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Riemannian moment map
Xiaowei Wang

In this paper, we introduce a notion called moment map for a
real reductive group acting on a Riemannian manifold, and set up
the foundation for the theory of Riemannian moment map. This
extends the well-known theory in Kähler geometry. Both finite and
infinite dimensional examples are presented.

1. Introduction

In 1982, Atiyah and Bott [1] discovered that the curvature as a function
on the space of connections on a principal G-bundle over a Riemann sur-
face can be interpreted as the momentum for the gauge group action on the
space of connections. This observation, together with its several extensions,
has proved to be an extremely useful framework to study various kinds of
geometries. To name a few, in the study of the geometry of moduli space
of flat connections over a Riemann surface by Kirwan, Jeffrey, Meinrenken,
etc. (c.f. [2]) and in the searching of necessary and sufficient conditions
for the existence of constant scalar curvature Kähler metric by Fujiki, and
Donaldson (c.f. [3–5]). All the works mentioned above have been substan-
tially impacted by Atiyah and Bott’s point of view. So it is desirable to find
such a framework in the Riemannian world which extends its counterpart
in the Kählerian world. This is our motivation of this paper, we took the
first step in developing a moment map theory in the world of Riemannian
geometry. The main body of the paper is an extension of the results in
Sections 2 and 3 in [6] to the Riemannian setting, and as a consequence,
we obtained simplified proof of some of the results in [6]. This will take up
Section 2.

Start from Section 3, we mainly concentrate on the application of the
theory developed in Sections 2 and 3. In particular, we supply two major
families of finite dimensional examples, one is the Kähler moment map and
the other one is coming from anti-holomorphic involution. In Section 4, we
present two infinite dimensional examples which were (although implicitly)
our original motivation, that is to extend Donaldson’s framework [4] to the
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study of conformal geometry. And these will be discussed in a separate
paper.

2. Riemannian moment map

In this section, we will set up the foundation of the theory of Riemannian
moment map.

2.1. Definition

Let G be a real reductive Lie group and g = k + p be the Cartan decomposi-
tion of g with respect to an involution θ : g → g, where k is the Lie algebra of
a maximal compact subgroup K ⊂ G. So we have relations [k, p] ⊂ p, [p, p] ⊂
k. Before we move on, let us give three important examples of real reductive
group that will be used later.

Example 2.1. G = KC, the complexification of a compact Lie group K.
G can be treated as a real reductive group as follows: let k = Lie(K), the
Lie algebra of K and

J :=
[

id
−id

]
∈ Hom(k ⊕ k).

The real Lie algebra structure on k ⊕ k is then induced from the complex Lie
algebra structure kC = k +

√
−1k via the R-homomorphism

ϕ : k+
√

−1k −→ k ⊕ k

ξ +
√

−1η �−→ (ξ, 0) + J (η, 0) .

In particular, we have p = {0} ⊕ k with [(0, ξ), (0, η)] = (−[ξ, η], 0) ∈ k ⊕ {0}.

Example 2.2. G = GL(n, R), k = o(n, R) and p can be identified with real
symmetric matrices.

Example 2.3. G = O(p, q; R), k = o(p) ⊕ o(q) and p = R
pq.

Now we are ready to introduce the Riemannian moment map. Let
(M, g) be a Riemannian manifold with metric g, and G acts on M with
K ⊂ Isom(M, g), it induces an infinitesimal action: for x ∈ M

σx : g −→ TxM

ξ �−→ σx (ξ) := d
dt

∣∣
t=0 exp tξ · x.
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Definition 2.4. Let G be a real reductive group acting on a Riemannian
manifold (M, g) and K be its maximal compact subgroup. We say the
action is Hamiltonian if there is a moment map μ : M → p∗ satisfying, for
any ξ ∈ p, X ∈ Γ(TM) and k ∈ K

(2.1)

{
X〈μ(x), ξ〉 = 〈σxξ, X〉TxM ,

〈μ(k · x), ξ〉 = 〈μ(x), Adk−1 ξ〉,

where 〈·, ·〉 : p∗ × p → R is the natural pairing. In particular, we have

∇〈μ(x), ξ〉 = σxξ.

Let us fix a G-invariant bi-linear form 〈·, ·〉g on g such that

(·, ·)g := −〈·, θ(·)〉g

is an inner product on g, where θ is the Cartan involution. Such a form
always exists, for instance, we may use Killing form on the semi-simple part
and any inner produce on the Abelian factors. With this understood, we
may identify p with p∗ using the inner product (·, ·)g and under this inner
product we have p⊥k. For the rest of the paper, we will identify g with its
dual g∗ via the inner product (·, ·)g, in particular, we will treat our moment
map μ as p-valued function.

Let us introduce the operator

Qx := σ∗
xσx : g → g

satisfying the identity

(ξ, Qx(η))g = 〈σx(ξ), σx(η)〉TxM = (ξ, dμ ◦ σx(η))g

for all ξ ∈ p and η ∈ g. As a consequence, we have the following the unique-
ness result for the Riemannian moment map provided it exists.

Proposition 2.5. Let (M, g) be a Riemannian manifold with a real reduc-
tive group G acting on it. Suppose that the action is Hamiltonian and
H1(g, R) = 0. Then the moment map μ : M → p∗ is unique.
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Proof. Notice that for any η ∈ k and ξ ∈ p, we have

(μ(x), [ξ, η])g = (dμ(σxη), ξ)g = 〈σxξ, σxη〉TxM ,

so μ is uniquely determined up to p/[k, p]. In particular, if 0 = H1(g, R) =
g/[g, g], then [k, p] = p. This means p/[k, p] = 0, hence μ is unique provided
it exists. �

Remark 2.6. This is parallel to the fact that the moment map for a Hamil-
tonian action of a simple Lie group on a symplectic manifold is always
unique.

