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On complete mean curvature 1
2 surfaces in H

2 × R

Laurent Hauswirth, Harold Rosenberg and Joel Spruck

Dedicated to David Hoffman and Bill Meeks on the occasion of their 60th birthdays

For a complete embedded surface with compact boundary and
constant mean curvature 1

2 in H
2 × R lying on one side of a horo-

cylinder, we prove an analogue of the Hoffman-Meeks half-space
theorem. As an application, we show that a complete immersed
surface of constant mean curvature 1

2 which is transverse to the
vertical killing field must be an entire graph. Moreover, to each
holomorphic quadratic differential on the unit disk or C we can
associate an entire graph of constant mean curvature 1

2 .

1. Introduction

In this paper, we study complete constant mean curvature 1
2 surfaces in

H
2 × R. Recall that the famous half-space theorem of Hoffman–Meeks says

that a properly immersed minimal surface in R
3 that lies in a half-space

must be a plane. More precisely, a properly immersed minimal surface,
which may have compact boundary, that is asymptotic to a plane, must
intersect the plane. Our first result is an analogous result for a complete
properly embedded constant mean curvature 1

2 surface Σ in H
2 × R.

Theorem 1.1. Let Σ be a properly embedded constant mean curvature 1
2

surface in H
2 × R. Suppose Σ is asymptotic to a horocylinder C, and on

one side of C. If the mean curvature vector of Σ has the same direction as
that of C at points of Σ converging to C, then Σ is equal to C (or a subset
of C if ∂Σ �= ∅). Here ∂Σ may be compact or ∂Σ may be non-compact and
properly embedded in a one-sided tubular neighborhood of C bounded by C
and an equidistant horocylinder C̃, with ∂Σ contained in C̃.

Our second main result concerns complete H = 1/2 surfaces in H
2 × R

transverse to the vertical Killing field Z = ∂
∂t . We prove such surfaces are

entire graphs.
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Theorem 1.2. Let Σ be a complete immersed surface in H
2 × R of constant

mean curvature H = 1/2. If Σ is transverse to Z, then Σ is an entire vertical
graph over H

2.

Finally, we apply Theorem 1.2, together with work of Fernandez–Mira
[4], and Wan–Au [3] and Wan [9], to understand such entire graphs.

Theorem 1.3. To each quadratic holomorphic differential on C or the unit
disk, one associates an entire H = 1/2 graph.

Our proof of Theorem 1.1 while in the same spirit as that of [5] is
technically more complicated as we must prove the existence of continu-
ous families of catenoid like H = 1

2 surfaces that converge nicely to a horo-
cylinder. For this purpose, it is convenient to use the half-space model
H

2 = {(x, y) : y > 0} with metric ds2 = dx2+dy2

y2 so that the product space
H

2 × R with coordinates (x, y, t) is endowed with the metric dσ2 = ds2 + dt2.
Following Sa Earp [7], we will consider “horizontal” graphs y = g(x, t), g > 0
with H = 1

2 . Some standard computations show that on S = graph g,

Lemma 1.4. The coefficients of the metric are given by

g11 =
1
g2 (1 + gx

2), g12 =
gxgt

g2 , g22 =
g2 + g2

t

g2 ,

g11 =
g2

W 2 (g2 + g2
t ), g12 = − g2

W 2 (gxgt), g22 =
g2

W 2 (1 + g2
x).

The coefficients of the second fundamental form are

b11 =
1
W

(
gxx +

1 + g2
x

g

)
, b12 =

gxt

W
, b22 =

1
W

(
gtt − g2

t

g

)
.

In addition,

|∇Sg|2 = g2
(

1 − g2

W 2

)
.

The mean curvature equation is given by

(1.1) 1 = gijbij =
g2

W 3 {(g2 + g2
t )gxx − 2gxgtgxt + (1 + g2

x)gtt + g(1 + g2
x)},
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and finally we have

ΔSg =
g2

W

(
1 − g

W
+

gg2
x

W

)
> 0,(1.2)

ΔS
1
g

=
W − g

gW
+

g2
t

gW 2 > 0,(1.3)

where W 2 = g2(1 + g2
x) + g2

t .

In particular, we see from (1.1) that g satisfies the strange looking
equation

(1.4) (g2 + g2
t )gxx − 2gxgtgxt + (1 + g2

x)gtt = −g(1 + g2
x) +

W 3

g2 .

