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Blow-up time for a nonlocal diffusion problem with
dirichlet boundary conditions

Diabate Nabongo and Théodore K. Boni

This paper concerns the study of the following initial-boundary
value problem

⎧
⎨

⎩

ut = ε(J ∗ u − u) + f(u) in Ω × (0, T ),
u = 0 in (RN − Ω) × (0, T ),
u(x, 0) = u0(x) > 0 in Ω,

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, J ∗

u(x, t) =
∫

RN J(x − y)u(y, t)dy, J: R
N −→ R is nonnegative, sym-

metric (J(z) = J(−z)), bounded and
∫

RN J(z)dz = 1, f(s) is posi-
tive, increasing, convex function for positive values of s and

∫ ∞ ds
f(s)

< ∞. The initial data u0 ∈ C1(Ω). We show that if ε is small
enough, the solution of the above problem blows up in a finite
time and its blow-up time goes to the one of the solution of the
following differential equation

{
α′(t) = f(α(t)), t > 0,
α(0) = M ,

as ε goes to zero, where M = supx∈Ω u0(x).
Finally, we give some numerical results to illustrate our analysis.

1. Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. Consider

the following initial-boundary value problem

ut = ε(J ∗ u − u) + f(u) in Ω × (0, T ),(1.1)
u = 0 in (RN − Ω) × (0, T ),(1.2)
u(x, 0) = u0(x) > 0 in Ω,(1.3)

where J ∗ u(x, t) =
∫

RN J(x − y)u(y, t)dy, J: R
N −→ R is nonnegative,

bounded, symmetric (J(z) = J(−z)) and
∫

RN J(z)dz = 1, f(s) is a positive,
increasing, convex function for the positive values of s,

∫ ∞ ds
f(s) < +∞. The
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initial data u0 ∈ C1(Ω). Here (0, T ) is the maximal time interval on which
the solution u of (1.1) to (1.3) exists. The time T may be finite or infinite.
When T is infinite, we say that the solution u exists globally. When T is
finite, the solution u develops a singularity in a finite time, namely

lim
t→T

‖u(., t)‖∞ = +∞,

where ‖u(., t)‖∞ = maxx∈Ω |u(x, t)|. In this last case, we say that the solu-
tion u blows up in a finite time and the time T is called the blow-up time of
the solution u. Recently nonlocal diffusion problems have been the subject
of investigations of many authors (see [3–8, 14–21, 24, 25, 27, 33, 39] and the
references cited therein). Nonlocal evolution equations of the form

ut =
∫

RN

J(x − y)(u(y, t) − u(x, t))dy

and variations of it have been used by several authors to model diffu-
sion processes (see [5, 8, 14, 20, 21]). The solution u(x, t) can be inter-
preted as the density of a single population at the point x, at time t and
J(x − y) as the probability distribution of jumping from location y to loca-
tion x. Then the convolution (J ∗ u)(x, t) =

∫

RN J(y − x)u(y, t)dy is the
rate at which individuals are arriving to position x from all other places
and −u(x, t) = −

∫

RN J(y − x)u(x, t)dy is the rate at which they are leav-
ing location x to travel to any other site (see [20]). Solutions of nonlinear
parabolic equations (local diffusion) which blow up in a finite time have been
the subject of investigation of many authors (see [9, 10, 13, 23, 29, 34, 36, 38]
and the references cited therein). One may also find in [33] some results
on blow-up for nonlocal diffusion with Neumann boundary conditions. In
this paper, we are interested in the asymptotic behavior of the blow-up time
when ε is small enough. Our work was motivated by the paper of Friedman
and Lacey in [23], where they have considered the following problem

ut = εΔu + f(u) in Ω × (0, T ),
u = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

where Δ is the Laplacian, f(s) is a positive, increasing and convex function
for the nonnegative values of s,