Example 2.7. Let (M, g) be a Riemannian manifold and f ∈ C∞(M) be
a smooth function. And φ(t, x) is the integral curve of the vector field ∇f
passing through x ∈ M , that is

{
φ̇(t, x) = ∇f(φ(t, x)),
φ(0, x) = x.

This induces an action of R+ := {r ∈ R|r > 0} on M as following

Φ : R+ × M −→ M
(t, x) �−→ φ (ln t, x) .

Notice that the Cartan decomposition of R = Lie(R+) is {0} ⊕ R with θ =
−1. This R+-action on M is Hamiltonian with moment map f : M → R,
since df(·) = 〈∇f, ·〉TM .

Example 2.8. R
n. Let G = GL(n, R) and K = O(n, R). Then the moment

map for the standard action of G on R
n is given by

μ : R
n −→ p ∼= p

∗,

x �−→ xxt

2
,

where we have identified p∗ with p = {A ∈ gl(n, R)|At = A} via the invariant
metric 〈ξ, η〉gl(n,R) := Tr(ξηt).

2.2. Geometric quantization

Suppose we have a Hamiltonian G-action on a Riemannian manifold (M, g).
Then it will induce a natural representation of G on the vector space C∞(M)
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which is different from the restriction of Diff(M) to G. To construct it, let
us define an infinitesimal action of g on M × R as following: for any ξ ∈ g

(2.2) ξ̃ ◦ (x, r) := σx(ξ) + (μ(x), ξp)g∂r ∈ T(x,r)(M × R),

where ξp ∈ p is the p component of ξ under Cartan decomposition and ∂r is
the unit vector field on R. This action is actually integrable.

Proposition 2.9.

[ξ̃, η̃] = −[ξ̃, η].

Proof. The K-equivariance of μ implies σ(ηk)〈μ, ξp〉 = 〈μ, [ξp, ηk]〉. So we
have

[ξ̃, η̃] = [σ(ξ) + (μ, ξp)g∂r, σ(η) + (μ, ηp)g∂r]
= [σ(ξ), σ(η)] + σ(ξ)(μ, ηp)g∂r − σ(η)(μ, ξp)g∂r

= [σ(ξ), σ(η)] + σ(ξk + ξp)(μ, ηp)g∂r − σ(ηk + ηp)(μ, ξp)g∂r

= [σ(ξ), σ(η)] + 〈σ(ξp), σ(ηp)〉TM∂r − 〈σ(ηp), σ(ξp)〉TM∂r

+ (μ, [ηp, ξk])g∂r − (μ, [ξp, ηk])g∂r

= [σ(ξ), σ(η)] + (μ, [ηp, ξk])g∂r − (μ, [ξp, ηk])g∂r

= −σ[ξ, η] − (μ, [ξ, η]p)g∂r

= −[̃ξ, η]

thanks to the fact that

[ξ, η]p = [ξk + ξp, ηk + ηp]p = [ξk, ηp] + [ξp, ηk],

and σ[ξ, η] = −[σ(ξ), σ(η)] (because G acts on M on the left). �

The action defined in (2.2) give rise to a representation of g on C∞(M)
as following:

ξ̃ ◦ f := σ(ξ)f + (μ(x), ξp)gf,

which is exactly the g-representation on the smooth sections of the pre-
quantum line bundle L over the symplectic manifold T ∗M restricted to M.
Now suppose that the action can be lifted to a G-representation (e.g., G is
simply connected), then for fixed (x, r) ∈ M × R, we may define a potential



842 Xiaowei Wang

function Px associated to G as following:

Px : G −→ M × R −→ R

g �−→ g ◦ (x, r) �−→ log |g◦r|
r ,

which clearly depends only on x.

Proposition 2.10. Following the above notation, we have

1. For any ξ ∈ p, we have

dPx(exp tξ)
dt

= (μ(exp tξ ◦ x), ξ)g,

d2Px(exp tξ)
dt2

= 〈σ(ξ), σ(ξ)〉Texp tξ◦xM ≥ 0.

2. Suppose μ(x0) = 0, then

μ−1(0) ∩ G · x0 = K · x0

3. Let Gx be the stabilizer of x ∈ M , it acts on G on the right. Then
dPx ∈ Ω1(G) is Gx-invariant with respect to the action.

Proof. The first part follows from the following identities

Px(exp tξ ◦ x) = log
r(t)
r

with r(t) := exp tξ ◦ r

and
dr(t)
dt

:= (μ(exp tξ ◦ x), ξ)gr(t).

For the second part, we notice that μ−1(0) ∩ G · x0 ⊃ K · x0. To show
the uniqueness, let gx0 ⊂ g be the Lie algebra of the stabilizer of x0, all
we need to show is that for any ξ ∈ p\gx0 there is at most one zero for
〈μ(x(t)), ξ〉, where x(t) := exp tξ · x0. But this follows from the fact that

d

dt
(μ(x(t)), ξ)g = 〈σ(ξ), σ(ξ)〉Tx(t)M ≥ 0

and for ξ ∈ p\gx0 , |σx0(ξ)|2 > 0.
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For the third part, let ξ ∈ gx, with gx being the Lie algebra of Gx. We
have for any g ∈ G

dPx(g exp tξ)
dt

∣∣∣∣
t=0

= (μ(g exp tξg−1g ◦ x), Adg ξ)g
∣∣
t=0 = (μ(g ◦ x), Adg ξ)g.

