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Homotopy problems for harmonic maps to spaces of
nonpositive curvature
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Dedicated to the memory of Professor Aurel Cornea

Two results by N.J. Korevaar and R.M. Schoen (1993) about solv-
ability of the free homotopy problem and the Dirichlet homotopy
problem for harmonic maps from a compact Riemannian mani-
fold X to a compact geodesic space Y of nonpositive curvature are
strengthened here, and extended, particularly by allowing X to be
any compact admissible Riemannian polyhedron. In that setting,
the two results were stated in the author’s monograph from 2001
with J. Eells, but the short proofs given there were incomplete.

1. Introduction

As shown in the seminal paper by Eells and Sampson [10], if X and Y are
compact Riemannian manifolds without boundary, and if Y has nonpositive
sectional curvature, then every smooth map X → Y is homotopic with a
harmonic map which has minimum energy in its homotopy class. This was
extended by Hamilton [20] to the case where X has a smooth boundary
bX, on which the maps shall be kept fixed throughout the homotopy — the
so-called Dirichlet homotopy problem. Uniqueness results were obtained
by Hartman [21]. While the stated results were established using the heat
equation method, new proofs were given by Schoen [34] by a variational
approach. For related results, see Schoen and Yau [39].

A new development was initiated by Gromov and Schoen [19], who
extended the above results to the case of maps into a Riemannian space with
singularities, more precisely, a compact Riemannian polyhedron of nonposi-
tive curvature in the sense of A.D. Alexandrov, and embedded isometrically
in some R

N . In that setting (and in similar settings below), a harmonic map
is defined to be a continuous locally energy minimizing map (see Remark 2.6
and Lemma 2.7 in the present paper for similar and, actually, equivalent
definitions of harmonicity). Furthermore, local Lipschitz continuity of har-
monic maps was established in [19]. These results were further extended
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by Korevaar and Schoen [25] to the still more general case of a compact
geodesic space target Y , again of nonpositive Alexandrov curvature.

In the present paper we keep the compact geodesic space target Y of
nonpositive curvature. As source space we allow any compact Riemannian
polyhedron which is admissible in the sense of [9, 18]. Lipschitz continuity
of harmonic maps must then necessarily be replaced by Hölder continuity;
cf. [6], [9, Example 6.1].

In the case of free homotopy there is no prescribed boundary map, and
a minimizing sequence of equivariant maps may diverge to infinity in the
universal cover ˜Y of Y ; cf. [25, Remark 2.6.6]. We adapt (for Theorem 3.2)
the impressive existence proof by Korevaar and Schoen of their result [25,
Theorems 2.6.4 and 2.7.1] to the present case of a polyhedral domain X,
but we do not require that bX = ∅. We further go beyond [25] by proving
not only that, as expected from [10] and [19], every homotopy class H of
continuous maps X → Y has an energy minimizer which is harmonic, but
that indeed every energy minimizer in H is harmonic. As expected from
Hartman [21], two energy minimizers in H are identical if they agree at a
point. As an extension of another uniqueness result of [21] it is shown by
Mese [30] that if Y has Alexandrov curvature �κ for some constant κ < 0
(and if X is a manifold) then an energy minimizer in H is unique unless its
image is contained in a geodesic of Y .

For Hölder continuity of local energy minimizers we use [9] and [11],
drawing on Jost [23]. We now obtain a more uniform estimate involving the
energy (Proposition 3.1 and Remark 3.3). For Hölder continuity of harmonic
maps in different settings, see [17,29,36,38,41].

For the Dirichlet homotopy problem it is supposed that bX �= ∅. We
allow (in Theorem 4.1) X \ bX to be replaced more generally (as domain of
harmonicity of the solution) by any connected regular open set Ω ⊂ X such
that Ω ⊂ X \ bX, or at least that Ω ∩ bX is not dense in bX. Regularity
of Ω is understood in the sense of potential theory — a necessary, fairly
mild local condition on ∂Ω; and X \ bX is itself always connected, open,
and regular. We show that, as expected from Hamilton’s theorem [20] and
from [21], every homotopy class H of continuous maps X → Y which agree
on X \ Ω with a prescribed continuous map χ : X → Y of finite energy has
a unique energy minimizer ϕ0, and ϕ0 is harmonic and Hölder continuous
in Ω. The existence of an energy minimizer ϕ0 can be established in the
same way as in the free homotopy case, as briefly explained in [25, p. 658]
(where the source space X is a compact Riemannian manifold with smooth
boundary ∂X, and where Ω = X \ ∂X). Our existence proof of Theorem 4.1
(Dirichlet homotopy) is simpler and more elementary. By application of
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the Banach–Saks theorem it is shown that the Dirichlet boundary condition
prevents a minimizing sequence of equivariant maps from escaping to infinity
in the universal cover ˜Y . Continuity of the minimizer ϕ0 up to the boundary
of Ω, and harmonicity in Ω, are reduced to the same for the solution to the
ordinary variational Dirichlet problem for maps into a simply connected
space such as ˜Y , as established in [14] (see also [16]) by use of potential
theory with respect to the H. Cartan fine topology; this replaces the use
of a result of Serbinowski [35] in [25, p. 658] for proving in their setting
that ϕ is Hölder continuous Cα up to the boundary (supposed smooth),
provided that χ is so. When specialized to the smooth source manifold
in [25, Theorem 2.7.2] our result involving continuous boundary data neither
implies the quoted result from [25], nor is it implied thereby.

Theorem 3.2 (free homotopy) and Theorem 4.1 (for the particular case
Ω = X \ bX) were both stated in [9, Theorems 11.1 and 11.2], but the proofs
were incomplete.1 The case of the free homotopy problem when the source
space is an admissible flat 2-complex was treated by Daskalopoulos and
Mese [8].

It is understood in Theorems 3.2 and 4.1 that the Riemannian metric g
on the source polyhedron X is simplex-wise smooth (as defined in [9, p. 151],
cf. [19, p. 182]); this is needed for the extension in [9] of the energy concept of
[25] (for maps from a Riemannian domain) to the present polyhedral source
space (X, g). However, when confined to maps into a (compact) smooth
Riemannian manifold Y of nonpositive sectional curvature, Theorems 3.2
and 4.1 remain valid with nearly the same proofs even when g is allowed
to be merely measurable; see Theorem 5.2. In that setting there is a well-
known concept of energy of maps X → Y , defined for example in terms of an
isometric embedding of Y in some R

N , as in Nash’s theorem; see [9, Lemma
9.3]. The two energy concepts are indeed known to be identical if g happens
to be simplex-wise smooth [9, Theorem 9.2]. An application of Theorem 3.2
(with Riemannian manifold target) is given in [24, §6].

For a survey of harmonic maps in the present setting, see [15].

1The main gap concerning [9, Theorem 11.1] is the assertion that a minimizing
sequence (ϕ̃i) of equivariant maps ϕ̃i : ˜X → ˜Y has an L2-convergent subsequence;
but that may not be true, cf. [25, p. 647 and Remark 2.6.6.]

The same gap seems to be present already in [28, p. 63, paragraph following
(7.3)], despite a construction in [27], by which there remains the difficulty that
equivariance of a sequence is not necessarily preserved under postcomposition with
an automorphism. However, the result in question [27, Théorème 7.1] has been
proved by different methods by Sacks and Uhlenbeck [33] and by Schoen and Yau
[40] (and is covered by the present Theorem 3.2).
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2. Preliminaries

Throughout this article (unless otherwise specified), the source space
(X, g) is a compact Riemannian polyhedron (with possibly empty boundary
bX); cf. [19, p. 182; 9, Chapter 4]. This means that (i) X is a compact con-
nected metric space, (ii) there exists a finite (abstract) simplicial complex
K of finite dimension m � 1 and a bi-Lipschitz bijection θ of the (compact
metric) space (|K|, d) of the complex K onto X, and (iii) for every simplex s
of K there is given a smooth Riemannian metric gs on the geometric simplex
|s|; we then write g = (gs)s∈K . The pair (K, θ) is called a triangulation of X.
Recall, e.g., from [37, p. 110 f.] (or from [18]), that the space |K| is the set of
all maps ξ of the set K0 of vertices v of K into [0, 1] such that

∑

v∈K0 ξ(v) = 1
and that s := {v ∈ K0 : ξ(v) > 0} is an (abstract) simplex of K. The num-
bers ξ(v) are called the barycentric coordinates of ξ ∈ |K|. A single vertex
v ∈ K0 is identified with the point ξ of |K| for which ξ(v) = 1. The bound-
ary bK of K is the union of those (m − 1)-simplexes of K which are faces of
only one m-simplex, and bX := θ(|bK|) is called the boundary of X. |K| is
a separable compact metric space with the barycentric metric d defined by

(2.1) d(ξ, ξ′)2 =
∑

v∈K0

(ξ(v) − ξ′(v))2, ξ, ξ′ ∈ |K|.

We denote by μ = μg the image under θ of the Riemannian volume
measure on (|K|, g) (that is, on each m-simplex (|s|, gs) of K). Furthermore,
dX denotes the intrinsic Riemannian distance on X, induced by θ from the
intrinsic Riemannian distance on |K|; cf. [9, p. 53]. (The intrinsic distance
dX and the metric on X induced by θ from the barycentric metric d on |K|
are equivalent, but generally distinct.) In the sequel we often tacitly identify
|K| with X = θ(|K|) and a geometric simplex |s|, s ∈ K, with the ‘curved’
simplex θ(|s|) ⊂ X.

Except in Propositions 2.1 and 2.2 we further require that K and hence
X be admissible in the sense of [9, p. 45; 18]. This means that (i) K is
dimensionally m-homogeneous, i.e., every simplex of K is a face of some
m-simplex and (ii) K is locally (m − 1)-chainable (cf. [6; 43, §2]); i.e., for
any simplex σ of K, any two m-simplexes s, t ∈ K containing σ can be joined
by a chain of m-simplexes s = s0, . . . , sk = t in K containing σ and such that
dim(si−1 ∩ si) = m − 1 for i ∈ {1, . . . , k}.

Every connected open subset U of a polyhedron X can be triangulated so
as to become a polyhedron (not necessarily a subpolyhedron of X) such that
every simplex of U is a subset of some simplex of X. If X is admissible then
so is U ; cf. [18]. When X is Riemannian it is understood (in the absence
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of other indication) that U is given the induced Riemannian metric. In
particular, the open star st v of a vertex v of X is an admissible polyhedron,
and so is clearly the closed star st v.

The metric target space (Y, dY ) is required throughout (except in Sec-
tion 5) to be a compact geodesic space of nonpositive Alexandrov curvature;
see for example [2].

It is known that (X, dX) and (Y, dY ) are connected, path-connected
and locally path-connected, and therefore have connected, complete, sep-
arable, metric, and locally compact universal covering spaces ( ˜X, d

˜X) and
(˜Y , d

˜Y ) with nonexpanding and locally isometric covering projections pX :
˜X → X and pY : ˜Y → Y ; cf. e.g. [31, § 3.5], [37, p. 80]. Denote by ΓX

and ΓY the discrete groups of isometric covering transformations (deck
transformations) of ˜X and ˜Y , respectively. Thus ΓX , respectively ΓY , is
countable and isomorphic with the fundamental group π1(X), respectively
π1(Y ); cf. [37, Corollary 4 in § 2.6].

Because ˜X/ΓX is homeomorphic with X there exists a number rX > 0
such that

(2.2) pX maps B
˜X(x̃, ε) isometrically onto BX(x, ε)

for any x̃ ∈ ˜X, x = pX(x̃) and ε � rX . (We write for example BX(x, r) =
{x′ ∈ X : dX(x, x′) � r}, x ∈ X, r > 0.) See [31, Proposition 3.5.7], noting
that X is compact and pX a local isometry; similarly with X, ˜X, rX replaced
by Y, ˜Y , rY . It follows that, say for any x̃ ∈ ˜X, p−1

X (BX(x, ε)) is the disjoint
countable union of the closed balls B

˜X(x̃, ε), x̃ ∈ p−1
X (x), one for each γ ∈ ΓX .

