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Structure theorems for embedded disks with mean
curvature bounded in Lp

Giuseppe Tinaglia

After appropriate normalizations, an embedded disk with second
fundamental form large at a point contains a multi-valued graph
around that point, provided the Lp norm of the mean curvature
is sufficiently small. This generalizes to non-minimal surfaces a
well-known result of Colding and Minicozzi.

1. Introduction

In [6], Colding and Minicozzi proved that a minimal disk embedded in R
3

with Gaussian curvature large at a point contains a multi-valued graph
around that point. This means that, locally, the disk looks like a piece
of a suitably scaled helicoid (see figure 1). This was later generalized in [20]
to the constant mean curvature case. The structure theorem in [6] has been
used as a key ingredient in the Colding–Minicozzi series of papers [2, 5–8]
dealing with the geometry of embedded minimal surfaces of fixed genus.
Moreover, the new ideas provided by their recent work have been applied to
solve several longstanding problems in the field of minimal surfaces; see for
instance [3, 9, 13,14].

In this paper, we discuss the geometry of disks embedded in R
3 for

which the Lp-norm of the mean curvature, ‖H‖Lp , is suitably bounded.

Figure 1: Half of the helicoid.
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We point out that ‖H‖Lp is a natural quantity to consider. It appears,
for instance, in such classical results as the monotonicity formulae [19] and
related applications [10, 12]. Loosely speaking, the principle established in
our main result is that an embedded disk with second fundamental form
large at the origin, and with bounded Lq-norm of the gradient of the mean
curvature, q > 2, must contain a multi-valued graph around the origin if
the Lp-norm of the mean curvature is suitably small. Below is a simplified
version of the main theorem.

Theorem 1.1. Given N ∈ Z+, T ≥ 0, q > 2 and p ≥ 1, there exist C1 =
C1(N) > 0, C2 = C2(N, T, p, q) > 0 and l = l(N, p) > 1 such that the
following holds.

If Σ ⊂ R
3 is an embedded disk with 0 ∈ Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0), ‖H‖Lp

≤ C2, ‖∇H‖Lq ≤ T and

sup
Σ∩Bl(0)

|AΣ| ≤ 2C1 = 2|AΣ|(0),

then Σ ∩ B1(0) contains an N -valued graph that forms around the origin.

Here Bl(0) is the euclidean ball of radius l centered at the origin. We
recall that if Σ is a surface and k1 and k2 are its principal curvatures, then the
mean curvature is H = k1+k2

2 . The norm of the second fundamental form
is |AΣ| =

√
k2

1 + k2
2 and the Gaussian curvature is KΣ = k1k2. A precise

definition of an N -valued graph as well as a finer quantitative version of
Theorem 1.1 is to be found in Section 5.

Our new generalization of the Colding–Minicozzi structure theorem is
intended as a first step towards classifying the singularities of the limit of a
sequence of embedded disks with ‖H‖Lp bounded. While this problem has
been successfully studied for minimal disks [2, 4, 8, 16], it remains unsolved
in this more general setting. In fact, if the norm of the second fundamental
form of these disks is uniformly bounded, they do converge to a well-defined
surface, although not necessarily an embedded one. The main objective is
therefore to understand what happens as the norm of the second fundamen-
tal form is arbitrarily large. As is the case of minimal surfaces, the answer
to this question will surely provide new tools for the study of the global
properties of surfaces with ‖H‖Lp bounded.

The proof of Theorem 1.1 uses a new compactness argument which,
somewhat unexpectedly, does not require a bound on the area.
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2. Minimal surfaces

2.1. Definition

Let Σ ⊂ R
3 be a 2-dimensional smooth orientable surface (possibly with

boundary) with unit normal NΣ. Given a function φ in the space C∞
0 (Σ) of

infinitely differentiable, compactly supported functions on Σ, consider the
one-parameter variation

Σt,φ = {x + tφ(x)NΣ(x) | x ∈ Σ}

and let A(t) be the area functional,

A(t) = Area(Σt,φ).