∫ +∞
0

ds
f(s) < +∞. The initial data u0 is a

positive and continuous function in Ω. Under some additional conditions on
the initial data, they have proved that when ε is small enough, the solution
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u of the above problem blows up in a finite time and its blow-up time goes
to the one of the solution of the following differential equation

α′(t) = f(α(t)), α(0) = M,(1.4)

as ε tends to zero where M = supx∈Ω u0(x).
Let us notice that the result of Friedman and Lacey holds when f(0) > 0,

but they have noticed that if the solution increases with respect to the second
variable, it is possible that their result holds for f(0) = 0. The proof in [23]
is based on the construction of upper and lower solutions, and it is difficult to
extend the method in [23] to our problem. In this paper, we obtain a similar
result for the problem described in (1.1) to (1.3) using both a modification
of Kaplan’s method (see [29]) and a method based on the construction of
upper solutions. Our paper is written in the following manner. In the next
section, we prove the local existence and uniqueness of the solution of (1.1) to
(1.3). We also give some results about the maximum principle for nonlocal
problems. In the third section, under some conditions, we show that the
solution u of (1.1) to (1.3) blows up in a finite time and its blow-up time
goes to the one of the solution of the differential equation defined in (1.4) as
ε goes to zero. Finally, in the last section, we give some numerical results
to illustrate our analysis.

2. Local existence

In this section, we shall establish the existence and uniqueness of the solution
of (1.1) to (1.3) in Ω × (0, T ) for small T and certain initial data.

Let t0 be fixed and define the function space Yt0 = {u ∈ C([0, t0], C(Ω))}
equipped with the norm defined by ‖u‖Yt0

= max0≤t≤t0 ‖u‖∞ for u ∈ Yt0 .
It is easy to see that Yt0 is a Banach space. Introduce the set Xt0 =
{u/u ∈ Yt0 , ‖u‖Yt0

≤ b0}, where b0 = 2‖u0‖∞ + 1. We observe that Xt0 is
a nonempty bounded closed convex subset of Yt0 . Define the map R as
follows

R : Xt0 −→ Xt0 ,

R(v)(x, t)=u0(x)+ε

∫ t

0

∫

RN

J(x−y)(v(y, s)−v(x, s))dy ds+
∫ t

0
f(v(x, s))ds,

where we impose

v(x, t) = 0 for x ∈ R
N − Ω.
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Theorem 2.1. Assume that u0 ∈ Yt0. Then R maps Xt0 into Xt0 and R
is strictly contractive if t0 is appropriately small relative to ‖u0‖∞.

Proof. We get
|R(v) − u0| ≤ 2ε‖v‖Yt0

t + f(‖v‖Yt0
)t,

which implies that ‖R(v)‖Yt0
≤ ‖v0‖∞ + 2εb0t0 + f(b0)t0. If

t0 ≤ b0 − ‖u0‖∞
2εb0 + f(b0)

(2.1)

then
‖R(v)‖Yt0

≤ b0.

Therefore, if (2.1) holds, then R maps Xt0 into Xt0 . Now we are going to
prove that the map R is strictly contractive. Let t0 > 0 and let v, z ∈ Xt0

and let α = v − z, we discover that

|(R(v) − R(z))(x, t)| ≤ ε

∣
∣
∣
∣

∫ t

0

∫

RN

J(x − y)(α(y, s) − α(x, s))dy ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0
(f(v(x, s)) − f(z(x, s)))ds

∣
∣
∣
∣ .

Use Taylor’s expansion to obtain

|R(v) − R(z)| ≤ 2ε‖α‖Yt0
t + t‖v − z‖Yt0

f ′(‖β‖Yt0
),

where β is an intermediate value between v and z. We deduce that

‖R(v) − R(z)‖Yt0
≤ 2ε‖α‖Yt0

t0 + t0‖v − z‖Yt0
f ′(‖β‖Yt0

),

which implies that

‖R(v) − R(z)‖Yt0
≤ (2εt0 + t0f

′(b0)‖v − z‖Yt0
.