Also note the somewhat surprising result that both g and 1
g are subharmonic

on S.
We remark that the mean curvature vector of S is given by

�H =
1

2W
(−g2gx, g2,−gt)

and that the constant solutions g = τ > 0 correspond to the horocylinders
C(τ) = {(x, y, t) : y = τ}. The induced metric on each C(τ) is complete and
isometric to the flat R

2, and the mean curvature of each C(τ) is H = 1/2.
Our catenoid-like horizontal graphs are given by the following theorem.

Theorem 1.5. Let U be the annulus U = BR2 \BR1 with R2 ≥ 4R1. Then
for ε > 0 sufficiently small (depending only on R1), there exists constant
mean curvature H = 1/2 horizontal graphs g+ and g− satisfying (1.4) in U
with Dirichlet boundary data g± = 1 ± ε on ∂BR1 , g

± = 1 on ∂BR2. More-
over, g± is unique and varies continuously with the parameters ε, R1, R2 and
g± tends to 1 ± ε uniformly on compact subsets as R2 tends to ∞.

Assuming Theorem 1.5, the proof of Theorem 1.1 goes as follows. After
an isometry, we can assume that there is a sequence of points pi = (xi, yi,

ti) ∈ Σ with yi → 1 and 〈−→H, ∂
∂y 〉 > 0. Suppose that Σ ⊆ {y ≥ 1}; then either

Σ is contained in C(1) or is contained in y > 1. For ε > 0 small, we consider
the slab S+ bounded by C(1) and C(1 + ε). Then by the maximum principle
Σ ∩ S+ has a non-compact component Σ+ with boundary ∂Σ+ ⊂ C(1 + ε).
More precisely, let Σ+ be any connected component of Σ in the slab with
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∂Σ+ ⊂ C(1 + ε). We can assume Σ+ is asymptotic to C(1). Otherwise, one
considers τ = sup{t > 0 : C(s) ∩ Σ+ = ∅ for s < t}. Then if C(τ) intersects
Σ+, they are equal by the usual maximum principle, a contradiction. Hence
Σ+ is asymptotic to C(τ) and we do the following argument with C(1)
replaced by C(τ). So we may assume Σ+ is asymptotic to C(1).

Let D(τ, R) denote the disk in C(τ) defined by D(τ, R) = {(x, τ, t) :
x2 + t2 ≤R2}. We can find a disk D(1, 3R1) such that D(1, 3R1) × [1, 1 + ε]
∩ S+ = {∅}. Let Γ(1, R) = ∂D(1, R). Then for each R ≥ 4R1, there is a
horizontal graph g+

R bounded by Γ(1 + ε, R1) ∪ Γ(1, R) in the slab S+. By
the maximum principle, this family of graphs foliates the unbounded com-
ponent of S+\graph(g+

2R1
) but converges to C(1 + ε). Thus there is a first

point of contact at an interior point. Since the mean curvature vectors are
pointing up, this violates the maximum principle and Σ+ cannot exist. If
Σ ⊆ {0 < y ≤ 1}, we redo exactly the same argument exchanging the roles
of C(1 − ε) and C(1 + ε).

We will prove the existence part of Theorem 1.5 in Section 2 using the
Schauder fixed point theorem. Because of the complicated dependence of
Equation (1.4) on g, the uniqueness of the solutions is not obvious. This
will be proved in Section 3 from which the continuous dependence follows
by standard elliptic theory. The proof of Theorem 1.2 is given in Section 4
using compactness and analytic continuation arguments. Finally, in Section
5, we describe the construction of Fernandez and Mira [4] of entire H = 1

2
vertical graphs starting from holomorphic quadratic differentials on C or the
unit disk U .

2. The existence part of Theorem 1.5

Let U = BR2\BR1 be an annulus with R2 ≥ 4R1 and fix

h = 1 ± ε

log(R2/R1)
log

R2

r
, where r2 = x2 + t2.

We expect the solution g to be close to h, so we define the weighted C2+α

norm

|v|∗2,α;U = sup
X

{|v(X)| + r(X)|Dv(X)| + r2(X)|D2v(X)| + r2+α
X [D2v]α;X},

where X = (x, t) and [D2v]α;X is the Hölder coefficient of D2v at X.
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Definition 2.1. We say g is an admissible solution of (1.4) if g ∈ Aε, where

Aε = {g ∈ C2,α(U), g= h on ∂U : |g − h|∗2,α;U ≤
√

ε}.