The so-called first variation formula is the equation

(2.1)
dA

dt
(0) = −2

∫

Σ
φH,

where H is the mean curvature of Σ. If a surface Σ is given as graph of a
function u, then

2H = div

(
∇u

√
1 + |∇u|2

)

.

A surface is said to be a minimal surface if it is a critical point for the
area functional (see [17]); by Equation (2.1), this is equivalent to require
that the mean curvature be identically zero. Examples of minimal surfaces
are planes, the helicoid and the catenoid.

2.2. Limits of minimal surfaces

In this section, we discuss limits of minimal surfaces. Some of this material
is covered in great detail (including proofs) in [18, Section 4].

Let Σ be a surface in R
3 and let TpΣ denote its tangent plane at p.

Given p ∈ Σ and r > 0, we label by

D(p, r) = {p + v|v ∈ TΣ, |v| < r}

the tangent disk of radius r. We use W (p, r) to stand for the infinite solid
cylinder of radius r around the affine normal line at p and is noted by

W (p, r) = {q + tN(p)|q ∈ D(p, r), t ∈ R}.
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Inside W (p, r) and for ε > 0, we have the compact slice

W (p, r, ε) = {q + tN(p)|q ∈ D(p, r), |t| < ε}.

Definition 2.1. Let Σn be a sequence of surfaces properly embedded in an
open set O ⊂ R

3. We say that Σn converges Ck with finite multiplicity to a
surface Σ∞ on compact sets if for any K ⊂ O compact there exist r, ε > 0
such that

(1) For any p ∈ Σ∞ ∩ K, Σ∞ ∩ W (p, r, ε) can be represented as the graph
of a function u : D(p, r) → R.

(2) For sufficiently large n, Σn ∩ K ∩ W (p, r, ε) consists of a finite number
of graphs (independent of n) over D(p, r) which converge to u in the
usual Ck topology.

Given a sequence of subsets {Fn}n in an open domain O, its accumula-
tion set is defined by {p ∈ O|∃pn ∈ Fn with pn −→ p}

The next two theorems are standard compactness theorems for sequences
of properly embedded minimal surfaces. The first assumes a uniform bound
on the area and on the norm of the second fundamental form, while the
second one is slightly more general and does not assume a bound on the
area. Their proofs are similar in nature. We will only sketch the proof of
Theorem 2.3, pointing out where to use the uniform bound on the area to
prove Theorem 2.2.

Theorem 2.2. Let Σn be a sequence of minimal surfaces properly embedded
in an open set O ⊂ R

3. Suppose that Σn has an accumulation point in O
and that there exist C1 and C2 such that

Area(Σn) < C1, sup
Σn

|An| < C2

uniformly in n. Then, there exists a subsequence Σnk
and a minimal sur-

face Σ properly embedded in O such that Σnk
converges smoothly with finite

multiplicity to Σ on compact subsets of O.

Theorem 2.3. Let Σn be a sequence of minimal surfaces properly embed-
ded in an open set O ⊂ R

3. Suppose that there exists a sequence pn ∈ Σn
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converging to a point p ∈ O and that

sup
Σn

|An| < C

uniformly in N . Then, there exists a subsequence Σnk
and a connected

minimal surface Σ in O satisfying

(1) Σ is contained in the accumulation set of {Σn}n;

(2) p ∈ Σ and |A|(p) = lim |An|(pn);

(3) Σ is embedded in O;

(4) Any divergent path in Σ either diverges in O or has infinite length.

Sketch of the proof of 1, 2 and 3. As pn accumulates at p ∈ O, the uniform
bound on the second fundamental form implies that there exists r > 0 such
that for ε small, W (pn, r, ε) ∩ Σn consists of a collection of graphs, given by
the functions uk

n : D(pn, r) → R (regarding Theorem 2.2 a uniform bound on
the area would give a bound for the number of graphs which is independent
of n). After going to a subsequence, we can assume that Tpn