This implies

Lσ(ξ)dPx = diσ(ξ)dPx = 0,

where the last identity follows from Proposition 2.11 of the next subsection.
�

2.3. Structure of gx

In this subsection, we will extend Calabi–Matsushima’s theorem to our Rie-
mannian setting.

Proposition 2.11. Let gx ⊂ g be the Lie algebra of the stabilizer of x ∈ M .
Then for any ξ ∈ gx, the function

f : G −→ R

g −→ (μ (g ◦ x) ,Adgξ)g

is constant, where we have extended

Im μ ⊂ p ⊂ g

by requiring

(μ, k)g = 0.

As a consequence, the function (μ(x), ·)g : gx → R is a character.

Proof. First, for g lies in K, the claim follows from the equivariance of the
moment map. So let us assume g = exp tη with η ∈ p, then

d

dt

∣∣∣∣
t=0

(μ(exp tη · x), Adexp tη ξ)g = (dμ ◦ σx(η), ξ)g + (μ(x), [η, ξ])g
= (dμ ◦ σx(η), ξp)g + (μ(x), [η, ξk])g
= 〈σx(η), σx(ξp)〉TM + 〈σx(ξk), σx(η)〉TM

= 〈σx(η), σx(ξ)〉TM

= 0
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since

(μ(x), [η, ξk])g =
d

dt

∣∣∣∣
t=0

(μ(exp tξk · x), η)g = (dμ ◦ σx(ξk), η)g

= 〈σx(ξk), σx(η)〉TM . �

Lemma 2.12. Let τ ∈ p, then for any ξ, η ∈ g, we have

([τ, ξ], η)g = (ξ, [τ, η])g.

Proof.

([τ, ξ], η)g = −〈[τ, ξ], θ(η)〉g = −〈ξ, [θ(η), τ ]〉g
= 〈ξ, [θ(η), θ(τ)]〉g
= 〈ξ, θ([η, τ ])〉g
= −〈ξ, θ([τ, η])〉g
= (ξ, [τ, η])g,

where we have used the fact that θ is a Lie algebra homomorphism for the
fourth identity. �

Definition 2.13. We call the critical points of the function |μ(x)|2 : M −→
R extremal points. Notice that

d〈μ(x), μ(x)〉p = 〈σx(μ(x)), ·〉TxM

implies

∇|μ(x)|2 = 2σx(μ(x)) ∈ TxM.

Thus x0 is an extremal point if and only if μ(x0) ∈ px0 := p ∩ gx0
.

Theorem 2.14. (Real version of Calabi–Matsushima’s theorem). Suppose
(M, g) is a Riemannian manifold with a Hamiltonian action of a real reduc-
tive group G and

μ : M −→ p

is the moment map. Suppose x0 is a critical point of |μ(x)|2, then we have
decomposition

gx0 = h0 ⊕
⋃
λ>0

hλ
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where

hλ := {ξ ∈ gx0 | [μ(x0), ξ] = λ · ξ}

and h0 is the reductive part of gx0. Moreover,

[hλ1 , hλ2 ] ⊂ hλ1+λ2 .

and

[μ(x0), h0] = 0.

Proof. Suppose x0 is a critical point for |μ(x)|2, then μ(x0) ∈ gx0 , hence
Lemma 2.12 implies that

[μ(x0), ·] : gx0 −→ gx0

is a self-adjoint endomorphism with respect to the inner product (·, ·)g.
So we have decomposition

gx0 = h0 ⊕
⋃
λ>0

hλ

with

hλ := {ξ ∈ gx0 | [μ(x0), ξ] = λ · ξ}.

Suppose ξ ∈ gx0 satisfying [μ(x0), ξ] = λξ, we have

λ(ξ, ξ)g = ([μ(x0), ξ], ξ)g
= ([μ(x0), ξk + ξp], ξk + ξp)g
= 2([μ(x0), ξk], ξp)g
= 2(μ(x0), [ξk, ξp])g

= 2
d

dt

∣∣∣∣
t=0

(μ(exp (−tξk) x0), ξp)g

= −2(dμ ◦ σx0(ξk), ξp)g
= −2〈σx0(ξk), σx0(ξp)〉Tx0M

= 2〈σx0(ξp), σx0(ξp)〉Tx0M

= 2|σx0(ξp)|2Tx0M

since [k, p] ∈ p, [p, p] ∈ k and 0 = σx0(ξ) = σx0(ξp) + σx0(ξk). Hence λ ≥ 0
with equality if and only if ξp ∈ gx0 , which means h0 is θ-invariant hence
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reductive . Finally,

[hλ1 , hλ2 ] ⊂ hλ1+λ2 .

follows from the Jacobi identity. �

Corollary 2.15. We have the following easy consequences:

1. If μ(x) = 0, then gx is reductive.

2. If x is an extremal point and for any ξ ∈ h0, (μ(x), ξ)g = 0, then μ(x) =
0.

Remark 2.16. The above results are usually proved under the assumption
that the G-action can be complexified to a GC-action on a Kähler manifold.

3. Examples

In this section, we will introduce two important families of examples of
Riemannian moment map.

3.1. Moment map for Kähler manifold

Let us first recall the classical moment map theory for a compact Lie group
acting on a Kähler manifold. Suppose (M, ω, J) is a Kähler manifold with ω
being the Kähler form and J being the complex structure compatible with
ω, that is, ω(·, ·) = ω(J ·, J ·) and suppose 〈·, ·〉TM := ω(J ·, ·) is a Riemannian
metric. Let K be a compact Lie group that acts on M in a holomorphic
Hamiltonian fashion. Since K has a natural complexification G := KC with
Lie algebra kC = k +

√
−1k, this allows us to complexify the K-action to a

G-action by requiring

σx(
√

−1ξ) := Jσx(ξ), ∀ξ ∈ k.

