y| < 2

and if 7; € OM, then

lui(exp,, , (rz)) — wi(exp,,, (sy))| < C
(3.30) forallx,y € ]Ri such that |z|,|y| < g

l

2) If d;; is such that 0 < d;; < %L and % — +00, then we have that if
Z; € int(M) and ’

(3.31) / Quly)e™™ W) 4V, (y) = 82 + oi(1),
Bcpqql(di’l)

then

/ Qi(y)e™Wav,(y) = 8x% + oy(1).
B (2d11)

Ti,l

If z; € OM and
(3.32) / Quly)e™ @ av, (y) = 4n° + oy(1),
B;rq‘,,z(di»l)

then
/ Qu(y)e ™ @) AV, (y) = 4n% + 0y(1).
B, (2d:,)

3) Let R be large and fixed. If d;; > 0 is such that d;; — 0, % — 400,

diy < %L then if 7; € int(M) and

/ Qu(y)e*™ W av,(y) = 872 + oy(1),
BTLYL(dZI/QR)

then by setting

ul(x) = ul(expxi,l(di,lm‘)), x € AQR,
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where Ao = B%(2R) \ B%(5%), we have that

de’le‘mcha(AR) — 0 asl— +oo,

for some a € (0,1), where Ag = B%(R) \ B%(%); and if z; € M and

/B+ . Quy)e™™ W dVy(y) = 4n° + o (1),

i
then by setting

UZ(ZL‘) = U[(epri)l(dqu‘)), HANS A;Rv
where Aj, = BY(2R) \ BY(55), we have that
||d§{le4ﬂ’||cu(A;) — 0 asl — +oo,

for some o € (0,1), where A}, = BY(R) \ BY(%).

Proof of Step 3. We have that property 1 follows immediately from Step 2
and the definition of R;;. In fact, we can join rz to sy by a curve whose
length is bounded by a constant proportional to r.

Now let us show point 2. First suppose z; € int(M). From % — +00,
point ¢ of Step 1 and (3.31), we have that ’
(3.33) / 1) 4V, (y) = o(1).

Ba, (dii)\Bs,  (di,i/2)
U
Hence from (3.29), by taking s = § and r = 2d,;, we obtain that
/ el (y) dVy(y) < C/ A (v) AV, (y).
Bli,l(2diﬁl)\Bwi,L(diwl) Bwiyl(diﬁl)\BTLl(di,l/Q)

Thus we get

/ W) qv, (y) = oy(1).
Ba, ,(2di 1)\Bs, ,(di1)
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Next assume Z; € OM. Thanks to % — 00, point ¢ of Step 1 and (3.32),
we have that ’

(3.34) W) qv, (y) = oy(1).

/;j—l,z (dhl)\Bj—ll (d7l/2)

Thus using (3.30), with s = § and r = 2d;;, we get

/ edu () dV,(y) < C’/ edu () AV, (y).
B, ,(2di )\BZ, , (di1) Bd, (di)\B, , (di.1/2)

Hence we arrive

/ 4 v, () = or(1),
B, (2d: )\BZ, (dir)

So the proof of point 2 is done. On the other hand, by following in a
straightforward way the proof of point 3 in Step 3 of Theorem 1.3 in [18],
one gets easily point 3. Hence the proof of Step 3 is complete.

Step 4. There exists a positive constant C' independent of [ and 4 such that
if z; € int(M), then
/ Qu(y)e*™ W dVy(y) = 87% + o(1),
Ba, ,(Ri1/C)

and if T; € M, then

/B+ (R:.1/C) Quy)e"™ W dVy(y) = 4n° + o(1).

Proof of Step 4. The proof is an adaptation of the arguments in Step 4 [18],
but for the readers convenience we will make it.
First of all fix i <v< %, and for i = 1,..., N if Z; € int(M), then set

wiy(r) = Volg(ﬁBxivl(r))_1 /83 ( )ul(:z:)dag(z) V0 <7 < inj,(M);

@ia(r) = r'exp(t;(r)) V0 < r < inj,(M);
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if z; € OM, then set

uiy(r) = Volg(ale(r))l/ w(w)dog(x) V0 <7 <inj,(M);
' OB, (r)
il(r) = r4yexp(ui7l(7“)) V0 <7 < inj,(M).
By assumption ¢ or d of Step 1, we have that there exists R, such that
(3.35) VR>R,, w;’l(R,u“) < 0 VI sufficiently large (depending on R).

Now we define r;; by

R;
2

(3.36) i) = sup {Ryu” <r< ( ) < 0in [Rl,,r)} .

Hence (3.35) implies that

Tl
2L s 400 asl — 4oo.

3.37
( ) il

Now to prove the step, it suffices to show that 7L> 400 as | — +o00.

Indeed if f—; #— 400, we have that there ex1sts a positive constant C'
such that '
R;;
% < g
On the other hand, from the Harnack-type inequality (3.29) or (3.30), point
c or d of Step 1 and (3.36), we have that for any > 0, there exists R, > 0
such that for any R > R,, we have that

(3.38)

(3.39)  dy(w,xp) e <y Vo e (BY (rig) \ BY (Ruig)-

R g

Since L — 400, see (3.37), and > ri, see (3.36), we have C},Z”_‘ —
+o0, hence point c or d of Step 1, (3. 39) and (3.38) imply that if Z; € int(M),

then
/ Qie* = 8n? + or(1),
B, (Rii /C)

and if z; € OM, then

/+ (Rii/O) Que™ = 4m® + o(1).
Bz, (Riy
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On the other hand, by continuity and by the definition of r;;, it follows that
(3.40) @ia(rig) = 0.

Let us assume by contradiction that f—l’ — +00. We will show next that

Lp;’l(ru) < 0 for [ large, contradicting the above equality (3.40). To do so,
we will study a;,(-).
Ri.

First let us remark that since M is compact, then T 00 implies

that r;; — 0.
From Green’s representation formula for u;, we have the following
equation:

- / G, y) Prur(y) dVy(y) + i + 2 / G, y) Puy(y)dS, ()
M M

- / G, ) Qu(y)e™ WV, () + @ - / G, y)Quy) AV ()
M M

—2 [ G(z,y)Plw(y)dSy(y).

om
Hence
u;(r) = 2(Voly (9B (r /«98?1 / G(z,9)Qi(y)e™ W) dV,(y)doy(x)
i~ 2(Voly (9B, (r)) " /a " ], eev@waviint)
- Vol 08, () [ 0y CEVTOS, 1)),
Setting
Fi(r) = 2(Volg 0By, (r /aBz r r)/ G(z,y)Qi(y)dVy(y)doy(x)
T (Vol, (9B ( /8 i oy CE VTS, 0N 2,
we obtain
;= 2(Volg (0B ( /8 - / G(z,y)Qu(y)e*™ W dV,(y)doy(z)

+u; — Fiy(r).
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Since Q; — Qo in CY(M) and T} — Tp in C1(OM), then we have that F;
is of class C! for all 7,1, and moreover,

(3.41) |F,(r)| <C, Vre <0, injg(M)) .

4

Nowletw<x4<w

) be fixed: we have that

/ G, y) Qu(y)e™ W) v (y) = / Gz, y)Qre™ @ v (y)
M B, ,(4)

" / G, y)Gre™ ® v (y).
M\B., ,(A)

So
i, (r) = 2Voly(9B; ( / / - K(z,9))
dBi, (r) /BT, (A
x Qu(y)e™ WV, (y)doy(x )+Ul_Fi,( )+ Hi(r);
with

H; (r) = 2Vol, GB+ / / G(z,y)
OB, ,(r) JM\B., ,(A)

x Qi(y)e™ W) av, (y)do, (= ) +2Voly(dB]. (r) N M)~
_ 4ul(y)d d .
x /a - /B o K(z,9)Qu(y)e Vy(y)doy(x)

Since G is smooth out of Diag(M), then for all i,l, H;;, € C* (0, sz(M)>7

and moreover,

(3.42) |H;,(r)| <C Vre <0, m"g(M)> .

