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Conformal metrics with constant Q-curvature
for manifolds with boundary

Cheikh Birahim Ndiaye

In this paper we prove that, given a compact four-dimensional
smooth Riemannian manifold (M, g) with smooth boundary, there
exists a metric in the conformal class [g] of the background met-
ric g with constant Q-curvature, zero T -curvature and zero mean
curvature under generic conformally invariant assumptions. The
problem is equivalent to solving a fourth-order non-linear elliptic
boundary value problem (BVP) with boundary condition given by
a third-order pseudodifferential operator and homogeneous
Neumann condition. It has a variational structure, but since the
corresponding Euler–Lagrange functional is in general unbounded
from above and below, we need to use min–max methods combined
with a new topological argument and a compactness result for the
above BVP.

1. Introduction

In the last decades, much work has been done in the study of conformally
covariant differential (pseudodifferential) operators on compact smooth Rie-
mannian manifolds with smooth boundary, their associated curvature invari-
ants, the corresponding boundary operators and curvatures in order to
understand the relationships between analytic and geometric properties of
such objects.

A model example is the Laplace–Beltrami operator on compact surfaces
with boundary (Σ, g) and the Neumann operator on the boundary. Under a
conformal change of metric, the couple constitued by the Laplace–Beltrami
operator and the Neumann operator governs the transformation laws of the
Gauss curvature and the geodesic curvature. In fact, under the conformal
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change of metric gu = e2ug, we have

⎧
⎪⎨

⎪⎩

Δgu
= e−2uΔg,

∂

∂ngu

= e−u ∂

∂ng
,

and

⎧
⎪⎨

⎪⎩

−Δgu + Kg = Kgu
e2u in Σ,

∂u

∂ng
+ kg = kgu

eu on ∂Σ,

where Δg (resp. Δgu
) is the Laplace–Beltrami operator of (Σ, g) (resp.

(Σ,gu)) and Kg (resp. Kgu
) is the Gauss curvature of (Σ, g) (resp. of (Σ,gu)),

∂
∂ng

(resp. ∂
∂ngu

) is the Neumann operator of (Σ, g) (resp. of (Σ, gu)) and kg

(resp. kgu
) is the geodesic curvature of (∂Σ, g) (resp. of (∂Σ,gu)). Moreover,

we have the Gauss–Bonnet formula which relates
∫

Σ Kg dVg +
∫

∂Σ kg dSg and
the topology of Σ

(1.1)
∫

Σ
Kg dVg +

∫

∂Σ
kg dSg = 2πχ(Σ),

where χ(Σ) is the Euler–Poincaré characteristic of Σ, dVg is the element
area of Σ and dSg is the line element of ∂Σ. Thus,

∫

Σ Kg dVg +
∫

∂Σ kg dSg

is a topological invariant, hence a conformal one.
There exists also an other example of conformally covariant differential

operator on four-dimensional compact smooth Riemannian manifolds with
smooth boundary called the Paneitz operator and to which is associated a
natural concept of curvature. This operator discovered by Paneitz in 1983
(see [19]) and the corresponding Q-curvature introduced by Branson [3] are
defined in terms of Ricci tensor Ricg and scalar curvature Rg of the manifold
(M, g) as follows:

P 4
g ϕ = Δ2

gϕ + divg

((
2
3
Rgg − 2Ricg

)

dϕ

)

;

Qg = − 1
12

(ΔgRg − R2
g + 3|Ricg|2),

where ϕ is any smooth function on M , divg is the divergence and d is the
De Rham differential.

Likewise Chang and Qing, see [6], have discovered a boundary operator
P 3

g defined on the boundary of compact four-dimensional smooth Rieman-
nian manifolds and a natural third-order curvature Tg associated to P 3

g as
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follows:

P 3
g ϕ =

1
2

∂Δgϕ

∂ng
+ Δĝ

∂ϕ

∂ng
− 2HgΔĝϕ + (Lg)ab(∇ĝ)a(∇ĝ)b

+ ∇ĝHg.∇ĝϕ +
(

F − Rg

3

)
∂ϕ

∂ng
.

Tg = − 1
12

∂Rg

∂ng
+

1
2
RgHg− < Gg, Lg > +3H3

g − 1
3
Tr(L3) + ΔĝHg,

where ϕ is any smooth function on M , ĝ is the metric induced by g on
∂M , Lg = (Lg)ab = −1

2
∂gab

∂ng
is the second fundamental form of ∂M , Hg =

1
3tr(Lg) = 1

3gabLab (ga,b are the entries of the inverse g−1 of the metric g)
is the mean curvature of ∂M , Rk

bcd is the Riemann curvature tensor F =
Ra

nan, Rabcd = gakR
k
bcd (ga,k are the entries of the metric g) and < Gg, Lg >=

Ranbn(Lg)ab.
On the other hand, as the Laplace–Beltrami operator and the Neumann

operator govern the transformation laws of the Gauss curvature and the
geodesic curvature on compact surfaces with boundary under conformal
change of metric, we have that the couple (P 4

g , P 3
g ) does the same for (Qg, Tg)

on compact four dimensional smooth Riemannian manifolds with boundary.
In fact, after a conformal change of metric gu = e2ug, we have that

⎧
⎨

⎩

P 4
g u = e−4uP 4

g ;

P 3
g u = e−3uP 3

g ;
and

⎧
⎨

⎩

P 4
g + 2Qg = 2Qgu

e4u in M ;

P 3
g + Tg = Tgu

e3u on ∂M.

Apart from this analogy, we have also an extension of the Gauss–Bonnet
formula (1.1) which is known as the Gauss–Bonnet–Chern formula

(1.2)
∫

M

(

Qg +
|Wg|2

8

)

dVg +
∫

∂M
(T + Z)dSg = 4π2χ(M),

where Wg denote the Weyl tensor of (M, g) and ZdSg (for the definition of
Z, see [6]) are pointwise conformally invariant. Moreover, it turns out that
Z vanishes when the boundary is totally geodesic (by totally geodesic we
mean that the boundary ∂M is umbilic and minimal). Setting

κP 4
g

=
∫

M
Qg dVg, κP 3

g
=
∫

∂M
Tg dSg;

we have that, thanks to (1.2), and to the fact that Wg dVg and Z dSg are
pointwise conformally invariant, κP 4

g
+ κP 3

g
is conformally invariant and will
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be denoted by

(1.3) κ(P 4,P 3) = κP 4
g

+ κP 3
g
.

To mention some geometric applications, we discuss two results which
can be found in the survey [12]. The first one is a rigidity-type result,
more precisely it says that if (M, g) has a constant positive scalar cur-
vature and ∂M has zero second fundamental form, then κ(P 4,P 3) ≤ 4π2;
and equality holds if and only if (M, ∂M) is conformally equivalent to
the upper hemisphere (S4

+, S3). The second one is a classification of the
pairs (M, ∂M) with Q = 0, and T = 0. Indeed it says that, if (M, ∂M) is
locally conformally flat with umbilic boundary ∂M , Q = 0, T = 0, Y (g) > 0
(where Y (g) = inf < Lcu, u > where the infimum is taken over all metrics
conformal to g with the same volume as g and zero mean curvature and
Lc = −6Δg + R is the conformal Laplacian) and χ(M) = 0, then either
(M, ∂M) = (S1 × S3

+, S1 × S2), or (M, ∂M) = (I × S3, ∂I × S3), where I is
an interval.

A natural question to ask is whether every compact four-dimensional
smooth Riemannian manifold with smooth boundary (M, g) carries a con-
formal metric gu for which the corresponding Q-curvature Qgu

is constant,
the corresponding T -curvature Tgu

is zero and such that (M, gu) has minimal
boundary. A related question was posed for the Yamabe problem, see [16].

Our goal in this paper is to give a positive answer to this question under
generic conformally invariant assumptions. Writing gu = e2ug, the problem
is equivalent to solving the following BVP:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P 4
g u + 2Qg = 2Q̄e4u in M,

P 3
g u + Tg = 0 on ∂M,

∂u

∂ng
− Hgu = 0 on ∂M,

where Q̄ is a fixed real number and ∂
∂ng

is the inward normal derivative with
respect to g.

Due to a result by Escobar [16] and to the fact that we are interested
to solve the problem under conformally invariant assumptions, it is not
restrictive to assume Hg = 0, since this can be always obtained through a
conformal transformation of the background metric. Thus we are led to solve
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the following BVP with the Neumann homogeneous boundary condition:

(1.4)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P 4
g u + 2Qg = 2Q̄e4u in M,

P 3
g u + Tg = 0 on ∂M,

∂u

∂ng
= 0 on ∂M.

Defining H∂/∂n as

H∂/∂n =
{

u ∈ H2(M) :
∂u

∂ng
= 0
}

,

and P 4,3
g as follows, for every u, v ∈ H∂/∂n,

〈P 4,3
g u, v〉L2(M) =

∫

M

(

ΔguΔgv +
2
3
Rg∇gu∇gv

)

dVg

− 2
∫

M
Ricg(∇gu, ∇gv)dVg − 2

∫

∂M
Lg(∇ĝu, ∇ĝv)dSg,

we have that by the regularity result in Proposition 2.4 below, critical points
of the functional

II(u) = 〈P 4,3u, u〉L2(M) + 4
∫

M
Qgu dVg + 4

∫

∂M
Tgu dSg

− κ(P 4,P 3) log
∫

M
e4u dVg; u ∈ H∂/∂n,

which are weak solutions of (1.4) are also smooth and hence strong solutions.
To the best of our knowledge, the first existence result for problem (1.4)

has been obtained by Chang and Qing, see [7] under the assumptions that
P 4,3

g is non-negative, Ker P 4,3
g � R and κ(P 4,P 3) < 4π2.

In the case of closed four-dimensional Riemannian manifold M , it is
well-known that the Q-curvature equation is intimately related to a fully
non-linear PDE (the σ2-equation), see [10, 11]. A study of the latter PDE
has given important geometric applications of the Q-curvature. In [10,11], it
is proven that if the underlying Riemannian manifold has a conformal metric
of positive constant scalar curvature and

∫

M Qg dVg > 0, then its first Betti
number vanishes. Moreover, up to a conformal metric it has positive Ricci
tensor, and hence M has a finite fundamental group. Furthermore, if the
quantitative assumption

∫

M Qg dVg > 1
8

∫

M |Wg|2 dVg holds, then M must
be diffeomorphic to the four-sphere or to the projective space.
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For the case where M has a boundary, Chen [13] has studied an analogue
of the σ2-equation, which turns out to be a fully non-linear BVP. Among
others results, she obtained that if the Yamabe invariant Y (M, ∂M, [g]) (for
the definition, see [13]) and κ(P 4,P 3) are both positive and M umbilic, then
there exists a metric gu in the conformal class of g such that σ2(Agu

) (the
second symmetric function of the Shouten tensor Agu

) is a positive constant
Hgu

= 0. Furthermore, gu can be taken so that the Ricci curvature Ricgu
is

positive, hence M has a finite fundamental group.
Here we extend the uniformization result of Chang and Qing mentioned

above, namely we prove existence of solutions to (1.4) under more general
conditions. Precisely we obtain the following result, which is the main the-
orem in this paper:

Theorem 1.1. Suppose KerP 4,3
g � R. Then assuming κ(P 4,P 3) �= k4π2 for

k = 1, 2, . . . , we have that (M, g) admits a conformal metric with constant
Q-curvature, zero T -curvature and zero mean curvature.

Remark 1.2. (a) Our assumptions are conformally invariant and gene-
ric, so the result applies to a large class of compact four-dimensional
manifolds with boundary.

(b) From the Gauss–Bonnet–Chern formula, see (1.2), we have that Theo-
rem 1.1 does NOT cover the case of locally conformally flat manifolds
with totally geodesic boundary and positive integer Euler–Poincaré
characteristic.

(c) For the boundary Yamabe problem in low dimension (less than 5),
existence of solutions was obtained only under the assumption of local
conformal flatness of the manifold and umbilicity of the boundary.
However, in our theorem, we point out that no umbilicity condition
for the boundary ∂M and no flatness condition for M are assumed.

Our assumptions include the following two situations:

κ(P 4,P 3) < 4π2 and (or) P 4,3
g possesses k̄ negative eigenvalues

(counted with multiplicity),(1.5)

κ(P 4,P 3) ∈ (4kπ2, 4(k + 1)π2), for some k ∈ N
∗ and (or) P 4,3

g

possesses k̄ negative eigenvalues (counted with multiplicity).(1.6)

Remark 1.3. Case (1.5) includes the condition (k̄ = 0) under which Chang
and Qing have proved existence of solutions to (1.4), hence will not be
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considered here. However, due to a Moser–Trudinger-type inequality (see
Proposition 2.7 below) it can be achieved using direct method of calculus
of variations.

In order to simplify the exposition, we will give the proof of Theorem
1.1 in the case where we are in situation (1.6) and k̄ = 0 (namely P 4,3

g is
non-negative). At the end of Section 4, a discussion to settle the general
case (1.6) and also case (1.5) is made.

To prove Theorem 1.1, we look for critical points of II. Unless κ(P 4,P 3) <
4π2 and k̄ = 0, this Euler–Lagrange functional is unbounded from above
and below (see Section 4), so it is necessary to find extremals which are
possibly saddle points. To do this, we will use a min–max method: by
classical arguments in critical point theory, the scheme yields a Palais–Smale
sequence, namely a sequence (ul)l ∈ H∂/∂n satisfying the following properties

II(ul) −→ c ∈ R; II
′
(ul) −→ 0 as l −→ +∞.

Then, as is usually done in min–max theory, to recover existence one should
prove that the so-called Palais–Smale condition holds, namely that every
Palais–Smale sequence has a converging subsequence or a similar compact-
ness criterion. Since we do not know if the Palais–Smale condition holds,
we will employ Struwe’s monotonicity method, see [20], also used in [14]
and [18]. The latter yields existence of solutions for arbitrary small pertur-
bations of the given equation, so to consider the original problem one is led
to study compactness of solutions to perturbations of (1.4). Precisely, we
consider

(1.7)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P 4
g ul + 2Ql = 2Q̄le

4u in M,

P 3
g u + Tl = 0 on ∂M,

∂ul

∂ng
= 0 on ∂M,

where
(1.8)
Q̄l −→ Q̄0 > 0 in C2(M); Ql −→ Q0 in C2(M); Tl −→ T0 in C2(∂M).

Adopting the standard terminology in geometric analysis, we say that a
sequence (ul) of solutions to (1.7) blows up if the following holds:

(1.9) there exist xl ∈ M such that ul(xl) −→ +∞ as l −→ +∞,

and we prove the following compactness result.
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Theorem 1.4. Suppose Ker P 4,3
g � R and that (ul) is a sequence of solu-

tions to (1.7) with Q̄l, Ql and Tl satisfying (1.8). Assuming that (ul)l blows
up (in the sense of (1.9)) and

(1.10)
∫

M
Q0 dVg +

∫

∂M
T0 dSg + ol(1) =

∫

M
Q̄le

4ul dVg;

then there exists N ∈ N \ {0} such that
∫

M
Q0 dVg +

∫

∂M
T0 dSg = 4Nπ2.

From this, we derive a corollary which will be used to ensure compact-
ness of some solutions to a sequence of approximate BVPs produced by the
topological argument combined with Struwe’s monotonicity argument. Its
proof is a trivial application of Theorem 1.4 and Proposition 2.4 below.

Corollary 1.5. Suppose KerP 4,3
g � R.

(a) Let (ul) be a sequence of solutions to (1.7) with Q̄l, Ql and Tl satisfying
(1.8). Assume also that

∫

M
Q0 dVg +

∫

∂M
T0 dSg + ol(1) =

∫

M
Q̄le

4ul dVg,

and

k0 =
∫

M
Q0 dVg +

∫

∂M
T0 dSg �= 4kπ2, k = 1, 2, 3, . . . ,

then (ul)l is bounded in C4+α(M) for any α ∈ (0, 1).

(b) Let (ul) be a sequence of solutions to (1.4) for a fixed value of the
constant Q̄. Assume also that

κ(P 4,P 3) �= 4kπ2.

Then (ul)l is bounded in Cm(M) for every positive integer m.

(c) Let (uρk
) ρk → 1 be a family of solutions to (1.4) with Tg replaced by

ρkTg, Qg by ρkQg and Q̄ by ρkQ̄ for a fixed value of the constant Q̄.
Assume also that

κ(P 4,P 3) �= 4kπ2.

Then (uρk
)k is bounded in Cm(M) for every positive integer m.
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(d) If κ(P 4,P 3) �= 4kπ2, k = 1, 2, 3, . . . , then the set of metrics conformal to
g with constant Q-curvature, zero T -curvature, zero mean curvature
and of unit interior volume is compact in Cm(M) for every positive
integer m.

We are going to describe our method to prove the above results. Since
the proof of Theorem 1.1 relies on the compactness result of Theorem 1.4 (see
Corollary 1.5), it is convenient to discuss first the latter. We use a strategy
related to that in [15], but in our case we have to consider possible blow-ups
at the boundary. In [18], a variant of this method was used, which relies
strongly on the Green representation formula, transforming (1.4) into an
integral equation. Here we will employ a similar strategy since, for the BVP
one can prove the existence of a Green representation formula as well (using
the method of the parametrix) with the difference that we have a boundary
term, see Lemma 2.3. We consider the same scaling as in [15] and [18].
When we deal with the situation of interior blow-up points, we adopt the
same strategy as in [18] to get that the limit function V0 which describes the
profile near the blow-up point satisfies the following conformally invariant
integral equation

(1.11) Ṽ0(x) =
∫

R4

3
4π2 log

(
|z|

|x − z|

)

e4Ṽ0(z) dz − 1
4

log(3).