Σn converges
to a plane π and that the functions uk

n are defined over π. Moreover, |uk
n|,

|∇uk
n| and |∇2uk

n| are uniformly bounded. Since un is a minimal graph,
thanks to the minimal graph equation we have uniform C2,α estimates for
uk

n. In this situation, Arzela–Ascoli’s theorem implies that a subsequence
of uk

n converges C2 to a function u. Due to the C2 convergence, u is also a
minimal graph. An analytic continuation argument allows us to construct
a subsequence Σk and a maximal sheet Σ in the accumulation set of Σk

which extends the graph u. By construction, Σ satisfies items (1) and (2).
That (3) also holds can be seen as follows. The surface Σ must be embed-
ded because transverse self-intersections of it would give rise to transverse
self-intersection of Σn for n large and tangential self-intersections would
contradict the maximum principle. �

3. Compactness theorems

In this section, we prove more general compactness theorems which will
be used in the proof of the structure theorem. We start by extending
Theorems 2.2 and 2.3 to more general surfaces. Before doing that, we need
to establish some notation. Let f be a function defined over Σ and let p ≥ 1,
then ‖f‖Lp(Σ) is the Lp-norm of f , while ‖f‖α is the Cα-norm.
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Theorem 3.1. Let Σn be a sequence of smooth surfaces properly embedded
in an open set O ⊂ R

3. Suppose that Σn has an accumulation point in O
and that there exist C1, C2 and T such that

Area(Σn) < C1, sup
Σn

|An| < C2 and ‖Hn‖α < T uniformly in n.

Suppose also that ‖Hn‖Lp(Σn) converges to zero for some p ≥ 1. Then, there
exists a subsequence Σnk

and a minimal surface Σ properly embedded in O
such that Σnk

converges C2 with finite multiplicity to Σ on compact sets of O.

Theorem 3.2. Let Σn be a sequence of surfaces properly embedded in an
open set O ⊂ R

3. Suppose that there exists a sequence pn ∈ Σn converging
to a point p ∈ O and that there exist C and T such that

sup
Σn

|An| < C and ‖Hn‖α < T uniformly in n.

Suppose also that ‖Hn‖Lp(Σn) converges to zero for some p ≥ 1. Then, there
exists a subsequence Σnk

and a connected minimal surface Σ in O satisfying

(1) Σ is contained in the accumulation set of Σn.

(2) p ∈ Σ and |A|(p) = lim |An|(pn).

(3) Σ is embedded in O.

(4) Any divergent path in Σ either diverges in O or has infinite length.

Their proofs are a slight modification of the proofs of Theorems 2.2
and 2.3. As before, the uniform bound on the second fundamental form
implies that W (pn, r, ε) ∩ Σn consists of a collection of graphs. In the proofs
of Theorems 2.2 and 2.3, we needed the surfaces to be minimal in order to
obtain uniform C2,α estimates for these graphs. In fact, it is known that in
order to obtain C2,α estimates, it suffices that ‖Hn‖α is uniformly bounded.
Once uniform C2,α estimates, are obtained, we can apply the Arzela–Ascoli
theorem to extract a subsequence of graphs which converges C2 to a graph.
The fact that ‖Hn‖Lp(Σn) converges to zero is ultimately used to show that
the limit graph is minimal.

We remark that using the Sobolev embedding theorem, assuming a
bound on ‖∇Hn‖Lq(Σn), q > 2, implies a bound on ‖H‖α. We could there-
fore restate Theorems 2.2 and 2.3 replacing the uniform bound on ‖H‖α

with a uniform bound on ‖∇Hn‖Lq(Σn), q > 2. Furthermore, if ‖H‖α is not
bounded uniformly, although we are not able to extract a subsequence of
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graphs which converges C2 to a minimal graph, it is still possible to extract
a subsequence of graphs which converges C1 to a minimal graph. Moreover,
an upper bound on the norm of the second fundamental form of the limit is
still valid. In other words, the following theorem follows.

Theorem 3.3. Let Σn be a sequence of surfaces properly embedded in an
open set O ⊂ R

3. Suppose that there exists a sequence pn ∈ Σn converging
to a point p ∈ O and that there exists C such that

sup
Σn

|An| < C, uniformly in n.