4

To continue the proof of the step we divide it into two cases:

Case 1. z; € int(M)
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First of all using the change of variable x = rf and y = sé, we obtain

A
Ui = H1 T 6, s6) — K (r6, s0
i1 = (VoI(5*)) /S L 5wy (let.5) — (r0.50))
x Q(s0)e* N 3 (s, 0)ds df df + w; — Fii(r)+ Hi(r).

So differentiating with respect to r, we have that

o 1 49 - _
@, (r) = (Vol(5%)) /S 3 /S 3 /0 (. 0)(Gr0.50) — K (10, 50)) )
x Q(s0)e* 3 f(s,0)ds df df — F; ,(r) + H; (r).

From the asymptotics of G(-,-) (see Lemma 2.3) and the fact that f is
bounded in C?, it follows that

(Vol(53))~! /S 3 /S (G0, 58) ~ K (0, 56) ) i do
:f(r,s)log< 1 )+H(r,s),

|r — 5]

with H(-,-) of class C* and f(-,-) of class C2.
Hence setting

Glros) = (VoIS )™ [ [ S (0 0)(Gtr0.58) — K (19.50))
x Q(s0)f(s,0)do db,

we obtain

(3.43) é(r, s) = f(r, s) 1 —|—f~I(r, s),

Tr—S

where H(r,-) is integrable for every r fixed.
On the other hand, using the Harnack-type inequality (see (3.29)), we
have that

wy(s0) < @;(s) + C uniformly in 6,

hence we obtain

A
ai(r) < C/ sG(r,s)e"m1() ds — Fi:l(r) + H;l(r)
0
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Now We study fOA s3G(r, s)e*®1(5) ds. To do so, let R be so large such that
7 (this is possible because of the assumption of contradiction). Now
let us spht the integral in the following way:

A ~ —
/ 3G(r, 5)e" ) ds

Ty, l/R ~ ria R B B
/ G(r, 8)64“““8) ds +/ ng(r, 8)64“"“5) ds
Ti,l/R

i1/C ~ A B ~

+ / s G(r, s)e™1(9) ds 4 / 3G (r, s)e"1(3) s,
ri R R /C

Using the fact that we are at the scale TJ’%’, then ¢ of Step 1 implies that

we have the following estimates for the first term of the equality above with

=",

Tq,yl/R . _ 2
/ G (rig, )€1 ds = —— 1 (1) —.
0

On the other hand, using assumption b of Step 1, we obtain the following
estimate for the third term of the equality above with r = r;;

i1/C B B 1
riaR T’i,l

We have also using assumption b of Step 1 and the fact that - Rt 4o
the following estimate for the fourth still with r = r;,

A
~ _ 1
/ G (ri1, )61 ds = 0(1)—.
R;./C Tl

Now let us estimate the second term. For this, we will use point 3 of Step
3. First we recall that r;; and R verify the assumption of the latter. Hence
the following holds:

(3.44) [I7ie™]

co(an) = 01(1)

for the definition of Ag and ;, see the statement of point 3 of Step 3 where
d;; is replaced by 7;;. On the other hand, performing a change of variable
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say 7;;y = § we obtain the following equality:

ri R ~ B R . .

(3.45) / s°G(r, s)e'™ ) ds = / Y Gray)rige'™ W dy,
rii/R 1/R

where

Ui (y) = @i g(rigy),
Gii(y) = G(rig, rigy).

From the asymptotics of G(-,-) (see (3.43)) we deduce the following one for
G’i,l('a ')7

(3.46) Giily) = fiuly) + Hi(y),

ria(1—y)

where H;;(-) is integrable and fll() of class C2.
Hence by using (3.45) and (3.53), we obtain the following inequality:

7"7',~1R _ _
/ s°G(rig, s)etti(s) g

i1/ R
(3.47) _ L 3(12,;(1/)

— + i Hig(y) | riet®e® dy,
il J1/R (1-y) " ( )> !

Moreover, using the Harnack-type inequality for u; (see (3.29) and (3.44)),
we have that holds

(3.48) |Iri ™| caqaymy,rp = 0i(1)-

So using techniques of the theory of singular integral operators as in Lemma
4.4 [17] to have Holder estimates, we obtain

R f . 1
/ yg < fl,l(y) + Ti,lHi,l(y)> ,r;{l64u7:,z(y) dy = Ol(l);
1

/R (1-y)

hence with (3.45) we deduce that

’I‘i,lR ~ _ 1
/ sPG(r, s)e™1(5) ds = o, <> .
rii/R Til
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So we obtain

’ 1 ’ ’
(3.49) Uig(rip) < 20—+ oj(1) — = Fy(rig) + Hy (r).

Case 2. ;, € OM
We will follow the same strategy up to some trivial adaptations. First
using the change of variable x = rf and y = sf, we obtain

A ~ ~ _ o ~.
aig = (Vol($3))™ /S . /S . /0 f(r.0) (G(r& s) — K(rf), 39)) Q(s)e*ui(0)
x s3f(s,0)ds dO d + @ — Fy (r) + Hi(r).

So differentiating with respect to r, we have that

N 31 49 -~ _
,4(r) = (Vol($2)) /S i /S i /0 & (100G, 56) — K(r6, 50)))
x Q(s0)c N3 f(s,8)ds df d — F, ,(r) + Hj(r).

From the asymptotics of G(-,-) (see Lemma 2.3) and the fact that f is
bounded in C?, it follows that

(vol(53))—1/ / (G(re,sé)—K(ra,sé)) df do
53 Js3
1

= f(r,s)log < ) + H{(r,s),

|r— s

with H(-,-) of class C® and f(-,-) of class C2.
Hence setting

G(r,s) = (Vol(5%)) ™ /5 /S % <f(r, 0)(G(r, s0) —K(re,sé)))
x Q(s0)f(s,0)do db,
we obtain

(3.50) é(r, s) = f(r, s) L +ﬁ(r, s),

r—S

where H(r,-) is integrable for every r fixed.
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On the other hand, using the Harnack-type inequality (see (3.30)), we
have that

uy(s0) < @;y(s) + C uniformly in 6;

hence we obtain
A
ds(r) < C / SC(r,5) 1O ds — F () + Hyy(r).
0

Now we Study fo 3G (r, 5)e*®:1(5) ds. To do so, let R be so large such that
Til < (thls is possible because of the assumption of contradiction). Now
let us spht the integral in the following way:

A ~ —

T I/R Tile ~ _
/ i1 (9) gg +/ s3G(r, 5)64“1'*’(3) ds
riyl/R

i1/C B B A B B
+/ s3G(r, s)e At (s) ds+/ s3G(r, s)e”u""l(s) ds.
R 1/C

Using the fact that we are at the scale Tg, then d of Step 1 implies that
we have the following estimates for the first term of the equality above with
r="T

Ti,l/R - _
[ e senas =~y o).
0

Til Ti,l

On the other hand, using assumption b of Step 1 we obtain the following
estimates for the third term of the equality above with r = r; ;:

i/C _ 1
/ s°G(riy, $)e®1(9) ds = (1) —.
ri R Til

We have also using assumption d of Step 1 and the fact tha
the following estimate for the fourth still with r = r;;:

A - . 1
/ 33G(ri,l, 3)64“171(5) ds = o)(1)—.
1/C

il

Now let us estimate the second term. For this, we will use point 3 of Step
3. First we recall that r;; and R verify the assumption of the latter. Hence
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the following holds