We note that Aε is a convex and compact subset of the Banach space
B = C2,β(U), β < α. We will reformulate our existence problem as a fixed
point of a continuous operator T : Aε → Aε by rewriting Equation (1.4) in
the form

(2.1)

(g2+g2
t )gxx −2gxgtgxt+ (1+ g2

x)gtt+ ggx
2−

(
W

g2 +
1

W + g

)
(g2g2

x+ g2
t ) = 0

Remark 2.2. Note that (2.1) implies that any solution g± solving the
Dirichlet problem of Theorem 1.5 satisfies 1 − ε ≤ g− ≤ 1 and 1 ≤ g+ ≤ 1 +
ε in U.

We now define the operator w = Tg as the solution of the linear Dirichlet
problem

(2.2)
Lgw := awxx + 2bwxt + cwtt + dwx + ewt = 0 in U,

w = h on ∂U,

where a = g2 + g2
t , b = −gxgt, c = 1 + g2

x, d = ggx − g2(W
g2 + 1

W+g )gx and

e = −(W
g2 + 1

W+g )gt. Note that for g ∈ Aε, if Lgu = f in D ⊂ U , where D
is “of scale R”, (i.e., if X ∈ D, then c1R ≤ |X| ≤ c2R for uniform constants
c1, c2), then ũ = u(RX) satisfies

(2.3) L̃ũ = ãũxx + 2b̃ũxt + c̃ũtt + Rd̃ũx + Rẽũt = R2f̃ in D̃,

where D̃ is of scale 1 and ã(X) = a(RX), b̃(X) = b(RX), etc. Hence for ε
sufficiently small, L̃ is uniformly close to Δ with Hölder continuous
coefficients.

Proposition 2.3. Let w = Tg for g ∈ Aε. Then for ε sufficiently small,
w ∈ Aε.

Proof. Set u = w − h; then

(2.4) Lgu = [(1 − g2 − g2
t )hxx + 2gxgthxt − g2

xhtt − dhx − eht] := f.

By the maximum principle, 1 ≤ w ≤ 1 + ε (or 1 − ε ≤ w ≤ 1) so |u| ≤ ε.
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We now write U = U1 ∪ U2 ∪ U3 where

U1 = {X : R1 ≤ |X| ≤ 3
2R1},

U2 = {X : 3
2R1 < |X| < 3

4R2},

U3 = {X : 3
4R2 ≤ |X| ≤ R2}.

Fix Y ∈ U . If Y ∈ U1, then BR1/4(R1
Y
|Y |) ∩ U ⊂ BR1/2(R1

Y
|Y |) ∩ U ⊂

U1. If Y ∈ U3, then BR2/4(R2
Y
|Y |) ∩ U ⊂ BR2/2(R2

Y
|Y |) ∩ U ⊂ U3. Finally if

Y ∈ U2, then BR/16(Y ) ⊂ BR/8(Y ) ⊂ U for R = |Y |. So each of the three
domains is of scale R and we can apply Schauder interior or boundary
estimates to L̃ũ = R2f̃ in D̃ to obtain

(2.5) ‖ũ‖2,α;D̃ ≤ C(‖ũ‖0;D̃ + ‖R2f̃‖0,α;D̃‖) ≤ Cε,

since from (2.4) follows ||f̃ ||0,α;D̃ ≤ Cε3/2. Undoing the scaling gives

‖u‖∗
2,α;D ≤ Cε.

Since u = w − h, it follows that for ε small enough, w ∈ Aε and the propo-
sition is proved.

We are now in a position to apply the Schauder fixed point theorem to
our operator w = Tg to find a solution g± ∈ A to (2.1) which is equivalent
to our original Equation (1.4). �

3. Completion of the proof of Theorem 1.5

In this section, we refine our estimates in order to prove uniqueness, contin-
uous dependence and convergence to a constant as R2 → ∞.

Let g± be an admissible solution of (1.4) and let φ satisfy

ΔSφ = 0 in U,

φ = 1 on ∂BR1 ,

φ = 0 on ∂BR2 .