We may assume that every open star in X (understood as the image
under θ of the star of some vertex in K) is a subset of some ball BX(x, rX),
x ∈ X; for that can always be arranged by passing to a subdivision of X
(that is, of K), as shown by Whitehead [42, Theorem 35, p. 317]; or see [37,
Theorem 14, p. 125]. Then ( ˜X, d

˜X) becomes an admissible locally compact
separable polyhedron whose m-simplexes s̃ are the connectivity components
of p−1

X (s), with s ranging over all m-simplexes of X. The polyhedron ( ˜X, d
˜X)

is a length space by [9, Proposition 4.1(b)]. Being complete and locally
compact, ( ˜X, d

˜X) is even a geodesic space (like (˜Y , d
˜Y )), according to the

Hopf–Rinow theorem, cf. [2, p. 35; 31, p. 62]. Similarly, the compact
length space (X, dX) is itself a geodesic space. The Riemannian metric gs

on s lifts uniquely to a Riemannian metric g̃s̃ on s̃, and we thereby obtain
an admissible, locally compact Riemannian polyhedron ( ˜X, g̃).

After fixing a base point x0 ∈ X and above it a point x̃0 ∈ p−1
X (x0), a map

ϕ ∈ C(X, Y ) (the continuous maps) lifts uniquely to a map ϕ̃ ∈ C( ˜X, ˜Y )
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after choosing ϕ̃(x̃0) ∈ p−1
Y (ϕ(x0)), the lift ϕ̃ being then characterized by

the lifting property

(2.3) ϕ ◦ pX = pY ◦ ϕ̃,

cf. [37, p. 67] or [22, p. 62].
In the following two propositions and in Section 5 the Riemannian metric

g on X is allowed to be just measurable (rather than simplex-wise smooth).
Proposition 2.1 is basically well known, but we include a proof. (An equiv-
alence class for some equivalence relation may be indicated by placing one
of its elements between square brackets.)

Proposition 2.1. Let (X, g) be a compact Riemannian polyhedron, and let
(Y, dY ) be a compact geodesic space of nonpositive curvature. The set of
homotopy classes H = [ϕ] of continuous maps ϕ : X → Y is mapped bijec-
tively onto the set of conjugacy classes [ϕ∗] of homomorphisms ϕ∗ : ΓX →
ΓY under the map [ϕ] �→ [ϕ∗], whereby

(2.4) ϕ̃ ◦ γ = ϕ∗(γ) ◦ ϕ̃ in ˜X for γ ∈ ΓX , ϕ ∈ H.

The covering transformation ϕ∗(γ) ∈ ΓY is uniquely determined by (2.4)
because ϕ̃( ˜X) �= ∅ and because a covering transformation on ˜Y is deter-
mined by its action on any single point, ˜Y being path-connected; cf. e.g. [22,
p. 70]. If we replace the chosen point ỹ0 = ϕ̃(x̃0) ∈ p−1

Y (y0) by another such
point, that is, by β(ỹ0) for some β ∈ ΓY , then ϕ̃ will be replaced by β ◦ ϕ̃,
and hence ϕ∗(γ) by its conjugate β ◦ ϕ̃ ◦ β−1. The elements of the conjugacy
class [ϕ∗] thus correspond to the possible choices of ỹ0 ∈ p−1

Y (y0). For any
other map ψ from the given homotopy class H the corresponding homomor-
phism ψ∗ is, by the proposition, a conjugate to ϕ∗ and, therefore, equal to
ϕ∗ by a certain choice of ϕ̃(x̃0) or ψ̃(x̃0).

Proof of Proposition 2.1. The polyhedron X being a CW -complex (cf. [37,
p. 400]) we may derive Proposition 2.1 from the corresponding result [37,
Theorem 11 in § 8.1], in which ΓX and ΓY are replaced by the funda-
mental groups π1(X, x0) and π1(Y, y0), respectively. The homomorphisms
ϕ∗ : ΓX → ΓY shall then be replaced by the usual induced homomorphisms
ϕ# : π1(X, x0) → π1(Y, y0), y0 = ϕ(x0), given by

(2.5) ϕ#([ω]) = [ϕ ◦ ω] for loops ω in (X, x0).

Denote by P( ˜X; x̃0, x̃1) the set of (continuous) paths in ˜X from x̃0 to x̃1,
and similarly relative to ˜Y . (Loops in (X, x0) then correspond to x̃0 = x̃1.)
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The natural isomorphism ψX : ΓX → π1(X, x0) is then given by

ψX(γ) = [pX ◦ ω̃ : ω̃ ∈ P( ˜X; x̃0, γ(x̃0))], γ ∈ ΓX .

See [37, pp. 85–87], and note that pX ◦ ω̃ indeed is a loop in (X, x0) since
pX(γ(x̃0)) = pX(x̃0) = x0; similarly for ψY : ΓY → π1(Y, y0). It remains to
evaluate

ϕ∗ := ψ−1
Y ◦ ϕ# ◦ ψX .

For γ ∈ ΓX we have (since ϕ̃(x̃0) = ỹ0)

(2.6) (ψY ◦ ϕ∗)(γ) = ψY (ϕ∗(γ)) = [pY ◦ χ̃ : χ̃ ∈ P(˜Y ; ỹ0, (ϕ∗(γ) ◦ ϕ̃)(x̃0))]

(a homotopy class of loops in (Y, y0)). Furthermore, by (2.3) and (2.5),

(ϕ# ◦ ψX)(γ) = ϕ# ◦ [pX ◦ ω̃ : ω̃ ∈ P( ˜X; x̃0, γ(x̃0))]

= [ϕ ◦ pX ◦ ω̃ : ω̃ ∈ P( ˜X; x̃0, γ(x̃0))]

= [pY ◦ ϕ̃ ◦ ω̃ : ω̃ ∈ P( ˜X; x̃0, γ(x̃0))]

⊂ [pY ◦ ω̃′ : ω̃′ ∈ P(˜Y ; ỹ0, (ϕ̃ ◦ γ)(x̃0))].(2.7)

The inclusion stems from ω̃′ := ϕ̃ ◦ ω̃ ∈ P
(

˜Y ; ỹ0, ϕ̃(γ(x̃0))
)

when ω̃ ∈
P( ˜X; x̃0, γ(x̃0)). Note that pY ◦ ω̃′ is a loop in (Y, y0) because pY

(

ϕ̃(γ(x̃0))
)

= ϕ
(

pX(γ(x̃0))
)

= ϕ(pX(x̃0)) = ϕ(x0) = y0. From (2.6) and (2.7) (whose
left-hand members are equal) we have thus altogether obtained

[pY ◦ χ̃ : χ̃ ∈ P(˜Y ; ỹ0, (ϕ∗(γ) ◦ ϕ̃)(x̃0))]

= [pY ◦ ω̃′ : ω̃′ ∈ P(˜Y ; ỹ0, (ϕ̃ ◦ γ)(x̃0))]

because inclusion between homotopy classes (of paths) implies equality.
Thus every loop χ := pY ◦ χ̃ as in (2.6) is homotopic (in (Y, y0)) with any
loop ω′ := pY ◦ ω̃′ as in (2.7). The lifted paths χ̃ and ω̃′ in ˜Y have the same
initial point ỹ0 and therefore also the same endpoint, so (2.4) holds true at
x̃0. For any x̃ ∈ ˜X we have pY ((ϕ∗(γ) ◦ ϕ̃)(x̃)) = pY (ϕ̃(x̃)) = ϕ(pX(x̃)) =
ϕ
(

pX(γ(x̃))
)

= pY ((ϕ̃ ◦ γ)(x̃)); cf. (2.3). Consequently, (2.4) holds for any
x̃ ∈ ˜X, by the unique lifting property (2.3). �

Proposition 2.2. Let (X, g) be a compact Riemannian polyhedron, and let
(Y, dY ) be a compact geodesic space of nonpositive curvature.

(a) Lip(X, Y ) (Lipschitz maps) is uniformly dense in C(X, Y ) (contin-
uous maps).
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(b) For any map ϕ ∈ C(X, Y ) and any number r > 0 there exists a map
f ∈ C(X × [0, 1], Y ) such that f(x, 0) = ϕ(x) for x ∈ X, that dY (f(x, t),
ϕ(x)) < r for (x, t) ∈ X × [0, 1], and that f(·, t) ∈ Lip(X, Y ) for each
t ∈]0, 1].

In particular, every homotopy class H ⊂ C(X, Y ), as in Proposition 2.1,
contains a Lipschitz map. For Y simply connected (and not necessarily
compact) Proposition 2.2 was obtained in [14, Proposition 6], inspired by [25,
p. 645] where ball averages are used. For the present polyhedral domain
X, barycentric averages are preferable; see (2.10) below. The choice of
Riemannian metric g on X in Proposition 2.2 is immaterial, by [9, Lemma
4.2].

Proof of Proposition 2.2. (a) Given ϕ ∈ C(X, Y ), consider a lift ϕ̃ ∈ C( ˜X,
˜Y ); cf. (2.3). For any prescribed ε > 0 with ε � rX from (2.2), choose δ =
δ(ε) > 0 so that δ � rX and, by uniform continuity of ϕ,

dY (ϕ(x), ϕ(x′)) < ε for x, x′ ∈ X with dX(x, x′) � δ.(2.8)

We proceed to show that (with the same ε and δ)

d
˜Y (ϕ̃(x̃), ϕ̃(x̃′)) � ε for x̃, x̃′ ∈ ˜X with d

˜X(x̃, x̃′) � δ.(2.9)

Consider the constant-speed geodesic �̃ : [0, d
˜X(x̃, x̃′)] → ˜X joining x̃ to x̃′,

and the image ϕ̃ ◦ �̃, a path in ˜Y . If d
˜Y (ϕ̃(x̃), ϕ̃(x̃′)) > ε there exists τ ,

0 < τ < d
˜X(x̃, x̃′), such that d

˜Y

(

ϕ̃(x̃), ϕ̃(�̃(τ))
)

= ε. From (2.2) and (2.3)
we obtain, writing pX(x̃) = x and pX(�̃(τ)) = �(τ),

dY

(

ϕ(x), ϕ(�(τ))
)

= d
˜Y

(

ϕ̃(x̃), ϕ̃(�̃(τ))
)

= ε.

