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Integral cohomology of Hilbert schemes of points
on surfaces

Wei-Ping Li and Zhenbo Qin

Using Heisenberg algebra operators and interplay with the ring
of symmetric functions, we verify a conjecture raised in [15]. As
applications, we obtain linear bases and ring generators for the
integral cohomology of the Hilbert schemes of points on a smooth
projective surface with no odd cohomology.

1. Introduction

An additive basis for the rational cohomology group

H∗(X [n]) =
4n⊕

i=0

H i(X [n])

of the Hilbert scheme X [n] of n points on a projective surface X can be given
using the results of Göttsche, Grojnowski and Nakajima ([1–3]). When X
is a projective plane, Ellingsrud and Strømme [4] found a set of ring gener-
ators for the integral cohomology ring H∗(X [n]; Z), which essentially comes
from the Chern classes of certain tautological bundles over X [n] (see [5]
for a generalization). If X is an arbitrary projective surface, a set of ring
generators for the rational cohomology ring H∗(X [n]) is found in [6] (see
also [7–11]). The result is for rational coefficients since the Chern characters
of the tautological bundles were used in [6]. Recently, Markman [12–14]
used the integral cohomology ring H∗(X [n]; Z) to study the weight-2 Hodge
structure on H2(Y ; Z) when X is a K3 surface and Y is a hyperkähler man-
ifold deformation equivalent to X [n]. It is interesting to search for additive
bases and ring generators of the integral cohomology ring H∗(X [n]; Z) for a
general surface X. In [15], an effective method for finding integral additive
bases was developed. The main idea there is to study integral operators,
i.e., linear operators on H∗(X [n]) which send integral classes in H∗(X [n]) to
integral ones.
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Our goal in this paper is to determine both integral additive bases and
integral ring generators when the odd Betti numbers of the surface X vanish.
To state our results, we introduce some notations first. Let

ai(α), i ∈ Z, α ∈ H∗(X)

be the Heisenberg operators constructed in [16]. For a partition λ of n
and a smooth curve C in X, we can define the subvariety LλC ⊂ X [n] (see
(3.1) and [2, 16]). By Corollary 9.15 in [16], the fundamental class [LλC]
can be written as mλ,C |0〉 where mλ,C is a polynomial of creation operators
a−i(C), i > 0. Therefore we can define the operator mλ,α for an arbitrary
class α ∈ H2(X) simply by replacing the creation operators a−i(C), i > 0
appearing in mλ,C by the corresponding creation operators a−i(α), i > 0. By
Theorem 4.5 in [15], mλ,α is integral when α is a divisor. It was conjectured
in [15] that the linear operator mλ,α is integral whenever α ∈ H2(X) is an
integral cohomology class.

In Section 3, we confirm the above conjecture, i.e., we prove that the
operator mλ,α is integral for every partition λ and every integral class α ∈
H2(X). The main idea is to use topological K-theory and relations between
the Hilbert schemes and the ring of symmetric functions. As an immediate
consequence, we obtain the following (see the conventions below, (2.6) and
(2.7) for notations).

Theorem 1.1. Let X be a smooth projective surface with vanishing odd
Betti numbers. Let α1, . . . , αk be an integral basis for H2(X; Z)/Tor. Then
the classes

(1.1)
1
zλ

a−λ(1)a−μ(x)mν1,α1 · · ·mνk,αk
|0〉, |λ| + |μ| +

k∑

i=1

|νi| = n

are integral, and furthermore, they form an integral basis for H∗(X [n]; Z)/
Tor.

Theorem 1.1, which was also conjectured in [15], generalizes the corres-
ponding statement in the Theorem 5.4 of [15] under the assumption that
H1(X, OX) = H2(X, OX) = 0.

In Section 4, we study the integral ring generators. Instead of using the
Chern characters as in [6], we use the Chern classes of the tautological vector
bundles L[n] over the Hilbert scheme X [n] where L denotes line bundles over
X (see (3.10)). We investigate in details various relations among the Chern



Integral cohomology of Hilbert schemes 971

characters and Chern classes of O[n]
X , Heisenberg operators, and monomial

symmetric functions. Using the techniques developed in [15,17,18], we prove
our second theorem.