Hence using the same argument as in [18], based on a classification result
of Xu [22], we deduce that V0 is a standard bubble and the local volume
is 8π2. On the other hand, when the blow-up phenomenon happens at the
boundary, we obtain that the limiting function satisfies the integral equation
on the upper half-space R

4
+

V0(x) =
∫

R
4
+

3
4π2

(

log
|z|

|x − z| + log
|z|

|x − z̄|

)

e4V0(z) dz − 1
4

log(3).

So from this, we are able to deduce that the normal derivative of V0 vanishes.
Thus using Alexandrov reflection principle, we infer that the even reflection
across ∂R

4
+ V̄0 of V0 solves the conformally invariant integral equation on

the entire space R
4 as in (1.11).

So we can use the classification result of Xu (mentioned above) to deduce
that V̄0 is a standard bubble and that the local volume associated is 8π2.
Hence we find that the profile near such blow-up point (boundary) is half
of a standard bubble and that the local volume associated is 4π2. At this
stage, to finish we argue as in [18] to show that the residual volume tends to
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zero and obtain quantization. We point out that, by the above discussion,
the volume of an interior blow-up is double with respect to the one at the
boundary.

Now having this compactness result, we can describe the proof of The-
orem 1.1 assuming (1.6) and that P 4,3

g is non-negative. In [14] and [18],
the existence theorem was proved considering the formal barycenters of the
manifold M (which we will describe below), together with the differences
with respect to the present case, which are mainly two. The arguments
in [14] (similarly in [18]) can be summarized as follows. First of all from
κP 4 ∈ (k8π2, (k + 1)8π2) and considerations coming from an improvement
of Moser–Trudinger inequality, it follows that if II(u) attains large neg-
ative values, then e4u has to concentrate near at most k points of M .
This means that, if we normalize u so that

∫

M e4u dVg = 1, then naively
e4u �

∑k
i=1 tiδxi

, xi ∈ M, ti ≥ 0,
∑k

i=1 ti = 1. Such a family of convex com-
bination of Dirac deltas are called formal barycenters of M of order k, see
Section 2 in [14], and will be denoted by Mk. With a further analysis (see
Proposition 3.1 in [14]), it is possible to show that the sublevel {II < −L}
for large L has the same homology as Mk. Using this fact and the non-
contractibility of Mk (which is a crucial ingredient), existence of solutions
was found.

The differences with the present case are the fact that Mk might be
contractible and also boundary concentration can appear, hence new ideas
are needed. We first perform a more refined study of how big can be the
number of possible boundary and interior blow-up points for the confor-
mal volume e4u, u ∈ {v ∈ H∂/∂n

∫

M e4v dVg = 1; II(v) ≤ −L} with L large
enough. In doing this, we first prove a Moser–Trudinger-type inequality
using blow-up analysis techniques, see Proposition 2.7. Next we derive an
improvement of it by following basically the same arguments as in [15, 18]
and taking into account that far from the boundary we can use the Moser–
Trudinger inequality for closed manifolds (see Lemma 2.1). As a corollary,
we derive that if k is as in (1.6) and if II(ul) → −∞ along a sequence ul

with
∫

M e4uldVg = 1, then e4ul has to concentrate near at most h interior
points and l boundary points with 2h + l ≤ k and e4ul � σ =

∑h
i=1 tiδxi

+
∑l

i=1 siδyi
, ti ≥ 0,

∑h
i=1 ti +

∑l
i=1 si = 1;xi ∈ int(M), yi ∈ ∂M . Therefore,

instead of Mk, it is natural to consider the barycentric set (M∂)k (for the
definition, see Section 2) which is a good candidate for describing the homol-
ogy of large negative sublevels of II. In order to do this, one needs to map
(non-trivially) the large negative sublevels into (M∂)k, and to do the oppo-
site, namely to map (M∂)k (non-trivially) onto low sublevels of II. If the
composition of these two maps is homotopic to the identity, we derive the
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topology of the low sublevels of II, in terms of the number of concentration
points of the conformal volume e4u. To find the projection onto (M∂)k,
we can use some of the arguments in [14], but with evident differences,
because of the presence of the boundary. Taking advantage of the fact
that the functions we are dealing with have zero normal derivatives, we
use a doubling argument, which consists of constructing a new C1 mani-
fold DM , and using the Alexandrov reflection principle (see Proposition
4.8 below). We then use some suitable test functions to find the desired
homotopy equivalence.

Using the Mayers–Vietoris theorem, one can prove that (M∂)k is non-
contractible, see Proposition 4.6, and define a min–max scheme for a per-
turbed functional IIρ, ρ close to 1, finding a P-S sequence to some levels cρ.
Applying the monotonicity procedure of Struwe, we can show existence of
critical points of IIρ for a.e ρ, and we reduce ourselves to the assumptions
of Theorem 1.5.

The structure of the paper is the following. In Section 2 we collect some
notations and give some preliminaries like the existence of the Green function
for (P 4

g , P 3
g ) with homogeneous Neumann conditions, a Moser–Trudinger-

type inequality and a regularity result for BVPs of the type of (1.4). In
Section 3 we prove Theorem 1.4 (from which the proof of Corollary 1.5
becomes a trivial application). In Section 4 we finally prove Theorem 1.1.
The latter section is divided into four subsections. The first one concerns
an improvement of the Moser–Trudinger-type inequality and applications.
The second deals with the existence of a non-trivial projection from negative
sublevels of II onto (M∂)k. The third is concerned about mapping (M∂)k

into negative sublevels, and the last deals with the min–max scheme.

2. Notation and preliminaries

In this brief section, we collect some useful notations, state a lemma giving
the existence of the Green function of the operator (P 4

g , P 3
g ) with its asymp-

totics near the singularity and an analog of the well-known Moser–Trudinger
inequality for the operator P 4,3

g when it is non-negative.
In the following, Bp(r) stands for the metric ball of radius r and cen-

ter p, B+
p (r) = Bp(r) ∩ M if p ∈ ∂M . Sometimes we use B+

p (r) to denote
Bp(r) ∩ M even if p /∈ ∂M . For a given integer n, we denote by R

n the
standard n-dimensional Euclidean space and R

n
+ = {x = (x1, . . . , xn) ∈ R

n :
xn ≥ 0}. In the sequel, Bx(r) will stand for the Euclidean ball of center x
and radius r, Bx

+(r) = Bx(r) ∩ R
4
+ if x ∈ ∂R

4
+. We use also Bx

+(r) to denote
Bx(r) ∩ R

4
+ even if x /∈ ∂R

4
+. We denote by dg(x, y) the metric distance
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between two points x and y of M . H2(M) stands for the usual Sobolev
space of functions on M which are of class H2 in each coordinate system.
Large positive constants are always denoted by C, and the value of C is
allowed to vary from formula to formula and also within the same line. M2

stands for the Cartesian product M × M , while Diag(M) is the diagonal
of M2. Given a function u ∈ L1(M), ū denotes its average on M , that is,
ū = (Volg(M))−1 ∫

M u(x) dVg(x), where Volg(M) =
∫

M dVg.
Given two subsets S1, S2 of M , we set

dg(S1, S2) = inf{dg(x, y) x ∈ S1, y ∈ S2};

and for x ∈ M fixed we define

dg(x, S1) = inf{dg(x, y) y ∈ S1}.

int(M) denotes the topological interior of M .
N denotes the set of non-negative integers.
N

∗ stands for the set of positive integers.
Al = ol(1) means that Al → 0 as the integer l → +∞.
Aε = oε(1) means that Aε → 0 as the real number ε → 0.
Aδ = oδ(1) means that Aδ → 0 as the real number δ → 0.
Al = O(Bl) means that Al ≤ CBl for some fixed constant C.
injg(M) stands for the injectivity radius of M .
dVg denotes the Riemannian measure associated to the metric g.
dSg stands for the Riemannian measure associated to the metric ĝ induced
by g on ∂M .
dσg stands for the surface measure on boundary of balls, | · |g stands for the
norm associated to g.
f = f(a, b, c, . . .) means that f is a quantity which depends only on a, b, c, . . . .
Given an operator P acting on functions u(x, y) defined on M2, Py means
the action of P with respect to the variable y ∈ M .
Given a metric g on M , |g(x)|, x ∈ M , stands for determinant of the matrix
with entries gi,j(x), where gi,j(x) are the components of g(x), in some sys-
tem of coordinates.
For ε > 0, we set

(∂M)ε = {x ∈ M dg(x, ∂M) ≤ ε}.

We also set

k̃ =
[
k

2

]

,
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where
[

k
2

]
stands for the integer part of k

2 .

Now given δ > 0 a small positive constant, we set

Mδ = M \ ∂M × [0, δ].

Next we let (∂M)k denote the family of formal sums

(2.1) (∂M)k =

{
k∑

i=1

tiδxi
, ti ≥ 0,

k∑

i=1

ti = 1;xi ∈ ∂M

}

,

It is known in the literature as the formal set of barycenters relative to ∂M
of order k. We recall that (∂M)k is a stratified set, namely a union of sets
of different dimensions with maximum one equal to 4k − 1.

Now given h ∈ N, l ∈ N such that h ≤ k̃, l ≤ k and 2h + l ≤ k, we define
Mh,l as follows:

Mh,l =

{
h∑

i=1

tiδxi
+

l∑

i=1

siδyi
, ti ≥ 0,

h∑

i=1

ti

+
l∑

i=1

si = 1;xi ∈ int(M), yi ∈ ∂M

}

;(2.2)

We set also

(M∂)k = ∪h,lMh,l.

(M∂)k will be endowed with the weak topology of distributions. To carry
out some computations, we will use on (M∂)k the metric given by C1(M)∗,
which induces the same topology, and which will be denoted by dM (·, ·).

Now let us introduce some further definitions.
Given σ ∈ (M∂)k, σ =

∑h
i=1 tiδxi

+
∑l

i=1 siδyi
with xi ∈ int(M), yi ∈

∂M and 2h + l ≤ k, we set

σint =
h∑

i=1

tiδxi
,

and

σbdry =
l∑

i=1

siδyi
.
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Next for ϕ ∈ C1(M) and σ = σint + σbdry ∈ (M∂)k, we denote the action of
σ on ϕ as

< σ, ϕ >=
h∑

i=1

tiϕ(xi) +
l∑

i=1

siϕ(yi),

where σint =
∑h

i=1 tiδxi
and σbdry =

∑l
i=1 siδyi

.
Next if f is a non-negative L1 function on M with

∫

M f dVg = 1 and
S ⊂ (M∂)k, we define the distance of f from S as follows:

dM (f, S) = inf
σ∈S

dM (f, σ).

To finish the part of the notations, we define

Bε,k = {σ ∈ (M∂)k : dM (σ, (∂M)k) ≤ ε}.

Now we recall the following Moser–Trudinger-type inequality for closed
four-dimensional smooth Riemannian manifolds. Its proof can be found
in [9, Lemma 1.6].

Lemma 2.1. Let (N, g) be a four dimensional compact closed manifold.
Assume that P 4

g is non-negative and that KerP 4
g � R, then there exists a

constant C = C(N) > 0 such that
∫

N
e32π2u2

dVg ≤ C for all u ∈ H2(N) such that 〈P 4
g u, u〉L2(N) = 1,

and hence

log
∫

N
e4(u−ū) ≤ C +

1
8π2 〈P 2

g u, u〉L2(N).

Remark 2.1. We remark that the constant C = C(N) in the lemma above
is an increasing function of Volg(N). This fact will be used in the proof of
Lemma 4.1 below.

Next we give a Lemma which can be found in [7, Proposition A.1].

Lemma 2.2. There exists an extension of (M, g) into (M̃, g̃) which is a
closed smooth four-dimensional Riemannian manifold such that

1) M is an open submanifold of M̃ ,

2) g̃|M = g,
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3) In M̃ , ∂M has a nice tubular neighborhood T of width δ0 such that,
for any x ∈ T ∩ M , there exists a unique x̄ ∈ T \ M with dḡ(x, ∂M) =
dḡ(x̄, ∂M), and for x ∈ ∂M , x = x̄, where dḡ denotes the Riemannian
distance associated to ḡ.

Now we state a proposition which asserts the existence of the Green
function of (P 4

g , P 3
g ) with homogeneous Neumann condition. Moreover, we

give its asymptotics near the singularities.

Proposition 2.3. Assume that Ker P 4,3
g � R, then the Green function G(x,

y) of (P 4
g , P 3

g ) exists in the following sense:

a) For all functions u ∈ C2(M), ∂u
∂ng

= 0, we have

u(x) − ū =
∫

M
G(x, y)P 4

g u(y)dVg(y) + 2
∫

∂M
G(x, y′)P 3

g u(t)dSg(y′), x ∈ M

b)
G(x, y) = H(x, y) + K(x, y)

is smooth on M2 \ Diag(M2), K extends to a C2+α function on M2

and

H(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
8π2 f(r) log

1
r

if Bδ(x) ∩ ∂M = ∅,

1
8π2 f(r)

(

log
1
r

+ log
1
r̄

)

otherwise,

where f(·) = 1 in [− δ
2 , δ

2 ] and f(·) ∈ C∞
0 (−δ, δ), δ ≤ 1

2 min{δ1, δ2}, δ1

is the injectivity radius of M in M̃ and δ2 = δ0
2 , r = dg(x, y) and r̄ =

dg(x, ȳ).

Proof. Let x ∈ M be fixed, it is well known that in normal coordinate around
x the following holds

|g̃(y)| = 1 + O(r2) for y close to x.

Now working in this normal coordinate system around x, we have that

|P 4
g H(x, y)| ≤ Cr−2 for r ≤ C−1 injg(M).

and
|P 3

g H(x, y)| ≤ Cr−1 for r ≤ C−1 injg(M).
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On the other hand, by considering the expression
∫

M\Bx(ε)
H(x, y)P 4

g u(y)dVg̃(y) −
∫

M\Bx(ε)
u(y)P 4

g H(x, y)u(y)dVg̃(y),

we have by integration by parts that
∫

M\Bx(ε)
H(x, y)P 4

g u(y)dVg̃(y) −
∫

M\Bx(ε)
u(y)P 4

g H(x, y)u(y)dVg(y)

= −
∫

∂Bx(ε)

∂Δḡ,y

∂ng
H(x, y)u(y) dVg(y) + 2

∫

∂M
H(x, y′)P 3

g dSḡ(y′) + oε(1).

Now by using the fact that close to x in conformal normal coordinate
Δg is close to ΔR4 , we obtain by letting ε go to 0

u(x) =
∫

M
H(x, y)P 4

g u(y)dVg(y) −
∫

M
P 4

g H(x, y)u(y)dVg̃(y)

+ 2
∫

∂M
H(x, y′)P 3

g u(y′)dSg(y′).

Hence, for every x ∈ M , we obtain

u(x) =
∫

M
H(x, y)P 4

g u(y)dVg(y) −
∫

M
P 4

g H(x, y)u(y)dVg(y)

+ 2
∫

∂M
H(x, y′)P 3

g u(y′)dSg(y′).(2.3)

Now we can apply the same method as in [2, Theorem 4.13] to construct
parametrix for Green’s function. We set

G(x, y) = H(x, y) +
q∑

i=1

Zi(x, y) + F (x, y),

where q > 2,

Zi(x, y) =
∫

M
Γi(x, ζ)H(ζ, y)dVg(ζ),

and Γi are defined inductively as follows:

Γi+1(x, y) =
∫

M
Γi(x, ζ)Γ(ζ, y)dVg(ζ),

with
Γ1(x, y) = Γ(x, y) = −P 4

g,yH(x, y),
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and F being the solution of the equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P 4
g,yF (x, y) = Γk+1(x, y) − 1

V olg(M)
. in M,

P 3
g,yF (x, y) = −P 3

g,yH(x, y) on ∂M,

∂F (x, y)
∂ng,y

= 0 on ∂M.

Now from (2.3) we have that Zi satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P 4
g,yZi(x, y) = Γi(x, y) − Γi+1(x, y) in M,

P 3
g,yZi(x, y) = 0 on ∂M,

∂Zi(x, y)
∂ng,y

= 0 on ∂M.

We observe that the following estimate holds for Γ(x, y),

|Γ(x, y)| ≤ Cr−2;

hence by using the results in [2, Proposition 4.12], we obtain the following
estimate for Γi(x, y),

(2.4) |Γi(x, y)| ≤ Cr2i−4.

So arriving at this stage by still the same result in [2, Proposition 4.12],
we have that Γq(x, y) and Γq+1(x, y) are continuous, hence using elliptic
regularity we get Zq(x, y) and F (x, y) are in C3+α(M2). The regularity in
both the variables x and y can be deduced by the symmetry of G, which
follows from the self-adjointness of P 4,3

g and reasoning as in [2, Proposition
4.13]. Further from (2.4) we deduce that Γi ∈ Lp with 1

2 < p < 2 for all
i = 1, . . . , q − 1. Hence by using standard elliptic regularity, we infer that
Zi(x, y) ∈ H4,p. So from the Sobolev embedding theorem and the fact that
1
2 < p < 2, we get Zi(x, y) ∈ C2+α(M2) for all i = 1, . . . , q − 1 for some α.
Hence setting K(x, y) =

∑q
i=1 Zi(x, y) + F (x, y), the lemma is proved. �

Next we give a regularity result corresponding to BVPs of the type of
BVP (1.4) and high-order a priori estimates for sequences of solutions to
BVP like (1.7) when they are bounded from above.
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Proposition 2.4. Let u ∈ H∂/∂n be a weak solution to

⎧
⎨

⎩

P 4
g u + f = f̄ e4u in M,

P 3
g u = h on ∂M,

with f ∈ C∞(M), h ∈ C∞(∂M) and f̄ a real constant. Then we have that
u ∈ C∞(M).