This contradicts (2.8) (applied with x′ replaced by �(τ)) because

dX(x, �(τ)) � d
˜X(x̃, �̃(τ)) < d

˜X(x̃, x̃′) � δ,

pX being nonexpanding.
We may assume that, for every simplex s ∈ K, θ(|s|) has diameter �δ

with δ from (2.8). (If this is not the case from the beginning we subdivide
K into simplexes s′ such that |s′| ⊂ θ−1(B) for some open ball B ⊂ X of
diameter δ; this is possible according to the abovementioned theorem of
Whitehead [42] applied to a cover of |K| by pre-images θ−1(B) of open balls
B ⊂ X of diameter δ covering X).
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We proceed to adapt the construction from the proof of [14, Proposition
6(a)] (in which Y was simply connected) to the lifted map ϕ̃ : ˜X → ˜Y . Given
a point x̃ ∈ ˜X with projection pX(x̃) = x ∈ X, the corresponding point ξ =
θ−1(x) ∈ |K| has barycentric coordinates ξ(v), v ∈ K0, and we have the
probability measure

νx =
∑

v∈K0

ξ(v)εθ(v)

on X, where εp denotes the mass 1 at a point p ∈ X. The support of νx is
the simplex θ(|s|) in X, where s denotes the abstract simplex in K whose
vertices are those v ∈ K0 for which ξ(v) > 0, so supp νx ⊂ BX(x, δ). Because
δ � rX (cf. the line following (2.2)), pX maps B

˜X(x̃, δ) isometrically onto
B(x, δ), and νx therefore lifts to the probability measure

νx̃ =
∑

v∈K0

ξ(v)εθ̃(v)(2.10)

on ˜X, whereby θ̃(v) ∈ B
˜X(x̃, δ) is defined by having the projection θ(v) ∈

BX(x, δ) when ξ(v) > 0.
Invoking [25, Lemma 2.5.1] we define

f̃(x̃) = ϕ̃νx̃
, x̃ ∈ ˜X,

ϕ̃νx̃
denoting the average (or centre of mass) of ϕ̃ : ˜X → ˜Y with respect to νx̃;

that is, ϕ̃νx̃
is the unique point of ˜Y which minimizes

∫

˜X d2
˜Y
(ϕ̃(x̃′), ỹ) dνx̃(x̃′)

as a function of ỹ ∈ ˜Y . For points x̃, x̃′ ∈ ˜X with d
˜X(x̃, x̃′) � δ we then

have ϕ̃(x̃′) ∈ B
˜Y (ϕ̃(x̃), ε), by (2.9), and hence by [25, Proposition 2.4], or

see [9, Lemma 10.4], writing f̃ = f̃ε to indicate the dependence of f̃ on ε:

f̃(x̃) = f̃ε(x̃) = ϕ̃νx̃
∈ B

˜Y (ϕ̃(x̃), ε),(2.11)

closed balls B
˜Y (ỹ, ε) in (˜Y , d

˜Y ) being convex. Thus, f̃ε → ϕ̃ uniformly in
˜X as ε → 0.

We show that f̃ = f̃ε ∈ Lip( ˜X, ˜Y ). Consider two points x̃, x̃′ of ˜X
with d

˜X(x̃, x̃′) � δ, and write pX(x̃) = x = θ(ξ) and pX(x̃′) = x′ = θ(ξ′) with
ξ, ξ′ ∈ |K| and dX(x, x′) � δ. Apply [25, Proposition 2.5.2] (with α = 1)
to the corresponding representing measures νx̃ and νx̃′ ; cf. (2.10). After
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division by d
˜Y (f̃(x̃), f̃(x̃′)) (if nonzero) we obtain by (2.11) with the above

notation

d
˜Y (f̃(x̃), f̃(x̃′)) � 2

∫

˜X
d

˜Y (f̃ , ϕ̃) |dνx̃ − dνx̃′ | � 2ε‖νx̃ − νx̃′‖

= 4ε
∑

v∈K0

|ξ(v) − ξ′(v)| � 4ε
√

#K0 d(ξ, ξ′) � C d
˜X(x̃, x̃′).(2.12)

Here ‖νx̃ − νx̃′‖ denotes total variation. In the third inequality one applies
(2.1) and Cauchy’s inequality. Finally, C = 4εc

√

#K0 with c denoting the
bi-Lipschitz constant of θ : |K| → X, and #K0 the number of vertices in K.

The above requirement d
˜X(x̃, x̃′) � δ can clearly be omitted because

( ˜X, d
˜X) is a geodesic space. Consider again the geodesic �̃ joining x̃ with

x̃′, hence of length d
˜X(x̃, x̃′). With points x̃ = x̃0, x̃1, . . . , x̃k = x̃′ of �̃ such

that d
˜X(x̃i−1, x̃i) � δ for i ∈ {1, . . . k}, we have from (2.12)

d
˜Y (f̃(x̃), f̃(x̃′)) �

k
∑

i=1

d
˜Y (f̃(x̃i−1), f̃(x̃i)) � C

k
∑

i=1

d
˜X(x̃i−1, x̃i)

= C d
˜X(x̃, x̃′).

The (Lipschitz) continuous map f̃ : ˜X → ˜Y is ϕ∗-equivariant in the sense
that

f̃ ◦ γ = ϕ∗(γ) ◦ f̃ for γ ∈ ΓX .(2.13)

Indeed, for x̃ ∈ ˜X, the measure νγ(x̃) =
∑

v∈K0 ξ(v)εγ(θ̃(v)), (cf. (2.10)) is
the image of νx̃ under the isometry γ of ˜X. We therefore obtain, by (2.4),

∫

˜X
d2

˜Y
(ϕ̃(x̃′), ỹ) dνγ(x̃)(x̃

′) =
∫

˜X
d2

˜Y
((ϕ̃ ◦ γ)(x̃′), ỹ) dνx̃(x̃′)

=
∫

˜X
d2

˜Y
((ϕ∗(γ) ◦ ϕ̃)(x̃′), ỹ) dνx̃(x̃′) =

∫

˜X
d2

˜Y
(ϕ̃(x̃′), (ϕ∗(γ))−1(ỹ)) dνx̃(x̃′),

which is minimized (uniquely) as a function of ỹ ∈ ˜Y both by f̃(γ(x̃)) and by
(ϕ∗(γ))−1(ỹ) = f̃(x̃), that is, by ỹ = (ϕ∗(γ))(f̃(x̃)), so (2.13) indeed holds
at any point x̃ ∈ ˜X.

Being thus ϕ∗-equivariant, the continuous map ˜f : ˜X → ˜Y has a con-
tinuous projection f : X → Y , characterized by f̃ being a lift of f , that is,
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f ◦ pX = pY ◦ f̃ ; cf. (2.3) and the text following (3.2) below. This projection
is of class Lip(X, Y ) because

dY (f(x), f(x′)) � d
˜Y (f̃(x̃), f̃(x̃′)) � Cd

˜X(x̃, x̃′) = CdX(x, x′)

for points x, x′ ∈ X with dX(x, x′) � δ (� rX), noting that x, x′ are the
projections of points x̃, x̃′ ∈ ˜X with d

˜X(x̃, x̃′) = dX(x, x′); cf. (2.2). As in
the above case of f̃ , the requirement dX(x, x′) � δ can be omitted, (X, dX)
being a geodesic space. From the uniform convergence f̃ε → ϕ̃ follows by
projection that the map fε ∈ Lip(X, Y ) converges uniformly to ϕ as ε → 0.

(b) As noted after (2.11), now with ε = 1/n (n = 1, 2, . . .), we have con-
structed a sequence of maps f̃ε, now written f̃1/n, which are ϕ∗-equivariant
and of class Lip( ˜X, ˜Y ) and converge uniformly to ϕ̃ as n → ∞. For t ∈
[ 1
n+1 , 1

n ] write t = τ
n + 1−τ

n+1 with τ ∈ [0, 1]; and consider for each x̃ ∈ ˜X the
geodesic [ 1

n+1 , 1
n ] � t �→ f̃t(x̃) ∈ ˜Y given by

f̃t(x̃) = τ f̃1/n(x̃) + (1 − τ)f̃1/(n+1)(x̃)(2.14)

with the usual abuse of notation for “convex combinations” of points of ˜Y .
For given r > 0 there is by (2.11) an integer N > 0 such that f̃1/n(x̃) lies in
the convex ball B

˜Y (ϕ̃(x̃), r) for n � N and x̃ ∈ ˜X. So does therefore f̃t(x̃)
for t ∈ [ 1

n+1 , 1
n ], hence for any t ∈]0, 1], and even for t ∈ [0, 1] when we define

f̃0 = ϕ̃ and f̃t = f̃1/N for t ∈]1/N, 1]:

(2.15) d
˜Y (ft(x̃), ϕ(x̃)) � r for x̃ ∈ ˜X, t ∈ [0, 1].

The metric d
˜Y being convex (cf. e.g. [2, Proposition 2.2]), it follows by

(2.12) that each f̃t, t ∈]0, 1], is of class Lip( ˜X, ˜Y ). In terms of a common
Lipschitz constant cn for f̃1/n and f̃1/(n+1) we have, in fact, for x̃, x̃′ ∈ ˜X

and t ∈ [ 1
n+1 , 1

n ] in view of (2.14):

d
˜Y (f̃t(x̃), f̃t(x̃′)) � τ d

˜Y (f̃1/n(x̃), f̃1/n(x̃′))

+ (1 − τ) d
˜Y (f̃1/(n+1)(x̃), f̃1/(n+1)(x̃

′))
� τcn d

˜X(x̃, x̃′) + (1 − τ) cn d
˜X(x̃, x̃′) = cn d

˜X(x̃, x̃′).(2.16)

And from f̃t ∈ Lip( ˜X, ˜Y ) for each t ∈]0, 1] follows ft ∈ Lip(X, Y ) for each
such t by the argument used above to show that f̃ = f̃ε ∈ Lip( ˜X, ˜Y ) implies
f ∈ Lip(X, Y ).
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Because geodesics in ˜Y vary continuously with their endpoints (see
[2, p. 160]) it follows from (2.14) and (2.16) that f̃(x̃, t) := f̃t(x̃) depends con-
tinuously on (x̃, t) ∈ ˜X × [ 1

n+1 , 1
n ], hence altogether on ˜X×]0, 1], and even

on ˜X × [0, 1] by (2.15) together with the continuity of f̃(·, 0) = f̃0 = ϕ̃ on
˜X. The metric d

˜Y being convex, the continuous map f̃t is ϕ∗-equivariant
for each t ∈ [0, 1]; that is, (2.13) remains valid with f̃ replaced by f̃t. Hence
f̃t : ˜X → ˜Y admits a continuous projection ft : X → Y :

(2.17) ft(x) := pY (f̃t(x̃)), x̃ ∈ p−1
X (x), x ∈ X.

Moreover, the map f : X × [0, 1] → Y given by f(x, t) = ft(x) is continuous
in view of (2.17) because

dY (f(x, t), f(x′, t′)) � d
˜Y (f(x̃, t), f(x̃′, t′)) → 0 as (x′, t′) → (x, t)

and hence (x̃′, t′) → (x̃, t), pY being locally isometric. This completes the
proof of Proposition 2.2. �

Energy of maps. The concept of energy of maps will be used in the
sequel also for maps from suitable locally compact spaces, in particular
for maps between the universal covers of the above compact spaces X and
Y . In the rest of the present section we accordingly allow (X, g) to be any
locally compact separable m-dimensional admissible Riemannian polyhedron
with simplex-wise smooth Riemannian metric g and corresponding intrinsic
Riemannian distance dX (as in [9]), and (Y, dY ) any complete metric space
(in the absence of other indication). The definition and basic properties
of energy of maps, due to [25] for maps from a Riemannian domain (in
a Riemannian manifold), were extended in [9, Chapter 9] to the present
polyhedral case. Denote by L2(X, Y ), respectively L2

loc(X, Y ), the space
of all μ-measurable maps ϕ : X → Y having separable essential range and
for which dY (ϕ(·), q) is of class L2(X, μ), respectively L2

loc(X, μ), for some
and hence any q ∈ Y . It is known for example that L2(X, Y ) is a complete
metric space with distance D given by (cf. [25, p. 572])

D2(ϕ, ϕ′) =
∫

X
d2

Y (ϕ(x), ϕ′(x)) dμ(x) for ϕ, ϕ′ ∈ L2(X, Y ).

For ϕ ∈ L2
loc(X, Y ) the approximate energy density eε(ϕ) ∈ L1

loc(X, μ), suit-
ably normalized, is defined for ε > 0 at every point x ∈ X by

(2.18) eε(ϕ)(x) =
1
cm

∫

BX(x,ε)

d2
Y (ϕ(x), ϕ(x′))

εm+2 dμ(x′),
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where cm = ωm/(m + 2), ωm being the volume of the unit ball in R
m;

and BX(x, ε) := {x′ ∈ X : dX(x, x′) � ε}. The energy of ϕ ∈ L2
loc(X, Y ) is

defined by

(2.19) E(ϕ) = sup
f∈Cc(X,[0,1])

(

lim sup
ε→0

∫

X
f eε(ϕ) dμ

)

(� ∞).