Theorem 1.2. Suppose that the smooth projective surface X has vanishing
odd Betti numbers. Let α1, . . . , αk be an integral basis for H2(X; Z)/Tor.
Then the integral ring H∗(X [n]; Z)/Tor is generated over Z by all the integral
classes:

(1.2) ci

(
O[n]

X

)
, 1−(n−j)m(1j),αs

|0〉, 1−(n−j)a−j(x)|0〉,

where 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n, and 1 ≤ s ≤ k.

The tautological rank-n bundle O[n]
X is defined by (3.10). The funda-

mental reason for the appearance of the classes 1−(n−j)m(1j),αs
|0〉 in the

list (1.2) is the well-known fact (see [19]) that the monomial symmetric
functions m(1i), i ≥ 1 corresponding to the partitions (1i), i ≥ 1 generate the
(integral) ring of symmetric functions in infinitely many variables. We refer
to Remark 4.2 for the geometric representations of the cohomology classes
1−(n−j)m(1j),αs

|0〉 and 1−(n−j)a−j(x)|0〉.
Finally, in view of the results in [4], we propose a conjecture concerning

the ring generators of the integral ring H∗(X [n]; Z)/Tor in terms of certain
Chern classes. Note that if H1(X, OX) = H2(X, OX) = 0, then the odd
Betti numbers of X are equal to zero. Moreover, we can choose an integral
basis α1, . . . , αk for H2(X; Z)/Tor such that αi · αj = 1 for some i and j
with the possibility that i = j.

Conjecture 1.3. Assume that H1(X, OX) = H2(X, OX) = 0. Let α1, . . . ,
αk be an integral basis for H2(X; Z)/Tor such that αi · αj = 1 for some i and
j. Put αk+1 = αi + αj . Then the integral ring H∗(X [n]; Z)/Tor is generated
over Z by:

ci

(
O[n]

X

)
, cj

(
OX(αs)[n]),(1.3)

where 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n, and 1 ≤ s ≤ (k + 1).

Conventions. Unless otherwise indicated, all the cohomology groups in this
paper are in Q-coefficients. For a continuous map p : Y1 → Y2 between two
smooth compact manifolds and for α1 ∈ H∗(Y1), we define p∗(α1) to be
PD−1p∗(PD(α1)) where PD stands for the Poincaré duality. For a smooth
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projective surface X, by abusing notations, we let 1 ∈ H0(X; Z) be the
fundamental cohomology class of X; in addition, we let x denote either
a point in X, or the class in H4(X; Z) which is the Poincaré dual of the
homology class represented by a point in X.

2. Basics on Hilbert schemes of points on surfaces

Let X be a complex smooth projective surface, and X [n] be the Hilbert
scheme of points on X. An element in X [n] is represented by a length-n
0-dimensional closed subscheme ξ of X. It is well known that X [n] is
smooth. Sending an element in X [n] to its support in the symmetric prod-
uct Symn(X), we obtain the Hilbert-Chow morphism πn : X [n] → Symn(X),
which is a resolution of singularities. Let H∗(X [n]) be the total cohomology
of X [n] with Q-coefficients, and put

HX =
∞⊕

n=0

H∗(X [n]).(2.1)

There exists a non-degenerate super-symmetric bilinear form 〈−,−〉 on the
space HX which is induced from the standard one on H∗(X [n]) defined by

〈α, β〉 =
∫

X [n]

αβ, α, β ∈ H∗(X [n]).

Recall that Heisenberg algebra action on HX was defined in [2, 3, 16].
Namely, we have the operators a−n(α) ∈ End(HX) with n ∈ Z and α ∈
H∗(X) which satisfy a Heisenberg algebra commutation relation:

[am(α), an(β)] = −m δm,−n · 〈α, β〉 · IdHX
.(2.2)

When n > 0, we often refer to a−n(α) (resp. an(α)) as the creation (resp.
annihilation) operator. The space HX is an irreducible module over the
Heisenberg algebra generated by the operators an(α) with a highest weight
vector

|0〉 = 1 ∈ H0(X [0]) ∼= Q.