If t0 ≤ 1
4ε+2f ′(b0)

, then ‖R(v) − R(z)‖Yt0
≤ 1

2‖v − z‖Yt0
. Hence, we see that

R(v) is a strict contraction in Yt0 and the proof is complete. �
It follows from the contraction mapping principle that for appropriately

chosen t0, R has a unique fixed point u(x, t) ∈ Yt0 which is a solution of (1.1)
to (1.3).

If ‖u‖Yt0
< ∞, taking as initial data u(x, t0) ∈ C(Ω) and arguing as

before, it is possible to extend the solution up to some interval [0, t1) for
certain t1 > t0.



Dirichlet boundary conditions 869

Now, let us give some results about the maximum principle for nonlocal
problems.

The following lemma is a version of the maximum principle for nonlocal
problems.

Lemma 2.1. Let a ∈ C0(Ω × [0, T )) and let u ∈ C0,1(Ω × [0, T )) satisfying
the following inequalities

ut −
∫

RN

J(x − y)(u(y, t) − u(x, t))dy + a(x, t)u(x, t) ≥ 0 in Ω × (0, T ),

u(x, t) ≥ 0 in (RN − Ω) × (0, T ),
u(x, 0) ≥ 0 in Ω.

Then we have u(x, t) ≥ 0 in Ω × (0, T ).

Proof. Let T0 < T . Since a(x, t) is bounded in Ω × [0, T0], let λ be such
that a(x, t) − λ > 0 in Ω × [0, T0]. Introduce the function z(x, t) = eλtu(x, t)
and let m = minx∈Ω,t∈[0,T0] z(x, t). Then there exists (x0, t0) ∈ Ω × [0, T0]
such that m = z(x0, t0). If x0 ∈ R

N − Ω, then m ≥ 0. If x0 ∈ Ω, we get
z(x0, t0) ≤ z(x0, t) for t ≤ t0 and z(x0, t0) ≤ z(y, t0) for y∈ Ω, which implies
that

zt(x0, t0) ≤ 0(2.2)

and
∫

RN

J(x0 − y)(z(y, t0) − z(x0, t0))dy ≥ 0.(2.3)

Using the first inequality of the lemma, it is not hard to see that

zt(x0, t0)−
∫

RN

J(x0 − y)(u(y, t0) − u(x0, t0))dy+(a(x0, t0) − λ)z(x0, t0)≥0.

It follows from (2.2) and (2.3) that (a(x0, t0) − λ)z(x0, t0) ≥ 0, which implies
that z(x0, t0) ≥ 0 because a(x0, t0) − λ > 0. We deduce that u(x, t) ≥ 0 in
Ω × [0, T0], which leads us to the result. �

A direct consequence of the above result is the following comparison
lemma.
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Lemma 2.2. Let u, v ∈ C1,0(Ω × [0, T )) be such that

ut −
∫

RN

J(x − y)(u(y, t) − u(x, t))dy − f(u(x, t)) ≥ vt

−
∫

RN

J(x − y)(v(y, t) − v(x, t))dy − f(v(x, t)) in Ω × (0, T ),

u(x, t) ≥ v(x, t) in (RN − Ω) × (0, T ),
u(x, 0) ≥ v(x, 0) in Ω.

Then we have u(x, t) ≥ v(x, t) in Ω × (0, T ).

Proof. Let z(x, t) = u(x, t) − v(x, t) in Ω × (0, T ). Applying the mean value
theorem, a routine computation reveals that

zt −
∫

RN

J(x − y)(z(y, t) − z(x, t))dy + f ′(ξ(x, t))z(x, t) ≥ 0

in Ω × (0, T ),
z(x, t) ≥ 0 in (RN − Ω) × (0, T ),
z(x, 0) ≥ 0 in Ω,

where ξ(x, t) is an intermediate value between u(x, t) and v(x, t). Use
Lemma 2.1 to complete the rest of the proof. �

3. Blow-up times

In this section, we show that if ε is small enough, the solution u of (1.1)
to (1.3) blows up in a finite time and its blow-up time goes to the one of
the solution of the differential equation defined in (1.4). Before starting, let
us recall a result which may be found in [24, 25]. Consider the eigenvalue
problem below:

∫

RN

J(x − y)(ϕ(y) − ϕ(x))dy = −λϕ(x) in Ω,(3.1)

ϕ(x) = 0 in R
N − Ω,(3.2)

ϕ(x) > 0 in Ω.(3.3)

It is well known that the above problem admits a solution (ϕ, λ) such that
0 < λ < 1. We can normalize ϕ so that

∫

RN ϕ dx = 1.
Now, let us state our first result on the blow-up time.
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Theorem 3.1. Suppose that u0(x) = 0 and f(0) > 0 and let A = λ
∫ ∞
0

ds
f(s) .

If ε < 1
A then the solution u of (1.1) to (1.3) blows up in a finite time T

which obeys the following estimates

0 ≤ T − T0 ≤ εT0A + o(ε),

where T0 =
∫ ∞
0

ds
f(s) is the blow-up time of the solution α(t) of the differential

equation defined in (1.4).

Proof. Since (0, T ) is the maximal time interval of existence of the solution
u, our aim is to show that T is finite and satisfies the above estimates.
Since the initial data u0 is nonnegative in Ω, from Lemma 2.1, u is also
nonnegative in Ω × (0, T ).

Introduce the function v(t) defined as follows:

v(t) =
∫

RN

u(x, t)ϕ(x)dx for t ∈ (0, T ).

Take the derivative of v in t and use (1.1) to obtain

v′(t)=ε

∫

RN

ϕ(x)
(∫

RN

J(x − y)u(y, t)dy

)

dx−εv(t)+
∫

RN

f(u(x, t))ϕ(x)dx.

From Fubini’s theorem, we have

v′(t)=ε

∫

RN

u(y, t)
(∫

RN

ϕ(x)J(x − y)dx

)

dy−εv(t)+
∫

RN

f(u(x, t))ϕ(x)dx.

Since J is symmetric, we arrive at

v′(t)=ε

∫

RN

u(y, t)
(∫

RN

J(y − x)ϕ(x)dx

)

dy−εv(t)+
∫

RN

f(u(x, t))ϕ(x)dx.

It follows from (3.1) that

v′(t) = ε

∫

RN

u(y, t)(ϕ(y) − λϕ(y))dy − εv(t) +
∫

RN

f(u(x, t))ϕ(x)dx,

which implies that

v′(t) = −ελv(t) +
∫

RN

f(u(x, t))ϕ(x)dx.
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Using Jensen’s inequality, we find that

v′(t) ≥ −ελv(t) + f(v(t)) for t ∈ (0, T ).

Obviously, we have

v′(t) ≥ f(v(t))
(

1 − ελv(t)
f(v(t))

)

for t ∈ (0, T ).

It is not hard to see that
∫ ∞

0

ds

f(s)
≥ sup

t≥0

∫ t

0

ds

f(s)
≥ sup

t≥0

t

f(t)

because f(s) is an increasing function for s > 0. We deduce that

v′(t) ≥ (1 − εA)f(v(t)) for t ∈ (0, T ).

This estimate may be rewritten as follows

dv

f(v)
≥ (1 − εA)dt for t ∈ (0, T ).

Integrate the above inequality over (0, T ) to obtain

T ≤ 1
1 − εA

∫ ∞

0

ds

f(s)
,(3.4)

which implies that the solution u blows up at the time T because the quantity
on the right hand side of the above inequality is finite. On the other hand,
setting

z(x, t) = α(t) in R
N × (0, T0),

it is not hard to see that
⎧
⎪⎪⎨

⎪⎪⎩

zt(x, t)−ε

∫

RN

J(x−y)(z(y, t)−z(x, t))dy−f(z(x, t))=0 in Ω × (0, T ),

z(x, t) ≥ 0 in (RN − Ω) × (0, T ),
z(x, 0) = 0 in Ω.