Then since g± = 1 ± εφ on ∂U and both g± and 1
g± are subharmonic on S

(see Lemma 1.4), we have

(3.1)
1

1 ∓ εφ/(1 ± ε)
≤ g± ≤ 1 ± εφ.
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Proposition 3.1. 0 ≤ 1 − φ ≤ C log(r/R1)
log(R2/R1)

where C is independent of R2.

Proof. On U, φ satisfies the uniformly elliptic divergence form equation

(3.2) Lφ :=
2∑

i,j=1

∂

∂xi
(aijφxj

) = 0,

where aij = g−2Wgij is close to δij . We extend g ≡ 1 for |X| > R2 so L is
also extended as a uniformly elliptic divergence form operator with Lipschitz
continuous coefficients. We now recall the generalized Kelvin transform
(see [8] p.262). Let Y = X

|X|2 be inversion in the unit circle mapping U
to the annulus Ũ = {Y : 1

R2
≤ |Y | ≤ 1

R1
} and define φ̃(Y ) = φ(X). Then φ̃

satisfies the uniformly elliptic divergence form equation

(3.3) L̃φ̃ :=
2∑

i,j=1

∂

∂yi
(ãijφ̃yj

) = 0

in Ũ , where

(3.4) ãkl(Y ) = aij(X)
(

δki − 2
xkxi

|X|2

) (
δlj − 2

xlxj

|X|2

)
.

Note that because the matrix (δki − 2xkxi

|X|2 ) is orthogonal, the eigenvalues of
ãkl(Y ) are the same as those of aij(X).

Now let G̃(Y ) be the positive Green’s function for L̃ in B1/R1
with pole

at the origin. Then by the maximum principle,

(3.5) 1 − φ̃ ≤ G̃(Y )
min|Y |=1/R2

G̃
≤ C

log 1/R1|Y |
log R2/R1

,

where C is universal. This last inequality is the classical comparison theo-
rem of Littman, Stampacchia and Weinberger for fundamental solutions [6].
Returning to the original variables gives the desired inequality. �

Combining inequality (3.1) and Proposition 3.1 gives
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Corollary 3.2. Let g± be an admissible solution of (1.4). Then

(1 + ε)
(

1 − Cε
log(r/R1)

log(R2/R1)

)
≤ g+ ≤ 1 + ε,

1 − ε ≤ g− ≤ 1 − ε + Cε
log(r/R1)

log(R2/R1)

We use Corollary 3.2 to prove the uniqueness of admissible solutions
completing the proof of Theorem 1.5. (Note that Corollary 3.2 shows that
g± tends to 1 ± ε uniformly on compact subsets as R2 tends to ∞.)

Proposition 3.3. For ε = ε(R1) sufficiently small, the solutions g± are
unique.

Proof. Note that if g is a solution of (1.4) in U , then gλ = 1
λg(λx, t) is also

a solution in Uλ = {(x, t) : R2
1 ≤ λ2x2 + t2 ≤ R2

2}. To fix the ideas, we give
the proof of uniqueness for g+, which is straightforward. Suppose that g1
and g2 are two admissible solutions (we drop the + for convenience). Then
for λ = 1

1+ε , g
λ
2 > g1 in U ∩ Uλ. As we increase λ back toward λ = 1, gλ

2 > g1

on ∂(U ∩ Uλ). Thus a first contact may only occur in the interior, which
is impossible by the maximum principle. Thus g2 > g1 in U . Reversing the
roles of g1 and g2 proves uniqueness.

Observe that this argument seems to have a problem when we consider
g− because it might happen that there is a first point of contact on the inner
boundary of U ∩ Uλ, i.e.,

(3.6) gλ
2 =

1 − ε

λ
= g1 for some point on λ2x2 + t2 = R2

1,

We show this cannot happen. For at such a contact point, λ2(x2 + t2) =
R2

1 + (λ2 − 1)t2 ≤ R2
1, so r ≤ R1

λ . Hence by (3.6) and Corollary 3.2, we have

1 − ε

λ
= g1 ≤ 1 − ε + Cε

log(1/λ)
log(R2/R1)

≤ 1 − ε +
Cε

log(R2/R1)

(
1
λ

− 1
)

.