Suppose also that ‖Hn‖Lp(Σn) converges to zero for some p ≥ 1. Then, there
exists a subsequence Σnk

and a connected minimal surface Σ in O satisfying

(1) Σ is contained in the accumulation set of Σn.

(2) supΣ |A| < C.

(3) Σ is embedded in O.

(4) Any divergent path in Σ either diverges in O or has infinite length.

In the next theorem, we use Theorem 3.3 to describe more accurately the
accumulation set of a sequence of surfaces with ‖Hn‖Lp converging to zero.

Theorem 3.4. Let Σn be a sequence of compact surfaces embedded in Bn(0)
such that 0 ∈ Σ ⊂ Bn(0), ∂Σ ⊂ ∂Bn(0). Suppose that there exists a constant
C such that supΣn

|An| < C and that ‖Hn‖Lp converges to zero for some
p ≥ 1 as n goes to infinity. Then, up to a subsequence, the accumulation set
of Σn is non-empty and it consists either of a connected complete properly
embedded minimal surface Σ or of a collection of parallel planes.

Moreover, Σ1
n converges C1 with multiplicity one to Σ1, where Σ1

n is the
connected component of Σn ∩ B1(0) which contains the origin and Σ1 is,
depending on the accumulation set, the connected component of Σ ∩ B1(0)
which contains the origin or a unit disk centered at the origin.

Proof. Supposing the conclusion fails, let Σn be a sequence of compact
surfaces embedded in Bn(0) such that 0 ∈ Σn ⊂ Bn(0), ∂Σn ⊂ ∂Bn(0) and
‖Hn‖Lp < 1

n . Theorem 3.3 implies that there exists a complete connected
embedded minimal surface, Σ, which contains the origin and is contained
in the accumulation set of Σn. Furthermore, Σ has bounded second fun-
damental form and therefore it is properly embedded (see [15]). If Σn has
another accumulation point which is not in Σ, then the same argument shows
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that there exists another complete connected properly embedded minimal
surface, Σ′, which is contained in the accumulation set of Σn and it is dis-
joint from Σ. The results in [1, 11, 21] imply that they must be parallel
planes.

Let ε > 0 and let TN(ε) be an embedded tubular neighborhood of Σ1

of size ε. Choose r and ε, r > 2ε > 0 such that for any p ∈ Σ, W (p, r, ε) ∩
Σ1

n consists of a collection of graphs. Let u0 be the minimal graph over
D(0, r) which locally represents Σ1, and let un

0 be the graph in W (p, r, ε) ∩
Σn

1 containing the origin. From the way Σ has been obtained, un
0 con-

verges C1 to u0. For any q ∈ ∂W (0, r, ε), if we let uq represent W (q, r, ε) ∩
Σ1 and un

q represent the connected component of W (q, r, ε) ∩ Σ1
n which

intersects un
0 , then we can assume that un

q converges C1 to uq. Since
Σ is properly embedded, Σ1 is compact. After finitely many steps, it
is possible to analytically continue un

0 to get a one-sheeted cover of Σ1.
�

Loosely speaking, in the next theorems, we describe the geometry away
from the boundary of a surface with small Lp-norm of the mean curvature.

Theorem 3.5. Given C > 0, p ≥ 1 there exist R = R(C, p) > 2, ε = ε(C, p)
> 0 such that the following holds. Let Σ be a compact surface embedded in
BR(0) such that 0 ∈ Σ ⊂ BR(0), ∂Σ ⊂ ∂BR(0), supΣ |A| < C and ‖H‖Lp <
1
R , then Σ1 has an embedded tubular neighborhood of size ε.