(3.51) Ir ™| ce(an = (1)

for the definition of Ar and #; see statement of the point 3 of Step 3 where
d;; is replaced by r;;. On the other hand, performing a change of variable
say 7;1y = s, we obtain the following equality:

ria R ~ R
(3.52) / $G(r,s)e' ™) ds =/ Y Gig(y)riet™ ¥ dy,
rii/R 1/R

where

ai,l (y) az (Tz ly)

Gia(y) = G(rig,rigy).
From the asymptotics of G(-,-) (see (3.50)) we deduce the following one for
Gia(- ).
A A 1 N

(3.53) Gialy) = le(?/)m + Hii(y),

where H;(-) is integrable and le() of class C2.
Hence by using (3.52) and (3.53) we obtain the following inequality:

Ti,lR - _
/ S3G(Ti’l, 5)64““(5) ds
T‘iyl/R

1 rf fiaw)
3.54 = — Sl R £ r ety gy,
(3:54) il 1/Ry <(1 ) Hiay) | rige Y

Moreover, using the Harnack-type inequality for u; (see (3.30) and (3.51)),
we have that

(3.55) | e 1a/Rr),r) = (1)

So using techniques of the theory of singular integral operators as in Lemma
4.4 [17] to have Holder estimates, we obtain

R A. ~ A~
/ 3 ( fia(y) I ?“z',zHi,l(y)> rﬁlezmi,z(y) dy = o;(1);

1/R (1-y)
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hence with (3.54) we deduce that

T'i,lR - _ 1
/ s3G(r,s)et®1(9) ds = o <> .
rii/R Ti,l

So we obtain

_ 1 1 / /
(3.56) Uy (rig) < —2C— +o0(1)— — F;y(rig) + H;y(r).
’ Tl Tl ’ ’
Hence in both cases we get
_ 1 1 / /
(3.57) t;(rig) < —QCE + Ol(l)fl — F;y(rig) + H;y(r).
i, i

Now let compute go; ;(ri1). From straightforward computations, we have
ir(ria) = (i)™ exp(ty(rig)) (4V + Ti,lﬁ;,z("”i,z)) :
So using (3.56) we arrive to the following inequality:

W;,l(ri,l)
< (rig)™ exp(tiy(rig) (41/ —2C + oy(1) — 13, F} y(riy) + Ti,ng,z(Ti,l)) ;

so v < 3 implies 4v — 2C + o;(1) < 0 for [ sufficiently large.

Thus since Fl' ; and H Z’ ; are bounded in |{ 0, m‘]z(M)> uniformly in [ and

ri; — 0, we have that for [ big enough

‘P;,z(ﬁ',l) < 0;

hence we reach the desired contradiction and conclude the proof of the step.
O

Step 5 (Proof of Theorem 1.4). We show first the following estimate

/ 0 4V, (4) = (1),
M\UEE{VBILL (R1,Z/C)

For this, we first start by proving

(3.58) uy — —oo0  asl — 4o00.
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In fact, using Green’s representation formula for u; (see Lemma 2.3), we
have that for every x € M

wle) = +2 / Gla.) (Q(y) ) - Qu(y)) dvy (y)

By assumption ¢ or d of Step 1 we have given any € > 0, there exists R,
such that for [ sufficiently large if z; € int(M), then

) dui(y) > __€
/B oy QU V) 2 8

and if z; € OM, then

0, (y)etu ) g > 472 — .
/M(Ruu)@l@) Vi) 2 42—

Hence the last three formulas and the asymptotics of Green’s function of
(P}, P3) imply that if Z; € int(M), then

1
et (x) > C et for [x — 21| > 2Repy;  for [ large,
|z — @1,[537¢
and if Z; € OM, then
- 1
etu (x) > Clet™ —— _ for |x — 21| > 2Rcpq;  for I large.
o= o1 ’ |

From this it follows that

M (Bi, , (inj, (M ))\an(ZReMl,z))

1 _4u mJg(M) 5 1 _4u e—4
>C7e “’/ sV ds > O™ (2Repuy)
2R p1

So if € is small enough, we have from (1.10) that
Uy — —00,

hence we are done.
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Now by assumption b of Step 1, we can cover M \ UZE{VB%J(RC’?Z

a finite number of balls B,, () such that for any %k there holds

) with

/ Qe W) qv,(y) < 4x>.
Byk(Zrk)

Now set By = By, (2ry) and By = B, (Tk), so using again the Green repre-
sentation formula for u; we have Vx € By,

mm—ww/axyw% av,(y /GwMMMW)

- G(I’, Yy )Tl(y )dsg(y )7
oM

hence

m@ﬁSUr+C+2/1G@JW@&w@d%@)
M

=u+C+2 [ Glz,y)Qe"™W dv,(y)
By

vz G avyy).
M\ By
So since G is smooth out of the diagonal, we have that

um»sm+c+zBG@ywm>Wlw%@>

Now using Jensen’s inequality, we obtain

ew(BG@w@ﬁ“dvu)
Quy)e* Wxp, (y)

1Qe* xB, |l (s

< / exp(11Qe™ x5, |11 (1) |G 2, 1)) ()
M

Hence using the Fubini theorem, we have

B 1 1/27T2‘|Qe4ulXBkHLl(1M)
[ i@ < ce s [ (2 V(@)
By,

yeM,kJ M dg(xay)
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So from [ Qi(y)e* W) aV, (y) < 47? and (3.58), we have that

/ W) GV () = (1) VE.

By,

Hence

/ W 4V (y) = oy(1).
M\U=NB,, ,(Ri./C)

i=

So since Ba:i,L(RCiJL) are disjoint, then Step 4 implies that

/ Qi)™ W) AV, (y) = ANT2 + (1),
M

hence (1.10) implies that

/ Qol)dV,(y) + / To(y)dS,(y') = AN=?,
M oM

ending the proof of Theorem 1.4. O

4. Proof of Theorem 1.1

This section deals with the proof of Theorem 1.1. It is divided into four
subsections. The first one is concerned with an improvement of the Moser—
Trudinger-type inequality (see Proposition 2.7) and its corollaries. The sec-
ond one is about the existence of a non-trivial global projection from some
negative sublevels of I onto (My)y (for the definition, see Section 2, for-
mula 2.2). The third one deals with the construction of a map from (Mpy)g
into suitable negative sublevels of II. The last one describes the min—max
scheme.

4.1. Improved Moser—Trudinger inequality

In this subsection, we give an improvement of the Moser—Trudinger-type
inequality, see Proposition 2.7. Afterwards, we state a lemma which gives
some sufficient conditions for the improvement to hold (see (4.13) to (4.16)).
By these results, we derive a relation between the number of possible interior
and boundary concentration points for e** present at the same time with &
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given as in (1.6) where u € Hp/p, is an arbitrary function for which II(u)
attains large negative values (see Lemma 4.3). Finally from these results,
we derive a corollary which gives the distance of e** (for some functions u
suitably normalized) from (Mp)g.

As said in the introduction of the subsection, we start by the follow-
ing Lemma giving an improvement of the Moser—Trudinger-type inequality
(Proposition 2.7).