Therefore,

(3.7) 1 − ε ≤ Cε

log(R2/R1)
,

which is impossible if ε is chosen so that ε
1−ε < log 2

C . Thus there is no first
contact on the boundary and g2 > g1 in U. This proves uniqueness and also
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the continuous dependence in the parameters. In particular, we can now
let g± be an arbitrary solution which is not necessarily admissible. We do
know however (see Remark 2.2) that 1 − ε < g− < 1 and 1 < g+ < 1 + ε in
U . Now let g±

2 be our continuous family of admissible solutions. If we make
R2 very large, g+

2 > g+ and g−
2 < g− when restricted to the original annulus

by Corollary 3.2. Thus decreasing R2 back to its original value shows these
inequalities persist. Similarly we can decrease the parameter ε close to
zero and obtain the reverse inequalities proving the general uniqueness of
solutions. �

4. Proof of Theorem 1.2

Theorem 1.2. Let Σ be a complete immersed surface in H
2 × R of constant

mean curvature H = 1/2. If Σ is transverse to Z, then Σ is an entire vertical
graph over H

2.

Proof. In the following, it is convenient to think of H
2 as the unit disk B1(0)

with the Poincaré metric. The mean curvature vector of Σ never vanishes, so
Σ is orientable. Let ν be a unit vector field along Σ in H × R. The function
u = 〈ν, Z〉 is a non-zero Jacobi function on Σ, so Σ is strongly stable and

thus has bounded curvature [10]. We can assume u > 0 and
〈
ν,

−→
H

〉
> 0.

Hence there is δ > 0 such that for each p ∈ Σ, Σ is a graph (in exponen-
tial coordinates) over the disk Dδ ⊂ TpΣ of radius δ, centered at the origin
of TpΣ. This graph, denoted by G(p), has bounded geometry. The δ is
independent of p and the bound on the geometry of G(p) is uniform as well.

We denote by F (p) the surface G(p) translated to the origin O ∈ H
2 ≡

H
2 × {0} (The translation that takes p to O).

For q ∈ H
2 × R, we denote by Γδ(q) a horizontal horocycle arc of length

2δ, centered at q.

Claim 1. Let pn ∈ Σ, satisfy u(pn) → 0 as n → ∞ (Tpn
(Σ) are becoming

vertical). There is a subsequence of pn (which we also denote by {pn}) such
that F (pn) converges to Γδ(O) × [−δ, δ], for some horocycle Γδ(O). The
convergence is in the C2-topology.

Proof of Claim 1. Choose a subsequence pn so that the oriented tangent
planes TO(F (pn)) converge to a vertical plane P . Let Γδ(O) be the horo-
cycle arc through O whose curvature vector has the same direction as the
curvature vector of the (limit) curvature vectors of F (pn).
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Since the F (pn) have bounded geometry and they are graphs over
Dδ(pn) ⊂ Tpn

(F (pn)), the surfaces F (pn) are bounded horizontal graphs
over Γδ(O) × [−δ, δ] for n large. Thus a subsequence of these graphs converges
to an H = 1/2 surface F ; F is tangent to Γδ(O) × [−δ, δ] at O and a horizon-
tal graph over this. It suffices to show F = Γδ(O) × [−δ, δ].

If this was not the case, then the intersection near O, of F and Γδ(O) ×
[−δ, δ] would consist of m smooth curves passing through O, m ≥ 2, meeting
transversally at O. In a neighborhood of O, these curves separate F into 2m
components. Adjacent components lie on opposite sides of Γδ(O) × [−δ, δ].

Hence in a neighborhood of O in F , the mean curvature vector of F
alternates from pointing up in H

2 × R to pointing down (or vice-versa),
as one goes from one component to the other. But F (pn) converges to F
in the C2-topology, so F (pn), n large, would also have points where the
mean curvature vector points up and down in H

2 × R. This contradicts
that F (pn) is transverse to Z, and Claim 1 is proved. Notice that we have
proved that whenever F (pn) converges to a local surface F , F is necessarily
some Γδ(O) × [−δ, δ]. This proves Claim 1. �

Now let p ∈ Σ and assume Σ in a neighborhood of p is a vertical graph of
a function f defined on BR, BR the open ball of radius R of H

2, centered at
O ∈ H

2. Denote by S(R) the graph of f over BR. If Σ is not an entire graph,
then we let R be the largest such R so that f exists. Since Σ has constant
mean curvature, f has bounded gradient on relatively compact subsets of
BR.