Let ul ∈ H∂/∂n be a sequence of weak solutions to

⎧
⎨

⎩

P 4
g ul + fl = f̄le

4ul in M,

P 3
g ul = hl on ∂M,

with fl → f0 in Ck(M), f̄l → f̄0 in Ck(∂M) and h → h0 in Ck(∂M) for
some fixed k ∈ N

∗. Assuming supM ul ≤ C, we have that

||ul||Ck+3+α(M) ≤ C

for any α ∈ (0, 1).

Before making the proof of Proposition 2.4, we give some lemmas that
will be needed. We first state a lemma which is a direct consequence of
Lemma 2.2. Next we recall a lemma giving the existence of a Green func-
tion for the Paneitz operator on compact closed four-dimensional smooth
Riemannian manifold.

Lemma 2.5. Adopting the same notations as in Lemma (2.2), we have
that there exists a closed compact smooth four-dimensional submanifold N
of (M̃, g̃) such that M ⊂ N . Moreover, the following holds: if ∀x ∈ N \ M ,
there exists a unique x̄ ∈ M ∩ T such that

dg̃(x, ∂M) = dg̃(x̄, ∂M).

As said above, we state a lemma giving the existence of the Green func-
tion for P 4

g̃ . Its proof can be found in [9] or ([18] where it is done for every
dimension).

Lemma 2.6. Suppose Ker P 4
g̃ � R. Then the Green function G̃(x, y) of P 4

g̃

exists in the following sense:
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a) For all functions u ∈ C2(N), we have

u(x) − ū =
∫

M
G̃(x, y)P 4

g̃ u(y)dVg̃(y) ∀x ∈ N ;

b)
G̃(x, y) = H0(x, y) + K0(x, y) ∀x �= y,

is smooth on N2 \ Diag(N2), K extends to a C2+α function on N2

and

H(x, y) =
1

8π2 f(r) log
1
r
,

where r = dg̃(x, y) is the geodesic distance from x to y, f(r) is a C∞

positive decreasing function, f(r) = 1 in a neighborhood of r = 0 and
f(r) = 0 for r ≥ injg̃(N).

Now we are ready to make the proof of Proposition 2.4.

Proof of Proposition 2.4. We have that by assumption u ∈ H∂n is a weak
solution to {

P 4
g u + f = f̄ e4u in M,

P 3
g u = h on ∂M.

Then using Lemma 2.3 we obtain that

u(x) − ū =
∫

M
G(x, y)(f̄ e4u − f) dVg(y) + 2

∫

∂M
G(x, y′)h(y

′
)dSg(y′).

Now let us define the following auxiliary functions

w(x) =
∫

M
G(x, y)f̄ e4u(y)dVg(y), x ∈ M,

and

(2.5) v(x) = −
∫

M
G(x, y)f dVg(y) + 2

∫

∂M
G(x, y′)h(y

′
)dSg(y′).

Then it is trivially seen that

(2.6) w(x) = u(x) − v(x), x ∈ M.

On the other hand, since f ∈ C∞(M) and h ∈ C∞(∂M), then one can easily
check that

(2.7) v ∈ C∞(M).
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Now using the relation (2.6) we obtain w satisfies the following integral
equation

(2.8) w(x) =
∫

M
G(x, y)e−4v(y)f̄ e4w(y) dVg(y), x ∈ M,

and
∂w

∂ng
= 0 on ∂M.

Now let us define the even reflection of w through ∂M

(2.9) w̃(x) =

{
w(x) if x ∈ M,

w(x̄) if x ∈ N \ M,

where N is the closed 4-manifold given by Lemma 2.5.
Thanks to the fact that ∂w

∂ng
= 0, we have that w̃ ∈ H2(N). Moreover, using

the integral equation solved by w (see (2.8)), one can check easily that w̃
satisfies

w̃(x) =
∫

N
G̃(x, y)e−4ṽ(y)f̄ e4w̃(y) dVg̃(y), x ∈ N,

where G̃ is the Green function of P 4
g̃ (see Lemma 2.6) and v̄ is the even

reflection of v through ∂M , namely

ṽ(x) =

{
v(x) if x ∈ M,

v(x̄) if x ∈ N \ M.

Furthermore from (2.5) and the fact that f and h are smooth, we derive
that ṽ ∈ C1(N).
On the other hand, from the assumption KerP 4,3

g � R, it is easily seen that
Ker P 4

g̃ � R. Hence using Lemma 2.6, we have that w̃ is a weak solution to

P 4
g̃ = f̄ e−4ṽe4w̃ on N.

Thus from a regularity result due to Uhlenbeck and Viaclovsky, see [21], we
infer that

w̃ ∈ C∞(N).

Now restricting back to M , we obtain

(2.10) w ∈ C∞(M).



Conformal metrics with constant Q-curvature 1069

So using (2.6), (2.7) and (2.10), we have that

u ∈ C∞(M).

The last part of the proposition follows from the same argument.
Hence the proof of the proposition is complete. �

Next we give a Moser–Trudinger-type inequality when P 4,3
g is non-

negative and KerP 4,3
g � R.

Proposition 2.7. Assume P 4,3
g is a non-negative operator with KerP 4,3

g �
R. Then we have that for all α < 16π2 there exists a constant C = C(M, g, α)
such that

∫

M
eα(u−ū)2/〈P 4,3

g u,u〉L2(M) dVg ≤ C,

for all u ∈ H∂/∂n, and hence

log
∫

M
e4(u−ū) ≤ C +

4
α

〈P 4,3
g u, u〉L2(M) ∀u ∈ H∂/∂n.

In order to make the proof of Proposition 2.7 we will need two technical
lemmas. We start by stating the first one whose proof can be found in [8,
Lemma 2.2 in the Appendix].

Lemma 2.8. For all α < 16π2, there exists a constant C = C(M, g, α) > 0
such that

∫

M
eα(u−ū)2/

∫
M

|Δgu|2dVgdVg ≤ C, ∀u ∈ H∂/∂n.

The next lemma states that under the assumptions Ker P 4,3
g � R and

P 4,3
g non-negative, the map

u ∈ H∂/∂n −→ ||u||P 4,3
g

= 〈P 4,3
g u, u〉1/2

L2(M)

induces an equivalent norm to the standard norm of H2(M) on {u ∈ H∂/∂n ū =
0}. More precisely, we have the following.

Lemma 2.9. Suppose Ker P 4,3
g � R and P 4,3

g non-negative then we have
that || · ||P 4,3

g
is an equivalent norm to || · ||H2 on {u ∈ H∂/∂n ū = 0}.
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Proof. First of all we have that u → (
∫

M |Δgu|2dVg)1/2 is an equivalent norm
to the standard norm of H2(M) on {u ∈ H∂/∂n ū = 0}.

Now with this, to prove the lemma it is sufficient to show that ||u||P 4,3
g

and (
∫

M |Δgu|2 dVg)1/2 are equivalent norms on {u ∈ H∂/∂n ū = 0}.
To do so, we will use a compactness argument. First of all using the

definition of P 4,3
g , one can check easily that the following holds

(2.11) ||u||P 4,3
g

≤ C

(∫

M
|Δgu|2 dVg

)1/2

.

Now let us show that

(2.12)
(∫

M
|Δgu|2 dVg

)1/2

≤ C||u||P 4,3
g

∀u ∈ {u ∈ H∂/∂n ū = 0}.

We argue by contradiction, suppose (2.12) does not hold, then there exists
ul ∈ {u ∈ H∂/∂n ū = 0} such that

(2.13)
∫

M
(|Δgul|2 dVg)1/2 = 1 and ||ul||P 4,3

g
−→ 0.

Now using the fact that
∫

M (|Δgul|2 dVg)1/2 = 1, we get that (up to a sub-
sequence) ul ⇀ u∗. Moreover, using the fact that KerP 4,3

g � R, P 4,3
g is a

non-negative, ||ul||P 4,3
g

→ 0 and Rellich compactness theorem, we infer that

(2.14) u∗ = 0.

Next using again the fact that ||ul||P 4,3
g

→ 0 and the definition of P 4,3
g , we

infer that
∫

M
|Δgul|2 dVg +

2
3
Rg|∇gul|dVg − 2

∫

M
Ricg(∇gul,∇gul)dVg

− 2
∫

∂M
Lg(∇ĝul,∇ĝul)dSg = ol(1).(2.15)

Furthermore, still by the using the Rellich compactness theorem, we obtain

(2.16)
2
3
Rg|∇gul|dVg − 2

∫

M
Ricg(∇gul,∇gul)dVg = ol(1).
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Now let ε > 0 and small, then by Lemma 2.3 in [7] and also the Rellich
compactness theorem we have that

(2.17) −2
∫

∂M
Lg(∇ĝul,∇ĝul)dSg ≥ ε

∫

M
|Δgul|dVg − ol(1).

So using (2.13), (2.15), (2.16) and (2.17), we get

ol(1) ≥ 1 − ε + ol(1).

Thus since ε is small, we arrive to a contradiction. So (2.12) is true. Hence
(2.11) and (2.12) imply that the lemma is proved. �

Now we are ready to make the proof of Proposition 2.7.

Proof of Proposition 2.7. First of all let us set

H = {u ∈ H∂/∂n, ū = 0, 〈P 4,3
g u, u〉L2(M) = 1}

and for α > 0

Jα(u) =
∫

M
eαu2

dVg, u ∈ H.

We have that from Lemma 2.8 and Lemma 2.9 there exists α > 0 such that

sup
u∈H

Jα(u) < +∞.

Hence,

α0 = sup{α > 0 : sup
u∈H

Jα(u) < +∞}

is well defined and 0 < α0 ≤ ∞.
To prove the proposition, it is sufficient to show that

α0 ≥ 16π2.

Suppose by contradiction that α0 < 16π2 and let us argue for a contradiction.
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We have that by definition of α0 there exists a family uε, ε > 0, such
that

Jα0+ε(uε) → +∞.

On the other hand, using a covering argument there exists a point p ∈ M
such that for all r > 0

(2.18)
∫

Bp(r)
e(α0+ε)u2

ε dVg → +∞ as ε → 0.

Moreover, from the fact that uε ∈ H and Lemma 2.9, we can assume without
loss of generality that uε ⇀ u0. Now we claim that u0 = 0. Suppose not,
then by using the property of the inner product, we get

||uε − u0||P 4,3
g

< β

for some β < 1 and for ε small. Hence using Lemma 2.8 and Lemma 2.9, we
infer that

Jα1(uε − u0) ≤ C

for some α1 > α0. Next using the Cauchy inequality, it is easily seen that

Jα2(uε) ≤ C

for some α2 > α0. Thus a contradiction to (2.18). Hence u0 = 0.
Now suppose p ∈ ∂M .
Let us take a cut-off function η ∈ C∞

0 (Bδ(p)), η = 1, on Bp( δ
2) where

δ > 0 is a fixed positive and small number. Using the Leibniz rule, we
obtain

(2.19)
∫

Bp(δ/2)+
P 4,3

g (ηuε)(ηuε)dVg ≤ ||ηuε||P 4,3
g

≤ 1 + ε′,

for some ε′ > 0 such that 16π2

1+ε′ > α0. Now let us set

ũε(s, t) =

{
(ηuε) ◦ expp(s, t), t ≥ 0,

(ηuε) ◦ expp(s,−t), t ≤ 0,

Then from (2.19) we derive that
∫

B0(δ)
|Δ0ũε|2 dx ≤ 2 + ε′′,

for some ε′′ small where Δ0 denotes the Euclidean Laplacian.
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Hence by Adams inequality, see [1], we get

∫

B0(δ)
eα3ũ2

ε dx ≤ C

for some α3 > 16π2. Thus we arrive to

∫

Bp(δ/2)
eα3u2

ε dVg ≤ C

∫

B0(δ)
eα3ũ2

ε dx ≤ C.

Hence reaching a contradiction to (2.18).
Now suppose p ∈ int(M).
In this case, following the same method as above (and in a simpler way

since we do not need to use ũε, but uε itself) one gets the same contradiction.
Hence the proof of the proposition is complete. �

3. Proof of Theorem 1.4

This section is concerned about the proof of Theorem 1.4. We are going
to use basically the same strategy as in [18]. Hence in many steps we will
be sketchy and referring to the corresponding arguments in [18]. However,
we mention that, since the underlying manifold has a boundary, we have to
give attention to the possible boundary blow-up points, which was not the
case in [18].

Proof of Theorem 1.4. We divide the proof in five-steps as in [18]. �

Step 1. There exists N ∈ N
∗, N converging points (xi,l), i = 1, . . . , N , N

sequences (μi,l), i = 1, . . . , N , of positive real numbers converging to 0 such
that the following hold:

a)
dg(xi,l, xj,l)

μi,l
−→+∞, i �= j, i, j = 1, . . . , N, and Q̄l(xi,l)μ4

i.le
4ul(xi,l) = 1.

b) There exists C > 0 such that infi=1,...,N dg(xi,l, x)4e4ul(x) ≤ C ∀x ∈
M, ∀l ∈ N.

c) For every i = 1, . . . , N , either



1074 Cheikh Birahim Ndiaye

ci
1)

xi,l −→ x̄i ∈ int(M);

vi,l(x) = ul(expxi,l
(μi,lx)) − ul(xi,l) − 1

4
log(3) −→ V0(x)

:= log
(

324
1622 + |x|2

)

in C1
loc(R

4),

and

lim
R→+∞

lim
l→+∞

∫

Bxi,l
(Rμi,l)

Q̄l(y)e4ul(y) dVg(y) = 8π2,

or
ci
2)

xi,l −→ x̄i ∈ ∂M,

vi,l(x) = ul(expxi,l
(μi,lx)) − ul(xi,l) − 1

4
log(3) −→ V0(x)

:= log
(

324
1622 + |x|2

)

in C1
loc(R

4
+);

and

lim
R→+∞

lim
l→+∞

∫

B+
xi,l

(Rμi,l)
Q̄l(y)e4ul(y) dVg(y) = 4π2.

Proof of Step 1. First of all let xl ∈ M be such that ul(xl) = maxx∈M ul(x),
then using the fact that ul blows up we infer ul(xl) −→ +∞.
Now let μl > 0 be such that Q̄l(xl)μ4

l e
4ul(xl) = 1. Since Q̄l → Q̄0C

1(M),
Q̄0 > 0 and ul(xl) → +∞, we have that μl → 0.

Now suppose xl → x̄ ∈ int(M) and let B0(δμ−1
l ) be the Euclidean ball

of center 0 and radius δμ−1
l , with δ > 0 small fixed . For x ∈ B0(δμ−1

l ), we
set

vl(x) = ul(expxl
(μlx)) − ul(xl) − 1

4
log(3),(3.1)

Q̃l(x) = Ql(expxl
(μlx)),(3.2)

˜̄Ql(x) = Q̄l(expxl
(μlx)),(3.3)

gl(x) =
(
exp∗

xl
g
)
(μlx).(3.4)
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Now from the Green representation formula, we have

ul(x) − ūl

(3.5)

=
∫

M
G(x, y)P 4

g ul(y)dVg(y) + 2
∫

∂M
G(x, y′)P 3

g ul(y′)dSg(y′), ∀x ∈ M,

where G is the Green function of (P 4
g , P 3

g ) (see Lemma 2.3).
Now using Equation (1.7) and differentiating (3.5) with respect to x, we
obtain that for k = 1, 2

|∇kul|g(x) ≤
∫

M
|∇kG(x, y)|gQ̄l(y)e4ul(y) dVg + O(1),

since Ql → Q0 in C1(M) and Tl → T0.
Now let yl ∈ Bxl

(Rμl), R > 0 fixed, by using the same argument as in [18,
formula 43, page 11], we obtain

(3.6)
∫

M
|∇kG(yl, y)|ge4ul(y) dVg(y) = O(μ−k

l ).

Hence we get

(3.7) |∇kvl|g(x) ≤ C.

Furthermore from the definition of vl (see (3.1)), we get

(3.8) vl(x) ≤ vl(0) = −1
4

log(3) ∀x ∈ R
4.

Thus we infer that (vl)l is uniformly bounded in C2(K) for all compact
subsets K of R

4. Hence by the Arzelà–Ascoli theorem, we derive that

(3.9) vl −→ V0 in C1
loc(R

4),

On the other hand, (3.8) and(3.9) imply that

(3.10) V0(x) ≤ V0(0) = −1
4

log(3) ∀x ∈ R
4.

Moreover from (3.7) and (3.9) we have that V0 is Lipschitz.
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On the other hand, using the Green’s representation formula for
(P 4

g , P 3
g ), we obtain that for x ∈ R

4 fixed and for R big enough such that
x ∈ B0(R)

ul(expxl
(μlx)) − ūl =

∫

M
G(expxl

(μlx), y)P 4
g ul(y)dVg(y)

+ 2
∫

∂M
G(expxl

(μlx), y′)P 3
g ul(y′)dSg(y′).(3.11)

Now let us set

Il(x) = 2
∫

Bxl
(Rμl)

(G(expxl
(μlx), y) − G(expxl

(0), y))Q̄l(y)e4ul(y) dVg(y),

IIl(x) = 2
∫

M\Bxl
(Rμl)

(G(expxl
(μlx), y) − G(expxl

(0), y))Q̄l(y)e4ul(y)dVg(y),

IIIl(x) = 2
∫

M
(G(expxl

(μlx), y) − G(expxl
(0), y))Ql(y)dVg(y)

and

IIIIl(x) =
∫

∂M
(G(expxl

(μlx), y′) − G(expxl
(0), y′))Tl(y′)dSg(y′).