Lemma 4.1. For a fized l1,l €N, I1 +12#0 and § >0, let S1---5),,
Q- S, be subsets of M satisfying S; CC Ms, dist(S;, S;j) > 8o for i # j,
dist (€, ) > do, L NOM # 0, Qi CC IM x [0,6] and let yo € (0, ;472)-

Then, for any € > 0, there exists a constant C = C(€, 8o, Y0, 1,12, M, )
such that the following holds:

; 1 1
1 4(u—1u) < - P4,3
Og/Me SOt o (2l1—|—l2—6)< 0 Ly

Jor all the functions uw € Hy g, salisfying

[g e*dVy
4.1 =2 > ] 1,...,1
( ) fM€4udVg = 70, 1 6{ ) ) 1}7
and
e dVyg
(4.2) Jo, >0, i€{l,..., I}

Jyettdvg

Proof. We modify the argument in [4] and [14]. First of all we can assume
without loss of generality that @ = 0. On the other hand, by the properties
verified by the sets .S; and (2; we have that there exists

Ns,.5 C Mclosed submanifold of dimension 4,US; CcC N;s,.5 Cint(M),
TQi ccCM \ N(;o,g.
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We can find l; + l2 functions ¢1,...,g;, and hq,...,h;, such that

(4.3)

and

(4.4)

2

gi(x) € [0,1] foreveryx e M, i=1,...,1,
gi(x)=1 forzeS; i=1,...,10,

)
gi(x) =0 if dist(z, S;) > ZO’ i=1,...,1,

supp(gi) C Ns,.s
gilles(any, < Cop5 fori=1,...,1,

by
Zgi =1lon N(;O,g
=1

((hi(z) €[0,1] foreveryz e M, i=1,...,ls,
hi(l’):1 forx e, 1=1,...,1,

5
hi(z) =0 if dist(z, ;) > ZO’ i=1,...,l,

[[hillcsary, < Cs,  fori=1,...,1a,
l2
Zhi =1lon M\ Ns, s,

\ =1

1099

where Cs, s is a positive constant depending only on dp and §. Moreover, we
can choose the functions g; and h; such that they have (mutually) disjoint

supports.

We remark that the submanifold Nj, s depends only on dp and ¢. But
since in our analysis only its volume is involved, when we apply the Moser—
Trudinger inequality to g;ug, see (4.9), then (thanks to Remark 2.1) we can
omit the dependence to dy and 4.

Using the Leibniz rule, Schwartz inequality and interpolation, we obtain
that for every e > 0 there exists C, g, s (depending only on €, § and dp) such

that Yo € H?(M), for any i = 1,...,l; and j = 1,..., I3 there holds

(4.5)

(P*3g,0, giv) < /M 9 (Py v, 0) dVy + € (PP, 0) ) + Ceos /M vy

and
(4.6)

(P}3hjv, hjv) < /M W5 (Pyv,v)dVy + e (Py?o,0) 1+ Cegos /M v? dV.



1100 Cheikh Birahim Ndiaye

Next we decompose u in Fourier mode, namely we set u = u; 4+ ug with
uy € L>(M). Hence from our assumptions, see (4.1) and (4.2), we derive
that

(4.7) / ez qv, Ze_4||u1|L°°’yo/ eav,, i=1,...,0,
and
(4.8) / ez qv, Ze_4||u1|L°°’yo/ eav,, i=1,...,10.

Now using (4.7), (4.8) and the trivial identity

2l I
1 gy = 1 du g 1 / et d
Og/Me 9790 + Iy Og/Me Vg+2z T2 Vo

we obtain

1 201
1 gy, < log — + 4||u ||~ 1 / gituz
og/Me b < og7 +4||u1||L +2l e og Ne

+ log /M etttz gV, 4 C,

2l + la

where C' depends only on M. On the other hand, by using Lemma 2.1 we
get

_ 1
(4.9) log/ stz < Oy + 3.2 (P} x(giuz), giuz) + 4G,
N
where P* ., denotes the Paneitz operator associated to the close 4-manifold
g,N
N endowed with the induced metric from ¢, and Cj; depends only on
Voly(M).

Now let a < 1672 (to be fixed later), from Proposition 2.7 we infer

1 4 20
1 e dv, <log — +4 — P} (g :
o [ o8 =+ llulli + e (5 ) (Phalorua). i)

+ — <2[1—{—l2) <P hU2 hUQ>

2l lo —
4.10 W i, 4 R C, ,
( ) + <2l1 + 12) g u2 + <2l1 l2> ]u2 + :M7ll,lz
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where C, a1, .1, depends only on «, Iy, lo and M. We now choose i and j
such that

/gZ (P NU2, uz)dVy </ gp(P Nu2,u2)dV, foreveryp=1,... 1,
and

/M h?(P4, 3gug, uz)dV, < /M hg(P;’Sug, ug)dVy foreveryq=1,...,1l.

Hence since the functions g,, hq have disjoint supports and verify (4.3) and
(4.4), then by (4.5), (4.6) and (4.10), we get

log/ et avy
M

1 4 1
<log— +4 o+ — P3q,, C / 2av,
= log Y + HUIHL + o <211 + 1y +6) < g U2 ’LL2> + Cedo Mu2 g

(4.11)
(=20 +4 hjus + C,
——— | qiu iU
20 + Iy giu2 211 I 2 a,M,ly,l5-
Now we choose Ac 5,5 to be an eigenvalue of P 3 such that 50 > < e and

we set

(4.12) up = Py ,u, ug = Py

u?
50,0

where Vs, 5 is the direct sum of the eigenspaces of P; 3 with eigenvalues
less or equal to A¢ 5,5, and Py, 50,50 PvLa denote the projections onto V, s, s
5008

and V 50,00 respectively. Since @ = 0, then the L?-norm and the L>-norm
on ‘/675075 are equivalent (with a proportionality factor which depends on e,
d and d&p). Hence by the choice of u; and ug, see (4.12), we have that

d 1/2
][z < Cegos (PBur,ur)
and

2 4,3
0675075/ (75 dVg < €<ng ug,UQ>,
M
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where 6’675075 depends on €, § and dg. Furthermore, by the Hélder inequality
and Lemma 2.9, we have that

gtz < C (P43, u)'/?

and

hjus < C <P;’3u, u>

So (4.11) becomes

1 ~
log/ et dVy < 2log — + Ce 5,6 <Pg4’3u1, u1>1/2
M o
4 1 4,3 4,3

+ o <2l1—|—l2 + 6) <Pg u2,u2> + € <Pg u2,u2>

1/2

+ C, 1, <P;’3U7 u) 24 Coa,M -1,z

where (3675075 = 45’6750,5. Thus by using the Cauchy inequality, we get

4 1
1 et dv, < C + 3¢ | (P3ug, us) .
og /M €,60,70,,,l2,M T — (2[1 T, 6) < g U2 u2>

Now setting o = 1672 — 4e, we obtain

1
201 + o

1
4 4,3
log/ € udtg < CE,50a70,117l2,M An2 — ¢ ( 36) <Pg U27U2>'

So choosing € such that ;—3— 6(21 7, +36) < ﬁ(m), we get

1 1
4 4,3
IOg/ e “dVg < 06750,%711,127]\4 + ) <2l1 - E> <Pg ug,u2>.

Hence the lemma is proved. O

In the next Lemma we show a criterion which implies the situation
described in the conditions in (4.1) and (4.2). The proof is a trivial adapta-
tion of the arguments of Lemma 2.3 in [14].

Lemma 4.2. Let h and [ be positive integer, and suppose that €, r and §
are positive numbers. Assume f € L'(M) is a non-negative function such
that || fl|L1 vy = 1, then we have the following:
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1) If fM\MM fdVy < €, then there holds If

/ fdVy < / fdVy — efor every h-tuples p1,...,pp
MausN(UP, By, (1)) Mas
€ Mys such that By, (2r) C Mas,

then there exist € > 0 and ¥ > 0, depending only on €,r, iL, 6 and M
(but not on f), and points Py, ..., Pp1 € Mys, satisfying

/ deg>s,...,/ fdVy>% By (2F) N By, (27) = 0
BF] (F) BF;L (F) !
(413) fO?"i 7é Js Bﬁj (277) C M.