It follows that HX is linearly spanned by all the Heisenberg monomial
classes:

a−n1(α1) · · · a−nk
(αk)|0〉,(2.3)

where k ≥ 0, n1, . . . , nk > 0, and α1, . . . , αk run over a linear basis of H∗(X).
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For n > 0 and a homogeneous class α ∈ H∗(X), let |α| = s if α ∈ Hs(X),
and let Gi(α, n) be the homogeneous component in H |α|+2i(X [n]) of

G(α, n) = p1∗
(
ch(OZn

) · p∗
2td(X) · p∗

2α
)

∈ H∗(X [n]),(2.4)

where Zn is the universal codimension-2 subscheme defined by

Zn =
{
(ξ, x) ⊂ X [n] × X |x ∈ Supp(ξ)

}
⊂ X [n] × X,(2.5)

ch(OZn
) denotes the Chern character of the structure sheaf OZn

, td(X)
denotes the Todd class, and p1 and p2 are the projections of X [n] × X to
X [n] and X, respectively. We extend the notion Gi(α, n) linearly to an
arbitrary class α ∈ H∗(X), and set Gi(α, 0) = 0. These Chern character
classes Gi(α, n) play essential roles in understanding the cup product on
X [n].

Let λ =
(
1m12m2 · · ·

)
be a partition of the integer n =

∑
r rmr, whose

part r has multiplicity mr. We write λ 
 n. Let 	(λ) =
∑

r mr and

|λ| =
∑

r

rmr = n,(2.6)

zλ =
∏

r≥1

(
rmrmr!

)
.

In addition, for a cohomology class α ∈ H∗(X) and m ≥ 0, we define

a−λ(α) =
∏

r≥1

a−r(α)mr ,(2.7)

1−m =
1
m!

· a−(1m)(1) =
1
m!

· a−1(1)m.

The geometric meaning of 1−m is that 1−m|0〉 is equal to the fundamental
class of the Hilbert scheme X [m]. For simplicity, we set 1−m = 0 when
m < 0.

The following is the Stability Theorem 5.1 proved in [18], which will be
a key technical tool used in later sections.

Theorem 2.1. Let s ≥ 1 and ki ≥ 1 for 1 ≤ i ≤ s. Fix ni,j ≥ 1 and αi,j ∈
H∗(X) for 1 ≤ j ≤ ki, and fix n with n ≥

∑ki

j=1 ni,j for all 1 ≤ i ≤ s. Then
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the cup product

s∏

i=1

⎛

⎝1−(n−
∑ki

j=1 ni,j)

⎛

⎝
ki∏

j=1

a−ni,j
(αi,j)

⎞

⎠ |0〉

⎞

⎠(2.8)

in H∗(X [n]) is equal to a finite linear combination of monomials of the form

1−(n−
∑N

p=1 mp)

⎛

⎝
N∏

p=1

a−mp
(γp)

⎞

⎠ |0〉,(2.9)

whose coefficients are independent of X, αi,j and n. Here
∑N

p=1 mp ≤∑s
i=1

∑ki

j=1 ni,j, and γ1, . . . , γN depend only on αi,j, 1 ≤ i ≤ s, 1 ≤ j ≤ ki,
and the canonical class and the Euler class of X. In addition, the expression
(2.9) satisfies the upper bound

N∑

p=1

mp =
s∑

i=1

ki∑

j=1

ni,j

if and only if it is 1−(n−
∑s

i=1

∑ki
j=1 ni,j)

(
∏s

i=1
∏ki

j=1 a−ni,j
(αi,j))|0〉 with coeffi-

cient 1.

In particular, Theorem 2.1 says that the cup product (2.8) is of the form:

1−(n−
∑s

i=1

∑ki
j=1 ni,j)

⎛

⎝
s∏

i=1

ki∏

j=1

a−ni,j
(αi,j)

⎞

⎠ |0〉 + 1−(n−
∑s

i=1

∑ki
j=1 ni,j+1)A

for some cohomology class A in H∗(X [
∑s

i=1

∑ki
j=1 ni,j−1]).

3. Integral basis of the integral cohomology

In this section, using the method developed in [15] and topological K-theory,
we will prove a conjecture raised in [15]. As a consequence, we will find an
integral basis for H∗(X [n]; Z)/Tor, and hence prove Theorem 1.1.

3.1. Integral operators and the definition of mλ,α

In this subsection, we review the basic results and methods from [15].
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Definition 3.1.

(i) A class A ∈ H∗(X [n]) is integral if it is contained in

H∗(X [n]; Z)/Tor ⊂ H∗(X [n]).

(ii) A linear basis of H∗(X [n]) is integral if its members are integral classes
and form a Z-basis of the lattice H∗(X [n]; Z)/Tor.

(iii) A linear operator f ∈ End(HX) is integral if f(A) ∈ HX is an integral
class whenever A ∈ HX is an integral cohomology class.

The following lemma compiles various results proved in [15].