Using again the same argument as in [18] (see formula (3.15) to formula
(3.21)), we get

(3.12) vl(x) = Il(x) + IIl(x) − IIIl(x) − IIIIl(x) − 1
4

log(3).

Moreover, following the same methods as in [18](see formula (3.23) to for-
mula (3.32)), we obtain

lim
l

Il(x) =
∫

B0(R)

3
4π2 log

(
|z|

|x − z|

)

e4V0(z) dz,(3.13)

lim sup
l

IIl(x) = oR(1),(3.14)

IIIl(x) = ol(1)(3.15)

and

(3.16) IIIIl(x) = ol(1).

Hence from (3.9), (3.12) to (3.16) by letting l tends to infinity and after R
tends to infinity, we obtain V0 satisfies the following conformally invariant
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integral equation

(3.17) V0(x) =
∫

R4

3
4π2 log

(
|z|

|x − z|

)

e4V0(z) dz − 1
4

log(3).

Now since V0 is Lipschitz then the theory of singular integral operator gives
that V0 ∈ C1(R4).

On the other hand, by using the change of variable y = expxl
(μlx), one

can check that the following holds:

(3.18) lim
l→+∞

∫

Bxl
(Rμl)

Q̄le
4ul dVg = 3

∫

B0(R)
e4V0dx.

Hence (1.10) implies that eV0 ∈ L4(R4).
Furthermore by a classification result by Xu, see [22, Theorem 1.2] for

the solutions of (3.17), we derive that

(3.19) V0(x) = log
(

2λ

λ2 + |x − x0|2

)

for some λ > 0 and x0 ∈ R
4.

Moreover from V0(x) ≤ V0(0) = −1
4 log(3)∀x ∈ R

4, we have that λ = 162 and
x0 = 0, namely

V0(x) = log
(

324
1622 + |x|2

)

.

On the other hand by letting R tend to infinity in (3.18), we obtain

(3.20) lim
R→+∞

lim
l→+∞

∫

Bxl
(Rμl)

Q̄l(y)e4ul(y)dVg(y) = 3
∫

R4

e4V0 dx.

Moreover from a generalized Pohozaev-type identity by Xu [22] (see Theorem
1.1), we get

3
4π2

∫

R4

e4V0(y) dy = 2,

hence using (3.20) we derive that

lim
R→+∞

lim
l→+∞

∫

Bxl
(Rμl)

Q̄l(y)e4ul(y)dVg(y) = 8π2.

Next suppose xl → x̄ ∈ ∂M and let B0
+(δμ−1

l ) be the upper half-euclidean
ball of center 0 and radius δμ−1

l , with δ > 0 small fixed . For x ∈ B0
+(δμ−1

l ),
we consider vl(x), Q̃l(x), ˜̄Ql(x) and gl(x) as in (3.1) to (3.4).
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Repeating the same argument as above, we get vl is uniformly bounded
in C2(K) for every compact set K of R

4
+. Moreover, we obtain

vl −→ V0 in C1
loc(R

4
+),(3.21)

V0(x) ≤ V0(0) = −1
3

log(3) ∀x ∈ R
4
+,

and V0 is Lipschitz.
Now let us define

Il(x) = 2
∫

B+
xl

(Rμl)
(G(expxl

(μlx), y) − G(expxl
(0), y))Q̄l(y)e4ul(y) dVg(y);

IIl(x) = 2
∫

M\B+
xl

(Rμl)
(G(expxl

(μlx), y) − G(expxl
(0), y))Q̄l(y)e4ul(y) dVg(y);

IIIl(x) = 2
∫

M
(G(expxl

(μlx), y) − G(expxl
(0), y))Ql(y)dVg(y);

and

IIIIl(x) =
∫

∂M

(
G(expxl

(μlx), y′) − G(expxl
(0), y′)

)
Tl(y′)dSg(y′).

By still the same argument as above, we obtain

vl(x) = Il(x) + IIl(x) − IIIl(x) − IIIIl(x) − 1
4

log(3).

Moreover, we have that

lim
l

Il(x) =
∫

B0
+(R)

3
4π2

(

log
|z|

|x − z| + log
|z|

|x − z̄|

)

e4V0(z) dz,

lim sup
l

IIl(x) = oR(1),

IIIl(x) = ol(1)

and

IIIIl(x) = ol(1).

Hence letting l tends to infinity and after R tending to infinity, we derive
that V0 satisfies the following integral equation

(3.22) V0(x) =
∫

R
4
+

3
4π2

(

log
|z|

|x − z| + log
|z|

|x − z̄|

)

e4V0(z) dz − 1
4

log(3).
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On the other hand, from (3.22), it is easily seen that

∂V0

∂t
= 0 on ∂R

4
+.

Now using the Alexandrov reflection principle and denoting Ṽ0 the even
reflection of V0 through the plane ∂R

4
+, we obtain Ṽ0 solves the following

conformally invariant integral equation

(3.23) Ṽ0(x) =
∫

R4

3
4π2 log

(
|z|

|x − z|

)

e4Ṽ0(z) dz − 1
4

log(3).

On the other hand, since V0 was Lipschitz, then Ṽ0 is also. Thus using the
theory of singular integral operator, we infer that Ṽ0 is of class C1. Moreover,
using again the change of variable y = expxl

(μlx), we get

(3.24) lim
R→+∞

lim
l→+∞

∫

B+
xl

(Rμl)
Q̄l(y)e4ul(y) dVg(y) = 3

∫

R
4
+

e4V0(x) dx.

So from (1.10) we infer that
∫

R
4
+

e4V0(x) dx < +∞. Thus e4Ṽ0 ∈ L1(R4). Now
arguing as above, we obtain

Ṽ0(x) = log
(

324
1622 + |x|2

)

,

and

(3.25)
3

4π2

∫

R4

e4Ṽ0(y) dy = 2.

Hence from the fact the Ṽ0 is the even reflection of V0 through ∂R
4
+, (3.24)

and (3.25), we get

lim
R→+∞

lim
l→+∞

∫

B+
xl

(Rμl)
Q̄l(y)e4ul(y) dVg(y) = 4π2.

Now for k ≥ 1, we say that (Hk) holds if there exists k converging points
(xi,l)li = 1, . . . , k, k sequences (μi,l)i = 1, . . . , k of positive real numbers con-
verging to 0 such that the following holds:
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(A1
k)

dg(xi,l, xj,l)
μi,l

−→ +∞, i �= j, i, j = 1, . . . , k, and

× Q̄l(xi,l)μ4
i.le

4ul(xi,l) = 1.

(A2
k)

For every i = 1, . . . , k either
(A2,i

k,1)

xi,l −→ x̄i ∈ int(M),

vi,l(x) = ul(expxi,l
(μi,lx)) − ul(xi,l) − 1

4
log(3) −→ V0(x)

:= log
(

324
1622 + |x|2

)

in C1
loc(R

4)

and

lim
R→+∞

lim
l→+∞

∫

Bxi,l
(Rμi,l)

Q̄l(y)e4ul(y) = 8π2

or
(A2,i

k,2)

xi,l −→ x̄i ∈ ∂M ;

vi,l(x) = ul(expxi,l
(μi,lx)) − ul(xi,l) − 1

4
log(3) −→ V0(x)

:= log
(

324
1622 + |x|2

)

in C1
loc(R

4
+)

and

lim
R→+∞

lim
l→+∞

∫

B+
xi,l

(Rμi,l)
Q̄l(y)e4ul(y) = 4π2.

Clearly, by the above arguments (H1) holds. We now let k ≥ 1 and assume
that (Hk) holds. We also assume that

(3.26) sup
M

Rk,l(x)4e4ul(x) −→ +∞ as l −→ +∞,

Now using the same argument as in [15, 18] one can see easily that (Hk+1).
Hence since (A1

k) and (A2
k) of Hk imply that

∫

M
Q̄(y)e4ul(y) dVg(y) ≥ (2k1 + k2)4π2 + ol(1),
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with k1, k2 ∈ N and 2k1 + k2 = k. Thus we easily get, thanks to (1.10), that
there exists a maximal k, 1 ≤ k ≤ 1

4π2 (
∫

M Q0(y)dVg(y) +
∫

∂M T0(y′)dSg(y′)),
such that (Hk) holds. Arriving to this maximal k, we get that (3.26) cannot
hold. Hence setting N = k, the proof of Step 1 is done. �

Step 2. There exists a constant C > 0 such that

(3.27) Rl(x)|∇ul|g(x) ≤ C ∀x ∈ M and ∀l ∈ N,

where
Rl(x) = min

i=1,...,N
dg(xi,l, x),

and the xi,l’s are as in Step 1.

Proof of Step 2. First of all using the Green representation formula for (P 4
g ,

P 3
g ), see Lemma 2.3, we obtain

ul(x) − ūl =
∫

M
G(x, y)P 4

g ul(y)dVg(y) + 2
∫

∂M
G(x, y′)P 3

g ul(y′)dSg(y′).

Now using the BVP (1.4), we get

ul(x) − ūl = 2
∫

M
G(x, y)(Q̄l(y)e4ul(y) − Ql)dVg(y)

− 2
∫

∂M
G(x, y′)Tl(y′)ul(y′)dSg(y′).(3.28)

Thus differentiating with respect to x (3.28) and using the fact that Ql →
Q0, Q̄l → Q̄0 and Tl → T0 in C1, we have that for xl ∈ M

|∇ul(xl)|g = O

(∫

M

1
dg(xl, y)

e4ul(y) dVg(y)
)

+ O(1).

Hence at this stage following the same argument as in the proof of Theorem
1.3, Step 2 in [18], we obtain

∫

M

1
(dg(xl, y))

e4ul(y) dVg(y) = O

(
1

Rl(xl)

)

;

hence since xl is arbitrary, then the proof of Step 2 is complete. �
Step 3. Set

Ri,l = min
i	=j

dg(xi,l, xj,l);

we have that
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1) There exists a constant C > 0 such that ∀r ∈ (0, Ri,l]∀s ∈ ( r
4 , r] if x̄i ∈

int(M), then

|ul(expxi,l
(rx)) − ul(expxi,l

(sy))| ≤ C

for all x, y ∈ R
4 such that |x|, |y| ≤ 3

2
,(3.29)

and if x̄i ∈ ∂M , then

|ul(expxi,l
(rx)) − ul(expxi,l

(sy))| ≤ C

for all x, y ∈ R
4
+ such that |x|, |y| ≤ 3

2
.(3.30)

2) If di,l is such that 0 < di,l ≤ Ri,l

2 and di,l

μi,l
→ +∞, then we have that if

x̄i ∈ int(M) and

(3.31)
∫

Bxi,l
(di,l)

Q̄l(y)e4ul(y) dVg(y) = 8π2 + ol(1),

then
∫

Bxi,l
(2di,l)

Q̄l(y)e4ul(y)dVg(y) = 8π2 + ol(1).

If x̄i ∈ ∂M and

(3.32)
∫

B+
xi,l

(di,l)
Q̄l(y)e4ul(y) dVg(y) = 4π2 + ol(1),

then
∫

B+
xi,l

(2di,l)
Q̄l(y)e4ul(y) dVg(y) = 4π2 + ol(1).

3) Let R be large and fixed. If di,l > 0 is such that di,l → 0, di,l

μi,l
→ +∞,

di,l < Ri,l

4R , then if x̄i ∈ int(M) and

∫

Bxi,l
(di,l/2R)

Q̄l(y)e4ul(y) dVg(y) = 8π2 + ol(1),

then by setting

ũl(x) = ul(expxi,l
(di,lx)), x ∈ A2R,
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where A2R = B0(2R) \ B0( 1
2R), we have that

||d4
i,le

4ũl ||Cα(AR) −→ 0 as l −→ +∞,

for some α ∈ (0, 1), where AR = B0(R) \ B0( 1
R); and if x̄i ∈ ∂M and

∫

B+
xi,l

(di,l/2R)
Q̄l(y)e4ul(y) dVg(y) = 4π2 + ol(1),

then by setting

ũl(x) = ul(expxi,l
(di,lx)), x ∈ A+

2R,

where A+
2R = B0

+(2R) \ B0
+( 1

2R), we have that

||d4
i,le

4ũl ||Cα(A+
R) −→ 0 as l −→ +∞,

for some α ∈ (0, 1), where A+
R = B0

+(R) \ B0
+( 1

R).

Proof of Step 3. We have that property 1 follows immediately from Step 2
and the definition of Ri,l. In fact, we can join rx to sy by a curve whose
length is bounded by a constant proportional to r.

Now let us show point 2. First suppose x̄i ∈ int(M). From di,l

μi,l
→ +∞,

point c of Step 1 and (3.31), we have that

(3.33)
∫

Bxi,l
(di,l)\Bxi,l

(di,l/2)
e4ul(y) dVg(y) = ol(1).

�

Hence from (3.29), by taking s = r
2 and r = 2di,l, we obtain that

∫

Bxi,l
(2di,l)\Bxi,l

(di,l)
e4ul(y) dVg(y) ≤ C

∫

Bxi,l
(di,l)\Bxi,l

(di,l/2)
e4ul(y) dVg(y).

Thus we get

∫

Bxi,l
(2di,l)\Bxi,l

(di,l)
e4ul(y) dVg(y) = ol(1).
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Next assume x̄i ∈ ∂M . Thanks to di,l

μi,l
−→ +∞, point c of Step 1 and (3.32),

we have that

∫

B+
xi,l

(di,l)\B+
xi,l

(di,l/2)
e4ul(y) dVg(y) = ol(1).(3.34)

Thus using (3.30), with s = r
2 and r = 2di,l, we get

∫

B+
xi,l

(2di,l)\B+
xi,l

(di,l)
e4ul(y) dVg(y) ≤ C

∫

B+
xi,l

(di,l)\B+
xi,l

(di,l/2)
e4ul(y) dVg(y).

Hence we arrive

∫

B+
xi,l

(2di,l)\B+
xi,l

(di,l)
e4ul(y) dVg(y) = ol(1).

So the proof of point 2 is done. On the other hand, by following in a
straightforward way the proof of point 3 in Step 3 of Theorem 1.3 in [18],
one gets easily point 3. Hence the proof of Step 3 is complete.

Step 4. There exists a positive constant C independent of l and i such that
if x̄i ∈ int(M), then

∫

Bxi,l
(Ri,l/C)

Q̄l(y)e4ul(y) dVg(y) = 8π2 + ol(1),

and if x̄i ∈ ∂M , then

∫

B+
xi,l

(Ri,l/C)
Q̄l(y)e4ul(y) dVg(y) = 4π2 + ol(1).

Proof of Step 4. The proof is an adaptation of the arguments in Step 4 [18],
but for the readers convenience we will make it.

First of all fix 1
4 < ν < 1

2 , and for i = 1, . . . , N if x̄i ∈ int(M), then set

ūi,l(r) = Volg(∂Bxi,l
(r))−1

∫

∂Bxi,l
(r)

ul(x)dσg(x) ∀0 ≤ r < injg(M);

ϕi,l(r) = r4νexp(ūi,l(r)) ∀0 ≤ r < injg(M);
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if x̄i ∈ ∂M , then set

ūi,l(r) = Volg(∂B+
xi,l

(r))−1
∫

∂B+
xi,l

(r)
ul(x)dσg(x) ∀0 ≤ r < injg(M);

ϕi,l(r) = r4νexp(ūi,l(r)) ∀0 ≤ r < injg(M).

By assumption c or d of Step 1, we have that there exists Rν such that

∀R ≥ Rν , ϕ
′

i,l(Rμi,l) < 0 ∀l sufficiently large (depending on R).(3.35)

Now we define ri,l by

ri,l = sup
{

Rνμi,l ≤ r ≤ Ri,l

2
s.t. ϕ

′

i,l(·) < 0 in [Rν , r)
}

.(3.36)

Hence (3.35) implies that

ri,l

μi,l
−→ +∞ as l −→ +∞.(3.37)

Now to prove the step, it suffices to show that Ri,l

ri,l
�−→ +∞ as l −→ +∞.

Indeed if Ri,l

ri,l
�−→ +∞, we have that there exists a positive constant C

such that

(3.38)
Ri,l

C
≤ ri,l.

On the other hand, from the Harnack-type inequality (3.29) or (3.30), point
c or d of Step 1 and (3.36), we have that for any η > 0, there exists Rη > 0
such that for any R > Rη, we have that

dg(x, xi,l)4νe4ul ≤ ημ
4(ν−1)
i,l ∀x ∈ (B+

xi,l
(ri,l) \ B+

xi,l
(Rμi,l)).(3.39)

Since ri,l

μi,l
−→ +∞, see (3.37), and Ri,l

2 ≥ ri,l, see (3.36), we have Ri,l

Cμi,l
−→

+∞, hence point c or d of Step 1, (3.39) and (3.38) imply that if x̄i ∈ int(M),
then ∫

Bxi,l
(Ri,l/C)

Q̄le
4ul = 8π2 + ol(1),

and if x̄i ∈ ∂M , then
∫

B+
xi,l

(Ri,l/C)
Q̄le

4ul = 4π2 + ol(1).
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On the other hand, by continuity and by the definition of ri,l, it follows that

ϕ
′

i,l(ri,l) = 0.(3.40)

Let us assume by contradiction that Ri,l

ri,l
−→ +∞. We will show next that

ϕ
′

i,l(ri,l) < 0 for l large, contradicting the above equality (3.40). To do so,
we will study ūi,l(·).

First let us remark that since M is compact, then Ri,l

ri,l
−→ +∞ implies

that ri,l −→ 0.
From Green’s representation formula for ul, we have the following

equation:

ul(x) =
∫

M
G(x, y)P 4

g ul(y) dVg(y) + ūl + 2
∫

M
G(x, y)P 3

g ul(y′)dSg(y′)

=
∫

M
G(x, y)Q̄l(y)e4ul(y)dVg(y) + ūl −

∫

M
G(x, y)Ql(y) dVg(y)

− 2
∫

∂M
G(x, y′)P 3

g ul(y′)dSg(y′).