Let q ∈ ∂BR be such that f does not extend to any neighborhood of q
(to an H = 1/2 graph).

Claim 2. For any sequence qn ∈ BR, converging to q, the tangent planes
Tpn

(S(R)), pn = (qn, f(qn)), converge to a vertical plane P . P is tangent to
∂BR at q (after vertical translation to height zero in H

2 × R).

Proof of Claim 2. Let F (n) denote the image of G(pn) under the vertical
translation taking pn to qn. Observe first, that Tqn

(F (n)) converges to the
vertical, for any subsequence of the qn. Otherwise the graph of bounded
geometry G(pn), would extend to a vertical graph beyond q, for qn close
enough to q, hence f would extend, a contradiction.

Now we can prove Tqn
(Fn) converges to the vertical plane P passing

through q and tangent to ∂BR at q. Suppose some subsequence qn satisfies
Tqn

(Fn) converges to a vertical plane Q, Q �= P , q ∈ Q. By Claim 1, the Fn

converge in the C2-topology, to Γδ(q) × [−δ, δ], where Γδ(q) is a horocycle
arc centered at q. Since Q �= P , and Γδ(q) is tangent to Q at q, there are
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points of Γδ(q) in BR. Such a point is the limit of points on Fn. Then
the gradient of f at these points of Fn diverges, which contradicts interior
gradient estimates of f . This proves Claim 2. �

Now applying Claim 1 and Claim 2, we know that for any sequence
qn ∈ BR converging to q, the F (qn) converge to Γδ(q) × [−δ, δ].

Claim 3. For any qn −→ q, qn ∈ BR, we have f(qn) −→ +∞ or f(qn)
−→ −∞.

Proof of Claim 3. Let γ be a compact horizontal geodesic of length ε start-
ing at q, entering BR at q, and orthogonal to ∂BR at q. Let C be the graph
of f over γ. Notice that C has no horizontal tangents at points near q since
the tangent planes of S(R) are converging to P . So assume f is increasing
along γ as one converges to q. If f were bounded above, then C would have
a finite limit point (q, c) and C would have finite length up till (q, c). Since
Σ is complete, (q, c) ∈ Σ. But then Σ has a vertical tangent plane at (q, c),
a contradiction. This proves Claim 3. �

Now choose qn ∈ γ, qn −→ q, and F (qn) converges to Γδ(q) × [−δ, δ].
Let Γ be the horocycle containing Γδ(q), and parameterize Γ by arc length;
denote q(s) ∈ Γ the point at distance s on Γ from q = q(0), −∞ < s < +∞.
Denote by γ(s) a horizontal geodesic arc orthogonal to Γ at q(s), q(s) the
mid-point of γ(s). Assume the length of each γ(s) is 2ε and ∪s∈Rγ(s) =
Nε(Γ) is the ε-tubular neighborhood of Γ.

Let γ+(s) be the part of γ(s) on the mean convex side of Γ; so γ = γ+(0).
More precisely, the mean curvature vector of Σ points up in H

2 × R, and
f −→ +∞ as one approaches q along γ, so Γ is convex towards BR.

Claim 4. For n large, each F (qn) is disjoint from Γ × R. Also, for |s| ≤ δ,
F (qn) ∩ γ+(s) is a vertical graph over an interval of γ+(s).

Proof of Claim 4. Choose n0 so that for n ≥ n0, Cn(s) = F (qn) ∩ (γ(s) × R)
is one connected curve of transverse intersection, for each s ∈ [−δ, δ]. Since
the F (qn) are C2-close to Γδ(q) × [−δ, δ], Cn(s) has no horizontal or vertical
tangents and is a graph over an interval in γ(s).

We now show this interval is in γ+(s) − q(s). Suppose not, so Cn(s) goes
beyond Γ × R on the concave side. Recall that C = γ ∩ P⊥ is the graph
of f and f −→ +∞ as one goes up on C. We have pn = (qn, f(qn)). Fix
n ≥ n0 and choose new points qk, k ≥ n, so that f(qk+1) − f(qk) = δ; clearly
qk −→ q as k −→ ∞. Lift each Ck(s) to G(pk) by the vertical translation
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of F (qk) by f(qk). By construction, Ck+1(s) is the analytic continuation of
Ck(s) in Σ ∩ (γ(s) × R), for each s ∈ [−δ, δ], and for all k ≥ n + 1. The curve
C(s) = ∪k≥nCk(s) is a vertical graph over an interval in γ(s). It has points
on the concave side of Γ × R for some s0 ∈ [−δ, δ]. For s = 0, C(0) = C
stays on the convex side of Γ × R. So for some s1, 0 < s1 ≤ s0, C(s1) has a
point on Γ × R and also inside the concave side of Γ × R.