Lemma 3.2.

(i) The operators an(α), n ∈ Z are integral if α ∈ H∗(X) is integral;

(ii) The operator 1/zλ · a−λ(1) is integral for every partition λ;

(iii) Let A ∈ HX be an integral class. Write A as aA|0〉 where aA is a unique
polynomial of creation operators. Then, aA is an integral operator. �

Next, let C be a smooth irreducible curve in the surface X. By abusing
notations, we also use C to denote the corresponding divisor and the corre-
sponding cohomology class. Following Subsection 9.3 of [16] (see also [2]),
for every partition λ = (λ1, λ2, . . .) of n, we define the subvariety of X [n]:

LλC = (πn)−1(Sn
λC),(3.1)

where Sn
λC =

{ ∑
i λixi| xi ∈ C, xi �= xj for i �= j

}
, and

πn : X [n] → Symn(X)

is the Hilbert–Chow morphism. For n ≥ 0, let Hn,C be the Q-linear span:

Span
{
a−λ(C)|0〉

∣∣ λ 
 n
}

(3.2)

in H∗(X [n]). We see from the Theorem 9.14 in [16] that the fundamental
class [LλC] ∈ H2n(X [n]; Z) is contained in Hn,C ⊂ H∗(X [n]). Define

HC =
∞⊕

n=0

Hn,C .(3.3)
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Let Λ be the ring of symmetric functions in infinitely many variables
(see [19, p.19]), and ΛQ = Λ ⊗Z Q. For a partition λ, let pλ and mλ be
the power-sum symmetric function and the monomial symmetric function,
respectively.

In [16], Nakajima defined a linear isomorphism

ΦC : ΛQ −→ HC ,(3.4)

which satisfies the following two properties:

ΦC(pλ) = a−λ(C)|0〉, ΦC(mλ) = [LλC].(3.5)

By Lemma 3.2 (iii), the operator a[LλC] is integral. Put

mλ,C = a[LλC] ∈ End(HX).

Since [LλC] ∈ H|λ|,C , we see from (3.2) that the integral operator mλ,C is a
polynomial of the creation Heisenberg operators a−i(C), i > 0.

Definition 3.3. For a partition λ and an arbitrary class α ∈ H2(X), we
define

mλ,α ∈ End(HX)

by replacing the creation operators a−i(C) in mλ,C by the corresponding
creation operators a−i(α). Define the cohomology class [Lλα] ∈ H∗(X [|λ|])

by putting

[Lλα] = mλ,α|0〉.(3.6)

Similarly, we can define the subspaces Hn,α and Hα of HX as in (3.3).
Moreover, in view of (3.4) and (3.5), we have a linear isomorphism

Φα : ΛQ −→ Hα(3.7)

which satisfies the following two properties:

Φα(pλ) = a−λ(α)|0〉, Φα(mλ) = [Lλα] = mλ,α|0〉.(3.8)

Since the monomial symmetric function m(1n) is the same as the nth ele-
mentary symmetric function, we see from formula (2.14′) in [19] that

m(1n) =
∑

|μ|=n

(−1)n−�(μ)pμ

zμ
.
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Therefore, applying Φα to both sides and using (3.8), we obtain

m(1n),α|0〉 = [L(1n)α] =
∑

|μ|=n

(−1)n−�(μ)a−μ(α)|0〉
zμ

.(3.9)

3.2. Integrality of mλ,α for integral α

In this subsection, we shall prove that if α ∈ H2(X) is integral, then the class
[Lλα] and the operator mλ,α are integral. This was proved in Theorem 4.5 of
[15] when α is a divisor, and conjectured in Remark 5.6 of [15] for a general
integral class α.

First of all, we recall some tautological vector bundles over the Hilbert
scheme X [n]. For a line bundle L over the surface X, we define

L[n] = (p1)∗
(
OZn

⊗ p∗
2L

)
,(3.10)

where Zn is from (2.5), and p1 and p2 are the projections of X [n] × X to
X [n] and X, respectively. Then, L[n] is a rank-n bundle over X [n].