For any map ϕ : X → Y not of class L2
loc(X, Y ) we put E(ϕ) = ∞. The

class of all maps ϕ : X → Y of finite energy will be denoted here by E(X, Y )
(instead of W 1,2(X, Y ) as in [9, 11–13, 25, 26], because we do not require
that ϕ ∈ L2(X, Y ) globally). For connected open subsets U, V of X we have
by (2.19),

(2.20) E(ϕ|U) � E(ϕ|V ) if U ⊂ V

because ϕ ∈ L2
loc(V, Y ) ⇒ ϕ|U ∈ L2

loc(U, Y ) and because BU (x, ε)⊂BV (x, ε)
for any x ∈ U and ε > 0.

Every map ϕ ∈ E(X, Y ) has quasicontinuous versions [12], to be used
throughout, and any two of these are equal quasi-everywhere (q.e.), that is,
everywhere except in some polar set [14, paragraph following Definition 1].

A map ϕ : X → Y is said to be locally of finite energy, and we write
ϕ ∈ Eloc(X, Y ), if it has one of the following three equivalent properties:

(i) X can be covered by connected open sets U ⊂ X such that ϕ|U ∈
E(U, Y ).

(ii) ϕ|U ∈ E(U, Y ) for every connected open set U � X.

(iii) ϕ ∈ L2
loc(X, Y ), and there exists a function e(ϕ) ∈ L1

loc(X, μ) such that

(2.21) lim
ε→0

∫

X
f eε(ϕ) dμ =

∫

X
f e(ϕ) dμ, f ∈ Cc(X).

In the affirmative case the unique weak limit e(ϕ) from (iii) is termed the
energy density of ϕ, and we have from (2.19)

(2.22) E(ϕ) =
∫

X
e(ϕ)dμ (� ∞).

Clearly, ϕ|U ∈ E(U, Y ) can be replaced by ϕ|U ∈ Eloc(U, Y ) in (i) and (ii).
Slightly more generally, for any open set A ⊂ X, a map ϕ : A → Y is

said to be locally of finite energy if the restriction of ϕ to each component
of A is locally of finite energy; we then write ϕ ∈ Eloc(A, Y ). (Recall that
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every connected open subset of X is an admissible Riemannian polyhedron,
like X itself [18, Theorem 1 and Corollary 3].)

If X can be covered by open sets U ⊂ X such that ϕ|U ∈ Eloc(U, Y ) (in
analogy with (i) above) then clearly ϕ ∈ Eloc(X, Y ).

Proof of equivalence of (i), (ii) and (iii). Clearly, (i) or (ii) implies that
ϕ ∈ L2

loc(X, Y ). Furthermore, (ii)⇒ (i) is obvious, X being locally com-
pact. Here, and in what follows, the topological interior of a subset A of X
is denoted by A◦.

(i) ⇒ (iii). Suppose that ϕ satisfies (i). Then ϕ has a quasicontinuous
version because each ϕ|U ∈ E(U, Y ) has such, and because quasicontinuity
is a local property, X being second countable. According to [42, Theorem
35, p. 317] the given triangulation of X can be refined so that every open
star and hence every open m-simplex s◦ of X becomes a subset of some set
U from the given open cover of X, and hence E(ϕ|s◦) � E(ϕ|U) < ∞ by
(i), in view of (2.20). From [9, Theorem 9.1, (a)∧(b)⇒(a)∧(b’)⇒(9.4)] we
therefore deduce (iii).2

(iii)⇒ (ii). Clearly, ϕ|U ∈ L2
loc(U, Y ) because ϕ ∈ L2

loc(X, Y ). For x ∈ U
we have BU (x, ε) ⊂ BX(x, ε), hence eε(ϕ|U)(x) � eε(ϕ)(x). Fix h ∈ Cc(X,
[0,1]) with h = 1 in U . For any f ∈ Cc(U, [0, 1]) we obtain

∫

U
f eε(ϕ|U)dμ =

∫

U
fh eε(ϕ|U)dμ �

∫

X
fh eε(ϕ)dμ

→
∫

X
fh e(ϕ)dμ �

∫

X
h e(ϕ)dμ

for ε → 0. Taking supremum over all f ∈ Cc(U, [0, 1]) we conclude by (2.19)
that indeed E(ϕ|U) �

∫

X h e(ϕ)dμ < ∞. �

Clearly E(X, Y ) ⊂ Eloc(X, Y ). In the particular case (Y, dY ) = R we have

(2.23) Eloc(X, R) = W 1,2
loc (X), E(u) =

∫

X
|∇u|2dμ for u ∈ W 1,2

loc (X),

see [25, Theorem 1.6.2] (for a Riemannian domain) and [9, Corollary 9.2].
As a consequence of [9, Lemma 4.4] (on volumes of balls), every locally

Lipschitz map ϕ : X → Y is of class Eloc(X, Y ).

2It may be noted that one may, in that proof, alternatively use simplexes instead
of cubes, as in [13, from p. 771 (mid) to p. 772 (top)]. (We shall not use this fact
in the present paper.)
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If X is compact we have E(X, Y ) = Eloc(X, Y ); and according to (2.19)
the energy of an arbitrary map ϕ ∈ L2(X, Y ) = L2

loc(X, Y ) is then given
simply by

(2.24) E(ϕ) = lim sup
ε→0

∫

X
eε(ϕ) dμ (� ∞).

Lemma 2.3. (a) For any map ϕ ∈ Eloc(X, Y ) and any connected open set
A ⊂ X we have ϕ|A ∈ Eloc(A, Y ) and

(2.25) e(ϕ|A) = e(ϕ) μ-a.e. in A,

and hence E(ϕ|A) =
∫

A e(ϕ) dμ.
(b) For any two maps ϕ, ψ ∈ Eloc(X, Y ) and any μ-measurable set A ⊂ X

such that μ(A \ A◦) = 0 we have the implications

{ϕ = ψ μ-a.e. in A} ⇒ {e(ϕ) = e(ψ) μ-a.e. in A}

⇒
{∫

A
e(ϕ) dμ =

∫

A
e(ψ)dμ

}

.

Proof. (a) Clearly, BA(x, ε) ⊂ BX(x, ε) for x ∈ A, and equality prevails if
BX(x, ε) ⊂ A. Likewise, ϕ|A ∈ Eloc(A, Y ) by (ii) preceding (2.21). For any
f ∈ Cc(A), any x ∈ supp f , and any 0 < ε < dX(supp f, X \ A) we there-
fore have BA(x, ε) = BX(x, ε), and hence eε(ϕ|A)(x) = eε(ϕ)(x). By (2.21)
(applied to A in place of X) we infer that
∫

A
f e(ϕ|A) dμ = lim

ε→0

∫

A
f eε(ϕ|A) dμ = lim

ε→0

∫

X
f eε(ϕ) dμ =

∫

X
f e(ϕ) dμ,

which implies (2.25). It follows by (2.22) that E(ϕ|A) =
∫

A e(ϕ|A)dμ =
∫

A e(ϕ)dμ.
(b) Suppose that ϕ = ψ μ-a.e. in A, hence μ-a.e. in the interior A◦ of

A. It follows from (a), applied to each component U of A◦, that e(ϕ|U) =
e(ψ|U) μ-a.e. in U , and hence μ-a.e. in A◦, and indeed in A because
μ(A \ A◦) = 0, by hypothesis. �

Lemma 2.4. (a) Two quasicontinuous functions X → R or maps X → Y
which are equal μ-a.e. in X are equal quasi-everywhere (q.e.) in X.

(b) Every sequence of quasicontinuous functions un ∈ W 1,2
loc (X) converg-

ing to 0 in W 1,2
loc (X) has a subsequence converging to 0 pointwise q.e. in X.
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Proof. Part (a) for functions and Part (b) follow from [7, Théorèmes 5,
7], respectively, because W 1,2(X) is a regular Dirichlet space with a kernel
of positive type, according to [9, Proposition 5.1]. For two quasicontinu-
ous maps ϕ, ψ : X → Y the quasicontinuous function dY (ϕ(·), ψ(·)) equals 0
μ-a.e., hence q.e. �

The following lemma will be applied in Step 1 of the proof of Theo-
rem 4.1 below.

Lemma 2.5. For any E-bounded sequence of quasicontinuous maps ϕn ∈
E(X, Y ) converging in L2

loc(X, Y ) to a map ϕ, we have E(ϕ)� lim infn E(ϕn)
< ∞, and

(a) for any (m − 1)-simplex σ of X,

trσ ϕn → trσ ϕ in L2(σ) as n → ∞;

(b) If X is compact there is a subsequence, still denoted (ϕn), such that
(with ϕ likewise taken to be quasicontinuous)

dY (ϕ1, ϕ) + . . . + dY (ϕn, ϕ)
n

→ 0 q.e. in X as n → ∞.

For any ϕ ∈ Eloc(X, Y ), trσ ϕ denotes the trace of ϕ on σ; it is of class
L2(σ), σ being endowed with (m − 1)-dimensional Hausdorff measure Hm−1,
[25, §1.12], [9, p. 153]. In terms of a triangulation T = (K, θ) of X (see text
preceding (2.1)) the measure Hm−1 on σ = θ(|τ |) is equivalent to Lebesgue
measure on the geometric (m − 1)-simplex |τ |. For a quasicontinuous version
of ϕ, trσ ϕ equals ϕ Hm−1-a.e. on σ, see [13, p. 760].

Proof of Lemma 2.5. The stated lower semicontinuity of energy as well as
property (a) are due to [25, Theorems 1.6.1 and 1.12.2] for a Riemannian
domain X; for the present setting of an admissible Riemannian polyhedron,
see [9, Lemma 9.1].

For the proof of (b), the quasicontinuous functions un := dY (ϕn, ϕ) are
of class E(X, R) ∩ L2(X, μ) = W 1,2(X). By the triangle inequality we have

|un(x) − un(x′)| � dY (ϕn(x), ϕn(x′)) + dY (ϕ(x), ϕ(x′)),

and hence by (2.19) and (2.23) together with (a + b)2 � 2a2 + 2b2

∫

X
|∇un|2 dμ = E(un) � 2E(ϕn) + 2E(ϕ).
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Thus (un) is a norm-bounded sequence in the Hilbert space W 1,2(X). By
passing to a subsequence, still denoted (un), we achieve that un converges
weakly in W 1,2(X) to some u ∈ W 1,2(X). By the Banach–Saks theorem
(cf. e.g. [32, p. 80]), we therefore have (after passing to a further subsequence
(un))

∑n
i=1 ui/n → u in norm in W 1,2(X), in particular in L2(X), and

pointwise q.e. in X, by Lemma 2.4(b) applied to the sequence un − u → 0
in W 1,2(X), taking u quasicontinuous. By hypothesis,

∫

X
u2

n dμ =
∫

X
d2

Y (ϕn, ϕ) dμ = D2(ϕn, ϕ) → 0 as n → ∞.

It follows that ‖
∑n

i=1 ui/n‖L2(X) �
∑n

i=1 ‖ui‖L2(X)/n → 0 because conver-
gence implies Césaro summability. Thus u = 0 μ-a.e., and even q.e.; cf.
Lemma 2.4(a). We conclude that indeed

∑n
i=1 ui/n → u = 0 q.e. according

to Lemma 2.4(b) after passing to yet a further subsequence. �

Remark 2.6. Here are three possible definitions of harmonicity of a con-
tinuous map ϕ ∈ Eloc(X, Y ) (X any locally compact separable admissible
Riemannian polyhedron and Y any complete metric space):

(a) ϕ is locally E-minimizing, that is, the topology on X has a base of
connected open sets U � X for each of which E(ψ|U) � E(ϕ|U) for
every map ψ ∈ Eloc(X, Y ) with ψ = ϕ in X \ U (this notion does not
require continuity of ϕ);

(b) the same requirement for continuous comparison maps ψ ∈ Eloc(X, Y );

(c) ϕ is bi-locally E-minimizing, that is: X has a base of connected open
sets U � X for each of which there is an open set V ⊃ ϕ(U) in Y such
that E(ψ|U) � E(ϕ|U) for every continuous map ψ ∈ Eloc(X, Y ) with
ψ(U) ⊂ V and ψ = ϕ in X \ U .