Hence

ūi,l(r) = 2(Volg(∂B+
xi,l

(r)))−1
∫

∂B+
xi,l

(r)

∫

M
G(x, y)Q̄l(y)e4ul(y) dVg(y)dσg(x)

+ ūl − 2(Volg(∂B+
xi,l

(r)))−1
∫

∂B+
xi,l

(r)

∫

M
G(x, y)Ql(y)dVg(y)dσg(x)

− (Volg(∂B+
xi,l

(r)))−1
∫

∂B+
xi,l

(r)

∫

∂M
G(x, y)Tl(y)dSg(y)dσg(x).

Setting

Fi,l(r) = 2(Volg(∂B+
xi,l

(r)))−1
∫

∂B+
xi,l

(r)

∫

M
G(x, y)Ql(y)dVg(y)dσg(x)

+ (Volg(∂B+
xi,l

(r))−1
∫

∂B+
xi,l

(r)

∫

∂M
G(x, y)Tl(y)dSg(y)dσg(x),

we obtain

ūi,l = 2(Volg(∂B+
xi,l

(r)))−1
∫

∂B+
xi,l

(r)

∫

M
G(x, y)Q̄l(y)e4ul(y) dVg(y)dσg(x)

+ ūl − Fi,l(r).
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Since Ql −→ Q0 in C1(M) and Tl −→ T0 in C1(∂M), then we have that Fi,l

is of class C1 for all i, l, and moreover,

|F ′

i,l(r)| ≤ C, ∀r ∈
(

0,
injg(M)

4

)

.(3.41)

Now let
inj

g
(M)
4 < A <

inj
g
(M)
2 be fixed: we have that

∫

M
G(x, y)Q̄l(y)e4ul(y) dVg(y) =

∫

B+
xi,l

(A)
G(x, y)Q̄le

4ul(y) dVg(y)

+
∫

M\Bxi,l
(A)

G(x, y)Q̄le
4ul(y) dVg(y).

So

ūi,l(r) = 2Volg(∂B+
xi,l

(r)))−1
∫

∂B+
xi,l

(r)

∫

B+
xi,l

(A)
(G(x, y) − K(x, y))

× Q̄l(y)e4ul(y)dVg(y)dσg(x) + ūl − Fi,l(r) + Hi,l(r);

with

Hi,l(r) = 2Volg(∂B+
xi,l

(r))−1
∫

∂B+
xi,l

(r)

∫

M\Bxi,l
(A)

G(x, y)

× Q̄l(y)e4ul(y) dVg(y)dσg(x) + 2Volg(∂B+
xi,l

(r) ∩ M))−1

×
∫

∂B+
xi,l

(r)

∫

B+
xi,l

(A)
K(x, y)Q̄l(y)e4ul(y) dVg(y)dσg(x).

Since G is smooth out of Diag(M), then for all i, l, Hi,l ∈ C1
(

0,
inj

g
(M)
4

)

,

and moreover,

|H ′

i,l(r)| ≤ C ∀r ∈
(

0,
injg(M)

4

)

.(3.42)

To continue the proof of the step we divide it into two cases:

Case 1. x̄i ∈ int(M)
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First of all using the change of variable x = rθ and y = sθ̃, we obtain

ūi,l = (Vol(S3))−1
∫

S3

∫

S3

∫ A

0
f(r, θ)

(
G(rθ, sθ̃) − K(rθ, sθ̃)

)

× Q̄(sθ̃)e4ul(sθ̃)s3f(s, θ̃)ds dθ̃ dθ + ūl − Fi,l(r) + Hi,l(r).

So differentiating with respect to r, we have that

ū
′

i,l(r) = (Vol(S3))−1
∫

S3

∫

S3

∫ A

0

∂

∂r

(
f(r, θ)(G(rθ, sθ̃) − K(rθ, sθ̃))

)

× Q̄(sθ̃)e4ul(sθ̃)s3f(s, θ̃)ds dθ̃ dθ − F
′

i,l(r) + H
′

i,l(r).

From the asymptotics of G(·, ·) (see Lemma 2.3) and the fact that f is
bounded in C2, it follows that

(Vol(S3))−1
∫

S3

∫

S3

(
G(rθ, sθ̃) − K(rθ, sθ̃)

)
dθ̃ dθ

= f̂(r, s) log
(

1
|r − s|

)

+ H(r, s),

with H(·, ·) of class Cα and f̂(·, ·) of class C2.
Hence setting

G̃(r, s) = (Vol(S3))−1
∫

S3

∫

S3

∂

∂r

(
f(r, θ)(G(rθ, sθ̃) − K(rθ, sθ̃))

)

× Q̄(sθ̃)f(s, θ̃)dθ̃ dθ,

we obtain

G̃(r, s) = f̂(r, s)
1

r − s
+ H̃(r, s),(3.43)

where H̃(r, ·) is integrable for every r fixed.
On the other hand, using the Harnack-type inequality (see (3.29)), we

have that

ul(sθ̃) ≤ ūi,l(s) + C uniformly in θ̃,

hence we obtain

ūi,l(r) ≤ C

∫ A

0
s3G̃(r, s)enūi,l(s) ds − F

′

i,l(r) + H
′

i,l(r).
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Now we study
∫ A
0 s3G̃(r, s)e4ūi,l(s) ds. To do so, let R be so large such that

ri,l ≤ Ri,l

4R (this is possible because of the assumption of contradiction). Now
let us split the integral in the following way:

∫ A

0
s3G̃(r, s)enūi,l(s) ds

=
∫ ri,l/R

0
s3G̃(r, s)e4ūi,l(s) ds +

∫ ri,lR

ri,l/R
s3G̃(r, s)e4ūi,l(s) ds

+
∫ Ri,l/C

ri,lR
s3G̃(r, s)e4ūi,l(s) ds +

∫ A

Ri,l/C
s3G̃(r, s)enūi,l(s) ds.

Using the fact that we are at the scale ri,l

R , then c of Step 1 implies that
we have the following estimates for the first term of the equality above with
r = ri,l,

∫ ri,l/R

0
s3G̃(ri,l, s)e4ūi,l(s) ds = − 2

ri,l
+ ol(1)

1
ri,l

.

On the other hand, using assumption b of Step 1, we obtain the following
estimate for the third term of the equality above with r = ri,l

∫ Ri,l/C

ri,lR
s3G̃(ri,l, s)e4ūi,l(s) ds = ol(1)

1
ri,l

.

We have also using assumption b of Step 1 and the fact that Ri,l

ri,l
−→ +∞

the following estimate for the fourth still with r = ri,l,

∫ A

Ri,l/C
s3G̃(ri,l, s)e4ūi,l(s) ds = ol(1)

1
ri,l

.

Now let us estimate the second term. For this, we will use point 3 of Step
3. First we recall that ri,l and R verify the assumption of the latter. Hence
the following holds:

||r4
i,le

4ũl ||Cα(AR) = ol(1)(3.44)

for the definition of AR and ũl, see the statement of point 3 of Step 3 where
di,l is replaced by ri,l. On the other hand, performing a change of variable
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say ri,ly = s we obtain the following equality:

∫ ri,lR

ri,l/R
s3G̃(r, s)e4ūi,l(s) ds =

∫ R

1/R
y3Ĝi,l(y)r4

i,le
4ûi,l(y) dy,(3.45)

where

ûi,l(y) = ūi,l(ri,ly),

Ĝi,l(y) = G̃(ri,l, ri,ly).

From the asymptotics of G̃(·, ·) (see (3.43)) we deduce the following one for
Ĝi,l(·, ·),

Ĝi,l(y) = f̂i,l(y)
1

ri,l(1 − y)
+ Ĥi,l(y),(3.46)

where Ĥi,l(·) is integrable and f̂i,l(·) of class C2.
Hence by using (3.45) and (3.53), we obtain the following inequality:

∫ ri,lR

ri,l/R
s3G̃(ri,l, s)e4ūi,l(s) ds

=
1

ri,l

∫ R

1/R
y3

(
f̂i,l(y)
(1 − y)

+ ri,lĤi,l(y)

)

r4
i,le

4ûi,l(y) dy.(3.47)

Moreover, using the Harnack-type inequality for ul (see (3.29) and (3.44)),
we have that holds

||r4
i,le

4ûi,l ||Cα(](1/R),R[) = ol(1).(3.48)

So using techniques of the theory of singular integral operators as in Lemma
4.4 [17] to have Holder estimates, we obtain

∫ R

1/R
y3

(
f̂i,l(y)
(1 − y)

+ ri,lĤi,l(y)

)

r4
i,le

4ûi,l(y) dy = ol(1);

hence with (3.45) we deduce that

∫ ri,lR

ri,l/R
s3G̃(r, s)e4ūi,l(s) ds = ol

(
1

ri,l

)

.
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So we obtain

ū
′

i,l(ri,l) ≤ −2C
1

ri,l
+ ol(1)

1
ri,l

− F
′

i,l(ri,l) + H
′

i,l(r).(3.49)

Case 2. x̄i ∈ ∂M
We will follow the same strategy up to some trivial adaptations. First

using the change of variable x = rθ and y = sθ̃, we obtain

ūi,l = (Vol(S3
+))−1

∫

S3
+

∫

S3
+

∫ A

0
f(r, θ)

(
G(rθ, sθ̃) − K(rθ, sθ̃)

)
Q̄(sθ̃)e4ul(sθ̃)

× s3f(s, θ̃)ds dθ̃ dθ + ūl − Fi,l(r) + Hi,l(r).

So differentiating with respect to r, we have that

ū
′

i,l(r) = (Vol(S3
+))−1

∫

S3
+

∫

S3
+

∫ A

0

∂

∂r

(
f(r, θ)(G(rθ, sθ̃) − K(rθ, sθ̃))

)

× Q̄(sθ̃)e4ul(sθ̃)s3f(s, θ̃)ds dθ̃ dθ − F
′

i,l(r) + H
′

i,l(r).

From the asymptotics of G(·, ·) (see Lemma 2.3) and the fact that f is
bounded in C2, it follows that

(Vol(S3))−1
∫

S3
+

∫

S3
+

(
G(rθ, sθ̃) − K(rθ, sθ̃)

)
dθ̃ dθ

= f̂(r, s) log
(

1
|r − s|

)

+ H(r, s),

with H(·, ·) of class Cα and f̂(·, ·) of class C2.
Hence setting

G̃(r, s) = (Vol(S3
+))−1

∫

S3
+

∫

S3
+

∂

∂r

(
f(r, θ)(G(rθ, sθ̃) − K(rθ, sθ̃))

)

× Q̄(sθ̃)f(s, θ̃)dθ̃ dθ,

we obtain

G̃(r, s) = f̂(r, s)
1

r − s
+ H̃(r, s),(3.50)

where H̃(r, ·) is integrable for every r fixed.
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On the other hand, using the Harnack-type inequality (see (3.30)), we
have that

ul(sθ̃) ≤ ūi,l(s) + C uniformly in θ̃;

hence we obtain

ūi,l(r) ≤ C

∫ A

0
s3G̃(r, s)enūi,l(s)ds − F

′

i,l(r) + H
′

i,l(r).

Now we study
∫ A
0 s3G̃(r, s)e4ūi,l(s) ds. To do so, let R be so large such that

ri,l ≤ Ri,l

4R (this is possible because of the assumption of contradiction). Now
let us split the integral in the following way:

∫ A

0
s3G̃(r, s)e4ūi,l(s) ds

=
∫ ri,l/R

0
s3G̃(r, s)e4ūi,l(s) ds +

∫ ri,lR

ri,l/R
s3G̃(r, s)e4ūi,l(s) ds

+
∫ Ri,l/C

ri,lR
s3G̃(r, s)e4ūi,l(s) ds +

∫ A

Ri,l/C
s3G̃(r, s)enūi,l(s) ds.

Using the fact that we are at the scale ri,l

R , then d of Step 1 implies that
we have the following estimates for the first term of the equality above with
r = ri,l:

∫ ri,l/R

0
s3G̃(ri,l, s)e4ūi,l(s) ds = − 2

ri,l
+ ol(1)

1
ri,l

.

On the other hand, using assumption b of Step 1 we obtain the following
estimates for the third term of the equality above with r = ri,l:

∫ Ri,l/C

ri,lR
s3G̃(ri,l, s)e4ūi,l(s) ds = ol(1)

1
ri,l

.

We have also using assumption d of Step 1 and the fact that Ri,l

ri,l
−→ +∞

the following estimate for the fourth still with r = ri,l:
∫ A

Ri,l/C
s3G̃(ri,l, s)e4ūi,l(s) ds = ol(1)

1
ri,l

.

Now let us estimate the second term. For this, we will use point 3 of Step
3. First we recall that ri,l and R verify the assumption of the latter. Hence
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the following holds

||r4
i,le

4ũl ||Cα(AR) = ol(1)(3.51)

for the definition of AR and ũl see statement of the point 3 of Step 3 where
di,l is replaced by ri,l. On the other hand, performing a change of variable
say ri,ly = s, we obtain the following equality:

∫ ri,lR

ri,l/R
s3G̃(r, s)e4ūi,l(s) ds =

∫ R

1/R
y3Ĝi,l(y)r4

i,le
4ûi,l(y) dy,(3.52)

where

ûi,l(y) = ūi,l(ri,ly),

Ĝi,l(y) = G̃(ri,l, ri,ly).

From the asymptotics of G̃(·, ·) (see (3.50)) we deduce the following one for
Ĝi,l(·, ·).

Ĝi,l(y) = f̂i,l(y)
1

ri,l(1 − y)
+ Ĥi,l(y),(3.53)

where Ĥi,l(·) is integrable and f̂i,l(·) of class C2.
Hence by using (3.52) and (3.53) we obtain the following inequality:

∫ ri,lR

ri,l/R
s3G̃(ri,l, s)e4ūi,l(s) ds

=
1

ri,l

∫ R

1/R
y3

(
f̂i,l(y)
(1 − y)

+ ri,lĤi,l(y)

)

r4
i,le

4ûi,l(y) dy.(3.54)

Moreover, using the Harnack-type inequality for ul (see (3.30) and (3.51)),
we have that

||r4
i,le

4ûi,l ||Cα(](1/R),R[) = ol(1).(3.55)

So using techniques of the theory of singular integral operators as in Lemma
4.4 [17] to have Holder estimates, we obtain

∫ R

1/R
y3

(
f̂i,l(y)
(1 − y)

+ ri,lĤi,l(y)

)

r4
i,le

4ûi,l(y) dy = ol(1);
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hence with (3.54) we deduce that

∫ ri,lR

ri,l/R
s3G̃(r, s)e4ūi,l(s) ds = ol

(
1

ri,l

)

.

So we obtain

ū
′

i,l(ri,l) ≤ −2C
1

ri,l
+ ol(1)

1
ri,l

− F
′

i,l(ri,l) + H
′

i,l(r).(3.56)

Hence in both cases we get

(3.57) ū
′

i,l(ri,l) ≤ −2C
1

ri,l
+ ol(1)

1
ri,l

− F
′

i,l(ri,l) + H
′

i,l(r).

Now let compute ϕ
′

i,l(ri,l). From straightforward computations, we have

ϕ
′

i,l(ri,l) = (ri,l)4ν−1exp(ūi,l(ri,l))
(
4ν + ri,lū

′

i,l(ri,l)
)

.

So using (3.56) we arrive to the following inequality:

ϕ
′

i,l(ri,l)

≤ (ri,l)4ν−1exp(ūi,l(ri,l)
(
4ν − 2C + ol(1) − ri,lF

′

i,l(ri,l) + ri,lH
′

i,l(ri,l)
)

;

so ν < 1
2 implies 4ν − 2C + ol(1) < 0 for l sufficiently large.

Thus since F
′

i,l and H
′

i,l are bounded in
(

0,
inj

g
(M)
4

)

uniformly in l and

ri,l −→ 0, we have that for l big enough

ϕ
′

i,l(ri,l) < 0;

hence we reach the desired contradiction and conclude the proof of the step.
�

Step 5 (Proof of Theorem 1.4). We show first the following estimate
∫

M\∪i=N
i=1 Bxi,l

(Ri,l/C)
e4ul(y) dVg(y) = ol(1).

For this, we first start by proving

ūl −→ −∞ as l −→ +∞.(3.58)
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In fact, using Green’s representation formula for ul (see Lemma 2.3), we
have that for every x ∈ M

ul(x) = ūl + 2
∫

M
G(x, y)

(
Q̄(y)e4ul(y) − Ql(y)

)
dVg(y)

+ −
∫

M
G(x, y′)Tl(y′)dSg(y′)

≥ ūl − C + 2
∫

M
G(x, y)Q̄(y)e4ul(y)dVg(y).

By assumption c or d of Step 1 we have given any ε > 0, there exists Rε

such that for l sufficiently large if x̄i ∈ int(M), then
∫

Bx1,l
(Rεμ1,l)

Q̄l(y)e4ul(y) dVg(y) ≥ 8π2 − ε

32π2

and if x̄i ∈ ∂M , then
∫

B+
x1,l

(Rεμ1,l)
Q̄l(y)e4ul(y) dVg(y) ≥ 4π2 − ε

16π2 .

Hence the last three formulas and the asymptotics of Green’s function of
(P 4

g , P 3
g ) imply that if x̄1 ∈ int(M), then

e4ul(x) ≥ C−1e4ūl
1

|x − x1,l|8−ε
for |x − x1,l| ≥ 2Rεμ1,l for l large,

and if x̄1 ∈ ∂M , then

e4ul(x) ≥ C−1e4ūl
1

|x − x1,l|8−ε
for |x − x1,l| ≥ 2Rεμ1,l for l large.