Lemma 3.4. Let 0 ≤ i ≤ n. Let L be a line bundle on X with α = c1(L).
Then,

ci(L[n]) =
∑

|λ|+|μ|=n

�(λ)=n−i

(−1)i−�(μ)a−λ(1)a−μ(α)|0〉
zλzμ

.(3.11)

Proof. Let c�(L[n]) =
∑n

i=0 ci(L[n])�i be the generating function for the
Chern classes of L[n], where � is a formal variable. Then the Theorem 2.4
of [20], which is a variant of the Theorem 4.6 in [7], states that

∞∑

n=0

c�(L[n])wn = exp

⎛

⎝
∑

r≥1

(−�)r−1

r
a−r(c�(L))wr

⎞

⎠ · |0〉,(3.12)



978 Wei-Ping Li and Zhenbo Qin

where w is another formal variable. Expanding the right-hand side yields

exp

⎛

⎝
∑

r≥1

(−�)r−1

r
a−r(c�(L))wr

⎞

⎠ · |0〉

= exp

⎛

⎝
∑

r≥1

(−1)r−1

r
a−r(1)�r−1wr

⎞

⎠ · exp

⎛

⎝
∑

r≥1

(−1)r−1

r
a−r(α)�rwr

⎞

⎠ · |0〉

=
∑

λ

(−1)|λ|−�(λ)a−λ(1)
zλ

�
|λ|−�(λ)w|λ| ·

∑

μ

(−1)|μ|−�(μ)a−μ(α)
zμ

�
|μ|w|μ||0〉

=
∑

(λ,μ)

(−1)|λ|+|μ|−�(λ)−�(μ)a−λ(1)a−μ(α)|0〉
zλzμ

�
|λ|+|μ|−�(λ)w|λ|+|μ|.

(3.13)

Now the Chern class ci(L[n]) is the coefficients of �
iwn in (3.13). �

Lemma 3.5. If the class α ∈ H2(X) is integral, then so is the operator
m(1n),α.

Proof. Let p1 and p2 be the projections of X [n] × X to X [n] and X, respec-
tively. By Theorem in [21, p. 20], p1 induces a homomorphism

(p1)! : K0
top(X

[n] × X) → K0
top(X

[n]),

where K0
top(·) denotes the ring of complex vector bundles; moreover, for an

element V ∈ K0
top(X

[n] × X), the Riemann–Roch formula holds:

ch
(
(p1)!(V )

)
= (p1)∗

(
ch(V ) · p∗

2td(X)
)
.(3.14)

Next, by Theorem E.5 in [22], there exists a complex (not necessarily
algebraic) line bundle Lα on X with c1(Lα) = α. Applying (3.14) to the
element

V = Vα := OZn
⊗ p∗

2Lα ∈ K0
top(X

[n] × X)

where Zn is the universal codimension-2 subscheme defined in (2.5), we
obtain

ch
(
(p1)!(Vα)

)
= p1∗

(
ch(OZn

) · p∗
2td(X) · p∗

2ch(Lα)
)

= G(1, n) + G(α, n) + 〈α, α〉/2 · G(x, n),(3.15)
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where we have used definition (2.4) and the fact that

ch(Lα) = 1 + α + 〈α, α〉/2 · x.

In particular, we conclude that the integral class ci

(
(p1)!(Vα)

)
is a polyno-

mial Pi of Gi1(1, n), Gi2(α, n), 〈α, α〉 and Gi3(x, n) with 0 ≤ i1, i2, i3 ≤ 2n,
i.e.,

ci

(
(p1)!(Vα)

)
= Pi

(
Gi1(1, n), Gi2(α, n), 〈α, α〉, Gi3(x, n)

∣∣ 0 ≤ i1, i2, i3 ≤ 2n
)
.

(3.16)

Note that the coefficients in Pi are independent of α and X.
When α is a divisor, Lα is an algebraic line bundle on X, and the element

(p1)!(Vα) ∈ K0
top(X

[n])

is represented precisely by the tautological rank-n vector bundle (Lα)[n]

defined in (3.10). Therefore, we obtain from Lemma 3.4 that

ci

(
(p1)!(Vα)

)
=

∑

|λ|+|μ|=n

�(λ)=n−i

(−1)i−�(μ)a−λ(1)a−μ(α)|0〉
zλzμ

.(3.17)

Finally, we conclude from (3.16) and the universality results in [18] (e.g.,
the Theorem 4.1 there) that (3.17) holds for a general integral class α ∈
H2(X). Setting i = n in (3.17) and using (3.9), we obtain the integral class

cn

(
(p1)!(Vα)

)
=

∑

|μ|=n

(−1)n−�(μ)a−μ(α)|0〉
zμ

= [L(1n)α].