2) If fMa/4 fdVy < e, then there holds
If

/ fdVy < / fdVy—¢
OM x[0,6/4[N(UL_, BS (1)) OM x[0,6/4]

1)
for every l-tuples q1,...,q € OM, B;;(Qr) C OM x [0, 2} ,
then there exist € > 0 and 7 > 0 depending only on e,r,1 and M (but

not on f), and points G, ..., G € OM, B;(Qr) C OM x |0, g] satis-
fying j

(4.14)
/ deg>e,...,/ fdvy > g B;(QF)QB;(QF):QfoM;éj.
B (7) B (7) ' g

a1 7

3) If fM\MM fdVy > € and me fdVy > €, then there holds
/ fdvy < / fdVy — e for every h-tuples p1,...,pn € Mys
M45ﬂ(U,’L.”=pri (r) Mas
such that By, (2r) C Mas

and

/ fdvy < / fdVy—e
OM x[0,6/4[N(Ur_, BS (1)) OM x[0,6/4]

1)
for every l-tuples q1,...,q € OM, B;;(Qr) C OM x [0, }
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then there exist € >0 and T > 0, depending only on e,r,h, |, § and
M (but not on f), points Dy, ..., D1 €, Mas and points qy,...,q 41 €
oM, B;(%) C OM x |0, g] satisfying

/ deg>5,...,/ Fdv, > 7
By, (7) By, (7)

Pl

(415) Bﬁ (2?) N Bﬁj (2?) =0 fO’/”i ?é j, Bﬁj (277) C Mss.

i
and

(4.16)
/ deg>a,...,/ fdv, >z BX(2F)N B (2F) =0 fori#j.
B (7) BZ () € %

q1

The next lemma is an interesting consequence of Lemma 4.1. It charac-
terizes some functions in Hy /g, for which the value of II is large negative.

Lemma 4.3. Under the assumptions of Theorem 1.1, and for k > 1 given
by (1.6), the following property holds. For any e >0 and r > 0 (all small),
there exists large positive L = L(e,r) such that for any u € Hyg, with
(u) < —L, [,,e*dVy =1 the following holds, V6 >0 (small) there the
following holds:

1) If fM\M45 et dVy < e, then there exists k poINts p1y, - -, Pf, € Mas,
By, . (2r) C Mays such that

(4.17) / et avy, < €
Mas\U}_, By, ,, (1)

2) If me et dVg < e, then there exists k points qiu,---,qka € OM,
Bf (2r) C oM x [0, %] such that

/ et dVy < e.
AMx[0,6/4\U._, B (r)

qi,u

If fM\MM et dV, > € and me e dVg > e, then there exists (h,l) €
N*x N*, 2h +1 <k, h points piu,-..,Phu € Mas, Bp,,(2r) C Mas
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and 1 points qi,y, . .., Q. € OM, B;;u(27') C OM x [0, g] such that

(4.18) / e dVy <e
M45\U?:1Bpi,u(r)

and

/ e4u dVg < €.
M x[0,6/4)\U'_, B, , (r)

Proof. Suppose that by contradiction the statement is not true. Then there
exists € >0, r >0, >0 and a sequence (u,) € Hp, such that [, ehun
dVy =1, I(u,) = —o0 as n — +o00 and such that either

1) fM\M45 et dV, < e and k tuples of points p1, . .., pr € Mys and By, (2r)
C Mss, we have

(4.19) / et dv, < / fdVy — ¢
MysN(U_, By, , (1)) Mys

2) me etun dVy < € and Vk tuples of points q1,...,q; € OM, we have

/ e4“d‘/;;</ fdvy—¢
OMx[0,6/4n(UL_, BS. (1)) OM x[0,6/4]

i=1"94,u

or

3) fM\MM et dV, > e, st/4 et dV, > eand V(h,l) € N* x N* 2h + 1 <
k, for every h tuples of points p1,...,py € Mys and B,,(2r) C Mas and
for every [ tuples of points q1,...,q € O0M we have

(4.20) / et dv, < fdvVy,—¢
MasN(Ul_, By . (1) Mys

and

/ et dv, < / favy—e.
OMx[0,6/4N(Ui_, Bf, , (1)) OM x[0,5/4]

Now since the arguments we will carry out work for all the three cases, then
we will focus only on case 3. We assume that this is the case and we apply
Lemma 4.2 with f = ¥ and in turn Lemma 4.1 with &y = 27, S; = B, (7),
Q= BC}: (7) and 9 = €, where € , 7, p; and g; are given as in Lemma 4.2.
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Thus we have for every € > 0 there exists C' depending on €, 7, § and € such
that

() > (P Pun, un) + 4 / Qqun dVy + 4 / Tyun dS,
M oM

K,p4’P3 4.3 o
- (P""u , U —Cﬁp4p3—4ﬁp4p3u s
47r2(2h—|—l—€)< g tns ) ’ S

where h and [ are given as in Lemma 4.2 and C'is independent of n. On the
other hand, using the fact that 2h +1 > k + 1, we have that

(un) > (P Pup, un) +4 / Qqun dV, + 4 / Tyun, dS,
M oM

/<'3P4,P3

_ m <Pg473Un7Un> - CK'/P47P3 — 4K’P4,P3m-

So, since kps ps < (k+ 1)472, by choosing € small we get
(up) > 8 (P 3y, uy) — AC <p;73umun>1/2 — Ckps ps,

thanks to the Holder inequality, Sobolev embedding, trace Sobolev embed-
ding and to the fact that Ker P;(;?’ ~ R (where 3 =1— % > 0). Thus
we arrive to

II(uy) > —C.

So we reach a contradiction. Hence the lemma is proved. O
Next we give a lemma which is a direct consequence of the previous one.

It gives the distance of the functions e** (suitably normalized) from (Mp)s.

Corollary 4.4. Let g be a (small) arbitrary positive number and k be given
as in (1.6). Then there exists L > 0 such that if Il(u) < —L and [y, e** dV, =
1, then we have that dyr(e**, (Mp)) < E.

Proof. Let € >0, r > 0 (to be fixed later) and let L be the corresponding
constant given by Lemma 4.3. Now let 6 > 0, then by Lemma 4.3 we have
the following three situations:

a) Conclusion 1 in Lemma 4.3 holds;
b) Conclusion 2 in Lemma 4.3 holds; or

c) Conclusion 3 in Lemma 4.3 holds.
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Suppose that a) holds. Since the same arguments can be carried out
for the other cases, then we will only consider this case. We have that by
Lemma 4.3, there exists k points p1, ... , p;, verifying (4.17). Next we define
o € (Mp)y, as follows:

k
o= Zticspi where t; = /A et vy,
i=1 i

k—1
Ari =By (N\UZB, (), i=1,... k-1, t;=1- t.
=1

By construction we have A, ; are disjoint and Uf;llAr,i = Uf;lpri (r). Now
let o € CY(M) be such that l[ellciary < 1. By triangle inequality, the mean
value theorem and the integral estimate in Lemma 4.3, we have that the
following estimate holds

‘/ 64“<p—<a,<p>’§C’M r+e+/ e4udVg ,
M Ms\Mas

where C'js is a constant depending only on M. So, letting § tend to zero
and choosing € and r so small that Cy/(r +€) < §, we obtain

da(e™, (Mp)y) < &,

as desired. U
4.2. Mapping sublevels of II into (Mp)g

In this subsection, we show that (Mpy)y is not contractible and prove the
existence of a non-trivial projection from some sublevels of the functional
IT into the set (Mpy)g. Since the Euler-Lagrange functional II is invariant
under translation by a constant, we can always assume that the functions
inu € Hyjp, we are dealing with satisfies the normalization J M etu dvy = 1.

As already said in the introduction of the subsection, we begin with the
following lemma.

Proposition 4.5. For any k > 1, the set (My)y is not contractible.

Before making the proof of the proposition, we recall the following well-
known result, whose proof can be found in [14].
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Lemma 4.6. For any k > 1, the set (OM)y is not contractible, indeed
Hyp1((OM)y; Za) # 0.

The next lemma is a trivial consequence of normal geodesics at the
boundary.