Proof. If not, let Σn be a sequence of compact surfaces embedded in Bn(0)
such that 0 ∈ Σn ⊂ Bn(0), ∂Σ ⊂ ∂Bn(0), ‖Hn‖Lp < 1

n and such that the
size of the largest embedded tubular neighborhood of Σ1

n is going to zero.
Theorem 3.4 implies that, after going to a subsequence, Σ1

n converges C1

with multiplicity one to a compact properly embedded minimal surface.
However, the fact that the size of the tubular neighborhood is going to zero
clearly contradicts the multiplicity one convergence. �

An easy consequence of Theorem 3.5 is the existence of some upper
bound for the area of a compact embedded surface depending solely on the
upper bounds for the Lp-norm of the mean curvature and second fundamental
form. Although the area of such a surface is not necessarily uniformly
bounded, we show that there exists a uniform upper bound for the area
of connected pieces which are sufficiently away from the boundary.

Corollary 3.6. Given C > 0, p ≥ 1, there exist K = K(C, p) > 0 and R =
R(C, p) > 2 such that the following holds. Let 0 ∈ Σ be a compact embedded
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surface such that Σ ⊂ BR(0), ∂Σ ⊂ ∂BR(0), ‖H‖Lp < 1
R and supΣ |A| < C

then the area of Σ1 is bounded by K.

In the following compactness theorem we prove that if the elements of
the sequence in Theorem 3.4 are embedded disks, so is the limit.

Theorem 3.7. Given C > 0, p ≥ 1 there exists R = R(C, p) > 2 such that
the following holds. Let Σn be a surface embedded in BR(0) such that
0 ∈ Σ ⊂ BR(0), ∂Σ ⊂ ∂BR(0) and supΣn

|An| < C. Suppose also that ‖H‖Lp

converges to zero as n goes to infinity and that Σn is simply connected.
Then, up to a subsequence, Σ1

n converges C1 to a properly embedded mini-
mal disk Σ1.

Proof. In light of Theorem 3.4, all that needs to be showed is that Σ1
n is a

disk. This will be discussed in the next section. �

4. Weak convex hull properties

In this section, we prove a weak convex hull property for surfaces with
bounded Lp-norm of the mean curvature. Loosely speaking, we say that
a surface satisfies a weak convex hull property if when the boundary is
contained in a ball B, then the entire surface has to be contained in B.

In the next lemma we prove that if Σ is a surface contained in a compact
set, its second fundamental form is bounded and its boundary is contained
in a certain ball then, if the Lp-norm of the mean curvature is small enough,
the surface cannot stretch too far outside the ball. The proof is by contra-
diction and uses a compactness argument. The idea is that after taking a
convergent subsequence, since the limit minimal surface satisfies a convex
hull property, an analogous property has to be satisfied by the elements
in the sequence. Notice that we need the elements of the sequence to be
contained in a compact set, otherwise one could take a sequence of spheres
with radii going to infinity. The Lp-norm of the mean curvature of these
spheres converges to zero, p > 2, but they do not satisfy any weak convex
hull property.

Lemma 4.1. Given l > 1, ε > 0 and 1 ≤ p < ∞, there exists an n = n
(l, ε, p) > 0 such that the following holds. Suppose Σ is a compact sur-
face such that Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0), ‖H‖Lp < 1

n and supΣ |A| < C and
let Σ1 ⊂ Σ be a surface such that ∂Σ1 ⊂ B1(0). Then Σ1 ⊂ B1+ε(0).
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Proof. Assume, by way of contradiction, that there exists a sequence of
Σn and Σ1

n ⊂ Σn such that Σn ⊂ Bl(0), ‖Hn‖Lp < 1
n , supΣn

|An| < C, ∂Σ1
n ⊂

B1(0) and Σ1
n �⊂ B1+ε(0). Let pn ∈ Σ1

n such that

(4.1) l ≥ |pn| = max
q∈Σ1

n∩R3\B1(0)
|q| > 1 + ε.

After going to a subsequence, we can assume that pn converges to a point
p ∈ Bl(0)\B1+ε(0). Consider δ ≤ ε

2 such that the connected component of
W (pn, δ, δ) that contains pn consists of a graph over D(pn, δ). In particular,
after going to a subsequence, the graph containing pn would converge C1 to
a minimal graph which is tangent to B|p|(0) and contained inside its convex
side. This contradicts the maximum principle and proves the theorem. �

In the case when p = ∞, the weak convex hull property does not require
a bound on the second fundamental form and can be proved without using
a compactness argument.