Notice that G can also be viewed as a real reductive Lie group with
Cartan decomposition g := k + p with p =

√
−1k. Since the K-action on M

is Hamiltonian, there is a moment map

μ : M −→ k
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satisfying
{

X〈μ(x), ξ〉 = ω(σx(ξ), X) for any X ∈ Γ(TM),

〈μ(g · x), ξ〉 = (μ(x), Adg−1 ξ)g for any g ∈ G.

By applying the fact ω(σx(ξ), X) = 〈Jσx(ξ), X〉TM = 〈σx(
√

−1ξ), X〉TM , we
found that

√
−1μ : M → p can be regarded as a special case of the Rieman-

nian moment map for the G-action on the Riemannian manifold (M, 〈·, ·〉TM).
As an application, we apply Proposition 2.11 to the above setting to get

a simpler and more transparent proof of the following corollary, which is
Proposition 6 in [6].

Corollary 3.1. Suppose ξ ∈ gx, Then (μ(g · x),Adg ξ)g is a constant func-
tion in g. In particular, (G · x) ∩ μ−1(0) �= ∅ implies (μ(x), ξ)g = 0.

Proof. Let ξC = Re ξC +
√

−1 Im ξC ∈ gx, with Re ξC, Im ξC ∈ k. If we com-
plexified the K-action on (M, ω) to a G-action and treat G as a real reductive
group (c.f. Example 2.1), then Proposition 2.11 implies that for any η ∈ k,

0 =
d

dt

∣∣∣∣
t=0

(μ(exp tJη · x), Adexp tJη(Re ξC, 0) + J(Im ξC, 0))g

=
d

dt

∣∣∣∣
t=0

(μ(exp tJη · x), Adexp tJη(Re ξC,−Im ξC))g

=
d

dt

∣∣∣∣
t=0

(μ(exp tJη · x), Adexp tJηRe ξC)g

since Adexp tJη(0,−Im ξC) ∈ k.
On the other hand,

√
−1ξC ∈ gx implies

σx(Re ξC) + Jσx(Im ξC) = Jσx(Re ξC) − σx(Im ξC) = 0,

hence

0 =
d

dt

∣∣∣∣
t=0

(μ(exp tJη · x), Adexp tJηIm ξC)g. �

3.2. Moment maps coming from anti-holomorphic involution

Definition 3.2. A Kähler manifold (MC, ω, J) with an anti-holomorphic
involution θM is called a complexification of a Riemannian manifold (M,
〈·, ·〉TM := ω(J ·, ·)|TM ) if M ⊂ MC is the fixed locus of θM : MC → MC.
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Let G be a real reductive group with a Cartan decomposition g = k + p

and Ĝ be the compact dual with Lie algebra ĝ = k +
√

−1p. So G and
Ĝ are two distinct real forms of the complexification GC with Lie alge-
bra gC = g +

√
−1g. Notice that the inner product (·, ·)g = −〈·, θ(·)〉g on g

extends naturally to an inner product on gC = g +
√

−1g and hence an inner
product on ĝ ⊂ gC.

Suppose G acts on (M, g) such that the maximal compact subgroup
K ⊂ Isom(M, g) and let (MC, ω, θM ) be a complexification of (M, g). Then
we introduce the following.

Definition 3.3. The G-action on (M, g) can be complexified if it is the
restriction of a holomorphic GC-action on (MC, ω, J) such that G leaves
M ⊂ MC invariant and Ĝ ⊂ Isom(MC, ω).

Remark 3.4. Notice the condition Ĝ ⊂ Isom(MC, ω) is not quite restric-
tive, since we can always achieve that by averaging the metric over the
compact group Ĝ.

Proposition 3.5. Let (M, g) be a Riemannian manifold with an action of
a real reductive group G. Suppose that the G-action can be complexified and
the action of the compact dual Ĝ on (MC, ω, J) is Hamiltonian with moment
map

μC : MC −→ ĝ = k +
√

−1p

satisfying μ(x0) ∈
√

−1p for some x0 ∈ M ⊂ MC. Then

μ :=
√

−1μC|M : M −→ p

is a moment map for the G-action on M. Moreover, under the moment
map μC, the anti-holomorphic involution θ is compatible with the Cartan
involution.

Proof. Since the Ĝ-action on (MC, ω, J) is Hamiltonian, for any
√

−1ξ ∈√
−1p and x ∈ M , we have

d〈μC,
√

−1ξ〉ĝ = ω(σx(
√

−1ξ), ·)|M .

By our assumption, ω|M = 0, this implies that for any η ∈ k,

d〈μ, η〉|M =
√

−1d〈μC, η〉ĝ|M = ω(σx(η), ·)|M = 0,

from which we deduce that 〈μ(x), η〉g = 〈μ(x0), η〉 = 0, hence μ : M → p.
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Now for any ξ ∈ p, we have
√

−1ξ ∈ ĝ. By our assumption

d〈μ, ξ〉 = d〈μC,
√

−1ξ〉ĝ

= ω(σx(
√

−1ξ), ·)
= 〈σx(ξ), ·〉TM

with σx(ξ) ∈ TxM . �

Corollary 3.6. Under the same assumption as above. Then x0 ∈ M is an
extremal point if and only if it is an extremal point of MC, that is, the
critical point of |μC|2.