Lemma 4.7. There exists a small eg > 0 such that a continuous projection
Pypy: (OM)© — OM

exists.

Proof of Proposition 4.5. Suppose that the following claim is true, (OM)

is a deformation retract of some of its open neighborhood U in (My)y such

that setting V = (Mp)r \ (OM )k, we have that X = U Uint(V) =~ (Mp)y.
Now assuming that the claim holds, we have that

(4.21) Hup—1 (X3 Z2) ~ Hap—1((Mo)g; Z2)
and
(4.22) H4k_1(U;Z2) >~ H4k_1((8M)k;Zg).

Next let us denote
1:UnNV-=U 37:UNV-=V, m:U—=X, t:V->X

the canonical injections and by 44, j«, M4, t« the corresponding homomor-
phism on homology groups.

We have that by the Mayers—Vietoris theorem there exists a homomor-
phism A : H,((Ma)r) — Hp—1((Mp)j) (where p is a generic positive integer
number) such that the following sequence is exact.

A (Gxsi)
o S Hye a(UNV5Zo) =" Hag1(U; Za) © Hap—1(V; Zo2)
(4.23) M5 1 (X5 Za) D Hao(U N V3 Z) 247
Now for h € N,l € N such that h <k, I < k and 2h + | < k, we recall that

My, (for the definition, see Section 2) is a stratified set, namely a union of
sets of different dimensions. The maximal dimension is 5h + 4] — 1, when
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all the points are distinct and the coefficients belong to (0,1). Hence the
following holds

dim(Mp,; NV) <5h+ 41— 1;
and if h = 0, then
M()J nv = (D

Hence from the trivial identity 5h 4+ 4l — 1 < 4k — 2 for such a (h,l) with
h # 0, we infer that

Hy, 1(UNV;Zo) = Hy—1(V;Zo) = Hy—o(UNV;Zg) = 0.
Thus from (4.23) we deduce that
Hyp—1(U; Zo) ~ Hyp—1(X; Zo).
So using Lemma 4.6, and formulas (4.21) and (4.22), we get

Hyp—1((Mp)y; Za) # 0.

Hence to complete the proof of the lemma, it is sufficient to prove the claim.
Now let us make its proof.

First of all it is easy to see that there exist € > 0 (4e < ¢) small enough
and a continuous map

X5 :[0,1] x (OM)* — (OM)*
such that

X5(0,-) = Id@nry (), Xa(l,-) = Panr(-),

where Pj is given by Lemma 4.7.

Next, we define a homotopy F : [0,1] X By — Baj (for the defini-
tion of By, see Section 2) whose construction is based on the following
idea.N Given o = Cint + Obdry S ngk, Oint — Z?:l tiézl, Obdry = Ei’:l Si(syi,
h <k,l <k,2h+1 <k, we fixed the boundary part, namely opdry € Boc -
And for the interior part ojn, we argue as follows: if x; is closed to the
boundary at distance less than €, we send ¢;0,, to 1;dp,,,(s,), and if it is
far from the boundary, say at distance bigger than 2¢, we squeeze and in
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the intermediate regime we use an homotopy argument reflecting the pos-
sibility between squeezing and projection to boundary via Pjyps since the
distance is less than or equal to 2e. More precisely, we define the homotopy
F :]0,1] x Bac, — Boc, as follows:

For every o = oint + Opdry € Baep With oy = Z?Zl ti0z,, Obdry =
S sid,, and s € [0,1], we set

F(Uv 3) = O’(S) + Obdry

where o(s) is defined as
J(S) - Zti(s)dxi(sﬁ
i=1

and
( (]_ — %) ’Y(S)tzéXa(s,:cl)lf dlSt(CBZ, aM) < €,
dlSt i, OM
(1 — S%) V(S)tiéxa(z—dist(xi,8M)/e,a:i)
ti(s)0ni(s) = 4 ife < dist(xi, IM) < 2e,

(1 - S)V(S)ti(s:m
if dist (z;, 0M) > 2e,

where 7(s) is such that we have the normalization Z?:l ti(s) + 2221 si = 1.
Thus by trivial calculations, we obtain

(s) . Zé—:l ti
e D dtwnonn)<e (1= (8/2)t) + 3 <t onny<ac (1 — s(dist(z;, OM)
26))t) + 2 a(z, onny>2 (1 = $)ti)

So by setting U = By i, we have that the claim is proved. Hence the proof
of the proposition is complete. O

Next we give a proposition which asserts the existence of a non-trivial
continuous global projection ¥ from some negative sublevels of II onto
(Mp). By non-triviality of ¥, we mean that the induced map ¥, on homol-
ogy group is not zero. This fact follows directly from the non-contractibility
of (My)y and b of Proposition 4.14.

Proposition 4.8. For k> 1 given as in (1.6), there exists a large L >
0 and a continuous map U from the sublevel {Il(u) < —L, [,, e* dVy =1}
onto (My)y, which is topologically non-trivial.
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We start by giving an auxillary lemma which will be used in the proof
of the Proposition. The lemma states (roughly) that M can be embedded
smoothly in Euclidean space (with large dimension) such that its interior
lies in the interior of the positive half space and its boundary at the one
(boundary) of that half space. Since the proof works for all dimensions,
we will give the lemma for a general finite-dimensional compact smooth
manifold with smooth boundary. Precisely, we have

Lemma 4.9. Suppose N is a smooth n-dimensional compact manifold with
smooth boundary. Then there exists m € N* (large enough) and T : N —
R™1 an embedding such that, T(ON) C ORT™, T(int(N)) C int(R7),
and T : int(N) — int(RT) is smooth. Furthermore, there holds for all
x € N, the vector v, with origin T(x) and parallel to the x,,+1-axis is the
normal vector of T(ON) at T(x).

Proof. First of all, by Whitney’s embedding theorem we have that there
exists m € N* such that N is smoothly embedded in R™, namely there
exists T7: N — R™ a smooth embedding. Now, we extend N by adding
a nice tubular neighborhood such that the resulting object is a compact
smooth manifold that we denote by N. Using the compactness of N, we
can find a finite open covering {©;}¥_, of N and a finite number of smooth
functions ; : ©; — R" such that {(©;,;)}} are local coordinates for N
and ©;, C N. Moreover, we can take ©; such that if ©; N ON # (), then the
associated ; verifies the following properties:

@i - @2 — [—1, 1]”,
Y - ;NN — [—1,1]“ N {lUn > O}?
@i ©;NON — [-1,1]" N {z, = 0},

and furthermore ; maps the outward normal vectors on N to the outward
normal vectors at OR"} of [-1,1]" N {z, = 0}.
Now to the covering {@i}le, we associate a finite number of functions

{hi}’le hi : ©; — R as follows:

1, x € ©; C int(N),
hi(x) =
hoyi(x), =€ ©;NIN,
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where h : [-1,1]" — R is defined as follows

iy = [ if 2 € [~1,1]" N {2, < 0},
NI = @n =12 itz e [-1,1)" N {z, >0}

Next we choose a partition of unity {g;}¥ subordinated to the covering {©;}%.
Therefore, g; satifies

giEC'éX’(@i), 1<i<Ek,
0<g <1 on N Vi,
Zlegizl on N.

With this partition of unity and the functions h;, we set

k
u(z) = gi(z)hi(z).
=1

Using the definition of h;, one can check easily that u verifies the following
properties:

u(zr) >0 Ve € int(N) and e C®(int(N)),

u(x) =0Ver € ON and guz—i-oo on ON,
n

where % stands for the inward normal derivative at ON.
Now for € N we define T : N — R™*1 a5 follows:

where T is given by the Whitney embedding theorem.
It is obvious that 7" is an embedding, smooth in int(N) and satisfies the
properties of the lemma. Hence the proof is completed. ]

Next we will use the previous lemma to define a special doubling of
M such that it is C'. First of all applying M we get the existence of an
embedding T : M — R™*! (given by Lemma 4.9).