Lemma 4.2. Fix l > 1 and let Σ be a compact embedded surface such that
Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0), supΣ |H| < 1

2l . Let Σ′ ⊂ Σ be a surface such that
∂Σ′ ⊂ Br(p), r > 0, then Σ′ ⊂ Br(p).

Proof. If Σ′ is not contained in Br(p), then there exists an R, r < R < 2l,
such that Σ′ is contained inside BR(p) and it is tangent to its boundary. Let
k1(q) and k2(q) be the principal curvatures at q. Clearly, k1(q) and k2(q)
have the same sign, and |ki(q)| ≥ 1

R > 1
2l . Consequently, |H(q)| ≥ 1

2l . This
contradicts the assumption and proves the lemma. �

5. Structure theorem

In this section we prove the structure theorem for embedded disks with
bounded Lp-norm of the mean curvature, p ≥ 1, and bounded Lq-norm of the
gradient of the mean curvature, q > 2. For simplicity, we are going to state
the theorems when p = ∞ and assuming a bound on [H]α := supΣ

|H(x)−H(y)|
distΣ(x,y)

.

Definition 5.1. (Multi-valued graph (see [6])). Let Dr be the disk in the
plane centered at the origin and of radius r and let P be the universal cover
of the punctured plane C\0 with global coordinates (ρ, θ) so ρ > 0 and θ ∈ R.
An N -valued graph of a function u on the annulus Ds\Dr is a single valued
graph over {(ρ, θ)|r ≤ ρ ≤ s, |θ| ≤ Nπ}.
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The prototypical example of a surface which contains a multi-valued
graph is the helicoid, figure 1. A parameterization of the helicoid that
illustrates the existence of such an N -valued graph is the following

(s sin t, s cos t, t), where (s, t) ∈ R
2.

It is easy to see that it contains the N -valued graph φ defined by

φ(ρ, θ) = θ, where (ρ, θ) ∈ R
+\0 × [−Nπ, Nπ].

In their fundamental work, Colding and Minicozzi proved the following
structure theorem for minimal disks.

Theorem 5.2 [6, Theorem 0.4]. Given N ∈ Z+, ω > 1 and ε > 0, there
exist C = C(N, ω, ε) > 0 such that the following holds.

Let 0 ∈ Σ ⊂ BR ⊂ R
3 be a compact embedded minimal disk such that

∂Σ ⊂ ∂BR. If

sup
Σ∩Br0

|A|2 ≤ 4C2r−2
0 and |A|2(0) = C2r−2

0

for some 0 < r0 < R, then there exists R < r0
ω and (after a rotation) an

N -valued graph Σg ⊂ Σ over DωR\DR with gradient ≤ ε and distΣ(0, Σg) ≤
4R.

The result below extends Theorem 5.2 to the non-minimal setting.

Theorem 5.3. Given N ∈ Z+, ω > 1, ε > 0, p ≥ 1 and T > 0, there exist
C1 = C1(N, ω, ε) > 0, C2 = C2(N, ω, ε, T, p) > 0 and l = l(N, ω, ε, p) > 1 such
that the following holds. If Σ ⊂ R

3 is a compact embedded disk with 0 ∈ Σ ⊂
Br0l(0), ∂Σ ⊂ ∂Br0l(0),

sup
Σ∩Br0l(0)

|A|2 ≤ 4C2
1r−2

0 and |A|2(0) = C2
1r−2

0 ,

r0|H| ≤ min
(

C2,
1
2l

)
and r1+α

0 [H]α ≤ T(5.1)

for some r0 > 0, then there exists R < r0
ω and (after a rotation) an N -valued

graph Σg ⊂ Σ over DωR\DR with gradient ≤ ε and distΣ(0, Σg) ≤ 4R.
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Proof. Theorem 5.3 will follow by rescaling after we prove it for r0 = 1.
Assuming r0 = 1 the hypotheses become 0 ∈ Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0),

sup
Σ∩Bl(0)

|A|2 ≤ 4C2
1 and |A|2(0) = C2

1 ,

|H| ≤ min
(

C2,
1
2l

)
and [H]α ≤ T.