Comparison Lemma 2.2 implies that 0 ≤ u(x, t) ≤ z(x, t) = α(t) in Ω × (0,
T∗), where T∗ = min{T, T0}. It follows that T ≥ T0. Indeed, suppose that
T < T0, which implies that 0 ≤ ‖u(., T )‖∞ ≤ α(T ) < +∞. But this is a
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contradiction because (0, T ) is the maximal time interval of existence of the
solution u. We deduce that

T ≥ T0 =
∫ ∞

0

ds

f(s)
.(3.5)

Apply Taylor’s expansion to obtain 1
1−εA = 1 + εA + o(ε). Use (3.4), (3.5)

and the above relation to complete the rest of the proof. �

Now let us consider the case where the initial data are not null. We have
the following result.

Theorem 3.2. Let f(0) = 0. Suppose that supx∈Ω u0(x) = M > 0 and let
ε be such that ε < 1

A , where A = M
2f(M/2) . Then the solution u of (1.1) to

(1.3) blows up in a finite time and its blow-up time T satisfies the following
estimates

0 ≤ T − T0 ≤ εT0A +
ε

f(M/2)
+ o(ε),

where T0 =
∫ ∞
M

ds
f(s) is the blow-up time of the solution α(t) of the differential

equation defined in (1.4).

Proof. Since (0, T ) is the maximal time interval on which u exists, our goal
is to prove that T is finite and obeys the above relation. Since the initial
data u0 are nonnegative in Ω, from Lemma 2.1, u is also nonnegative in
Ω × (0, T ). Let a ∈ Ω such that u0(a) = M. There exists δ > 0 such that

u0(x) ≥ M − ε for x ∈ B(a, δ) ⊂ Ω.

Consider the following eigenvalue problem

∫

RN

J(x − y)(ϕ(y) − ϕ(x))dy = −λδϕ(x) in B(a, δ),(3.6)

ϕ(x) = 0 in R
N − B(a, δ),(3.7)

ϕ(x) > 0 in B(a, δ).(3.8)
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We know that the above problem admits a solution (ϕ, λδ) with 0 < λδ < 1
[24,25]. Let w be the solution of the following initial-boundary value problem

wt − ε

∫

RN

J(x − y)(w(y, t) − w(x, t))dy − f(w) = 0 in B(a, δ)

×(0, T ∗),
w = 0 in (RN − B(a, δ)) × (0, T ∗),
w(x, 0) = u0(x) in B(a, δ),

where (0, T ∗) is the maximal time interval of existence of the solution w(x, t).
Introduce the function v(t) defined as follows

v(t) =
∫

RN

ϕ(x)w(x, t)dx for t ∈ (0, T ∗).

As in the proof of Theorem 3.1, we find that

v′(t) ≥ −ελδv(t) + f(v(t)) ≥ −εv(t) + f(v(t)) for t ∈ (0, T ∗)

because 0 < λδ < 1. We deduce that

v′(t) ≥ f(v(t))
(

1 − εv(t)
f(v(t))

)

for t ∈ (0, T ∗).(3.9)

Since f(s) is a convex function for the positive values of s and f(0) = 0,
then f(s)

s is an increasing function for the positive values of s. Due to the
fact that v(0) ≥ M − ε ≥ M

2 , we have

v′(0) ≥ f(v(0))
(

1 − εv(0)
f(v(0))

)

≥ f(v(0))
(

1 − εM

2f(M/2)

)

> 0.

Therefore, we have v′(t) > 0 for t ∈ (0, T ∗). Indeed let t0 be the first t > 0
such that v′(t) > 0 for t ∈ (0, t0) but v′(t0) = 0, which implies that

v′(t0) ≥ f(v(t0))
(

1 − εv(t0)
f(v(t0))

)

.