Now we define the reflection T of T as follows:

T(z) = (Tl(x), oo, T (), —Tm+1(z)),

where T'(z) = (TN1 (z),...,T™(x), T™*(x)). From the properties of T, it is
easily seen that T is also an embedding of M.
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With the embeddings T" and T, we can define the desired doubling of
M. To do so, we start by making some notations. We set

DM* =T(M) and DM~ =T(M).

By the properties of T and T (see Lemma 4.9) we have that DM* and
DM~ have a common boundary, which is M. Moreover, they have the

same normal vectors at their common boundary. Now we are ready to
define the doubling of M and denote it by DM as follows:

DM = DM+ UDM-,

where the notation ~ means we identify T'(z) and T(z) for z € OM.

Using the fact that DM™ and DM~ have the same normal at OM and
by considering the reflection g of g through 0M, we derive that (DM, g) is
a C'-closed 4-dimensional Riemannian manifold with the Lipschitz metric.

Next we introduce some further definitions.

Given a point = = (x1,...,Zm+1) € DM, we define the even reflection
of x across M and denote it by & as follows:

(4.24) T=(T1,.. Ty —Tint1)-

For a function u € H%(M) and identifying DM ™ to M, we define the even
reflection of w across M as follows:

(2) u(x) ifxe DMT,
u ) =
M w(@) ifze DM~

We say that a function u € L'(DM) is even with respect to the boundary
oM if

(4.25) u(x) =u(z) fora.e xe€ DM.
We denote by DM, the k barycenters relative to DM of order k, namely
k k
DM, = {Ztiém,wi €DM,) t;= 1} .
i=1 i=1

We have that DM, is a stratified set, namely a union of sets of different
dimensions, with maximal dimension being 5k — 1 (for more information, see
[14]). It will be endowed with the weak topology of distributions. To prove
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Proposition 4.8, we will need at one stage to (roughly speaking) evaluate the
distance of some suitable functions to DM}, (see formula (4.27) below). To
do this, we will adopt the metric distance given by C*(DM)* and inducing
the same topology as the weak topology of distributions and will be denoted
by dDM('v )

For € > 0, we set

De,k:,DM = {f € LI(DM)a f > 07 / fd‘/g =1land dDM(f7 DMk) < E}'
DM

The next discussion concerns the way of defining convex combination
of points of DM belonging to a small metric ball. To do so, we use the
embedding of DM in R™*! discussed above in the following way. Given
points x; € DM, ¢ =1,...,[, which belong to a small metric ball and «; > 0,
1=1,...,1, 2221 «; = 1, we define their convex combination denoted by
22:1 a;x; by considering the convex combination of their image under the
embedding and after projecting the result on the image of DM (which is
also identified to DM). Hence in this way we have that for such a type of
points, the convex combination is well defined and if d(z;, z;) < 3, then we
obtain d(z;, Zé-:l ajxj) < 20.

We recall that the arguments which have led to Proposition 3.1 in [14]
are based on the construction of some partial projections on some suit-
able subsets M;(e;) (obtained by removing singularities) of M}, and gluing
method based on the construction of a suitable homotopy. The construction
of the latter homotopy which is not trivial is based on some weighted con-
vex combinations and the fact that the underlying manifold does not have
corners.

Using the notion of convex combinations discussed above and the fact
that DM is a C'-closed Riemannian manifold with Lipschitz metric which
rule out the presence of corners, and an adaptation of the arguments of
Proposition 3.1 in [14], we have the following lemma:

Lemma 4.10. Let k > 1 be as in (1.6) and DM be as above. Then there
exists €, par such that for every € < e, pa, we have the existence of a non-
trivial continuous projection

Pe .oy 2 De oy — DMy,

with the following property:
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for everywe D, i, par even (in the sense of (4.25)) if Pe ;. par(w) :Zle iz, ,
then

Va; ¢ OM;there exists j # 1 such that x; = &; andt; =t;.

Now we are ready to make the proof of the proposition.

Proof of Proposition 4.8. To begin, we let € be so small that Lemma 4.10
holds with € = ;. Next applying Corollary 4.4 with € = &, we obtain the
existence of L (large enough) such that

Vu € Hy o, / et dVg=1 and II(u) < —L;
M

there holds
4d(e™, (Mpa)i) < €.
Now since for u € Hy /gy, we have by definition of Hy/s,, that

oy
Ong

then we infer that the even reflection upys of u belongs to H?(DM). More-
over, we have also that the map

(4.26) u € H*(M) = upy € H?*(DM) is continuous.

On the other hand, one can easily check (using the evenness of g) that the
following distance estimate holds:

64UDM
(4.27) dpm <,DMk> < €.
Jpareteer dvg

Therefore, by Lemma 4.10, we have that P, x py (641‘#) is well

4u -
fDM e**pMdVy

defined and belongs to DMj. Moreover, still from Lemma 4.10 we have
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that if

edupm

k
Pek,k,DM <M> = ;tifsxi»
then the following holds:
Vax; ¢ OM there exists j # i such that z; =2; and t; =t;.
Thus setting

1

\I/(u) = Z ti0g, + Z tjéxj R

2z,cim(Dy+) ta t Da,con o @;€int(DM+) z;€0M

we get W(u) € (My),. On the other hand, since the map v € H>(DM) —
e* € LY(DM) is continuous, then from (4.26) we derive that the map u €
Hy o,y — €' € LY(DM) is continuous, too. Thus from the continuity
of P, ,pym we infer that U is also continuous. Hence the proof of the
proposition is complete. O

4.3. Mapping (Mp) into sublevels of I1

In this subsection we will define some test functions depending on a real
parameter A and give estimate of the quadratic part of the functional 11
on those functions as A\ tends to infinity. And as a corollary we define a
continuous map from (Mpy)y into large negative sublevels of II.

For 6 > 0 small, consider a smooth non-decreasing cut-off function xy :
R4 — R satisfying the following properties (see [14]):

xs(t) =t, for t € [0, 4],
Xs(t) = 29, for t > 29,
xs(t) € [9,20], fort e [4,26].

. h l
Then, given o = oing + Obdry € (Ma)ks Tint = D41 ti0z,> Tbdry = D i1 Si0q
and A > 0, we define the function ¢y gint : M — R, o sbary : M — R and
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Yo i M — R as follows:

h 2\ 4
Px0int(y) = [Z b <1 + A2x3(d1i(y ))) ] 7

LT 22 !
o.bdr = -1 7
P0,bdry (Y) 108 [;8 <1 + )\ng(du(y))> ]

and
(428) P = PAo,int + P\,0,bdry
where we have set

dii(y) = dist(y,z;), x; €int(M), y e M,
d2,i(y> = dlSt(yv QZ)a q; € 8M7 ) € Mv

with dist(-, -) denoting the Riemannian distance on M.
Now we state a lemma giving an estimate (uniform in o € (My)y) of the

quadratic part <Pg4’3g0A70, <p>\,g> of the Euler functional IT as A — +oo. Its

proof is a straightforward adaptation of the arguments in Lemma 4.5 in [18]
with the dimension being 4.

Lemma 4.11. Suppose @), as in (4.28) and let € >0 be small enough.
Then as A — +o00, one has

(4.29) (P} oreoro) < (167K + € + 05(1)) log A + Ces.
Next we state a lemma giving estimates of the remainder part of the

functional II along ¢, . The proof is the same as the one of formulas (3.10)
and (3.11) in the proof of Lemma 4.3 in [14].