By Lemma 3.2 (iii) and (3.6), the operator m(1n),α is integral. �

Theorem 3.6. Let the class α ∈ H2(X) be integral. Then for every parti-
tion λ, the class [Lλα] and the operator mλ,α are integral.

Proof. It is well known (see [19]) that the monomial symmetric functions

m(1i), i ≥ 1

generate the integral ring Λ. So the monomial symmetric function mλ can
be written as an integral polynomial P of the functions m(1i), i ≥ 1, i.e.,

mλ = P
(
m(1i)

∣∣ i ≥ 1
)
.
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Combining this with the two formulas in (3.8), we see that

[Lλα] = Φα(mλ) = Φα

(
P

(
m(1i)

∣∣ i ≥ 1
))

= P
(
m(1i),α

∣∣ i ≥ 1
)
|0〉.

(3.18)

Hence, the class [Lλα] is integral by Lemma 3.5. Finally, we conclude from
Lemma 3.2 (iii) and (3.6) that the operator mλ,α is integral. �

3.3. Proof of Theorem 1.1

Let α1, . . . , αk ∈ H2(X) be integral cohomology classes. By Lemma 3.2 and
Theorem 3.6, we have three types of integral operators:

1
zλ

a−λ(1), a−μ(x), mνi,αi
,

where λ, μ, νi stand for partitions. Therefore, we obtain integral classes:

1
zλ

a−λ(1)a−μ(x)mν1,α1 · · ·mνk,αk
|0〉.(3.19)

Recall from the conditions in Theorem 1.1 that

H1(X) = H3(X) = 0.

By (2.3), the number of classes in (1.1) is equal to the rank of H∗(X [n]; Z)/
Tor. Now consider the intersection number of two classes from (1.1):

1
zλ

a−λ(1)a−μ(x)mν1,α1 · · ·mνk,αk
|0〉,

1
zλ̃

a−λ̃(1)a−μ̃(x)mν̃1,α1 · · ·mν̃k,αk
|0〉.

By the Heisenberg algebra commutation relation (2.2), the intersection num-
ber is

±δλ,μ̃ · δλ̃,μ ·
〈
mν1,α1 · · ·mνk,αk

|0〉, mν̃1,α1 · · ·mν̃k,αk
|0〉

〉
.(3.20)

Recall from the Modularity Theorem 4.6 in [15] that for every fixed ñ ≥ 0,
the intersection matrix formed by the pairings of the classes

mν1,α1 · · ·mνk,αk
|0〉,

k∑

i=1

|νi| = ñ
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has determinant ±1. Hence we conclude from (3.20) that the intersection
matrix formed by the pairings of the integral classes in (1.1) is unimodular.
Therefore, the classes in (1.1) form an integral basis of H∗(X [n]; Z)/Tor.

4. Generators of the integral cohomology ring

In this section, we shall assume that the odd Betti numbers of the surface
X are equal to zero, and study generators for the integral cohomology ring
of X [n].

Let α1, . . . , αk be an integral basis for H2(X; Z)/Tor. By (1.1), we have
the following integral cohomology classes in H∗(X [n]):

1−(n−j)m(1j),αs
|0〉,

1−(n−j)a−j(x)|0〉,

where 1 ≤ j ≤ n and 1 ≤ s ≤ k. Recall the tautological rank-n vector bundle
O[n]

X defined by (3.10), and note from (3.11) that cn

(
O[n]

X

)
= 0.

Definition 4.1. For n ≥ 1, we define Rn to be the subring of the integral
cohomology ring H∗(X [n]; Z)/Tor generated over Z by all the integral classes:

ci

(
O[n]

X

)
, 1−(n−j)m(1j),αs

|0〉, 1−(n−j)a−j(x)|0〉,(4.1)

where 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n, and 1 ≤ s ≤ k.

Remark 4.2. Fix a point x ∈ X and a smooth irreducible curve C ⊂ X.
Then the integral class 1−(n−j)a−j(x)|0〉 is represented by the subvariety

{
ξ ∈ X [n]∣∣ m(ξ, x) ≥ j

}
,

where m(ξ, x) denotes the multiplicity of ξ at the point x. Similarly, the
integral class 1−(n−j)m(1j),C |0〉 is represented by the closure of the subvariety
in X [n]:

{
n−j∑

i=1

xi +
j∑

i=1

x′
i

∣∣ xi �∈ C, x′
i ∈ C, and x1, . . . , xn−j , x

′
1, . . . , x

′
j are distinct

}
.
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Our goal in this section is to show that

Rn = H∗(X [n]; Z)/Tor,

i.e., we shall prove that the ring H∗(X [n]; Z)/Tor is generated by the integral
classes in (4.1). We begin with two lemmas which enable us to use certain
induction.