Proof. Since x0 ∈ M is an extremal point for the G-action if and only if
μ(x0) ∈ px0 , this implies μC(x0) ∈

√
−1px0 ⊂ ĝx0 , which is equivalent to x0

being an extremal point of |μC|2. The converse is obvious. �

Corollary 3.7. (Real version of Kempf–Ness). Suppose (M, g) is a Rie-
mannian manifold with an action of a real reductive group G such that the
action can be complexified to a Hamiltonian Ĝ-action on (MC, ω, θ) with
moment map

μ : MC −→ ĝ = k +
√

−1p.

Then

1. If the critical set of |μ(x)|2 in G · x is nonempty, then it consists of a
unique K-orbit.

2. If x, y ∈ M are two extremal points of |μ(x)|2 on G · x0, then x ∈ K · y.

Proof. Suppose x is a critical point of |μ|2, then the previous corollary
implies that it is an extremal point of μC, by Ness’s theorem (Theorem
6.2 in [7]), we have μ(x) = 0. Part one then follows from the fact that
GC · x ∩ M = G · x.

Suppose the critical set of |μ|2 inside G · x is nonempty, then the critical
set of |μ(x)|2 inside GC · x is nonempty too. By Theorem 6.2 in [7], the
critical set of |μ|2 contained in a GC-orbit consists of a unique G

′
-orbit.

Part two then follows from the fact that Ĝ · x ∩ M = K · x.
Suppose x, y ∈ G · x0 are extremal points of |μ(x)|2, then the previous

corollary implies that both x and y are extremal points for GC-action. By
Theorem 7.1 in [7], they are in the same Ĝ · y ∩ M = K · y. �
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3.3. Adjoint orbit

Now we are ready to construct a family of examples that fit into the picture
we have described in the previous subsection. Let G be a real reductive
group and g = k + p be the Cartan decomposition associated to an involution
θ. Let α ∈ p, we denote Oα := AdK α to be the adjoint orbit of K in p.
Let GC be the complexification of G and Ĝ be the compact dual of G
with Lie algebra ĝ := k + ip. Let θC denote the complex linear extension
of θ to GC.

Lemma 3.8.

θC(Adexp ξη) = Adexp θC(ξ) θC(η) for any ξ, η ∈ g
C.

Proof. Since θC is a Lie algebra homomorphism, this implies that
θC(Adexp tξ·) : g → g and Adexp tθC(ξ)θ

C(·) : g → g are both 1-parameter sub-
group of the Int(g), the adjoint group of g, and they both pass through θC

and

d

dt

∣∣∣∣
t=0

θC(Adexp tξ·) = θC(adξ·) = adθC(ξ)θ
C(·) =

d

dt

∣∣∣∣
t=0

Adexp tθC(ξ) θC(·).
�

Proposition 3.9. Let OC
α := AdG′(iα) with α ∈ p, then

−θC : OC
α −→ OC

α

is an anti-holomorphic involution of OC
α with fixed point set (OC

α)θ = Oα. In
particular, Oα ⊂ OC

α is Lagrangian and totally geodesic with respect to the
invariant metric.

Proof. First, it follows from the lemma above that for ∀ξ ∈ ĝ

−θC(Adexp ξ

√
−1α) = −Adexp θC(ξ)

√
−1θC(α)

= Adexp θC(ξ)iα

since θC(α) = −α. This guarantees that −θC leaves OC
α ⊂ ĝ invariant.
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Second, let ωOC
α

be the Kostant–Kirillov–Souriau Kähler form on OC
α

and adξβ, adηβ are the vector fields induced by ξ, η ∈ ĝ at β ∈ OC
α . Then

((−θ
C

)∗ωOC
α
)(adξ β, adη β)|β := ωOC

α
((−θC)∗(adξβ), (−θC)∗(adηβ))|−θC(β)

= ωOC
α
(adθC(ξ) θC

∗ (β), adθC(η) θC
∗ (β))|−θC(β)

= (−θC(β), [θC(ξ), θC(η)])ĝ
= −(θC(β), θC[ξ, η])ĝ
= −(β, [ξ, η)ĝ
= −ωOC

α
(adξ β, adη β)|β

where we have used the fact that θC is an isometry with respect to the
inner product (·, ·)ĝ, hence an isometry of OC

α . So θC is an anti-holomorphic
involution and Oα = AdK

√
−1α = OC

α ∩
√

−1p. �

Remark 3.10. Soon after I realize the above family of examples, I learned
that they were also studied before by O’shea and Sjammar in [8].

Remark 3.11. Notice that adα : g → g induce an isomorphism

k/kα
∼= p/pα,

where kα = ker adα|k and pα = ker adα|p.To see this, we first notice that α ∈
p implies adα : g → g is skew-selfadjoint with respect to the inner product
on g = k + p, hence

adα : kα ⊕ k
⊥
α = t −→ p = pα ⊕ p

⊥
α

implies k⊥
α

∼= Im adα|k ⊂ p⊥
α . Conversely,

adα : pα ⊕ p
⊥
α = p −→ t = kα ⊕ k

⊥
α

implies p⊥
α

∼= Im adα|p ⊂ k⊥
α . Thus we have

ad2
α : k

⊥
α

∼=−→ p
⊥
α

∼=−→ k
⊥
α .

Corollary 3.12. The natural embedding μ : Oα → p is the moment map of
G-action on Oα.
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Remark 3.13. Notice that Oα := AdK α = G/MαAN , with

Mα := {ξ ∈ k|[ξ, α] = 0} ,

A being the maximal Abelian subgroup and N being the unipotent part.
For G = KC, we have Oα = K/Mα = KC/Pα, where Pα is the parabolic
subgroup.

Example 3.14. Let G = R+, K = {1} ⊂ G and (M, g) = (Rn, dx2). Con-
sider the G-action

G × M −→ M,
(t, x) �−→ t · x.