Slightly more generally, for any open subset A of X, a map ϕ : A → Y is
said to have one of these three properties if the restriction of ϕ to each
component of A has that property (recall that a connected open subset of
X has the properties required of X).

Of these three definitions of harmonicity, (a) is the one most commonly
used; (b) is used for example in [25, §2.7] (the free homotopy problem); and
(c) in [9, Chapter 12] (maps into Riemannian manifolds) and in Step 4 of the
proof of Theorem 3.2 below. In each case (a), (b), or (c), one might equally
well require that U is an open star in a triangulation of X fine enough that U
is the interior of its closure; in particular, μ(∂U) = 0. Indeed, given a point
p ∈ X and a neighbourhood N of p, consider any set U as in (x) (where (x)
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stands for (a), (b), or (c)) such that p ∈ U ⊂ N . Choose open sets U1, U2 so
that p ∈ U1 � U2 � U . By [42, Theorem 35], applied to the open cover of
X by U2 and X \ U1, there exists a subdivision T of the given triangulation
of X such that an open star S � p satisfies S ⊂ U2 � U . For the proof that
(x) holds with U replaced by S, consider any map ψ ∈ Eloc(X, Y ) such that
ψ = ϕ in X \ S. [In case (b) or (c), take moreover ψ continuous. In case
(c), take an open set V ⊂ Y so that ϕ(U) ⊂ V , and suppose that ψ(S) ⊂
V ; then ϕ(S) ⊂ ϕ(U) ⊂ V , and ψ(U) ⊂ V because ψ(U \ S) = ϕ(U \ S) ⊂
V .] It follows that ψ = ϕ in X \ U (⊂ X \ S), and so E(ψ|U) � E(ϕ|U).
By Lemma 2.3, with X, A replaced by U, U \ S, we conclude that indeed
E(ψ|S) � E(ϕ|S) because μ(∂S) = 0 and because e(ψ) = e(ϕ) μ-a.e. in
U \ S.

If X is noncompact then, by the latter argument, it would suffice in each
definition (a), (b), or (c), to assume that the sets U in question form a cover
of X. (This would be false for compact X since X is covered by itself, and
so property (a) would amount to ϕ being globally E-minimizing.)3

Each of the properties (a), (b), (c) is a local one. In the first place, if
ϕ : X → Y has one of these properties, denoted (x), then so has ϕ|A for
every open set A ⊂ X (we may assume that A is connected). To see this,
let N be a neighbourhood of a point p in A, and consider a connected
open set U � A such that p ∈ U ⊂ N and that (x) holds for ϕ ∈ Eloc(X, Y )
and for that set U [and moreover for some open set V ⊃ ϕ(U) in case (c)].
Let ψ ∈ Eloc(A, Y ) be as in (x) with X replaced by A (and ϕ by ϕ|A),
whilst keeping U [and V in case (c)]. Then ψ extends to a well-defined map
ψ∗ ∈ Eloc(X, Y ) such that ψ∗ = ϕ in X \ A and hence in X \ U , in view of
(i) preceding (2.21), applied to the open cover of X by X \ U and A, noting
that ψ∗|X \ U = ϕ|X \ U ∈ Eloc(X \ U, Y ) and that ψ∗|A = ψ ∈ Eloc(A, Y )
[hence ψ∗(U) = ψ(U) ⊂ V in case (c)]. By hypothesis, E(ψ∗|U) � E(ϕ|U),
that is E(ψ|U) � E(ϕ|U) since ψ∗ = ψ in U . Thus ϕ|A indeed has the
property (x) in question.

Secondly, let (An) be a sequence (or family) of open subsets of X, and
write A =

⋃

n An. For a map ϕ : A → Y , if each ϕ|An has property (x) then
so has ϕ. For a given point p ∈ A and neighbourhood N of p in A, fix n with
p ∈ An. By hypothesis, there exists an open set U � An with p ∈ U ⊂ N
[and moreover an open set V ⊂ Y in case (c)] such that (x) holds with
X replaced by An (and ϕ by ϕ|An). Let ψ ∈ Eloc(A, Y ) be as stated in (x)

3In [9, Definitions 10.1 and 12.1], and elsewhere concerning these definitions of
harmonicity, it should thus have been required, as above, that the sets U form a
base for X (not just a cover), or else that X is noncompact.
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(now with X replaced by A). In particular, ψ = ϕ in A \ U [and ψ(U) ⊂ V in
case (c)]. The map ψn := ψ|An ∈ Eloc(An, Y ) then satisfies ψn = ϕ in An \ U
[and ψn(U) = ψ(U) ⊂ V in case (c)]. It follows that E(ψn|U) � E(ϕ|U),
that is, E(ψ|U) � E(ϕ|U), noting that ψn = ψ in U � An ⊂ A.

If E(ϕ) < ∞, the requirement U � X in (a), (b), or (c) (redundant when
X is compact) may equally well be replaced by U ⊂ X and μ(∂U) = 0 in each
of the three definitions in view of Lemma 2.3 (because the relatively compact
open sets U from a base likewise constitute a base). Furthermore (again
if E(ϕ) < ∞), the inequality E(ψ|U) � E(ϕ|U) becomes equivalent with
E(ψ) � E(ϕ) provided that μ(∂U) = 0; this follows again from Lemma 2.3
because ψ = ϕ ∈ X \ U .

Lemma 2.7. Let (Y, dY ) be a complete geodesic space of nonpositive cur-
vature. The three definitions of harmonicity (a), (b), and (c) in Remark 2.6
are equivalent for any continuous map ϕ ∈ Eloc(X, Y ). The property of being
a harmonic map from an open subset of X to Y is a local one.

Proof. Clearly, (a) ⇒ (b) ⇒ (c) (since we may take V = Y in (c)), so it
remains to prove that (c) ⇒ (a). Consider first the case that Y is simply
connected. Suppose that ϕ ∈ Eloc(X, Y ) is continuous and satisfies (c). For
a given point p ∈ X and a neighbourhood N of p let U and V be as in (c),
with p ∈ U ⊂ N . As shown in Remark 2.6 we may assume that U is an open
star in a triangulation T of X and that U is the interior of its closure in X.
Because (a) is a local property (see again Remark 2.6) and because the open
stars U of T cover X, it suffices to prove that the restriction ϕ|U to each star
U has the property (a). Note that U satisfies the Poincaré inequality (4.9)
below, according to [13, Lemma 1(c)] applied to X = U . After subdividing T
let S � U denote an open star in U such that p ∈ S and that S is the interior
of its closure S. By [14, Theorem 1(a)] there exists a unique map ϕ∗ ∈
E(U, Y ) which minimizes the energy among all maps ψ in E(U, Y ) such that
ψ = ϕ on U \ S. In particular, ϕ∗|S is locally E-minimizing. Indeed, after
a still further subdivision, let s denote an open star in S such that s is the
interior of its closure s̄ in S. Consider any map σ ∈ Eloc(S, Y ) such that σ =
ϕ∗ on S \ s. The extension σ∗ of σ to U defined by σ∗ = ϕ∗ on U \ S, and
hence on U \ s, is of class Eloc(U, Y ) (since ϕ∗ ∈ E(U, Y ) and σ ∈ Eloc(S, Y )).
Because σ∗ = ϕ∗ = ϕ on U \ S we conclude from the definition of ϕ∗ that
E(σ∗) � E(ϕ∗), and so indeed E(σ) � E(ϕ) by Lemma 2.3(b), noting that
σ∗ = ϕ∗ on U \ S and that μ(∂s) = 0. The locally E-minimizing map ϕ∗ has
a (Hölder) continuous version, by [9, Theorem 10.1]. The star S is regular,
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[9, Proposition 7.1]. By [14, Theorem 1(b)], ϕ∗ therefore is continuous on
S, and hence in all of U because ϕ∗|U \ S = ϕ|U \ S is continuous.

For the proof that ϕ|U has property (a) (locally E-minimizing) consider,
as above, any map ψ ∈ Eloc(U, Y ) such that ψ = ϕ in U \ S. Being simply
connected, Y is a CAT(0)-space, by the Cartan–Hadamard theorem, cf.
[2, p. 193f]. For t ∈ [0, 1] define on U the map ϕt = (1 − t)ϕ + tϕ∗ into Y
(with the usual abuse of notation), and note that ϕt = ϕ∗ = ϕ on U \ S.
Because ϕ(S) and ϕ∗(S) are compact and that geodesics in Y vary contin-
uously with their endpoints ([2, p. 160]), it follows from ϕ(S) ⊂ ϕ(U) ⊂ V
that ϕt(S) ⊂ V for small t. However, ϕt(U \ S) = ϕ(U \ S) ⊂ ϕ(U) ⊂ V ,
and so altogether ϕt(U) ⊂ V . Since ϕ|U has property (c) it follows that

E(ϕ|U) � E(ϕt) � (1 − t)E(ϕ|U) + tE(ϕ∗),

by (c) and by the energy convexity inequality [9, Equation (11.2)]. We
conclude that E(ϕ|U) � E(ϕ∗) � E(ψ), and so ϕ|U indeed has property (a)
from Remark 2.6 on each U considered above, and therefore on all of X.4

If Y is not simply connected, pass to the universal covers ˜X, ˜Y of X, Y ,
and note that ˜X can be covered by open subsets ˜A projected isometrically
onto open subsets pX( ˜A) = A of X covering X. If ϕ : X → Y satisfies (c)
then so does each ϕ|A (see Remark 2.6 above), hence also ϕ̃| ˜A, by isom-
etry, letting the set p−1

Y (V ) ⊂ ˜Y play the role of V . It follows (again by
Remark 2.6) that the map ϕ̃ : ˜X → ˜Y satisfies (c). Because ˜Y is simply
connected, ϕ̃ satisfies (a) as well, and so does each ϕ̃| ˜A, hence each ϕ|A, by
isometry; and consequently ϕ : X → Y indeed has property (a). The latter
assertion of Lemma 2.7 holds in view of Remark 2.6. �

Remark 2.8. As mentioned in [9, Remark 12.1] the implication (c)⇒ (a)
in Remark 2.6 likewise holds when (Y, dY ) is a complete geodesic space of
curvature � κ for some constant κ > 0, provided that the image ϕ(X) is a
subset of some closed convex ball B = BY (o, R) in Y of radius R < π/(2

√
κ)

4In the justification for Lemma 2.7 with Y simply connected (proposed in [9,
Lemma 2.7]), the reference to [9, Theorem 11.3] was insufficient; it should be
replaced as above by [13, Theorem 1], which includes continuity of the Dirichlet
solution up to the boundary (but that result was not available at the time). This
error has no consequences because the lemma was not used in the proof of [13, The-
orem 1], nor in earlier work [9,11,12]. Moreover, at the quoted place in [9], “ϕ∗(S)
for small t” should read “ϕt(S) for small t” (as above).
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and such that B is a CAT(κ)-space. The above proof of Lemma 2.7 carries
over right away.5

Remark 2.9. In the setting of [19], if a harmonic map ϕ : X → Y (X a
Riemannian manifold) is constant in some nonvoid open subset Ω of X, then
ϕ is constant in all of X (assumed connected), see [19, p. 204]; this was shown
there to imply that the order of the map is well defined in all of Ω, which is
essential for the theory developed in [19]. In the present setting, where X is
a polyhedron, the concept of order does not seem to be available. The stated
uniqueness property is not relevant here, and actually fails in the simplest
possible situation: Let X be a tripod, obtained from the disjoint union of
three copies X1, X2, X3 of [0, 1] by identifying the three endpoints 0, cf. [19,
p. 178]. With Y = R, take ϕ|X1 = 0, ϕ|X2 = id, and ϕ|X3 = − id, where id
denotes the identity map of [0, 1], cf. [9, Remark 5.3]. Then ϕ : X → R is
harmonic (see [9, Example 8.1]), and nonconstant, though constant on X1,
which has nonvoid interior.