From this it follows that
∫

M
e4ul(y) dVg(y) ≥

∫

(B+
x1,l

(injg(M))\B+
x1,l

(2Rεμ1,l))
e4ul(y) dVg(y)

≥ C−1e4ūl

∫ inj
g
(M)

2Rεμ1,l

sε−(5) ds ≥ C−1e4ūl (2Rεμ1,l)
ε−4 .

So if ε is small enough, we have from (1.10) that

ūl −→ −∞,

hence we are done.
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Now by assumption b of Step 1, we can cover M \ ∪i=N
i=1 Bxi,l

(Ri,l

C ) with
a finite number of balls Byk

(rk) such that for any k there holds

∫

B+
yk

(2rk)
Q̄le

4ul(y) dVg(y) ≤ 4π2.

Now set Bk = Byk
(2rk) and B̃k = Byk

(rk), so using again the Green repre-
sentation formula for ul we have ∀x ∈ B̃k

ul(x) = ūl + 2
∫

M
G(x, y)Q̄le

4ul(y) dVg(y) −
∫

M
G(x, y)Ql(y)dVg(y)

−
∫

∂M
G(x, y′)Tl(y′)dSg(y′),

hence

ul(x) ≤ ūl + C + 2
∫

M
G(x, y)Q̄le

4ul(y) dVg(y)

= ūl + C + 2
∫

Bk

G(x, y)Q̄le
4ul(y) dVg(y)

+ 2
∫

M\Bk

G(x, y)Q̄le
4ul(y) dVg(y).

So since G is smooth out of the diagonal, we have that

ul(x) ≤ ūl + C + 2
∫

Bk

G(x, y)Q̄l(y)enul(y) dVg(y).

Now using Jensen’s inequality, we obtain

exp
(∫

Bk

G(x, y)Q̄le
4ul(y) dVg(y)

)

≤
∫

M
exp
(
||Q̄e4ulχBk

||L1(M)|G(x, y)|
) Q̄l(y)e4ul(y)χBk

(y)
||Q̄e4ulχBk

||L1(M)
dVg(y).

Hence using the Fubini theorem, we have

∫

B̃k

e4ul(y)dvg(x) ≤ Ce4ūl sup
y∈M,k

∫

M

(
1

dg(x, y)

)1/2π2||Q̄e4ulχBk
||L1(M)

dVg(x).
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So from
∫

Bk
Q̄l(y)e4ul(y) dVg(y) ≤ 4π2 and (3.58), we have that

∫

B̃k

e4ul(y) dVg(y) = ol(1) ∀ k.

Hence
∫

M\∪i=N
i=1 Bxi,l

(Ri,l/C)
e4ul(y) dVg(y) = ol(1).

So since Bxi,l
(Ri,l

C ) are disjoint, then Step 4 implies that

∫

M
Q̄l(y)e4ul(y) dVg(y) = 4Nπ2 + ol(1),

hence (1.10) implies that

∫

M
Q0(y)dVg(y) +

∫

∂M
T0(y′)dSg(y′) = 4Nπ2,

ending the proof of Theorem 1.4. �

4. Proof of Theorem 1.1

This section deals with the proof of Theorem 1.1. It is divided into four
subsections. The first one is concerned with an improvement of the Moser–
Trudinger-type inequality (see Proposition 2.7) and its corollaries. The sec-
ond one is about the existence of a non-trivial global projection from some
negative sublevels of II onto (M∂)k (for the definition, see Section 2, for-
mula 2.2). The third one deals with the construction of a map from (M∂)k

into suitable negative sublevels of II. The last one describes the min–max
scheme.

4.1. Improved Moser–Trudinger inequality

In this subsection, we give an improvement of the Moser–Trudinger-type
inequality, see Proposition 2.7. Afterwards, we state a lemma which gives
some sufficient conditions for the improvement to hold (see (4.13) to (4.16)).
By these results, we derive a relation between the number of possible interior
and boundary concentration points for e4u present at the same time with k
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given as in (1.6) where u ∈ H∂/∂n is an arbitrary function for which II(u)
attains large negative values (see Lemma 4.3). Finally from these results,
we derive a corollary which gives the distance of e4u (for some functions u
suitably normalized) from (M∂)k.

As said in the introduction of the subsection, we start by the follow-
ing Lemma giving an improvement of the Moser–Trudinger-type inequality
(Proposition 2.7).

Lemma 4.1. For a fixed l1, l2 ∈ N, l1 + l2 �= 0 and δ > 0, let S1 · · ·Sl1,
Ω1 · · ·Ωl2 be subsets of M satisfying Si ⊂⊂ Mδ, dist(Si, Sj) ≥ δ0 for i �= j,
dist(Ωi, Ωj) ≥ δ0, Ωi ∩ ∂M �= ∅, Ω̄i ⊂⊂ ∂M × [0, δ] and let γ0 ∈ (0, 1

l1+l2
).

Then, for any ε̄ > 0, there exists a constant C = C(ε̄, δ0, γ0, l1, l2, M, δ)
such that the following holds:

log
∫

M
e4(u−ū) ≤ C +

1
4π2

(
1

2l1 + l2 − ε̄

)
〈
P 4,3

g u, u
〉

L2(M) ,

for all the functions u ∈ H∂/∂n satisfying

(4.1)

∫

Si
e4u dV g

∫

M e4u dV g
≥ γ0, i ∈ {1, . . . , l1},

and

(4.2)

∫

Ωi
e4u dV g

∫

M e4u dV g
≥ γ0, i ∈ {1, . . . , l2}.

Proof. We modify the argument in [4] and [14]. First of all we can assume
without loss of generality that ū = 0. On the other hand, by the properties
verified by the sets Si and Ωi we have that there exists

Nδ0,δ ⊂ Mclosed submanifold of dimension 4,∪Si ⊂⊂ Nδ0,δ ⊂ int(M),

∪Ωi ⊂⊂ M \ Nδ0,δ.
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We can find l1 + l2 functions g1, . . . , gl1 and h1, . . . , hl2 such that

(4.3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi(x) ∈ [0, 1] for every x ∈ M, i = 1, . . . , l1,

gi(x) = 1 for x ∈ Si, i = 1, . . . , l1,

gi(x) = 0 if dist(x, Si) ≥ δ0

4
, i = 1, . . . , l1,

supp(gi) ⊂ Nδ0,δ

||gi||C4(M),≤ Cδ0,δ for i = 1, . . . , l1,

l1∑

i=1

gi = 1 on Nδ0,δ

and

(4.4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hi(x) ∈ [0, 1] for every x ∈ M, i = 1, . . . , l2,

hi(x) = 1 for x ∈ Ωi, i = 1, . . . , l2,

hi(x) = 0 if dist(x,Ωi) ≥ δ0

4
, i = 1, . . . , l2,

||hi||C4(M),≤ Cδ0 for i = 1, . . . , l2,

l2∑

i=1

hi = 1 on M \ Nδ0,δ,

where Cδ0,δ is a positive constant depending only on δ0 and δ. Moreover, we
can choose the functions gi and hi such that they have (mutually) disjoint
supports.

We remark that the submanifold Nδ0,δ depends only on δ0 and δ. But
since in our analysis only its volume is involved, when we apply the Moser–
Trudinger inequality to giu2, see (4.9), then (thanks to Remark 2.1) we can
omit the dependence to δ0 and δ.

Using the Leibniz rule, Schwartz inequality and interpolation, we obtain
that for every ε > 0 there exists Cε,δ0,δ (depending only on ε, δ and δ0) such
that ∀v ∈ H2(M), for any i = 1, . . . , l1 and j = 1, . . . , l2 there holds
(4.5)
〈
P 4,3

g giv, giv
〉

≤
∫

M
g2
i (P

4,3
g v, v) dVg + ε

〈
P 4,3

g v, v
〉

L2(M) + Cε,δ0,δ

∫

M
v2 dVg

and
(4.6)
〈
P 4,3

g hjv, hjv
〉

≤
∫

M
h2

j (P
4
g v, v)dVg + ε

〈
P 4,3

g v, v
〉

L2(M) + Cε,δ0,δ

∫

M
v2 dVg.
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Next we decompose u in Fourier mode, namely we set u = u1 + u2 with
u1 ∈ L∞(M). Hence from our assumptions, see (4.1) and (4.2), we derive
that

(4.7)
∫

Si

e4u2 dVg ≥ e−4||u1||L∞ γ0

∫

M
e4u dVg, i = 1, . . . , l1,

and

(4.8)
∫

Ωi

e4u2 dVg ≥ e−4||u1||L∞ γ0

∫

M
e4u dVg, i = 1, . . . , l2.

Now using (4.7), (4.8) and the trivial identity

log
∫

M
e4u dVg =

2l1
2l1 + l2

log
∫

M
e4u dVg +

l1
2l1 + l2

log
∫

M
e4u dVg,

we obtain

log
∫

M
e4u dVg ≤ log

1
γ0

+ 4||u1||L∞ +
2l1

2l1 + l2
log
∫

N
egi4u2

+
l2

2l1 + l2
log
∫

M
e4hju2 dVg + C,

where C depends only on M . On the other hand, by using Lemma 2.1 we
get

(4.9) log
∫

N
egi4u2 ≤ CM +

1
8π2

〈
P 4

g,N (giu2), giu2
〉

+ 4giu2,

where P 4
g,N denotes the Paneitz operator associated to the close 4-manifold

N endowed with the induced metric from g, and CM depends only on
Volg(M).

Now let α < 16π2 (to be fixed later), from Proposition 2.7 we infer

log
∫

M
e4u dVg ≤ log

1
γ0

+ 4||u1||L∞ +
4
2α

(
2l1

2l1 + l2

)
〈
P 4

g,N (giu2), giu2
〉

+
4
α

(
l2

2l1 + l2

)
〈
P 4,3

g (hju2), hju2
〉

+ 4
(

2l1
2l1 + l2

)

giu2 + 4
(

l2
2l1 + l2

)

hju2 + Cα,M,l1,l2 ,(4.10)
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where Cα,M,l1,l2 depends only on α, l1, l2 and M . We now choose i and j
such that
∫

N
g2
i (P

4
g,Nu2, u2)dVg ≤

∫

N
g2
p(P

4
g,Nu2, u2)dVg for every p = 1, . . . , l1,

and
∫

M
h2

j (P
4, 3gu2, u2)dVg ≤

∫

M
h2

q(P
4,3
g u2, u2)dVg for every q = 1, . . . , l2.

Hence since the functions gp, hq have disjoint supports and verify (4.3) and
(4.4), then by (4.5), (4.6) and (4.10), we get

log
∫

M
e4u dVg

≤ log
1
γ0

+ 4||u1||L∞ +
4
α

(
1

2l1 + l2
+ ε

)
〈
P 4,3

g u2, u2
〉

+ Cε,δ0

∫

M
u2

2 dVg

+ 4
(

2l1
2l1 + l2

)

giu2 + 4
(

l2
2l1 + l2

)

hju2 + Cα,M,l1,l2 .

(4.11)

Now we choose λε,δ0,δ to be an eigenvalue of P 4,3
g such that Cε,δ0,δ

λε,δ0,δ
< ε and

we set

u1 = PVε,δ0,δ
u, u2 = PV ⊥

ε.δ0,δ
u,(4.12)

where Vε,δ0,δ is the direct sum of the eigenspaces of P 4,3
g with eigenvalues

less or equal to λε,δ0,δ, and PVε,δ0,δ
, PV ⊥

ε.δ0,δ
denote the projections onto Vε,δ0,δ

and V ⊥
ε,δ0,δ

, respectively. Since ū = 0, then the L2-norm and the L∞-norm
on Vε,δ0,δ are equivalent (with a proportionality factor which depends on ε,
δ and δ0). Hence by the choice of u1 and u2, see (4.12), we have that

||u1||L∞ ≤ C̃ε,δ0,δ

〈
P 4,3

g u1, u1
〉1/2

and

Cε,δ0,δ

∫

M
u2

2 dVg < ε
〈
P 4,3

g u2, u2
〉
,
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where C̃ε,δ0,δ depends on ε, δ and δ0. Furthermore, by the Hólder inequality
and Lemma 2.9, we have that

giu2 ≤ C
〈
P 4,3

g u, u
〉1/2

and

hju2 ≤ C
〈
P 4,3

g u, u
〉1/2

.

So (4.11) becomes

log
∫

M
e4u dVg ≤ 2 log

1
γ0

+ Ĉε,δ0,δ

〈
P 4,3

g u1, u1
〉1/2

+
4
α

(
1

2l1 + l2
+ ε

)
〈
P 4,3

g u2, u2
〉

+ ε
〈
P 4,3

g u2, u2
〉

+ Cl1,l2

〈
P 4,3

g u, u
〉1/2 + Cα,M,l−1,l2 ,

where Ĉε,δ0,δ = 4C̃ε,δ0,δ. Thus by using the Cauchy inequality, we get

log
∫

M
e4u dVg ≤ Cε,δ0,γ0,α,l1,l2,M +

4
α

(
1

2l1 + l2
+ 3ε

)
〈
P 4,3

g u2, u2
〉
.

Now setting α = 16π2 − 4ε, we obtain

log
∫

M
e4u dVg ≤ Cε,δ0,γ0,l1,l2,M +

1
4π2 − ε

(
1

2l1 + l2
+ 3ε

)
〈
P 4,3

g u2, u2
〉
.

So choosing ε such that 1
4π2−ε(

1
2l1+l2

+ 3ε) ≤ 1
4π2 ( 1

2l1+l2−ε̄), we get

log
∫

M
e4u dVg ≤ Cε,δ0,γ0,l1,l2,M +

1
4π2

(
1

2l1 + l2 − ε̄

)
〈
P 4,3

g u2, u2
〉
.

Hence the lemma is proved. �

In the next Lemma we show a criterion which implies the situation
described in the conditions in (4.1) and (4.2). The proof is a trivial adapta-
tion of the arguments of Lemma 2.3 in [14].

Lemma 4.2. Let h and l be positive integer, and suppose that ε, r and δ
are positive numbers. Assume f ∈ L1(M) is a non-negative function such
that ‖f‖L1(M) = 1, then we have the following:
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1) If
∫

M\M4δ
fdVg < ε, then there holds If

∫

M4δ∩(∪h
i=1Bpi

(r))
f dVg <

∫

M4δ

fdVg − εfor every h-tuples p1, . . . , ph

∈ M4δ such that Bpi
(2r) ⊂ M2δ,

then there exist ε > 0 and r > 0, depending only on ε, r, h̃, δ and M
(but not on f), and points p1, . . . , ph+1 ∈ M4δ, satisfying
∫

Bp1 (r)
f dVg > ε, . . . ,

∫

Bp
h̃
(r)

f dVg > ε; Bpi
(2r) ∩ Bpj

(2r) = ∅

for i �= j, Bpj
(2r̄) ⊂ M2δ.(4.13)

2) If
∫

Mδ/4
f dVg < ε, then there holds

If
∫

∂M×[0,δ/4[∩(∪h
i=1B

+
qi

(r))
f dVg <

∫

∂M×[0,δ/4]
f dVg − ε

for every l-tuples q1, . . . , ql ∈ ∂M, B+
qj

(2r) ⊂ ∂M ×
[

0,
δ

2

]

,

then there exist ε > 0 and r > 0 depending only on ε, r, l̃ and M (but
not on f), and points q1, . . . , ql+1 ∈ ∂M , B+

qj
(2r) ⊂ ∂M × [0, δ

2 ] satis-
fying

∫

B+
q1

(r)
f dVg > ε, . . . ,

∫

B+
q

l̃
(r)

f dVg > ε; B+
qi

(2r) ∩ B+
qj

(2r) = ∅ for i �= j.

(4.14)

3) If
∫

M\M4δ
f dVg ≥ ε and

∫

Mδ/4
fdVg ≥ ε, then there holds

∫

M4δ∩(∪h
i=1Bpi

(r))
f dVg <

∫

M4δ

f dVg − ε for every h-tuples p1, . . . , ph ∈ M4δ

such that Bpi
(2r) ⊂ M2δ

and
∫

∂M×[0,δ/4[∩(∪h
i=1B

+
qi

(r))
f dVg <

∫

∂M×[0,δ/4]
f dVg − ε

for every l-tuples q1, . . . , ql ∈ ∂M, B+
qj

(2r) ⊂ ∂M ×
[

0,
δ

2

]
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then there exist ε > 0 and r > 0, depending only on ε, r, h̃, l, δ and
M (but not on f), points p1, . . . , ph+1 ∈, M4δ and points q1, . . . , ql+1 ∈
∂M , B+

qj
(2r) ⊂ ∂M × [0, δ

2 ] satisfying

∫

Bp1 (r)
f dVg > ε, . . . ,

∫

Bp
h̃
(r)

f dVg > ε;

Bpi
(2r) ∩ Bpj

(2r) = ∅ for i �= j, Bpj
(2r̄) ⊂ M2δ.(4.15)

and

∫

B+
q1

(r)
f dVg > ε, . . . ,

∫

B+
q

l̃
(r)

f dVg > ε; B+
qi

(2r) ∩ B+
qj

(2r) = ∅ for i �= j.

(4.16)

The next lemma is an interesting consequence of Lemma 4.1. It charac-
terizes some functions in H∂/∂n for which the value of II is large negative.