Lemma 4.12. Suppose @, x as in (4.28). Then as A — 400, one has
/ Qoo dVy = —kpslog A + O(6*log \) + O(log 6) 4+ O(1),
" .
/ Typon dVy = —kpslog A+ O(6%log A) + O(log §) + O(1)
oM

and

log/ etPrr = 0(1).
M



1118 Cheikh Birahim Ndiaye

Now for A > 0 we define the map ® : (My)r, — Hp o, by the following
formula:

Vo € My (I))\(O') = P\

We have the following lemma which is a trivial application of Lemmas 4.11
and 4.12.

Lemma 4.13. Fork > 1 (given as in (1.6)), given any L > 0 large enough,
there exist a small § and a large A such that II(®5(0)) < —L for every o €

(Mp)k-

Next we state a proposition giving the existence of the projection from
(Mpy)y into large negative sublevels of II, and the non-triviality of the map
W of Proposition 4.8.

Proposition 4.14. Let VU be the map defined in Proposition 4.8. Then
assuming k > 1 (given as in (1.6)), for every L > 0 sufficiently large (such
that Proposition 4.8 applies), there exists a map

5 1 (Mp)r — Hyjon,

with the following properties:
a)
M(@5(2)) < —L for any = € (M)
b) Wo &5 is homotopic to the identity on (Mp)g.

Proof. The statement (a) follows from Lemma 4.13. To prove (b), it is
sufficient to consider the family of maps Ty : (My)r — (Mp)i defined by

T)\(O') = \I’(@)\(U)), g c Mk.

We recall that when A is suﬁciently large, then this composition is well
defined. Therefore, since fee“:}i:’:dv — o in the weak sense of distributions,

' 9
letting A — 400 we obtain an homotopy between W o @ and Id(yz,),. This

concludes the proof.
4.4. Min—max scheme

In this subsection, we describe the min—max scheme based on the set (Mp)x
in order to prove Theorem 1.1. As anticipated in the introduction, we define
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a modified functional II, for which we can prove existence of solutions in a
dense set of the values of p. Following an idea of Struwe (see [20]), this is
done by proving the a.e. differentiability of the map p — ﬁp (where ﬁp is
the minimax value for the functional II,).

We now introduce the minimax scheme which provides existence of solu-

—

tions for (1.8). Let (My)y denote the (contractible) cone over (Mp)y, which

—

can be represented as (My)r = ((Mg)g x [0, 1]) with (M) x 0 collapsed to
a single point. First let L be so large that Proposition 4.8 applies with %,
and then let A be so large that Proposition 4.14 applies for this value of L.
Fixing A, we define the following class:

o —

(4.30) Iy = {m: (Ma)r — Hp/oy : mis continuous and 7(- x 1) = ®5(-)}.
We then have the following properties.

Lemma 4.15. The set II5 is non-empty, and moreover, letting

_ — L
II5 = inf  sup II(w(m)), there holds II5 > ——.
mellx me(m 2

Proof. The proof is the same as the one of Lemma 5.1 in [14]. But we will
repeat it for the reader’s convenience.
To prove that IIy is non-empty, we just notice that the following map

belongs to II5. Now to prove that II; > —%, let us argue by contradic-
tion. Suppose that Iy < —%: then there exists a map m € II5 such that
SUP, A% II(m(m)) < —2L. Hence since Proposition 4.8 applies with L,
writing m = (z,t) with z € (Mp);, we have that the map

t— Vor(,t)
is an homotopy in (Mpy); between W o &5 and a constant map. But this is
impossible since (Mp), is non-contractible and ¥ o ®5 is homotopic to the

identity by Proposition 4.14. U

Next we introduce a variant of the above minimax scheme, following
[14,18,20]. For p in a small neighborhood of 1, [1 — pg, 1 + pg], we define
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the modified functional 11, : Hy/5, — R:
II,(u) = <P;’3u, u) + 4p/ QqudVy + 4p/ TyudS,
M oM

(4.31) — 4pl€(p47p3) log /M et thq, u e Ha/an.

Following the estimates of the previous section, one easily checks that the
above minimax scheme applies uniformly for p € [1 — pg, 1+ pg] and for A
sufficiently large. More precisely, given any large number L > 0, there exist
X sufficiently large and pg sufficiently small such that

sup sup I(w(m)) < —2L,
melly meam

_ L
(4.32) I, mf sup Ily(m(m))>—5, p€[l—po,1+po],

A me(Ms)

where II5 is defined as in (4.30). Moreover, using for example the test map,
one shows that for pg sufficiently small there exists a large constant L such
that

(4.33) II, <L, forevery p€ [1—po,1+ pol.

We have the following result regarding the dependence in p of the minimax
value II,.

Lemma 4.16. Let A and po such that (4.32) holds. Then the function

m, : o
p — —= is non-increasing in [1 — po, 1+ 1 — po].
p

Proof. For p > p', there holds

My(u) y(u) _ <1 — 1) (PP, u).

/

pop

Therefore, it follows easily that also

ﬁp ﬁp’

PP

hence the lemma is proved. O
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From this lemma it follows that the function p — IL, is a.e. differentiable
in [1 — po, 1 + pol, and we obtain the following corollary.

Corollary 4.17. Let A and po be as in Lemma 4.16, and let A C [1 —
00, 1 + po] be the (dense) set of p for which the function % 1s differentiable.
Then for p € A the functional 11, possesses a bounded Palais—smale sequence

(up); at level 11,

Proof. The existence of Palais-smale sequence (u;); at level II, follows from
(4.32) and the bounded is proved exactly as in [5, Lemma 3.2]. O

Next we state a proposition saying that bounded Palais—smale sequence
of I1, converges weakly (up to a subsequence) to a solution of the perturbed
problem. The proof is the same as the one of Proposition 5.5 in [14].

Proposition 4.18. Suppose (u;); C Hp)oy, is a sequence for which
I,(u) = c €R, 1 [u] — 0, /M e dVy =1 |lwllg2an < C.

Then (u;) has a weak limit u(up to a subsequence) which satisfies the follow-
mg equation:

Pg4u +2pQy = 2pI€(P4’p3)€4u mn M,

Pg’u +pTy =0 on OM,
0
T 0 on OM.
ong

Now we are ready to make the proof of Theorem 1.1.

Proof of Theorem 1.1. By (4.17) and (4.18), there exists a sequence p; — 1
and wu; such that the following holds:

P;ul +20Q4 = 2pf<c(p47p3)e4“l in M,

Pluy+ pTy =0 on OM,
g;‘; =0 on OM.

Now since k(ps ps) = Jur Qg dVy + Joas @Sy, then applying Corollary 1.5 with
Q1= pQqg, Ty = p’Ty and @ = piki(ps,ps), we have that u; is bounded in
C+ for every a € (0,1). Hence up to a subsequence it converges in C'(M)
to a solution of (1.4). Hence Theorem 1.1 is proved. O
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Remark 4.1. As said in the introduction, we now discuss how to settle
the general case.

First of all, to deal with the remaining cases of situation 1, we proceed
as in [14]. To obtain Moser—Trudinger-type inequality and its improvement,
we impose the additional condition ||a|| < C' where @ is the component of u
in the direct sum of the negative eigenspaces. Furthermore, another aspect
has to be considered, that is not only e** can concentrate but also ||| can
tend to infinity. And to deal with this, we have to substitute the set (Mp)x
with an other one, Ak,E> which is defined in terms of the integer k (given in
(1.6)) and the number k of negative eigenvalues of P; 3 as is done in [14].
This also requires suitable adaptation of the min—max scheme and of the
monotonicity formula in Lemma 4.16, which in general becomes

I

p — —2 — Cp is non-increasing in [1 — po, 1 + po],
p

for a fixed constant C' > 0.

As already mentioned in the introduction, see Remark, to treat the
situation 1, we only need to consider the case k # 0. In this case, the same
arguments as in [14] apply without any modifications.
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