But the F (qk) converge uniformly to Γδ(q) × [−δ, δ] as k −→ ∞, so the
curve C(s1) converges to q(s1) × R as the height goes to ∞. This obliges
C(s1) to have a vertical tangent on the concave side of Γ × R, a contradic-
tion. This proves Claim 4. �

Now we choose an ε1 < ε (which we call ε as well) so that ∪s∈[−δ,δ]C(s)
is a vertical graph of a function g on ∪s∈[−δ,δ](γ+(s) − q(s)), (the γ+(s) now
have length ε1); g is an extension of f .

The graph of g on each γ+ × R is the curve C(s), and the graph of g
converges to Γδ(q) × R as the height goes to infinity.

Now we begin this process again replacing C by the curves C(δ) and
then C(−δ). Analytic continuation yields an extension h of g to a domain Ω
contained in the open ε-tubular neighborhood of Γ × R, on the convex side
of Γ. Ω is an open neighborhood of Γ in this mean convex side. The graph
h −→ ∞ as one approaches Γ in Ω; it converges to Γ × R as the height goes
to infinity.

Claim 5. There is an ε > 0, such that Ω contains the ε tubular neighbor-
hood of Γ on the convex side.

Proof of Claim 5. The surface Σ contains a graph over Ω, composed of
curves C(q), q ∈ Γ, where each curve C(q) is a graph over an interval γ+(q),
γ+(q) orthogonal to Γ at q. Also C(q) is a strictly monotone increasing
graph with no horizontal tangents and C(q) converges to {q} × R

+, as one
goes up to +∞; cf. figures 1 and 2.

Figure 1
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Figure 2

The graph over Ω is converging uniformly to Γ × R
+ as one goes up.

Now suppose that for some q ∈ Γ, γ+(q) is of length less than ε. Then
C(q) diverges to −∞ as one approaches the end-point q̃ of γ+(q), q̃ �= q; cf.
figure 2.

The previous discussion where we showed the graph over Ω exists and
converges to Γ × R

+, now applies to show that there is a horocycle Γ̃ passing
through q̃, C(q) converges to {q̃} × R

− as one tends to q̃ on γ+(q). Also
a δ-neighborhood of C(q) in Σ converges uniformly to Γ̃δ(q̃) × R

−, as one
goes down to −∞. We know this δ-neighborhood of C(q) in Σ converges
uniformly to Γδ(q) × R

+ as one goes up to +∞. �

For each q(s) ∈ Γ, a distance s from q on Γ, |s| ≤ δ, the curve C(q(s))
converges uniformly to some {q̃(s̃)} × R

− as one goes down to −∞. By
analytic continuation of the δ-neighborhoods, one continues this process
along γ.

If Γ ∩ Γ̃ = ∅, then the process continues along all Γ, and Ω is the region
bounded by Γ ∪ Γ̃, which has has constant width; Γ and Γ̃ are equidistant.

So we can assume Γ ∩ Γ̃ = {p}. Consider the curves C(q(s)) as q(s) goes
from q to p along Γ. They are graphs that become vertical both at +∞ and
−∞. Hence the graphs C(q(s)) become vertical at every point as q(s) → p;
cf. figure 3.

Consider the point of C(q(s)) at height 0 in H
2 × R. As q(s) → p, these

points converge to a point of Σ and the tangent plane of Σ is vertical at this
point, a contradiction.
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Figure 3

We remark that in the case f(qn) −→ −∞ (see Claim 3), one works
on the concave side of the horocycle Γ(q) and Claims 4 and 5 show there
is an ε > 0 and a graph G ⊂ Σ over the domain Ω(ε) between Γ(ε) (the
equidistant horocycle to Γ on the concave side of Γ) and Γ. The graph G
converges uniformly to Γ × R as one approaches Γ in Ω(ε). �

Now Claim 5 contradicts Theorem 1.1 since the graph over Ω contains a
properly embedded H = 1/2 surface in the slab between C(1) and C(1 + ε)
with boundary contained in C(1 + ε), which is asymptotic to C(1).