3. The free homotopy problem

In the case of free homotopy there is no control of the growth of a min-
imizing sequence of equivariant maps; such a sequence may in fact con-
verge to infinity in the locally compact space ˜Y , [25, p. 647 and Remark
2.6.6].

The proof of Theorem 3.2 below is an adaptation of that of [25, The-
orems 2.6.4 and 2.7.1] for manifold domains. With the present polyhedral
domain (X, g), harmonic maps generally are no longer Lipschitz continuous,
but only Hölder continuous (Proposition 3.1 below); cf. [6], [9, Example
6.1]. The idea of Korevaar and Schoen is to modify a given minimizing
sequence of equivariant maps into another which is moreover equicontinu-
ous. The sequence of projected maps therefore subconverges uniformly to
a map ϕ which is shown to belong to the given homotopy class H and to
minimize energy within H. Lemma 2.7 above allows us to go beyond [25]
by proving that, as expected from [10, 19], every energy minimizer rela-
tive to H is harmonic. And unlike [25], we do not assume that bX = ∅;

5In analogy with the preceding note the reference in [9, Remark 12.1] to [9,
Theorem 11.4] shall now be replaced by [13, Theorem 3] (noting that the additional
hypothesis there that either Y be locally compact or R < π/(4

√
κ) can be omitted

according to [17, Theorem 2]).
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thus X may be, more generally, any compact admissible Riemannian poly-
hedron (with or without boundary) with simplex-wise smooth Riemannian
metric g.

In the following proposition, however, we relax the requirement that
X and Y be compact (because the result will be applied to the universal
covers ˜X and ˜Y ). See also Remark 3.3. For any compact set X0 ⊂ X
we denote by ΛX0 an ellipticity constant of g restricted to X0 [9, p. 48 f].
Recall from [9,11] that every locally energy minimizing map has a (Hölder)
continuous and hence harmonic version.

Proposition 3.1. Let (X, g) be a locally compact admissible Riemannian
polyhedron. For any compact set X0 ⊂ X there exist constants C, α, � > 0
depending only on X, X0, ΛX0 such that, for any harmonic map ϕ from
X to any complete simply connected geodesic space (Y, dY ) of nonpositive
curvature,

dY (ϕ(x), ϕ(y)) � C
√

E(ϕ) dα
X(x, y) for x, y ∈ X0 with dX(x, y) � �.

Proof. In view of [9, Chapters 4 and 5] our locally compact separable admis-
sible Riemannian polyhedron (X, g) satisfies the hypotheses of Biroli and
Mosco [3, §1]. According to [3, Theorem 5.4] applied with p = 2 to the func-
tion dY (ϕ(·), q), q ∈ Y , which is weakly subharmonic by [9, Lemma 10.2(a)]
(or see [17, Lemma 2]), we may choose � > 0, depending only on X, X0, ΛX0 ,
so that, by the triangle inequality for (Y, dY ), the oscillation ω(BX(a, r)) of ϕ
over BX(a, r) for a ∈ X0 and 0 < r � � satisfies the first two of the following
three inequalities

ω(BX(a, r)) � 2 inf
q∈Y

sup
BX(a,r)

dY (ϕ(·), q)

� 2c′ inf
q∈Y

(

–
∫

BX(a,2r)
d2

Y (ϕ(·), q) dμ

)1/2

� c′′r1−m/2
√

E(ϕ)(3.1)

for constants c′, c′′ depending on X, X0, ΛX0 only. The last inequality follows
by application of [9, Lemma 4.4] (on ball volumes) and the weak Poincaré
inequality [11, Corollary 1, p. 381] which clearly holds also for noncompact
X when a ∈ X0 � X (again with constants depending on X, X0, ΛX0).

Choose � > 0 small enough that [11, Lemma 3 and Proposition 1(b)] hold
with κ = 5. These two results from [11] shall then replace, in
[9, pp. 186–189], the repeated use of [9, Sublemma 10.1 and Lemma 10.1(a)],
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respectively. It follows by inspection of its proof that [9, Lemma 10.3] holds
uniformly in the same sense for a ∈ X0 � X. Local compactness of (Y, dY )
was only used towards the end of the proof of [9, Theorem 10.1] when a
point q was chosen (p. 191) in the intersection of the lower directed family
of nonvoid compact essential images ϕ(Be

X(a, r)), r > 0. If Y is not locally
compact, choose instead any point qj = qj(r) of ϕ(Be

X(a, βjr)), j = 1, 2, . . ..
Recall from [9, p. 190] that ε, p, and hence β, are constants > 0. Take j
large enough so that βj < εp. Then

qj ∈ ϕ(Be
X(a, βjr)) ⊂ ϕ(Be

X(a, εpr)).

It follows that Equations (10.15) and (10.16) in [9] hold with q replaced by
qj (cf. the text following Equation (10.7), and Equations (10.13), (10.14)
there). We then find that there are positive constants R, A, α depending
only on X, X0, ΛX0 such that, for any r0 � R and r � r0,

ω(BX(a, r)) � A(r/r0)αω(BX(a, r0)).

Taking r0 = � from the text preceding (3.1) we obtain for x, y ∈ X0 with
a = y and r := dX(x, y) � �,

dY (ϕ(x), ϕ(y)) � ω(BX(y, r)) � A�−αω(BX(y, �))rα

� Ac′′�1−m/2−α
√

E(ϕ)dα
X(x, y),

which was to be proved. �

Theorem 3.2. Let (X, g) be a compact admissible Riemannian polyhedron,
and let (Y, dY ) be a compact geodesic space of nonpositive curvature. Every
(free) homotopy class H of continuous maps X → Y has an energy mini-
mizer; and any such is harmonic and uniformly Hölder continuous. Two
energy minimizers relative to H are identical if they agree at a point.

More generally (as expected from [21] in the classical setting of [9]): for
any two energy minimizers ϕ0, ϕ1 relative to H there exists a homotopy
[0, 1] � t �→ ϕt ∈ H such that, for each x ∈ X, the path [0, 1] � t �→ ϕt(X) ∈
Y is a constant-speed geodesic segment (not necessarily minimizing) of
length d̃ independent of x. If d̃ < rY (cf. (2.2)) then d̃ = dY (ϕ0(x), ϕ1(x)),
x ∈ X, and the geodesic segment t �→ ϕt(x) becomes minimizing. And if
ϕ0(x) = ϕ1(x) for some x ∈ X then d̃ = 0 and hence ϕ0 = ϕ1.

Simple examples such as X = Y = S1 show that there may be infinitely
many minimizers in every homotopy class. In [25, Remark 2.6.6] the problem
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is posed as to when energy minimizers relative to H are unique up to domain
or codomain isometries (as they are when X = Y = S1).

Proof of Theorem 3.2. In view of Whitehead [42, Theorem 35, p. 317] or
see [37, Theorem 14, p. 125] there is a subdivision T of the given tri-
angulation of X such that every open star S of (X, T ) is contained in
some ball BX(x′, 1

2rX) with rX as in (2.2). For any x ∈ S we therefore
have x ∈ BX(x′, 1

2rX), and so S ⊂ BX(x′, 1
2rX) ⊂ BX(x, rX). Accordingly,

the connectivity components of p−1
X (S) have disjoint closures, each mapped

isometrically onto S by pX . By a further subdivision T ′ of T we arrange
that, for any x ∈ X, there exists a star S = S(x) of (X, T ) such that every
star S′ of (X, T ′) containing x has closure S

′ contained in S.6 In particular,
if two stars S′

1, S
′
2 of (X, T ′) have a point x in common then S

′
1 ∪ S

′
2 ⊂ S(x).

Step 1. Construction of a modified sequence (ϕ̃i). Let Bj , j ∈ {1, . . . , k},
denote the open stars of (X, T ′). Here k � 2, for if k = 1 we would have
B1 = X, hence X = a single vertex (X being compact), contradicting our
hypothesis dimX � 1 from the beginning of Section 2. Following [25, p. 649],
choose a Lipschitz partition of unity (ηj)j=1,...,k on X, subordinate to the
cover (Bj), cf. [9, p. 41 f]; and for each j ∈ {1, . . . , k} two compact subsets
Zj and W j of X so that the support supp ηj is contained in the interior
of Zj , that Zj is contained in the interior of W j , and that W j ⊂ Bj . In
particular,

⋃

j Zj = X, and hence
⋃

j
˜Zj = ˜X when defining ˜Zj = p−1

X (Zj).
As in [25, p. 649 (bottom)] (where, however, the Bj are balls), consider the
ΓX -invariant pre-images p−1

X (Bj), and the ΓX -invariant Lip functions η̃j =
ηj ◦ pX on ˜X. Clearly

∑k
1 η̃j = 1.

Fix a Lipschitz map χ ∈ H (see Proposition 2.2(b), which replaces [25,
Proposition 2.6.1]), a corresponding homomorphism χ∗ : ΓX → ΓY (see Pro-
position 2.1), a base point x0 ∈ X, and a point x̃0 ∈ p−1

X (x0). For any map
ϕ ∈ H, a χ∗-equivariant lift ϕ̃ : ˜X → ˜Y of ϕ is obtained by choosing ϕ̃(x̃0) ∈
p−1

Y (ϕ(x0)) (see (2.3) and the end of the paragraph following Proposition 2.1)
so that ϕ∗ = χ∗ and hence

(3.2) ϕ̃ ◦ γ = χ∗(γ) ◦ ϕ̃ for γ ∈ ΓX .

6Every point x ∈ X lies in some star S(x) of (X, T ), and S(x) contains a ball
BX(x, rx). Finitely many of these balls cover X, and we define r = the least among
these finitely many rx. Again by [42], choose the subdivision T ′ of T so that every
star S′ of (X, T ′) is a subset of some ball BX(x′, 1

2r). For any x ∈ X and any star
S′ of (X, T ′) containing x we have S

′ ⊂ BX(x′, 1
2r) for some x′ ∈ X. In particular,

x ∈ BX(x′, 1
2r), and so indeed S

′ ⊂ BX(x, r) ⊂ S(x).
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Conversely, every χ∗-equivariant map ϕ̃ has in view of (3.2) a projection
ϕ : X → Y of class H, defined by (2.3), that is, ϕ(x) = pY (ϕ̃(x̃)) for some
x̃ ∈ p−1

X (x). This makes sense because any other point of p−1
X (x) has the

form γ(x̃) for some γ ∈ ΓX , and so pY ((ϕ̃ ◦ γ)(x̃)) = pY ((χ∗(γ) ◦ ϕ̃)(x̃)) =
pY (ϕ̃(x̃)) as before, according to (3.2). The projection ϕ is continuous
because we may take x̃ ∈ p−1

X (x) to be a locally defined, continuous function
of x ∈ X. Furthermore, ϕ ∈ H by Proposition 2.1, or as shown directly by
geodesic homotopy: For x̃ ∈ ˜X and t ∈ [0, 1] denote ˜Φ(x̃, t) = (1 − t)ϕ̃(x̃) +
tχ̃(x̃) (with the usual abuse of notation). Then ˜Φ(x̃, t) is continuous on ˜X ×
[0, 1] (see [2, p. 160]), and Equation (3.2) holds with ϕ̃ replaced by ˜Φ(·, t).
The projection (x, t) �→ Φ(x, t) := pY (˜Φ(x̃, t)) is therefore well defined and
continuous as a function of (x, t) ∈ X × [0, 1]. Because Φ(x, 0) = ϕ(x) and
Φ(x, 1) = χ(x), ϕ is indeed homotopic with χ, i.e., ϕ ∈ H.