We have to prove that fixed T > 0 there exists C2 such that if the above
is true, then Σ contains a multi-valued graph in the ball of radius 1. The
proof is by contradiction and uses a compactness argument.

Assuming that the theorem is false, let C1 be as big as given by The-
orem 5.2, l as given by Theorem 3.7 and Σn a sequence of embedded
disks satisfying the hypotheses of the statement that does not contain a
multi-valued graph and with |H| less than 1

n . As n goes to infinity, The-
orem 3.7 gives that, up to a subsequence, Σ1

n (the connected component
of Σn ∩ B1(0) containing the origin) converges C2 with multiplicity one
to a minimal disk Σ1. The minimal disk containing the origin satisfies
the hypotheses of Theorem 5.2 and therefore it contains a multi-valued
graph. Since the limit contains a multi-valued graph, Σ1

n must also contain
a multi-valued graph for n large. This gives a contradiction and proves the
theorem. �

Notice that the C2 convergence guarantees that not only does Σn contain
an N -valued graph, but that the properties of this graph, such as the upper
bound on the gradient, are preserved.

When the mean curvature is bounded in L∞, we can prove the next two
corollaries. For simplicity, we will not state them in full generality as we
did for Theorem 5.3. The general versions can be easily obtained using a
rescaling argument.

In the next corollary we prove that if the second fundamental form of
a compact embedded disk at the origin is bigger than what it is necessary
to prove existence of an N -valued graph, it is almost its maximum, and the
disk satisfies (5.1) in Theorem 5.3, then the disk must contain a multi-valued
graph, possibly on a smaller scale.

Corollary 5.4. Given N ∈ Z+, ω > 1, ε > 0 and T > 0, there exist C1 =
C1(N, ω, ε) > 0, C2 = C2(N, ω, ε) > 0 and l1 = l1(N, ω, ε) > 1 such that the
following holds.
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If Σ ⊂ R
3 is a compact embedded disk with 0 ∈ Σ ⊂ Bl(0), ∂Σ ⊂ ∂Bl(0),

sup
Σ∩Bl(0)

|A|2 ≤ 4(C + β)2 and |A|2(0) = (C + β)2,

|H| ≤ min
(

C2,
1
2l

)
and [H]α ≤ T

for some α > 0, l > l1, then there exist R < C
ω(C+β) and (after a rotation)

an N -valued graph Σg ⊂ Σ over DωR\DR with gradient ≤ ε.

Proof. Consider the rescaled surface Σ′ = C+β
C Σ and let Σ′′ be the connected

component of Σ′ ∩ Bl(0) that contains the origin. Thanks to the weak convex
hull property, Σ′′ is still a disk, and since C+β

C > 1, it satisfies the hypothesis
of Theorem 5.3. It follows that there exists R < 1

ω and (after a rotation) an
N -valued graph Σg ⊂ Σ′′ over DωR\DR with gradient ≤ ε. Thus, rescaling
back proves the corollary. �

In the next corollary, we prove that if the second fundamental form of
a compact embedded disk is big at a point, but not necessarily almost its
maximum, and the disk satisfies (5.1) in Theorem 5.3, then the disk contains
a multi-valued graph, possibly around another point.

Corollary 5.5. Given N ∈ Z+, ω > 1, ε > 0 and T > 0, there exist C1 =
C1(N, ω, ε) > 0, C2 = C2(N, ω, ε) > 0 and l1 = l1(N, ω, ε) > 1 such that the
following holds. If Σ ⊂ R

3 is a compact embedded disk with 0 ∈ Σ ⊂ Bl(0),
∂Σ ⊂ ∂Bl(0), |A|(0) = C,

|H| ≤ min
(

C2,
1
2l

)
and [H]α ≤ T

for some l > l1, then there exist p ∈ Σ, R < 1
ω and 0 < δ < 1 such that,

after a translation that takes p to the origin and possibly after a rotation, Σ
contains an N -valued graph Σg over DδωR\DδR with gradient ≤ ε.