Lemma 4.3. If λ is a partition with |λ| ≤ n, then

1−(n−|λ|)mλ,αi
|0〉 ≡ A(mod Rn),(4.2)

where A is an integral linear combination of classes of the form

1
zλ̃

a−λ̃(1)a−μ(x)mν1,α1 · · ·mνk,αk
|0〉(4.3)

such that the partitions λ̃ = (1m̃12m̃2 · · · ) satisfy m̃1 > (n − |λ|), and

|λ̃| + |μ| + |ν1| + · · · + |νk| = n.

Proof. Combining formulas (3.6) and (3.18), we obtain

mλ,αi
|0〉 = [Lλαi] = P

(
m(1j),αi

∣∣j ≥ 1
)
|0〉,

where P is an integral polynomial. It follows that

1−(n−|λ|)mλ,αi
|0〉 = 1−(n−|λ|)P

(
m(1j),αi

∣∣j ≥ 1
)
|0〉.

Therefore, it remains to prove that if j1 + · · · + js = |λ|, then

1−(n−|λ|) m(1j1 ),αi
· · ·m(1js ),αi

|0〉 ≡ A1(mod Rn),(4.4)

where A1 is an integral linear combination of classes of the form (4.3).
By definition, the classes 1−(n−ju)m(1ju ),αi

|0〉, 1 ≤ u ≤ s, are contained
in Rn. By (3.9), 1−(n−ju)m(1ju ),αi

|0〉 is a linear combination of classes of the
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form
1−(n−ju)a−γ(αi)|0〉, |γ| = ju.

By Theorem 2.1, the cup product of the classes 1−(n−ju)m(1ju ),αi
|0〉, 1 ≤

u ≤ s, is
1−(n−|λ|) m(1j1 ),αi

· · ·m(1js ),αi
|0〉 + 1−(n−|λ|+1)A2

for some cohomology class A2 ∈ H∗(X [|λ|−1]). Hence, we obtain

1−(n−|λ|) m(1j1 ),αi
· · ·m(1js ),αi

|0〉 ≡ −1−(n−|λ|+1)A2(mod Rn).

Since 1−(n−|λ|) m(1j1 ),αi
· · ·m(1js ),αi

|0〉 is an integral class, we conclude from
Theorem 1.1 that the class A1 := −1−(n−|λ|+1)A2 is an integral linear com-
bination of classes of the form (4.3). This completes the proof of (4.4). �

Lemma 4.4. Let λ = (1m12m2 · · · ) be a partition of n. Then,

1
zλ

a−λ(1)|0〉 ≡ A(mod Rn),(4.5)

where A is an integral linear combination of classes of the form

1
zλ̃

a−λ̃(1)a−μ(x)mν1,α1 · · ·mνk,αk
|0〉(4.6)

such that μ �= ∅ or νi �= ∅ for some i, λ̃ = (1m̃12m̃2 · · · ) with m̃1 > m1, and

|λ̃| + |μ| + |ν1| + · · · + |νk| = n.

Proof. For simplicity, let Gi = Gi(1, n) and ci = ci

(
O[n]

X

)
. By Corollary 4.8

in [17], the cohomology class Gr−1 is equal to

(−1)r−1

r!
· 1−(n−r)a−r(1)|0〉 + 1−(n−r+1)A1

for some class A1 ∈ H∗(X [r−1]). By Theorem 2.1, the cup product
∏

r≥2 Gmr

r−1
equals

∏

r≥2

(
(−1)r−1

r!

)mr

· 1
m1!

· a−λ(1)|0〉 + 1−(m1+1)A2

for some class A2. In view of the basis (1.1), we can write 1−(m1+1)A2 as
∑

λ′

dλ′ a−λ′(1)|0〉 + A3,
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where A3 is a linear combination of classes of the form (4.6), dλ′ ∈ Q, and
the partitions λ′ := (1m′

12m′
2 · · · ) satisfy m′

1 > m1. So

∏

r≥2

Gmr

r−1 =
1

m1!
·
∏

r≥2

(
(−1)r−1

r!