Then the map |x|2 /2 : M → R is the moment map of the G-action, since
for any ξ ∈ R,

d

(
|x|2

2
, ξ

)

R

= ξx · dx =
〈

ξx · d

dx
, ·

〉
=

〈
d

dt

∣∣∣∣
t=0

etξx, ·
〉

.

Example 3.15. Let M = Sn ∈ R
n+1 and G = SOR(n + 1, 1), with the

involution defined by
θ : g −→ g,

ξ �−→ −ξt,

it is easy to see that θ is an automorphism of g with its associated Cartan
decomposition g = so(n + 1) + R

n+1. The compact dual ĝ = so(n + 1) +√
−1R

n+1 ⊂ gC is isomorphic to so(n + 2) via

τ : ĝ
∼=−→[

A
√

−1v√
−1vt B

] [
A −v
vt B

]

so(n + 2)

=
[ √

−1
1

] [
A

√
−1v√

−1vt B

] [
−

√
−1

1

]
.

Then θτ := τ ◦ θ ◦ τ−1 is an involution on so(n + 2), given by

θτ

([
A −v
vt B

])
=

[
A v

−vt B

]
=J

[
A v

−vt B

]
J with J =

[
1

−1

]
.

It clearly descends to Ĝ = SO(n + 2) with SO(n + 2)θτ

= S(O(n + 1) ×
O(1)) = K.
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Now we extend θ to gC complex linearly, which we denote by θC. Let
α = [1, 0, . . . , 0] ∈ R

n+1, then the adjoint orbit

OC
iα = AdĜ iα ⊂ ĝ = τ−1(so(n + 2))

is exactly the complex hyperquadric Qn ⊂ CP
n+1, which is the complexifi-

cation of Sn.

Example 3.16. Let M = HP
n, if we identify H

n with C
n⊕jC

n, then we
have an embedding GL(n, H) ⊂ GL(2n, C). To see this, we notice that a
C-linear mapping

ϕ : H
n = C

n⊕jC
n −→ H

n = C
n⊕jC

n

is H-linear precisely when it commutes with j : ϕ(vj) = ϕ(v)j. Let

G = SL(n, H) :=
{
A ∈ GL(2n, C)|AJ = JĀ and detA = 1

}
,

where J =
[

In

−In

]
. We have k = u(n + 1, H) or sp(n + 1), and p = k⊥ ⊂ g

with respect to Sp(n + 1)-invariant inner product on g. Then HP
n = AdK e

with e = [1, 0, . . . , 0] ∈ H
n+1, and G acts on HP

n with moment map

μ(v + jw) =
[

v w
w −v

] ([
v̄t w̄t

w̄t −v̄t

] [
v w
w −v

])−1 [
v̄t w̄t

w̄t −v̄t

]

=
1

|v + jw|2
[

v w
w −v

] [
v̄t w̄t

w̄t −v̄t

]

for v + jw ∈ C
n⊕jC

n, which is the orthogonal projection.

3.4. Moment map for mapping space

Let M be a smooth n-dimensional manifold and (X, Ω) be an N -dimensional
Riemannian manifold with a calibrated n-form Ω. Let MapΩ(M, X) be the
space of Ω-calibrated immersion of M into X. Suppose G is a real reductive
group acting on X with Riemannian moment map μ : X → p, and in addi-
tion we assume that G preserves Ω. Let Map0

Ω(M, X) := MapΩ(M, X)/Diff
(M) denote the space of unparameterized mapping from M to X. Then
we may introduce a Riemannian structure on Map0

Ω(M, X) such that the
induced G-action on Map0

Ω(M, X) is equipped with a Riemannian moment



854 Xiaowei Wang

map. To see this, let us first introduce the metric on Map0
Ω(M, X). For any

f ∈ Map0
Ω(M, X), we define

〈δf, δf〉f :=
∫

M

〈
δf⊥, δf⊥

〉
h
f∗Ω.

Notice that G acts on Map0
Ω(M, X) naturally via g ◦ f := g · f(·).

Lemma 3.17. Let ft : M → X be a family of immersions with f = f0 and

v :=
dft(x)

dt

∣∣∣∣
t=0

∈ f∗TX|f(x).

Then
d

dt

∣∣∣∣
t=0

V olX(f∗
t h) = div(M,f∗h) v� − 〈v, H〉f∗h ,

where H is the mean curvature vector of f(M) in X and v�, v⊥ are the
tangential and normal components of v.

Proof. Let {ei}n
i=1 be a local orthonormal frame of TxM and ∇ be the Levi–

Civita connection of X, then we have

d

dt

∣∣∣∣
t=0

V olX(f∗
t h)(x) =

n∑
i=1

〈∇ei
v, ei〉

=
n∑

i=1

〈
∇ei

v�, ei

〉
+

n∑
i=1

〈
∇ei

v⊥, ei

〉

=
n∑

i=1

〈
∇ei

v�, ei

〉
−

n∑
i=1

〈
v⊥,∇ei

ei

〉

= div(M,f∗h) v� − 〈v, H〉f∗h. �

Now we are ready to state the following generalization of Proposition 18
of [6].

Proposition 3.18. The natural action of G on Map0
Ω(M, X) possesses a

moment map.