5. Quadratic holomorphic differentials, harmonic maps
and entire graphs H = 1/2

We will now describe how to obtain entire H = 1/2 graphs starting with a
holomorphic quadratic differential Q = φ(z)dz2. This originates from the
work of Fernandez–Mira [4], Wan [9] and Au–Wan [3].

Abresch and Rosenberg [1,2] constructed a holomorphic quadratic differ-
ential Q0 associated to the surface; this Q0 generalizes the Hopf differential
associated to constant mean curvature surfaces of R

3. When H = 1/2 and
the surface is a graph, Fernandez–Mira [4] proved there exists a harmonic
map from the surface to H

2 whose associated holomorphic quadratic differ-
ential is Q = −Q0. In addition, given a harmonic map G from a surface
to H

2 plus some additional data (described below), they construct graphs
H = 1/2 on H

2 × R with this harmonic map as Gauss map.
For a given holomorphic Q = φ(dz)2, Wan [9] on the disk, Wan and

Au [3] for C, construct a unique harmonic map G : Σ −→ H
2 such that the
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Jacobian J(G) ≥ 0 and the metric τ |dz| := 4(σ ◦ G)2|Gz|2 is complete. To
do that, they construct a CMC H = 1/2 in M2,1, the Minkovski space with
Gauss map G and metric τ |dz|2.

Let G : Σ −→ H
2 be a harmonic map where Σ is C or the unit disk.

Then Q(z) = φ dz2 is a quadratic holomorphic differential associated to G
by the relation φ = (σ ◦ G)2GzGz̄. Here we note H

2 = (D2, σ), where σ is
the conformal factor of the hyperbolic metric on the disk. We define the
function ω = 1

2 log |Gz|
|Gz̄| and we express the Jacobian:

J(G) = σ2(|Gz|2 − |Gz̄|2) = 2 sinh(2ω)|φ|.

Fernandez–Mira construct multi-graph immersions ψ : Σ −→ H
2 × R

with H = 1/2, depending on the data {Q, τ}; τ as above. We note the
unit normal vector of ψ by η = (N̂ , u), with 0 < |u| ≤ 1. They show that
the metric ds2 = λ|dz|2 can be expressed as

λ =
2τ

u2 = 2τ + 4|hz|2 and u =
√

τ

τ + 2|hz|2
,

where h is the solution of a differential equation depending on τ and φ. By
the above relation between λ and τ , it is clear that the metric ds = λ|dz|2
is complete.

Thus associated to a holomorphic quadratic differential Q = φ(z)dz2,
one obtains a complete multi-graph H = 1/2 in H

2 × R; hence an entire
graph by Theorem 1.2. We give an independent proof below that the curva-
ture Kλ is bounded (using the fact that the Jacobian of G is non-negative).
This condition is ω ≥ 0 on Σ.

Lemma 5.1. If G satisfies J(G) > 0 and τ = 4(σ ◦ G)2|Gz|2 is non-zero,
then the curvature of the associate constant mean curvature H = 1/2 immer-
sion ψ in H

2 × R is bounded:

|Kλ| ≤ C.

Proof. In the Fernandez–Mira paper we have (Formula (2.5)), for the metric
ds2 = λ|dz|2 of the immersion ψ, with mean curvature H:

λ(log λ)zz̄ = 2(|p|2 − λ2(H2 − 1)/4 − λ|hz|2).
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Here p dz2 = −〈ψz, ηz〉 dz2 is the Hopf differential of ψ (the (2,0)-part of its
complexified second fundamental form). Moreover, we have φ = 2Hp + h2

z

(see [4]). Then with H = 1/2 and |hz|2
λ = 1−u2

4 ≤ 1/4:

|Kλ| =
1
2λ

|(log λ)zz̄| ≤ |p|2
λ2 +

3
16

+
|h(z)|2

λ

≤ |p + h2
z|2

λ2 +
7
16

+
|h(z)|4

λ2 ≤ 1
2

+
4u4|φ|2

τ2 .

Notice that 4u4|φ|2
τ2 = u4

4e4ω ≤ C since ω ≥ 0. �
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