Lemma 4.3. Under the assumptions of Theorem 1.1, and for k ≥ 1 given
by (1.6), the following property holds. For any ε > 0 and r > 0 (all small),
there exists large positive L = L(ε, r) such that for any u ∈ H∂/∂n with
II(u) ≤ −L,

∫

M e4u dVg = 1 the following holds, ∀δ > 0 (small) there the
following holds:

1) If
∫

M\M4δ
e4u dVg < ε, then there exists k̃ points p1,u, . . . , pk̃,u ∈ M4δ,

Bpi,u
(2r) ⊂ M2δ such that

∫

M4δ\∪h
i=1Bpi,u

(r)
e4u dVg < ε;(4.17)

2) If
∫

Mδ/4
e4u dV g < ε, then there exists k points q1,u, . . . , qk,u ∈ ∂M ,

B+
qi,u

(2r) ⊂ ∂M × [0, δ
2 ] such that

∫

∂M×[0,δ/4]\∪l
i=1B

+
qi,u

(r)
e4u dVg < ε.

If
∫

M\M4δ
e4u dVg ≥ ε and

∫

Mδ/4
e4u dV g ≥ ε, then there exists (h, l) ∈

N
∗ × N

∗, 2h + l ≤ k, h points p1,u, . . . , ph,u ∈ M4δ, Bpi,u
(2r) ⊂ M2δ
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and l points q1,u, . . . , ql,u ∈ ∂M , B+
qi,u

(2r) ⊂ ∂M × [0, δ
2 ] such that

∫

M4δ\∪h
i=1Bpi,u

(r)
e4u dVg < ε(4.18)

and
∫

∂M×[0,δ/4]\∪l
i=1B

+
qi,u

(r)
e4u dVg < ε.

Proof. Suppose that by contradiction the statement is not true. Then there
exists ε > 0, r > 0, δ > 0 and a sequence (un) ∈ H∂n such that

∫

M e4un

dVg = 1, II(un) → −∞ as n → +∞ and such that either

1)
∫

M\M4δ
e4un dVg <ε and k̃ tuples of points p1, . . . , pk ∈ M4δ and Bpi

(2r)
⊂ M2δ, we have

∫

M4δ∩(∪h
i=1Bpi,u

(r))
e4u dVg <

∫

M4δ

f dVg − ε;(4.19)

2)
∫

Mδ/4
e4un dVg < ε and ∀k tuples of points q1, . . . , qk ∈ ∂M , we have

or
∫

∂M×[0,δ/4∩(∪l
i=1B

+
qi,u

(r))
e4u dVg <

∫

∂M×[0,δ/4]
f dVg − ε;

3)
∫

M\M4δ
e4un dVg ≥ ε,

∫

Mδ/4
e4un dVg ≥ ε and ∀(h, l) ∈ N

∗ × N
∗, 2h + l ≤

k, for every h tuples of points p1, . . . , ph ∈ M4δ and Bpi
(2r) ⊂ M2δ and

for every l tuples of points q1, . . . , ql ∈ ∂M we have
∫

M4δ∩(∪h
i=1Bpi,u

(r))
e4u dVg <

∫

M4δ

f dVg − ε;(4.20)

and
∫

∂M×[0,δ/4∩(∪l
i=1B

+
qi,u

(r))
e4udVg <

∫

∂M×[0,δ/4]
f dVg − ε.

Now since the arguments we will carry out work for all the three cases, then
we will focus only on case 3. We assume that this is the case and we apply
Lemma 4.2 with f = e4un , and in turn Lemma 4.1 with δ0 = 2r̄, Si = Bp̄i

(r̄),
Ωj = B+

q̄j
(r̄) and γ0 = ε̄, where ε̄ , r̄, p̄i and q̄i are given as in Lemma 4.2.
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Thus we have for every ε̃ > 0 there exists C depending on ε, r, δ and ε̃ such
that

II(un) ≥
〈
P 4,3

g un, un

〉
+ 4
∫

M
Qgun dVg + 4

∫

∂M
Tgun dSg

− κP 4,P 3

4π2(2h̃ + l̃ − ε̃)

〈
P 4,3

g un, un

〉
− CκP 4,P 3 − 4κP 4,P 3un,

where h̃ and l̃ are given as in Lemma 4.2 and C is independent of n. On the
other hand, using the fact that 2h̃ + l̃ ≥ k + 1, we have that

II(un) ≥
〈
P 4,3

g un, un

〉
+ 4
∫

M
Qgun dVg + 4

∫

∂M
Tgun dSg

− κP 4,P 3

4π2(k + 1 − ε̃)
〈
P 4,3

g un, un

〉
− CκP 4,P 3 − 4κP 4,P 3un.

So, since κP 4,P 3 < (k + 1)4π2, by choosing ε̃ small we get

II(un) ≥ β
〈
P 4,3

g un, un

〉
− 4C

〈
P 4,3

g un, un

〉1/2 − CκP 4,P 3 ,

thanks to the Hölder inequality, Sobolev embedding, trace Sobolev embed-
ding and to the fact that Ker P 4,3

g0 � R (where β = 1 − κP4,P3

4π2(k+1−ε̃) > 0). Thus
we arrive to

II(un) ≥ −C.

So we reach a contradiction. Hence the lemma is proved. �
Next we give a lemma which is a direct consequence of the previous one.

It gives the distance of the functions e4u (suitably normalized) from (M∂)k.

Corollary 4.4. Let ε be a (small) arbitrary positive number and k be given
as in (1.6). Then there exists L > 0 such that if II(u) ≤ −L and

∫

Σ e4u dVg =
1, then we have that dM (e4u, (M∂)k) ≤ ε.

Proof. Let ε > 0, r > 0 (to be fixed later) and let L be the corresponding
constant given by Lemma 4.3. Now let δ > 0, then by Lemma 4.3 we have
the following three situations:

a) Conclusion 1 in Lemma 4.3 holds;

b) Conclusion 2 in Lemma 4.3 holds; or

c) Conclusion 3 in Lemma 4.3 holds.
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Suppose that a) holds. Since the same arguments can be carried out
for the other cases, then we will only consider this case. We have that by
Lemma 4.3, there exists k̃ points p1, . . . , pk̃ verifying (4.17). Next we define
σ ∈ (M∂)k as follows:

σ =
k̃∑

i=1

tiδpi
where ti =

∫

Ar,i

e4u dVj ,

Ar,i := Bpi
(r) \ ∪i−1

s=1Bps
(r), i = 1, . . . , k̃ − 1, tk̃ = 1 −

k̃−1∑

i=1

ti.

By construction we have Ar,i are disjoint and ∪k̃−1
i=1 Ar,i = ∪k̃−1

i=1 Bpi
(r). Now

let ϕ ∈ C1(M) be such that ||ϕ||C1(M) ≤ 1. By triangle inequality, the mean
value theorem and the integral estimate in Lemma 4.3, we have that the
following estimate holds

∣
∣
∣
∣

∫

M
e4uϕ − < σ, ϕ >

∣
∣
∣
∣ ≤ CM

(

r + ε +
∫

M2δ\M4δ

e4u dVg

)

,

where CM is a constant depending only on M . So, letting δ tend to zero
and choosing ε and r so small that CM (r + ε) < ε̄

2 , we obtain

dM (e4u, (M∂)k) < ε̄,

as desired. �

4.2. Mapping sublevels of II into (M∂)k

In this subsection, we show that (M∂)k is not contractible and prove the
existence of a non-trivial projection from some sublevels of the functional
II into the set (M∂)k. Since the Euler–Lagrange functional II is invariant
under translation by a constant, we can always assume that the functions
in u ∈ H∂/∂n we are dealing with satisfies the normalization

∫

M e4u dVg = 1.
As already said in the introduction of the subsection, we begin with the

following lemma.

Proposition 4.5. For any k ≥ 1, the set (M∂)k is not contractible.

Before making the proof of the proposition, we recall the following well-
known result, whose proof can be found in [14].
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Lemma 4.6. For any k ≥ 1, the set (∂M)k is not contractible, indeed
H4k−1((∂M)k; Z2) �= 0.

The next lemma is a trivial consequence of normal geodesics at the
boundary.

Lemma 4.7. There exists a small ε0 > 0 such that a continuous projection

P∂M : (∂M)ε0 −→ ∂M

exists.

Proof of Proposition 4.5. Suppose that the following claim is true, (∂M)k

is a deformation retract of some of its open neighborhood U in (M∂)k such
that setting V = (M∂)k \ (∂M)k, we have that X = U ∪ int(V ) � (M∂)k.
Now assuming that the claim holds, we have that

H4k−1(X; Z2) � H4k−1((M∂)k; Z2)(4.21)

and

H4k−1(U ; Z2) � H4k−1((∂M)k; Z2).(4.22)

Next let us denote

i : U ∩ V → U, j : U ∩ V → V, m : U → X, t : V → X

the canonical injections and by i∗, j∗, m∗, t∗ the corresponding homomor-
phism on homology groups.

We have that by the Mayers–Vietoris theorem there exists a homomor-
phism Δ : Hp((M∂)k) → Hp−1((M∂)k) (where p is a generic positive integer
number) such that the following sequence is exact.

· · · Δ→ H4k−1(U ∩ V ; Z2)
(i∗,j∗ )→ H4k−1(U ; Z2) ⊕ H4k−1(V ; Z2)

m∗−t∗→ H4k−1(X; Z2)
Δ→ H4k−2(U ∩ V ; Z2)

(i∗,j∗ )→ · · ·(4.23)

Now for h ∈ N, l ∈ N such that h ≤ k̃, l ≤ k and 2h + l ≤ k, we recall that
Mh,l (for the definition, see Section 2) is a stratified set, namely a union of
sets of different dimensions. The maximal dimension is 5h + 4l − 1, when
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all the points are distinct and the coefficients belong to (0, 1). Hence the
following holds

dim(Mh,l ∩ V ) ≤ 5h + 4l − 1;

and if h = 0, then

M0,l ∩ V = ∅.

Hence from the trivial identity 5h + 4l − 1 < 4k − 2 for such a (h, l) with
h �= 0, we infer that

H4k−1(U ∩ V ; Z2) = H4k−1(V ; Z2) = H4k−2(U ∩ V ; Z2) = 0.

Thus from (4.23) we deduce that

H4k−1(U ; Z2) � H4k−1(X; Z2).

So using Lemma 4.6, and formulas (4.21) and (4.22), we get

H4k−1((M∂)k; Z2) �= 0.

Hence to complete the proof of the lemma, it is sufficient to prove the claim.
Now let us make its proof.

First of all it is easy to see that there exist ε > 0 (4ε < ε0) small enough
and a continuous map

X∂ : [0, 1] × (∂M)2ε −→ (∂M)2ε

such that

X∂(0, ·) = Id(∂M)2ε(·), X∂(1, ·) = P∂M (·),

where P∂ is given by Lemma 4.7.
Next, we define a homotopy F : [0, 1] × B2ε,k −→ B2ε,k (for the defini-

tion of B2ε,k, see Section 2) whose construction is based on the following
idea. Given σ = σint + σbdry ∈ B2ε,k, σint =

∑h
i=1 tiδxi

, σbdry =
∑l

i=1 siδyi
,

h ≤ k̃, l ≤ k, 2h + l ≤ k, we fixed the boundary part, namely σbdry ∈ B2ε,k.
And for the interior part σint, we argue as follows: if xi is closed to the
boundary at distance less than ε, we send tiδxi

to tiδP∂M (xi), and if it is
far from the boundary, say at distance bigger than 2ε, we squeeze and in
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the intermediate regime we use an homotopy argument reflecting the pos-
sibility between squeezing and projection to boundary via P∂M since the
distance is less than or equal to 2ε. More precisely, we define the homotopy
F : [0, 1] × B2ε,k −→ B2ε,k as follows:

For every σ = σint + σbdry ∈ B2ε,k with σint =
∑h

i=1 tiδxi
, σbdry =

∑l
i=1 siδyi

and s ∈ [0, 1], we set

F (σ, s) = σ(s) + σbdry,

where σ(s) is defined as

σ(s) =
∑

i=1

ti(s)δxi(s),

and

ti(s)δxi(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − s

2

)
γ(s)tiδX∂(s,xi)if dist(xi, ∂M) ≤ ε,

(
1 − sdist(xi,∂M)

2ε

)
γ(s)tiδX∂(2−dist(xi,∂M)/ε,xi)

if ε ≤ dist(xi, ∂M) ≤ 2ε,

(1 − s)γ(s)tiδxi

if dist (xi, ∂M) ≥ 2ε,

where γ(s) is such that we have the normalization
∑h

i=1 ti(s) +
∑l

i=1 si = 1.
Thus by trivial calculations, we obtain

γ(s) =
∑l

i−=1 ti
∑

d(xi,∂M)<ε((1 − (s/2))ti) +
∑

ε≤d(xi,∂M)<2ε((1 − s(dist(xi, ∂M)
/2ε))ti) +

∑
d(xi,∂M)≥2ε((1 − s)ti)

.

So by setting U = B2ε,k, we have that the claim is proved. Hence the proof
of the proposition is complete. �

Next we give a proposition which asserts the existence of a non-trivial
continuous global projection Ψ from some negative sublevels of II onto
(M∂)k. By non-triviality of Ψ, we mean that the induced map Ψ∗ on homol-
ogy group is not zero. This fact follows directly from the non-contractibility
of (M∂)k and b of Proposition 4.14.

Proposition 4.8. For k ≥ 1 given as in (1.6), there exists a large L >
0 and a continuous map Ψ from the sublevel {II(u) < −L,

∫

M e4u dVg = 1}
onto (M∂)k which is topologically non-trivial.
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We start by giving an auxillary lemma which will be used in the proof
of the Proposition. The lemma states (roughly) that M can be embedded
smoothly in Euclidean space (with large dimension) such that its interior
lies in the interior of the positive half space and its boundary at the one
(boundary) of that half space. Since the proof works for all dimensions,
we will give the lemma for a general finite-dimensional compact smooth
manifold with smooth boundary. Precisely, we have

Lemma 4.9. Suppose N is a smooth n-dimensional compact manifold with
smooth boundary. Then there exists m ∈ N

∗ (large enough) and T : N →
R

m+1 an embedding such that, T (∂N) ⊂ ∂R
m+1
+ , T (int(N)) ⊂ int(Rm+1

+ ),
and T : int(N) → int(Rm+1

+ ) is smooth. Furthermore, there holds for all
x ∈ ∂N , the vector νx with origin T (x) and parallel to the xm+1-axis is the
normal vector of T (∂N) at T (x).

Proof. First of all, by Whitney’s embedding theorem we have that there
exists m ∈ N

∗ such that N is smoothly embedded in R
m, namely there

exists T̂ : N → R
m a smooth embedding. Now, we extend N by adding

a nice tubular neighborhood such that the resulting object is a compact
smooth manifold that we denote by N̂ . Using the compactness of N̂ , we
can find a finite open covering {Θi}k

1=1 of N and a finite number of smooth
functions ϕi : Θi → R

n such that {(Θi, ϕi)}k
1 are local coordinates for N

and Θi ⊂ N̂ . Moreover, we can take Θi such that if Θi ∩ ∂N �= ∅, then the
associated ϕi verifies the following properties:

ϕi : Θi → [−1, 1]n,

ϕi : Θi ∩ N → [−1, 1]n ∩ {xn > 0},

ϕi : Θi ∩ ∂N → [−1, 1]n ∩ {xn = 0},

and furthermore ϕi maps the outward normal vectors on ∂N to the outward
normal vectors at ∂R

n
+ of [−1, 1]n ∩ {xn = 0}.

Now to the covering {Θi}k
i=1, we associate a finite number of functions

{hi}k
1=1 hi : Θi → R as follows:

hi(x) =

{
1, x ∈ Θi ⊂ int(N),
h ◦ ϕi(x), x ∈ Θi ∩ ∂N,
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where h : [−1, 1]n → R is defined as follows

h(x) =

{
0 if x ∈ [−1, 1]n ∩ {xn < 0},
√

1 − (xn − 1)2 if x ∈ [−1, 1]n ∩ {xn ≥ 0}.

Next we choose a partition of unity {gi}k
1 subordinated to the covering {Θi}k

1.
Therefore, gi satifies

⎧
⎪⎨

⎪⎩

gi ∈ C∞
c (Θi), 1 ≤ i ≤ k,

0 ≤ gi ≤ 1 on N ∀i,
∑k

i=1 gi = 1 on N.

With this partition of unity and the functions hi, we set

u(x) =
k∑

i=1

gi(x)hi(x).

Using the definition of hi, one can check easily that u verifies the following
properties:

u(x) > 0 ∀x ∈ int(N) and u ∈ C∞(int(N)),

u(x) = 0 ∀x ∈ ∂N and
∂u

∂n
= +∞ on ∂N,

where ∂
∂n stands for the inward normal derivative at ∂N .

Now for x ∈ N we define T : N → R
m+1 as follows:

T (x) = (T̂ (x), u(x)),

where T̂ is given by the Whitney embedding theorem.
It is obvious that T is an embedding, smooth in int(N) and satisfies the

properties of the lemma. Hence the proof is completed. �
Next we will use the previous lemma to define a special doubling of

M such that it is C1. First of all applying M we get the existence of an
embedding T : M → R

m+1 (given by Lemma 4.9).
Now we define the reflection T̃ of T as follows:

T̃ (x) = (T 1(x), . . . , Tm(x),−Tm+1(x)),

where T (x) = (T 1(x), . . . , Tm(x), Tm+1(x)). From the properties of T , it is
easily seen that T̃ is also an embedding of M .
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With the embeddings T and T̃ , we can define the desired doubling of
M . To do so, we start by making some notations. We set

DM+ = T (M) and DM− = T̃ (M).