Let sν , ν ∈ {1, . . . , n}, denote the m-simplexes of (X, T ′), and let ˜F
be the union of corresponding m-simplexes s̃ν of ˜X having the projections
pX(s̃ν) = sν , ν ∈ {1, . . . , n}, but otherwise selected arbitrarily. The compact
(generally disconnected) set ˜F is then a fundamental “domain” of ΓX , up
to a μ̃-nullset.

Consider any χ∗-equivariant map ϕ̃ ∈ Eloc( ˜X, ˜Y ) (one such map is χ̃).
The restriction ϕ̃| ˜F has finite energy, understood as the sum of the (finite)
energies of the restrictions of ϕ̃ to the m-simplexes s̃ν of ˜F ; see [9, Theorem
9.1(a)]. Equivalently, E(ϕ̃| ˜F ) =

∫

˜F e(ϕ̃) dμ̃, cf. (2.22). The projection ϕ :
X → Y has finite energy, and

(3.3) E(ϕ̃| ˜F ) = E(ϕ), e(ϕ̃)| ˜F = e(ϕ) ◦ pX | ˜F .

Indeed, E(ϕ̃|s̃ν) = E(ϕ|sν) < ∞ because ϕ̃|s̃ν = (ϕ|sν) ◦ (pX |s̃ν), where
pX |s̃ν is an isometry of s̃ν on sν , cf. the first lines of the present proof.
By summation over ν we obtain the former equation of (3.3) by [9, The-
orem 9.1(a),(b)] because E(ϕ) < ∞ and because E(ϕ) =

∑

ν E(ϕ|sν) by
[9, Remark 9.1, p. 153]. The latter equation of (3.3) now follows from
e(ϕ̃)|s̃ν = e(ϕ) ◦ pX |s̃ν .

Conversely, any χ∗-equivariant lift ϕ̃ of a finite-energy map ϕ ∈ H has
locally finite energy since E(ϕ̃|s̃) = E(ϕ|s) < ∞ for any m-simplex s̃ of ˜X
(writing s = pX(s̃)), again because pX |s̃ is an isometry. It follows that ϕ̃ ∈
Eloc( ˜X, ˜Y ) (again by [9, Theorem 9.1(a),(b)]), so the above applies. We may
thus define

E0 = inf{E(ϕ) : ϕ̃ is χ∗-equivariant and of class Eloc( ˜X, ˜Y )}
= inf{E(ϕ) : ϕ ∈ H} (< ∞).(3.4)
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Consider a sequence (ψ̃i) of χ∗-equivariant maps which is minimizing for
(3.4) in the sense that the projections ψi of ψ̃i satisfy the equation

(3.5) lim
i→∞

E(ψi) = E0.

As in [25, p. 650] we begin by constructing for each i ∈ {1, 2, . . .} and
j ∈ {1, 2, . . . , k} a unique χ∗-equivariant energy minimizer ϕ̃j

i among all χ∗-
equivariant maps which agree with ψ̃i on ˜X \ p−1

X (Bj); so ϕ̃j
i solves an ordi-

nary Dirichlet problem. For the moment, fix j ∈ {1, . . . , k} and one of the
connectivity components ˜Bj of p−1

X (Bj); thus ˜Bj is an open star in ˜X con-
tained in some ball in ˜X of radius 1

2rX (see the first lines of the proof). The
closure ˜Xj of ˜Bj is a closed star and thus a compact admissible Riemannian
subpolyhedron of ˜X with nonvoid boundary b ˜Xj = ˜Xj \ ˜Bj .

According to [13, Theorem 1(a)] applied to the polyhedron ˜Xj and the
prescribed boundary map trb ˜Xj ψ̃i (the trace of ψ̃i on b ˜Xj) there exists a
unique map θ̃ : ˜Xj → ˜Y which minimizes the energy among all finite-energy
maps ˜Xj → ˜Y having the same trace on b ˜Xj as ψ̃i, and that minimizer θ̃ is
locally E-minimizing in ˜Bj . In the first place, ˜Bj is noncompact and covered
by the open stars ˜U in a triangulation of ˜Bj . Every map β̃ ∈ Eloc( ˜Bj , ˜Y ) such
that β̃ = θ̃ on ˜Bj \ ˜U extends by θ̃|b ˜Xj = ψ̃i|b ˜Xj to a map ξ̃ ∈ E( ˜Xj , ˜Y ), for
if ˜C denotes the closure of ˜U then the restrictions θ̃| ˜X \ ˜C and β̃ of ξ̃ to
the open sets ˜Xj \ ˜C and ˜Bj , respectively, covering ˜Xj , have locally finite
energy, and so property (i) preceding Equation (2.21) is fulfilled. Secondly,
E(β̃) = E(ξ̃) � E(θ̃), and hence E(β̃|˜U) � E(θ̃|˜U) by Lemma 2.3 because
μ̃(∂Ũ) = 0 and β̃ = θ̃ in ˜Bj \ ˜U . Having thus verified that θ̃ is locally E-
minimizing in ˜Bj , we infer from [9, Theorem 10.1] that θ̃ is continuous in
˜Bj (after being redefined on a μ̃-nullset), and hence harmonic in ˜Bj ; cf.
Remark 2.6. Furthermore, θ̃ is continuous on ˜Xj , again by [13, Theorem
1(a)], because ψ̃i is continuous, in particular on b ˜Xj .

Much as in [28, p. 63] we define the following extension ϕ̃j
i of θ̃ to all

of ˜X:

(3.6) ϕ̃j
i =

{

χ∗(γ) ◦ θ̃ ◦ γ−1 in γ( ˜Bj) for any γ ∈ ΓX

ψ̃i elsewhere in ˜X.

Thus ϕ̃j
i agrees with ψ̃i outside p−1

X (Bj) =
⋃

γ∈ΓX
γ( ˜Bj). Clearly, ϕ̃j

i is con-
tinuous (even on γ(b ˜Xj), γ ∈ ΓX), and each ϕ̃j

i is of class Eloc( ˜X, ˜Y ), like ψ̃i.
Furthermore, ϕ̃j

i : ˜X → ˜Y is χ∗-equivariant (cf. (3.2)) along with ψ̃i; and ϕ̃j
i

is Hölder continuous and harmonic in γ( ˜Bj), along with θ̃ and θ̃ ◦ γ−1.
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The projection ϕj
i ∈ E(X, Y ) of ϕ̃j

i ∈ Eloc( ˜X, ˜Y ) agrees with ψi outside
Bj = pX( ˜Bj) = pX(γ( ˜Bj)). The energy E(ϕj

i ) satisfies

(3.7) E0 � E(ϕj
i ) � E(ψi).

This is because E(θ̃) � E(ψ̃i| ˜Xj) by definition of θ̃, and hence by (3.6)
and γ = id, followed by projection: E(ϕj

i |Xj) � E(ψi|Xj), where Xj :=
pX( ˜Xj). Since μ(Xj \ Bj) = 0 it follows by Lemma 2.3(a) that E(ϕj

i |Bj) �
E(ψi|Bj). For each j the sequence of χ∗-equivariant maps ϕ̃j

1, ϕ̃
j
2, . . . is

therefore minimizing, along with the sequence (ψ̃i).
The desired modification ϕ̃i of ψ̃i is now defined (as in [25, p. 650]) by

having for its value at x̃ ∈ ˜X the average of the L2-maps ϕ̃1
i , . . . , ϕ̃

k
i from

(3.6) with respect to the probability measure νx̃ on {1, . . . , k} given by

(3.8) νx̃({j}) = η̃j(x̃), j ∈ {1, . . . , k},

with η̃j(x̃) as defined in the first paragraph of the present Step 1. In terms
of [25, Lemma 2.5.1] this means that, for each x̃ ∈ ˜X,

(3.9) ϕ̃i(x̃) minimizes
k

∑

j=1

η̃j(x̃)d2
˜Y
(ϕ̃j

i (x̃), ỹ) as a function of ỹ ∈ ˜Y .

It follows that ỹ = ϕ̃i(γ(x̃)) minimizes

k
∑

j=1

η̃j(γ(x̃))d2
˜Y
(ϕ̃j

i (γ(x̃)), ỹ) =
k

∑

j=1

η̃j(x̃)d2
˜Y
(χ∗(γ)(ϕ̃j

i (x̃)), ỹ)

=
k

∑

j=1

η̃j(x̃)d2
˜Y
(ϕ̃j

i (x̃), (χ∗(γ))−1(ỹ)),

which is also minimized by (χ∗(γ))−1(ỹ) = ϕ̃i(x̃), that is, by ỹ = (χ∗(γ))(ϕ̃i

(x̃)). Consequently, ϕ̃i(γ(x̃)) = (χ∗(γ))(ϕ̃i(x̃)); so (3.2) holds (with ϕ̃ replaced
by ϕ̃i).

Step 2. The sequence of maps ϕ̃i : ˜X → ˜Y is uniformly Hölder equicon-
tinuous. Fix δ0 > 0 independently of j so that δ0 � rX from (2.2) and that

{x ∈ X : dX(x, supp ηj) � δ0} ⊂ Zj ,

W j := {x ∈ X : dX(x, Zj) � δ0} ⊂ Bj
(3.10)

for j ∈ {1, . . . , k}; cf. the first paragraph of Step 1. Then Zj and W j

are compact subsets of Bj . Because ˜Y is simply connected it follows by
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Proposition 3.1 with X replaced by ˜Bj that the harmonic maps ϕ̃j
i : ˜X → ˜Y

from (3.6) are uniformly Hölder equicontinuous on the compact set ˜Bj ∩
p−1

X (W j) and even in ˜W j := p−1
X (W j) =

⋃

γ∈ΓX
γ( ˜Bj ∩ p−1

X (W j)) because ϕ̃j
i

is χ∗-equivariant, that γ and χ∗(γ) are isometries, and that two points x̃, ỹ ∈
˜W j with d

˜X(x̃, ỹ) � � lie in the same set γ( ˜Bj ∩ p−1
X (W j)) when we take

� � δ0; cf. (2.2) and subsequent text. Consequently,
(3.11)

d
˜Y (ϕ̃j

i (x̃), ϕ̃j
i (ỹ)) � C

√

E(ψi) dα
˜X
(x̃, ỹ) for x̃, ỹ ∈ ˜W j , d

˜X(x̃, ỹ) � �

in view of (3.7) and (3.10), with C, α, � depending on X, ΛX only. In par-
ticular, C, α, � in (3.11) may be taken independently of i ∈ {1, 2, . . .} and
j ∈ {1, . . . , k}. We may clearly take α � 1. Note that (3.11) replaces in our
setting the Lipschitz continuity established in [25, Theorem 2.6.4].

Continuing much as in [25, p. 652 (mid)], consider points x̃ ∈ ˜Zj ∩ ˜Z l

(j, l ∈ {1, . . . , k}) and ỹ ∈ ˜X with d
˜X(x̃, ỹ) � δ for a suitable δ with 0 < δ �

� � δ0 (δ to be determined in the paragraph containing (3.17) and (3.18)
below). Then ỹ ∈ ˜W j ∩ ˜W l. By (3.11) and the triangle inequality we obtain

d
˜Y (ϕ̃j

i (ỹ), ϕ̃l
i(ỹ)) � d

˜Y (ϕ̃j
i (x̃), ϕ̃l

i(x̃)) − 2C
√

E(ψi) δα,

and hence by integration with respect to ỹ (again for x̃ ∈ ˜Zj ∩ ˜Z l ⊂ p−1
X (Bj ∩

Bl)):
(3.12)

C1

∫

B
˜X(x̃,δ)

d2
˜Y
(ϕ̃j

i (ỹ), ϕ̃l
i(ỹ)) dμ̃(ỹ) � δm

(

d
˜Y (ϕ̃j

i (x̃), ϕ̃l
i(x̃)) − 2C

√

E(ψi) δα
)2

provided that d
˜Y (ϕ̃j

i (x̃), ϕ̃l
i(x̃)) � 2C

√

E(ψi)δα. (We have applied [9, Lemma
4.4] about ball volumes.) This inequality (3.12) replaces [25, (2.6xvii)] in
our setting.