)mr

· a−λ(1)|0〉 +
∑

λ′

dλ′a−λ′(1)|0〉 + A3.

Solving a−λ(1)|0〉 and using induction on m1, we conclude that

1
zλ

a−λ(1)|0〉 = P (G1, G2, . . .) + A,

where A is a linear combination of classes of the form (4.6), and P (G1,
G2, . . .) denotes a polynomial in the classes G1, G2, . . . . Note from (2.4) that
Gi is the ith Chern character of the tautological bundle

(
OX

)[n]. Replacing
the Chern characters Gi of

(
OX

)[n] by its Chern classes ci, we have

1
zλ

a−λ(1)|0〉 = P̃ (c1, c2, . . .) + A,(4.7)

where P̃ (c1, c2, . . .) denotes a polynomial in the classes c1, c2, . . . , and has
coefficients independent of the smooth surface X.

Now, from the proof of the Proposition 6.1 in [8], we see that in the
cohomology ring H∗((C2)[n]

)
of the Hilbert scheme (C2)[n], we also have

1
zλ

a−λ(1)|0〉 = P̃ (c̃1, c̃2, . . .),

where 1 ∈ H0(C2) is the identity element, and c̃i denotes the ith Chern class
of the tautological bundle

(
OC2

)[n] on (C2)[n]. Moreover, all the coefficients
in the polynomial P̃ (c̃1, c̃2, . . .) are integers. Thus by (4.7), we obtain

1
zλ

a−λ(1)|0〉 ≡ A(mod Rn).

Finally, note that 1/zλ a−λ(1)|0〉 and all the classes in Rn are integral.
Since A is a linear combination of the classes (4.6), we conclude from Theo-
rem 1.1 that all the coefficients in this linear combination are integers. �

Now we can present a proof of Theorem 1.2.
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Proof of Theorem 1.2. By Theorem 1.1, it suffices to show that all the basis
classes (1.1) are contained in Rn. These basis classes can be rewritten as

1−(n−n0)
1
zρ

a−ρ(1)a−μ1(x) · · · a−μ�
(x)mν1,α1 · · ·mνk,αk

|0〉,

where 0 ≤ n0 ≤ n, the partition ρ is of the form (2m23m3 · · · ) and

|ρ| + (μ1 + · · · + μ�) +
k∑

i=1

|νi| = n0.

In the following, we shall use induction on n0 to prove that

(4.8) A := 1−(n−n0)
1
zρ

a−ρ(1)a−μ1(x) · · · a−μ�
(x)mν1,α1 · · ·mνk,αk

|0〉 ∈ Rn.

Note that (4.8) is trivially true when n0 = 0. Now fix n0 > 0, and assume
that

(4.9) 1−(n−ñ0)
1
zρ̃

a−ρ̃(1)a−μ̃1(x) · · · a−μ̃�̃
(x)mν̃1,α1 · · ·mν̃k,αk

|0〉 ∈ Rn

holds for all ñ0 < n0. We want to verify that (4.8) is also true.
We start with the three special cases when μ1 = n0 (so 	 = 1), or |ρ| =

n0, or |νi| = n0 for some i. First of all, by the definition of Rn, we have

1−(n−n0) a−n0(x)|0〉 ∈ Rn.

Next, we see from Lemma 4.4 and the induction hypothesis that

1−(n−n0)
1
zρ

a−ρ(1)|0〉 ∈ Rn

for every partition ρ = (2m23m3 · · · ) with |ρ| = n0. Finally, for every par-
tition νi with |νi| = n0, we conclude from Lemma 4.3 and the induction
hypothesis that

1−(n−n0)mνi,αi
|0〉 ∈ Rn.

For general ρ, μ1, . . . , μ�, ν
1, . . . , νk from (4.8), we consider the classes:

1−(n−|ρ|)
1
zρ

a−ρ(1)|0〉,

1−(n−μi)a−μi
(x)|0〉 (1 ≤ i ≤ 	),

1−(n−|νi|)mνi,αi
|0〉 (1 ≤ i ≤ k),
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which are contained in Rn by the preceding paragraph. By Theorem 2.1,
their cup product is A + 1−(n−n0+1)A1 for some class A1 ∈ H∗(X [n0−1]).
Therefore,

A ≡ −1−(n−n0+1)A1(mod Rn).

Note that the integral class −1−(n−n0+1)A1 is an integral linear combination
of classes of the form (4.9). Hence by induction, we have A ∈ Rn. �
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