μ(f) :=
∫

f(M)
μΩ.
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Proof. Let δf ∈ TfMap0
Ω(M, X) ⊂ Γ(f∗TX). Since f(M) is Ω-calibrated, it

is area minimizing, which means the mean curvature H of f(M) vanishes.
We deduce〈

δf⊥, σ(ξ)
〉

f

=
∫

M

〈
δf⊥, σ(ξ)

〉
h
V olX(f∗h)

=
∫

M
δf 〈μ, ξ〉p V ol(f∗h) +

∫
M

f∗ 〈μ, ξ〉p
(

div(M,f∗h)δf
�

−
〈
δf⊥, H

〉
f∗h

)
V ol(f∗h)

=
∫

M
δf 〈μ, ξ〉p V ol(f∗h) +

∫
M

f∗ 〈μ, ξ〉p LδfV ol(f∗h)

= δf

∫
M

f∗ 〈μ, ξ〉p V ol(f∗h)

= δf

∫
f(M)

μΩ,

where δf⊥ and δf� are the normal and tangential components of δf with
respect to the metric h on X. �

Example 3.19. Let M, X be Kähler manifold and Maph(M, X) denote
the space of holomorphic immersions. Suppose there is a Hamiltonian holo-
morphic K-action on X with moment map μX : X → k, then

∫
f(M)

μX
ωn

X

n!

is the moment map for the G = KC-action on Maph(M, X).

Remark 3.20. Another example we may consider is that (X, Ω) is a quater-
nion Kähler manifold, with Ω being the quaternion Kä hler form. And then
we may apply the above proposition and study the space of quaternion sub-
manifold of X.

4. Moment map with infinite dimensional reductive group

In this section, we will present several infinite dimensional example of a
Riemannian moment map, at least on the formal level. To do that, first we
have to introduce two types of infinite dimensional real reductive groups.
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4.1. Group C := Diff(M) � C∞
+ (M)

Let M be an n-dimensional compact smooth orientable manifold and ∧nM
be the line bundle of top form. We introduce the group

C :=

⎧⎪⎨
⎪⎩

∧nM
ρ−→ ∧nM

↓ � ↓
M

ρM−→ M

∣∣∣∣∣∣∣
ρM ∈ Diff(M) and ρ : ∧nM |x∈M

→ ∧nM |x∈M is positive linear.

⎫⎪⎬
⎪⎭

Notice that C can be identified with the semi-direct product between Diff(M)
and the space of positive functions on M , that is,

C = {(ρM , u) ∈ Diff(M) × C∞(M)|u > 0} ,

with multiplication being defined by

(φ, u) · (ψ, v) = (ψ ◦ φ, ((ψ∗)−1u) · v).

Then it is clear that the Lie algebra c of C is

c := {(ξ, δu) ∈ Γ(TM) × C∞(M)} ,

with the Lie bracket given by

[(ξ, δu), (η, δv)] = (−[ξ, η],−ηδu + ξδv).

In particular, we have

[(ξ, 0), (0, δv)] = (0, ξδv) and [(0, δu), (0, δv)] = (0, 0),

hence we have a Cartan-type decomposition

c = diff + p,

with [p, p] = 0 and [diff, p] ⊂ p, where p :=C∞(M).
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4.1.1. Linear moment map. C acts naturally on the Hilbert space H :=
(Γ(|∧n|1/2 , 〈·, ·〉)) of half density with the inner product

〈f, g〉 =
∫

M
fg

as follows.

For anyf ∈ H, we define (φ, u) ◦ f = φ∗(uf),

and the infinitesimal action is given by

(ξ, δu) ◦ f = ξf + δuf

for any (ξ, δu) ∈ c and f ∈ C∞(M). Since

〈(ξ, 0) ◦ f, g〉

=
∫

M
(ξf)g

=
∫

M
−f(ξg)

= 〈f, (−ξ, 0) ◦ g〉 ,

this implies that Diff(M) ⊂ O(H), the orthogonal group of H. With this
understood, then we have the following.

Proposition 4.1. The moment map for the action of C on (H, 〈·, ·〉) is
given by

μ : H −→ ∧nM = C∞(M)∗,
f �−→ f2/2,

clearly, it is Diff(M)-equivariant.

Proof. For any ξ ∈ C∞(M), the infinitesimal action

σf (ξ) =
d

dt

∣∣∣∣
t=0

exp tξ · f = ξ · f.

Hence,

δ 〈μ(f), ξ〉 = δ

∫
M

ξf2

2
=

∫
M

δf(ξ · f) = 〈δf, σf (ξ)〉 . �
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4.1.2. Moment map of C-action on the space of metrics. We present
another example of a Riemannian moment map for the group C, at least on
the formal level. Let

G :=
{
g(·, ·) ∈ Γ(Sym2(TM))|g > 0

}

be the space of Riemannian metrics. Then there is a natural Riemannian
metric on G given by

〈δ1g, δ2g〉G =
∫

M
(δ1g)ij(δ2g)klg

ikgjlV ol(g).

Let us introduce an action of the group C on G as follows:

(φ, u)g = φ∗(ug).

Then it is clear that Diff(M)-action on (G, 〈·, ·〉G) is isometric.

Proposition 4.2. The moment map for the C-action on G is given by

μ : G −→ ∧top(M),
g �−→ V ol(g)/2.

Proof. Let ξ ∈ C∞(M), then we have

δ 〈μ(g), ξ〉p
=

∫
M

ξ(δVol(g))

=
1
2

∫
M

ξ Trg(δg)Vol(g)

=
1
2

∫
M

ξgij(δg)ijVol(g)

=
1
2

∫
M

ξgilgjkglk(δg)ijVol(g)

=
1
2

∫
M

gilgjk(ξglk)(δg)ijVol(g)

=
1
2

〈σg(ξ), δg〉G ,

where σg(u) is the infinitesimal action of u on g ∈ G.
Finally, the Diff-equivariance follows from μ(φ∗g) = V ol(φ∗g) =

φ∗(V ol(g)) for ∀φ ∈ Diff(M). �
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4.2. Real reductive gauge group

Finally, we will describe another family of infinite dimensional Riemannian
moment map first studied by Corlette [9]. This framework was applied by
Corlette in the study of rigidity of lattices in real reductive groups. To set
the scene, let

G −→ P
↓
M

be a principal G-bundle over a Riemannian manifold (M, h) and

AdP := P ×Adg

↓
M

be its associated adjoint bundle.