Proof. If

sup
Σ

|A|2 ≤ 4C2,

then we are done, because of Theorem 5.3.
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If instead, supΣ |A|2 > 4C2, consider the non-negative function

F (x) = (l − |x|)2|A(x)|2.

The function F is zero on the boundary of Σ and therefore it reaches its
maximum at a point in the interior. Let p be such point, i.e.,

F (p) = max
Σ

F (x) = (|p| − l)2|A|2(p) ≥ F (0) > 4l2C2.

Let 2σ < l − |p| such that

4σ2|A|2(p) = 4l2C2.

Since F achieves its maximum at p,

sup
Bσ(p)∩Σ

σ2|A|2 ≤ sup
Bσ(p)∩Σ

σ2 F (x)
(|x| − l)2

(5.2)

≤ 4σ2

(|p| − l)2
sup

Bσ(p)∩Σ
F (x) =

4σ2

(|p| − l)2
F (p) = 4σ2|A|2(p).

From the weak convex hull property, we know that Bσ(p) ∩ Σ consists of
a collection of disks. Rescale Bσ(p) ∩ Σ by a factor of l

σ ≥ 1 and translate
p to the origin. Let Σ′ ⊂ Bl(0) be the rescaled connected component that
contains the origin. It follows that Σ′ is a compact embedded disk such that
Σ′ ⊂ Bl(0), ∂Σ′ ⊂ ∂Bl(0),

|H ′| ≤ σ

l
min

(
C2,

1
2l

)
≤ min

(
C2,

1
2l

)
,

[H ′]α ≤
(σ

l

)1+α
T ≤ T, sup

Σ′
≤ 4C2 = 4|A|2(0).

Theorem 5.3 shows that there exists R < 1
ω and (after a rotation) an

N -valued graph Σg ⊂ Σ′ over DωR\DR with gradient ≤ ε. Thus, rescal-
ing back proves the corollary. �

6. An example illustrating the need for the bound on ‖H‖α

In this last section we are going to show that in order to have a multi-valued
graph form in a smooth surface, it is not enough to assume that the mean
curvature is small relative to the second fundamental form. How small the
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mean curvature has to be must also depend on the Holder norm of the mean
curvature.

Let us consider the graph given by the C1 function

u(x, y) = xy log
√

x2 + y2

for (x, y) �= (0, 0), u(0, 0) = 0 and ∇u(0, 0) = (0, 0).
Let r =

√
x2 + y2. One computes,

– ∇u = (y log r + x2y
r2 , x log r + y2x

r2 );

– Δu = 4xy
r2 ;

– uxy = log r + 1 − 2x2y2

r4 .

Recall that the mean curvature H of a graph is given by,

(6.1) H = div

(
∇u

√
1 + |∇u|2

)

.

Rewriting Equation (6.1) in polar coordinates and computing the mean cur-
vature of u near the origin, we obtain

(6.2) H(r cos θ, r sin θ) = 4 cos θ sin θ + o(r).

Let us take a sequence of mollifications uσ(x, y) of u over a disk and, for
any C > 0 let

uC
σ =

C

max Hess(uσ)
uσ

so that

max Hess(uC
σ ) = C

independently on σ. A computation shows that the sequence of graphs given
by the functions uC

σ converges C1 to a plane. In fact, because the hessian
has been normalized, the graphs in the sequence have second fundamental
forms that have size C at the origin. Furthermore, the supremum of the
mean curvature is going to zero. Nonetheless, being graphs, these surfaces
do not contain a multi-valued graph around any point.
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It might appear that this contradicts Corollary 5.5, but this is not the
case: Using Equations (6.2) one can show that near the origin, as σ goes to
infinity, the mean curvature of uC

σ behaves like the function

4C
cos θ sin θ

log r
+ o

(
r

log r

)
.

Since

lim
r→0

rα log r = 0 for any α > 0,

the Cα-norms of the mean curvatures of these graphs are not uniformly
bounded with respect to σ.
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