The fact that v(t0) ≥ v(0) ≥ M − ε ≥ M
2 implies that

0 = v′(t0) ≥ f(v(t0))
(

1 − εM

2f(M/2)

)

> 0,
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which is a contradiction. We deduce that v(t) ≥ v(0) ≥ M
2 for t ∈ (0, T ∗),

which implies that

v′(t) ≥ f(v(t))
(

1 − εM

2f(M/2)

)

.

Obviously, we have

v′(t) ≥ (1 − εA)f(v(t)) in (0, T ∗).(3.10)

This estimate may be rewritten as follows:

dv

f(v)
≥ (1 − εA)dt for t ∈ (0, T ∗).

Integrate this inequality over (0, T ∗) to obtain

T ∗ ≤ 1
1 − εA

∫ ∞

v(0)

ds

f(s)
≤ 1

1 − εA

∫ ∞

M−ε

ds

f(s)
.

This implies that the solution w blows up in a finite time because the quan-
tity on the right hand side of the second inequality is finite. On the other
hand, from Lemma 2.1, we have u ≥ 0 in Ω × (0, T ), which implies that

ut − ε

∫

RN

J(x − y)(u(y, t) − u(x, t))dy − f(u) ≥ wt

−ε

∫

RN

J(x − y)(w(y, t) − w(x, t))dy − f(w) in B(a, δ) × (0, T∗),

u ≥ w in(RN − B(a, δ)) × (0, T∗),
u(x, 0) ≥ w(x, 0) in B(a, δ),

where T∗ = min{T, T ∗}. It follows from Lemma 2.2 that

u(x, t) ≥ w(x, t) in B(a, δ) × (0, T∗),

which implies that

T ≤ T ∗ ≤ 1
1 − εA

∫ ∞

M−ε

ds

f(s)
.(3.11)

Indeed, suppose that T > T ∗. We have ‖u(., T ∗)‖∞ ≥ ‖w(·, T ∗)‖∞ = +∞.
But this is a contradiction because (0, T ) is the maximal time interval of
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existence of the solution u. We observe that
∫ ∞

M−ε

ds

f(s)
=

∫ ∞

M

ds

f(s)
+

∫ M

M−ε

ds

f(s)
≤

∫ ∞

M

ds

f(s)
+

ε

f(M − ε)

because f(s) is an increasing function for the positive values of s. The fact
that f(M − ε) ≥ f(M

2 ) implies that
∫ ∞

M−ε

ds

f(s)
≤

∫ ∞

M

ds

f(s)
+

ε

f(M
2 )

.(3.12)

Setting z(x, t) = α(t) in R
N × (0, T0), it is not hard to see that

⎧
⎪⎪⎨

⎪⎪⎩

zt − ε

∫

RN

J(x − y)(z(y, t) − z(x, t))dy − f(z) = 0 in Ω × (0, T ),

z(x, t) ≥ 0 in (RN − Ω) × (0, T ),
z(x, 0) ≥ u0(x) in Ω.

Comparison Lemma 2.2 implies that 0 ≤ u(x, t) ≤ z(x, t) = α(t) in Ω × (0,
T 0), where T 0 = min{T0, T}. We deduce that

T ≥ T0 =
∫ ∞

M

ds

f(s)
.(3.13)

Indeed, suppose that T0 > T, which implies that α(T ) ≥ ‖u(·, T )‖∞ = +∞.
But this is a contradiction because (0, T0) is the maximal time interval of
existence of the solution α(t). Apply Taylor’s expansion to obtain 1

1−εA =
1 + εA + o(ε). Use (3.11)–(3.13) and the above relation to complete the rest
of the proof. �

Remark 3.1. Theorem 3.2 remains valid when f(0) > 0 if we take A =∫ ∞
0

ds
f(s) . Indeed using (3.9) and the fact that

∫ +∞
0

ds
f(s) ≥ sups≥0

s
f(s) , we

obtain the inequality in (3.10). Now, reasoning as in the proof of Theorem
3.2, we obtain the desired result.