By the properties of T and T̃ (see Lemma 4.9) we have that DM+ and
DM− have a common boundary, which is ∂M . Moreover, they have the
same normal vectors at their common boundary. Now we are ready to
define the doubling of M and denote it by DM as follows:

DM = ˜DM+ ∪ DM−,

where the notation ˜ means we identify T (x) and T̃ (x) for x ∈ ∂M .
Using the fact that DM+ and DM− have the same normal at ∂M and

by considering the reflection ḡ of g through ∂M , we derive that (DM, ḡ) is
a C1-closed 4-dimensional Riemannian manifold with the Lipschitz metric.

Next we introduce some further definitions.
Given a point x = (x1, . . . , xm+1) ∈ DM , we define the even reflection

of x across ∂M and denote it by x̂ as follows:

x̂ = (x1, . . . , xm,−xm+1).(4.24)

For a function u ∈ H2(M) and identifying DM+ to M , we define the even
reflection of u across ∂M as follows:

uDM (x) =

{
u(x) if x ∈ DM+,

u(x̂) if x ∈ DM−.

We say that a function u ∈ L1(DM) is even with respect to the boundary
∂M if

u(x) = u(x̂) for a.e x ∈ DM.(4.25)

We denote by DMk the k barycenters relative to DM of order k, namely

DMk =

{
k∑

i=1

tiδxi
, xi ∈ DM,

k∑

i=1

ti = 1

}

.

We have that DMk is a stratified set, namely a union of sets of different
dimensions, with maximal dimension being 5k − 1 (for more information, see
[14]). It will be endowed with the weak topology of distributions. To prove
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Proposition 4.8, we will need at one stage to (roughly speaking) evaluate the
distance of some suitable functions to DMk (see formula (4.27) below). To
do this, we will adopt the metric distance given by C1(DM)∗ and inducing
the same topology as the weak topology of distributions and will be denoted
by dDM (·, ·).

For ε > 0, we set

Dε,k,DM = {f ∈ L1(DM), f ≥ 0,

∫

DM
f dVḡ = 1 and dDM (f, DMk) ≤ ε}.

The next discussion concerns the way of defining convex combination
of points of DM belonging to a small metric ball. To do so, we use the
embedding of DM in R

m+1 discussed above in the following way. Given
points xi ∈ DM , i = 1, . . . , l, which belong to a small metric ball and αi ≥ 0,
i = 1, . . . , l,

∑l
i=1 αi = 1, we define their convex combination denoted by

∑l
i=1 αixi by considering the convex combination of their image under the

embedding and after projecting the result on the image of DM (which is
also identified to DM). Hence in this way we have that for such a type of
points, the convex combination is well defined and if d(xi, xj) ≤ β, then we
obtain d(xi,

∑l
j=1 αjxj) ≤ 2β.

We recall that the arguments which have led to Proposition 3.1 in [14]
are based on the construction of some partial projections on some suit-
able subsets Mj(εj) (obtained by removing singularities) of Mk and gluing
method based on the construction of a suitable homotopy. The construction
of the latter homotopy which is not trivial is based on some weighted con-
vex combinations and the fact that the underlying manifold does not have
corners.

Using the notion of convex combinations discussed above and the fact
that DM is a C1-closed Riemannian manifold with Lipschitz metric which
rule out the presence of corners, and an adaptation of the arguments of
Proposition 3.1 in [14], we have the following lemma:

Lemma 4.10. Let k ≥ 1 be as in (1.6) and DM be as above. Then there
exists εk,DM such that for every ε ≤ εk,DM , we have the existence of a non-
trivial continuous projection

Pε,k,DM : Dε,k,DM → DMk,

with the following property:
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for every u∈Dε,k,DM even (in the sense of (4.25)) if Pε,k,DM (u)=
∑k

i=1 tiδxi
,

then

∀xi /∈ ∂M ; there exists j �= i such that xj = x̂i and tj = ti.

Now we are ready to make the proof of the proposition.

Proof of Proposition 4.8. To begin, we let εk be so small that Lemma 4.10
holds with ε = εk. Next applying Corollary 4.4 with ε̄ = εk

4 , we obtain the
existence of L (large enough) such that

∀u ∈ H∂/∂n,

∫

M
e4u dVg = 1 and II(u) ≤ −L;

there holds

4d(e4u, (M∂)k) ≤ εk.

Now since for u ∈ H∂/∂n, we have by definition of H∂/∂n that

∂u

∂ng
= 0,

then we infer that the even reflection uDM of u belongs to H2(DM). More-
over, we have also that the map

u ∈ H2(M) → uDM ∈ H2(DM) is continuous.(4.26)

On the other hand, one can easily check (using the evenness of ḡ) that the
following distance estimate holds:

dDM

(
e4uDM

∫

DM e4uDM dVḡ
, DMk

)

< εk.(4.27)

Therefore, by Lemma 4.10, we have that Pεk,k,DM

(
e4uDM∫

DM
e4uDM dVḡ

)
is well

defined and belongs to DMk. Moreover, still from Lemma 4.10 we have
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that if

Pεk,k,DM

(
e4uDM

∫

DM e4uDM dVḡ

)

=
k∑

i=1

tiδxi
,

then the following holds:

∀xi /∈ ∂M there exists j �= i such that xj = x̂i and tj = ti.

Thus setting

Ψ(u) =
1

∑
xa∈int(DM+) ta +

∑
xb∈∂M tb

⎛

⎝
∑

xi∈int(DM+)

tiδxi
+
∑

xj∈∂M

tjδxj

⎞

⎠ ,

we get Ψ(u) ∈ (M∂)k. On the other hand, since the map v ∈ H2(DM) →
e4v ∈ L1(DM) is continuous, then from (4.26) we derive that the map u ∈
H∂/∂η → e4uDM ∈ L1(DM) is continuous, too. Thus from the continuity
of Pεk,k,DM we infer that Ψ is also continuous. Hence the proof of the
proposition is complete. �

4.3. Mapping (M∂)k into sublevels of II

In this subsection we will define some test functions depending on a real
parameter λ and give estimate of the quadratic part of the functional II
on those functions as λ tends to infinity. And as a corollary we define a
continuous map from (M∂)k into large negative sublevels of II.

For δ > 0 small, consider a smooth non-decreasing cut-off function χδ :
R+ → R satisfying the following properties (see [14]):

⎧
⎪⎨

⎪⎩

χδ(t) = t, for t ∈ [0, δ],
χδ(t) = 2δ, for t ≥ 2δ,

χδ(t) ∈ [δ, 2δ], for t ∈ [δ, 2δ].

Then, given σ = σint + σbdry ∈ (M∂)k, σint =
∑h

i=1 tiδxi
, σbdry =

∑l
i=1 siδqi

and λ > 0, we define the function ϕλ,σ,int : M → R, ϕλ,σ,bdry : M → R and
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ϕλ,σ : M → R as follows:

ϕλ,σ,int(y) =
1
4

log

[
h∑

i=1

ti

(
2λ

1 + λ2χ2
δ(d1,i(y))

)4
]

,

ϕλ,σ,bdry(y) =
1
4

log

[
l∑

i=1

si

(
2λ

1 + λ2χ2
δ(d2,i(y))

)4
]

and

ϕλ,σ = ϕλ,σ,int + ϕλ,σ,bdry,(4.28)

where we have set

d1,i(y) = dist(y, xi), xi ∈ int(M), y ∈ M,

d2,i(y) = dist(y, qi), qi ∈ ∂M, y ∈ M,

with dist(·, ·) denoting the Riemannian distance on M .
Now we state a lemma giving an estimate (uniform in σ ∈ (M∂)k) of the

quadratic part
〈
P 4,3

g ϕλ,σ, ϕλ,σ

〉
of the Euler functional II as λ → +∞. Its

proof is a straightforward adaptation of the arguments in Lemma 4.5 in [18]
with the dimension being 4.

Lemma 4.11. Suppose ϕλ,σ as in (4.28) and let ε > 0 be small enough.
Then as λ → +∞, one has

〈
P 4,3

g ϕλ,σ, ϕλ,σ

〉
≤ (16π2k + ε + oδ(1)) log λ + Cε,δ.(4.29)

Next we state a lemma giving estimates of the remainder part of the
functional II along ϕσ,λ. The proof is the same as the one of formulas (3.10)
and (3.11) in the proof of Lemma 4.3 in [14].

Lemma 4.12. Suppose ϕσ,λ as in (4.28). Then as λ → +∞, one has
∫

M
Qgϕσ,λ dVg = −κP 4

g
log λ + O(δ4 log λ) + O(log δ) + O(1),

∫

∂M
Tgϕσ,λ dVg = −κP 3

g
log λ + O(δ3 log λ) + O(log δ) + O(1)

and

log
∫

M
e4ϕσ,λ = O(1).



1118 Cheikh Birahim Ndiaye

Now for λ > 0 we define the map Φλ : (M∂)k → H∂/∂n by the following
formula:

∀σ ∈ Mk Φλ(σ) = ϕσ,λ.

We have the following lemma which is a trivial application of Lemmas 4.11
and 4.12.

Lemma 4.13. For k ≥ 1 (given as in (1.6)), given any L > 0 large enough,
there exist a small δ and a large λ̄ such that II(Φλ̄(σ)) ≤ −L for every σ ∈
(M∂)k.

Next we state a proposition giving the existence of the projection from
(M∂)k into large negative sublevels of II, and the non-triviality of the map
Ψ of Proposition 4.8.

Proposition 4.14. Let Ψ be the map defined in Proposition 4.8. Then
assuming k ≥ 1 (given as in (1.6)), for every L > 0 sufficiently large (such
that Proposition 4.8 applies), there exists a map

Φλ̄ : (M∂)k −→ H∂/∂n

with the following properties:

a)
II(Φλ̄(z)) ≤ −L for any z ∈ (M∂)k;

b) Ψ ◦ Φλ̄ is homotopic to the identity on (M∂)k.

Proof. The statement (a) follows from Lemma 4.13. To prove (b), it is
sufficient to consider the family of maps Tλ : (M∂)k → (M∂)k defined by

Tλ(σ) = Ψ(Φλ(σ)), σ ∈ Mk.

We recall that when λ is sufficiently large, then this composition is well
defined. Therefore, since e4ϕσ,λ

∫
M

e4ϕσ,λ dVg
⇀ σ in the weak sense of distributions,

letting λ → +∞ we obtain an homotopy between Ψ ◦ Φ and Id(M∂)k
. This

concludes the proof. �

4.4. Min–max scheme

In this subsection, we describe the min–max scheme based on the set (M∂)k

in order to prove Theorem 1.1. As anticipated in the introduction, we define
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a modified functional IIρ for which we can prove existence of solutions in a
dense set of the values of ρ. Following an idea of Struwe (see [20]), this is
done by proving the a.e. differentiability of the map ρ → IIρ (where IIρ is
the minimax value for the functional IIρ).

We now introduce the minimax scheme which provides existence of solu-
tions for (1.8). Let (̂M∂)k denote the (contractible) cone over (M∂)k, which

can be represented as (̂M∂)k = ((M∂)k × [0, 1]) with (M∂)k × 0 collapsed to
a single point. First let L be so large that Proposition 4.8 applies with L

4 ,
and then let λ̄ be so large that Proposition 4.14 applies for this value of L.
Fixing λ̄, we define the following class:

IIλ̄ = {π : (̂M∂)k → H∂/∂n : πis continuous and π(· × 1) = Φλ̄(·)}.(4.30)

We then have the following properties.

Lemma 4.15. The set IIλ̄ is non-empty, and moreover, letting

IIλ̄ = inf
π∈IIλ̄

sup
m∈ ̂(M∂)k,

II(π(m)), there holds IIλ̄ > −L

2
.

Proof. The proof is the same as the one of Lemma 5.1 in [14]. But we will
repeat it for the reader’s convenience.

To prove that IIλ̄ is non-empty, we just notice that the following map

π̄(·, t) = tΦλ̄(·)

belongs to IIλ̄. Now to prove that IIλ̄ > −L
2 , let us argue by contradic-

tion. Suppose that IIλ̄ ≤ −L
2 : then there exists a map π ∈ IIλ̄ such that

sup
m∈(̂M∂)k

II(π(m)) ≤ −3
8L. Hence since Proposition 4.8 applies with L

4 ,
writing m = (z, t) with z ∈ (M∂)k we have that the map

t → Ψ ◦ π(·, t)

is an homotopy in (M∂)k between Ψ ◦ Φλ̄ and a constant map. But this is
impossible since (M∂)k is non-contractible and Ψ ◦ Φλ̄ is homotopic to the
identity by Proposition 4.14. �

Next we introduce a variant of the above minimax scheme, following
[14,18,20]. For ρ in a small neighborhood of 1, [1 − ρ0, 1 + ρ0], we define
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the modified functional IIρ : H∂/∂n → R:

IIρ(u) =
〈
P 4,3

g u, u
〉

+ 4ρ

∫

M
Qgu dVg + 4ρ

∫

∂M
Tgu dSg

− 4ρκ(P 4,P 3) log
∫

M
e4u dVg, u ∈ H∂/∂n.(4.31)

Following the estimates of the previous section, one easily checks that the
above minimax scheme applies uniformly for ρ ∈ [1 − ρ0, 1 + ρ0] and for λ̄
sufficiently large. More precisely, given any large number L > 0, there exist
λ̄ sufficiently large and ρ0 sufficiently small such that

sup
π∈IIλ̄

sup
m∈∂(̂M∂)k

II(π(m)) < −2L,

IIρ inf
π∈IIλ̄

sup
m∈(̂M∂)k

IIρ(π(m)) > −L

2
, ρ ∈ [1 − ρ0, 1 + ρ0],(4.32)

where IIλ̄ is defined as in (4.30). Moreover, using for example the test map,
one shows that for ρ0 sufficiently small there exists a large constant L̄ such
that

IIρ ≤ L̄, for every ρ ∈ [1 − ρ0, 1 + ρ0].(4.33)

We have the following result regarding the dependence in ρ of the minimax
value IIρ.

Lemma 4.16. Let λ̄ and ρ0 such that (4.32) holds. Then the function

ρ → IIρ
ρ

is non-increasing in [1 − ρ0, 1 + 1 − ρ0].

Proof. For ρ ≥ ρ
′
, there holds

IIρ(u)
ρ

−
IIρ′ (u)

ρ′ =
(

1
ρ

− 1
ρ′

)
〈
P 4,3

g u, u
〉
.

Therefore, it follows easily that also

IIρ
ρ

−
IIρ′

ρ′ ≤ 0,

hence the lemma is proved. �
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From this lemma it follows that the function ρ → IIρ

ρ is a.e. differentiable
in [1 − ρ0, 1 + ρ0], and we obtain the following corollary.

Corollary 4.17. Let λ̄ and ρ0 be as in Lemma 4.16, and let Λ ⊂ [1 −
ρ0, 1 + ρ0] be the (dense) set of ρ for which the function IIρ

ρ is differentiable.
Then for ρ ∈ Λ the functional IIρ possesses a bounded Palais–smale sequence
(ul)l at level IIρ.

Proof. The existence of Palais–smale sequence (ul)l at level IIρ follows from
(4.32) and the bounded is proved exactly as in [5, Lemma 3.2]. �

Next we state a proposition saying that bounded Palais–smale sequence
of IIρ converges weakly (up to a subsequence) to a solution of the perturbed
problem. The proof is the same as the one of Proposition 5.5 in [14].

Proposition 4.18. Suppose (ul)l ⊂ H∂/∂n is a sequence for which

IIρ(ul) → c ∈ R, II
′

ρ[ul] → 0,

∫

M
e4ul dVg = 1 ‖ul‖H2(M) ≤ C.

Then (ul) has a weak limit u(up to a subsequence) which satisfies the follow-
ing equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P 4
g u + 2ρQg = 2ρκ(P4,P 3)e

4u in M,

P 3
g u + ρTg = 0 on ∂M,

∂u

∂ng
= 0 on ∂M.

Now we are ready to make the proof of Theorem 1.1.

Proof of Theorem 1.1. By (4.17) and (4.18), there exists a sequence ρl → 1
and ul such that the following holds:

⎧
⎪⎪⎨

⎪⎪⎩

P 4
g ul + 2ρlQg = 2ρκ(P4,P 3)e

4ul in M,

P 3
g ul + ρlTg = 0 on ∂M,

∂ul

∂ng
= 0 on ∂M.

Now since κ(P 4,P 3) =
∫

M Qg dVg +
∫

∂M dSg, then applying Corollary 1.5 with
Ql = ρlQg, Tl = ρlTg and Q̄l = ρlκ(P 4,P 3), we have that ul is bounded in
C1+α for every α ∈ (0, 1). Hence up to a subsequence it converges in C1(M)
to a solution of (1.4). Hence Theorem 1.1 is proved. �
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Remark 4.1. As said in the introduction, we now discuss how to settle
the general case.

First of all, to deal with the remaining cases of situation 1, we proceed
as in [14]. To obtain Moser–Trudinger-type inequality and its improvement,
we impose the additional condition ‖û‖ ≤ C where û is the component of u
in the direct sum of the negative eigenspaces. Furthermore, another aspect
has to be considered, that is not only e4u can concentrate but also ‖û‖ can
tend to infinity. And to deal with this, we have to substitute the set (M∂)k

with an other one, Ak,k̄, which is defined in terms of the integer k (given in
(1.6)) and the number k̄ of negative eigenvalues of P 4,3

g , as is done in [14].
This also requires suitable adaptation of the min–max scheme and of the
monotonicity formula in Lemma 4.16, which in general becomes

ρ → IIρ
ρ

− Cρ is non-increasing in [1 − ρ0, 1 + ρ0],

for a fixed constant C > 0.
As already mentioned in the introduction, see Remark, to treat the

situation 1, we only need to consider the case k̄ �= 0. In this case, the same
arguments as in [14] apply without any modifications.
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