Definition 4.3. We define

A :=
{

ω ∈ T ∗P ⊗ g

∣∣∣∣ ω(σp(ξ)) = ξ,∀ξ ∈ g

R∗
gω = Adg−1 ω, ∀g ∈ G

}
,

where Rg is the right action of G on P and

σp : g −→TpP

is the infinitesimal action of G, that is, A is the space of G-connection
1-form. So A is an affine space modeled on Ω1(M, AdP ). For each ω ∈ A,
the associated connection Dω on AdP is defined as follows: for any s ∈
Γ(AdP ), Dωs = ds + [ω, s], where we have used the identification

Γ(AdP ) = {s : P → g|s(g · p) = Adg s(p),∀g ∈ G}.

Now we fix a Cartan decomposition of g = k + p associated to an involu-
tion θ : g → g and let K ⊂ G be the maximal compact subgroup of G with
Lie algebra k. And we also fix a G-invariant trace form 〈·, ·〉g on g as before
such that

(·, ·)g := −〈·, θ(·)〉g
is an inner product on g. This together with the Riemannian structure on M
induces a metric on Ω1(M, AdP ). Since for any ω ∈ A we have identification
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TωA = Ω1(M, AdP ), this equips A with a Riemannian structure as follows:

(δ1D, δ2D)A :=
∫

M
(δ1D, δ2D)g⊗T ∗M dV olM for any δiD ∈ TDA, i = 1, 2.

Suppose P has a reduction to Q, a principal K-bundle

K −→ Q
↓
M

i.e., P = Q × KG, where K acts on G on the left.
The gauge group

G :=

⎧⎨
⎩

P
ρ−→ P

↓ ↓
M = M

∣∣∣∣∣∣ ρ is G-equivariant

⎫⎬
⎭

can be identified with the space of sections of the bundle

P × AdG := P × G/(p, h)˜(p · g, Adg−1 h).

And the action is defined as follows:

(p, h) : P −→ P,
p �−→ p · h.

It is well-defined since for p · g ∈ P , we have

(p · h) · g = (p · g) · (g−1hg) = (p · g) · Adg−1 h.

With this understood, we may identify the Lie(G) with Γ(Ad(P )), and the
Cartan decomposition of g induces Cartan decomposition

Lie(G) = Γ(AdP+) + Γ(AdP−)

with

AdP+ = Q×AdK
k =Ad Q,

AdP− = Q×AdK
p,

and
AdP = AdP+ ⊕ AdP−.
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In particular, we have the relation

Γ(AdP±) = {ξ ∈ Γ(AdP )|θ(ξ) = ±ξ}

and for any ω ∈ A, there is a unique way to write ω = ω+ + ω− with ω+ ∈
Γ(AdP+), ω− ∈ Γ(AdP−). In particular, the maximal compact subgroup
can be identified with

K = {ρ ∈ G|ρ preserves Q} ⊂ G,

hence Lie(K) = Ad Q.
G-action on P induces a natural action of G on A given by

D �−→ g ◦ D ◦ g−1 = −Dg ◦ g−1,

or infinitesimally

σD(ξ) := − d

dt

∣∣∣∣
t=0

D exp tξ ◦ exp − tξ = −Dξ ∈ Γ(TDA)

for any ξ ∈ Γ(Ad(P )). Then we have the following.

Proposition 4.4. The G-action on A is Hamiltonian with Riemannian
moment map

μ(D) = D+∗(ω−) ∈ Γ(AdP−),

where D+ is the composition of D with the orthogonal projection to Ad P+

with respect to the inner product 〈·, ·〉g, and D+∗ is the adjoint of D+.

Proof. For any ξ ∈ Γ(AdP−),

(μ(D), ξ)g = (ω−, D+ξ),

(δ1D, δ2D)A =
∫

M
(δ1D, δ2D)g dV olM ,

(δD, ξ̃)g = (δω+ + δω−, Dξ)g
= (δω+ + δω−, D+ξ + [ω−, ξ])g
= (δω+, [ω−, ξ])g + (δω−, D+ξ)g
= ([δω+, ξ], ω−)g + (δω−, D+ξ)g
= δ(ω−, D+ξ)g,



862 Xiaowei Wang

where in the fourth identity, we have used the fact that for ξ|x ∈ p,

(δω+, [ω−, ξ])g = ([δω+, ξ], ω−)g.

by Lemma 2.12. �
In particular, we have an immediate consequence of Proposition 2.10.

Corollary 4.5. If D is simple, i.e., Ds ≡ 0 implies s ≡ 0, then there is at
most one K-orbit in its G-orbit on which the moment map vanishes.

The above results were originally proved by Corlette [9], which were
derived via complexifying G first and then restrict to the fixed locus of an
anti-holomorphic involution, as what we did in Section 3.2. Our derivation
seems more direct and more natural.

The importance of the moment map interpretation of the equation

D+∗(ω−) = 0

lies in the fact that the existence of the solutions to the above equation is
equivalent to the existence of harmonic metric over certain G-flat bundle,
which can be used to derive some vanishing results via Bochner technique.
The readers are encouraged to find more details in [9].
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