4. Numerical results

In this section, we give some numerical results to illustrate our analysis. We
consider the problem (1.1) to (1.3) in the case where Ω = (−3, 3),

J(x) =

⎧
⎨

⎩

1
4

if |x| < 2,

0 if |x| ≥ 2.
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Let I be a positive integer and let h = 3
I . Define the grid xi = ih,−I ≤

i ≤ I, and approximate the solution u(x, t) of the problem (1.1) to (1.3) by
the solution U

(n)
h = (U (n)

−I , . . . , U
(n)
I )T of the following discrete equations

U
(n+1)
i − U

(n)
i

Δtn
= ε

I∑

j=−I

hJ(xi − xj)(U
(n)
j − U

(n)
i ) + f(U (n)

i ),

−I ≤ i ≤ I,

U
(n)
−I = 0, U

(n)
I = 0,

U
(0)
i = u0(xi), −I ≤ i ≤ I,

where xi = ih, −I ≤ i ≤ I. If f(u) = eu, then

Δtn = min
{

4
ε(6 + h)

, h2e−‖U
(n)
h ‖∞

}

.

If f(u) = u2, then

Δtn = min

{
4

ε(6 + h)
,

h2

‖U
(n)
h ‖∞

}

.

Here ‖U
(n)
h ‖∞ = sup−I≤i≤I |U (n)

i |.
We need the following definition.

Definition 4.1. We say that the discrete solution U
(n)
h of the explicit

scheme blows up in a finite time if limn→+∞ ‖U
(n)
h ‖∞ = +∞ and the series

∑+∞
n=0 Δtn converges. The quantity

∑+∞
n=0 Δtn is called the numerical blow-

up time of the solution U
(n)
h .

In the following tables, in rows, we present the numerical blow-up times,
the numbers of iterations, CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128. We take for the numerical
blow-up time Tn =

∑n−1
j=0 Δtj , which is computed at the first time when

|Tn+1 − Tn| ≤ 10−16. The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.
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Numerical experiments for u0(x) = 0, f(u) = eu.
First case: ε = 1

10 .

Table 1: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method.

I Tn n CPU time s

16 1.030317 325 9 —
32 1.007324 1208 128 —
64 1.001738 4476 1032 2.04
128 1.000344 16885 8216 2.00

Second case: ε = 1
50 .

Table 2: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method.

I Tn n CPU time s

16 1.031544 325 10 —
32 1.007590 1208 142 —
64 1.001947 4476 1932 2.01
128 1.000536 16885 8421 2.06

Numerical experiments for u0(x) = 20 sin(πx), f(u) = u2.
First case: ε = 1

10 .

Table 3: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method.

I Tn n CPU time s

16 0.053430 269 8 —
32 0.050902 1010 708 —
64 0.050305 3705 1622 2.08
128 0.050182 10124 7845 2.12
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Second case: ε = 1
50 .

Table 4: Numerical blow-up times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method.

I Tn n CPU time s

16 0.053342 269 8 —
32 0.050815 109 117 —
64 0.050217 3703 1548 2.07
128 0.050091 10124 6314 2.14

Remark 4.1. If we consider the problem (1.1) to (1.3) in the case where
the initial data are null and the reaction term eu, it is not hard to see that the
blow-up time of the solution of the differential equation defined in Theorem
2.1 equals one. We observe from tables 1 and 2 that when ε diminishes, the
numerical blow-up time tends to one. This result has been proved in Theorem
2.1. When the initial data u0(x) = 20 sin(xπ) and the reaction term u2, we
find that the blow-up time of the solution of the differential equation defined
in Theorem 2.2 equals 0.05. We discover from tables 3 and 4 that when ε
diminishes, the numerical blow-up time goes to 0.05, which is a result proved
in Theorem 2.2.
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