Because x := pX(x̃) ∈ Bj ∩ Bl, we have Bj ∪ Bl � S for some star S of
(X, T ), cf. the beginning of the proof. Denote by ˜S, ˜Bj , ˜Bl the component of
p−1

X (S), p−1
X (Bj), p−1

X (Bl), respectively, containing the given point x̃. This
definition of ˜Bj (and ˜Bl) agrees with the previous one (in the paragraph fol-
lowing (3.5)); and we have ˜Bj ∪ ˜Bl � ˜S. Choose a compact “fundamental
domain” ˜F ⊂ ˜X for pX relative to T ′ (cf. the paragraph preceding the one
containing (3.3)) so that ˜F contains ˜S; this is possible because ˜S is contained
in some ball in ˜X of radius rX , so no two simplexes of ˜S are congruent mod-
ulo ΓX ; cf. text following (2.2). The function d

˜Y (ϕ̃j
i , ϕ̃

l
i) considered on ˜F

equals zero outside ˜Bj ∪ ˜Bl � ˜S because ϕ̃j
i = ψi in ˜F \ ˜Bj whereas ϕ̃l

i = ψi
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in ˜F \ ˜Bl. It follows that

(3.13)
∫

˜S
d2

˜Y
(ϕ̃j

i , ϕ̃
l
i) dμ̃ � C2

∫

˜S
|∇d

˜Y (ϕ̃j
i , ϕ̃

l
i)|2dμ̃

by the Poincaré inequality (4.9) below (for the present ˜S). Now apply
the energy convexity inequality [25, (2.2vi); 9, (11.2)] (cf. Equation (3.33)
below), with t = 1

2 to the χ∗-equivariant maps ϕ̃j
i , ϕ̃l

i, and their
χ∗-equivariant midpoint map w̃jl

i with projection wjl
i , all three maps ˜X → ˜Y

being restricted to the m-simplexes s̃ν of ˜F . By adding over ν = 1, . . . , n we
obtain in view of (3.3), (3.4) and (3.7) the bound

(3.14)
∫

˜S
|∇d

˜Y (ϕ̃j
i , ϕ̃

l
i)|2dμ̃ � 4(E(ψi) − E(wjl

i ))

for the integral on the right-hand side of (3.13) because ˜S ⊂ ˜F and ϕ̃j
i = ϕ̃l

i in
˜F \ ˜S, hence ∇d

˜Y (ϕ̃j
i , ϕ̃

l
i) = 0 μ̃-a.e. in ˜F \ ˜S by [9, Remark 5.2]. We have

B
˜X(x̃, δ) ⊂ B

˜X(x̃, δ0) ⊂ ˜W j ∩ ˜W l. By definition of ˜Bj , ˜Bl it follows that

B
˜X(x̃, δ0) ⊂ ˜Bj ∩ ˜Bl ⊂ ˜Bj ∪ ˜Bl. We may therefore combine (3.12), (3.13),

and (3.14), to get

(3.15) di � 2C
√

E(ψi) δα + 2C
1/2
1 C

1/2
2 δ−m/2

√

E(ψi) − E(wjl
i )

in terms of the notation

(3.16) di = sup
{

d
˜Y (ϕ̃j

i (x̃), ϕ̃l
i(x̃)) : x̃ ∈ ˜Zj ∩ ˜Z l; j, l ∈ {1, . . . , k}

}

.

Note that the points x̃ where d
˜Y (ϕ̃j

i (x̃), ϕ̃l
i(x̃)) < 2C

√

E(ψi) δα, left out of
consideration after (3.12), trivially do not violate (3.15). If di � 4C

√

E(ψi)
�α take the above δ = �; then 1

2di � di − 2C
√

E(ψi)�α, and so by (3.15)

(3.17) di � C3

√

E(ψi) − E(wjl
i )

with C3 = 4C
1/2
1 C

1/2
2 �−m/2. If instead di < 4C

√

E(ψi) �α, take δα = di/(4C
√

E(ψi)) (< �α); this implies di = 2di − 4C
√

E(ψi) δα, and so by (3.15),

d
m/(2α)+1
i = d

m/(2α)
i di = (4C

√

E(ψi) δα)m/(2α)(2di − 4C
√

E(ψi) δα)

� C4
√

E(ψi)
m/(2α)

√

E(ψi) − E(wjl
i )(3.18)
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with C4 = (4C)m/(2α)4C
1/2
1 C

1/2
2 (note that δ drops out here). In any case,

(3.19) di � C5
√

E(ψi)
m/(m+2α)

√

E(ψi) − E(wjl
i )

2α/(m+2α)
� C5

√

E(ψi)

(with C5 = max{C3, C
2α/(m+2α)
4 }), having inserted E(ψi) � E(ψi) − E(wjl

i )
for the latter inequality. Since w̃jl

i is χ∗-equivariant (along with ϕ̃j
i and ϕ̃l

i)
we have E(wjl

i ) � E0, and since (ψ̃i) is minimizing we obtain from (3.19)
limi di = 0, thus recovering [25, (2.6xv)] in our setting.

In view an application in Section 5 we continue without taking this and
other minimization properties into account until later. We proceed to derive
[25, (2.6xiv)] from (3.16). Recall from the first paragraph of Step 1 that
supp ηj ⊂ Zj and hence supp η̃j ⊂ ˜Zj . For each x̃ ∈ ˜X and i ∈ {1, 2, . . .} we
find from (3.9) that (with an apparently different notation)

(3.20) ϕ̃i(x̃) minimizes
∑

j∈J(x̃)

η̃j(x̃) d2
˜Y
(ϕ̃j

i (x̃), ỹ) for ỹ ∈ ˜Y ,

where J(x̃) := {j ∈ {1, . . . , k} : x̃ ∈ ˜Zj} (note that η̃j(x̃) = 0 for x̃ /∈ ˜Zj).
The points ϕ̃j

i (x̃) with j ∈ J(x̃) form a set of diameter �di, by (3.16).
These points ϕ̃j

i (x̃) therefore lie in each ball B
˜Y (ϕ̃l

i(x̃), di) for which x̃ ∈ ˜Z l.
Every ball in ˜Y being convex, it follows by [25, Proposition 2.5.4] (or see [9,
Lemma 10.4]) that the average ϕ̃i(x̃) from (3.20) likewise lies in B

˜Y (ϕ̃l
i(x̃), di)

when x̃ ∈ ˜Z l. Replacing again l by j we conclude that

(3.21) sup
{

d
˜Y (ϕ̃j

i (x̃), ϕ̃i(x̃)) : x̃ ∈ ˜Zj , j ∈ {1, . . . , k}
}

� di.

Because di → 0 as i → ∞ we thus recover [25, (2.6xiv)] as well, in our setting.
Returning to the sequence of maps ϕ̃i defined in (3.9) we apply the

inequality in [25, Proposition 2.5.2] to the measures ν = νx̃ and ν ′ = νỹ on
{1, . . . , k} (cf. (3.8)) and the maps f, h given by f(j) = ϕ̃j

i (x̃), h(j) = ϕ̃j
i (ỹ),

whereby j ∈ {1, . . . , k} and x̃, ỹ ∈ ˜X. Neglecting the negative terms on the
right of the quoted inequality we obtain (by a slight deviation from the
argument in [25, pp. 650–652])

(3.22) P 2 � Q2 + 2PR � Q2 + τP 2 + τ−1R2 for 0 < τ � 1,
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where P, Q, R are defined as follows, as functions of x̃, ỹ ∈ ˜X with
d

˜X(x̃, ỹ) � �:

P = d
˜Y (ϕ̃i(x̃), ϕ̃i(ỹ)) (to be estimated),

Q =
( k

∑

j=1

η̃j(x̃)d2
˜Y
(ϕ̃j

i (x̃), ϕ̃j
i (ỹ))

)1/2

� sup
j∈J(x̃)

d
˜Y (ϕ̃j

i (x̃), ϕ̃j
i (ỹ))

� C
√

E(ψi) dα
˜X
(x̃, ỹ),

R =
k

∑

j=1

d
˜Y (ϕ̃j

i (ỹ), ϕ̃i(ỹ)) |η̃j(ỹ) − η̃j(x̃)| � C6 di d ˜X(x̃, ỹ).

The estimates of Q and R are uniform in i, j and in x̃, ỹ ∈ ˜X with d
˜X(x̃, ỹ) �

�. The former estimate of Q follows from
∑

j η̃j = 1. For the latter esti-
mate of Q note that, for any x̃ ∈ ˜X and any j ∈ J(x̃), we have x ∈ Zj

for x := pX(x̃). It follows by (3.10) that y ∈ W j for y := pX(ỹ) because
dX(x, y) � d

˜X(x̃, ỹ) � � � δ0. Consequently, x̃, ỹ ∈ ˜W j , and (3.11) applies
as stated. Finally, the estimate of R holds because η̃j = ηj ◦ pX ∈ Lip( ˜X)
and d

˜Y (ϕ̃j
i (ỹ), ϕ̃i(ỹ)) � di for ỹ ∈ ˜Zj , by (3.21); and since |η̃j(ỹ) − η̃j(x̃)| =

|ηj(y) − ηj(x)| and d
˜X(x̃, ỹ) = dX(x, y), we may take C6 =

∑k
1 ‖ηj‖Lip.

Because α, τ � 1 and d
˜X(x̃, ỹ) � � it follows from (3.19), (3.22), and the

above estimates of Q and R that

(1 − τ) d2
˜Y
(ϕ̃i(x̃), ϕ̃i(ỹ)) � Q2 + τ−1R2

� (C2E(ψi) + τ−1C2
6d2

i δ
2−2α
0 ) d2α

˜X
(x̃, ỹ)(3.23)

� C7 τ−1E(ψi) d2α
˜X

(x̃, ỹ)

for x̃, ỹ ∈ ˜X with d
˜X(x̃, ỹ) � � � δ0 because 1 � τ−1 and d

˜X(x̃, ỹ) � δ1−α
0 dα

˜X
(x̃, ỹ). (By the latter estimate (3.19) we may take C7 = C2 + C2

5C2
6δ2−2α

0 ).
Taking now τ = 1

2 in (3.23) and recalling that the convergent sequences
(E(ψi)) and (d2

i ) are bounded, we conclude that the ϕ̃i indeed are uniformly
Hölder equicontinuous. It follows that the ϕ̃i are χ∗-equivariant (see the
end of Step 1), and their projections ϕi ∈ H are likewise (uniformly) Hölder
equicontinuous.

Step 3. The χ∗-equivariant sequence (ϕ̃i) is minimizing. For x, y ∈ X
with dX(x, y) � � choose x̃ ∈ p−1

X (x), ỹ ∈ p−1
X (y) so that d

˜X(x̃, ỹ) = dX(x, y)
� � (noting that � � δ0 � rX , cf. the paragraph containing (2.2)). Inserting
the definitions of Q and R in the first inequality (3.23) we obtain for 0 <
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τ < 1

(1 − τ) d2
˜Y
(ϕ̃i(x̃), ϕ̃i(ỹ)) �

k
∑

j=1

η̃j(x̃) d2
˜Y
(ϕ̃j

i (x̃), ϕ̃j
i (ỹ))

+ τ−1
(

∑

j∈J(ỹ)

d2
˜Y
(ϕ̃j

i (ỹ), ϕ̃i(ỹ))
)(

∑

j∈J(ỹ)

|η̃j(ỹ) − η̃j(x̃)|2
)

(3.24)

by Cauchy’s inequality. Note at this point that, in the definition of R,
it suffices to add over j ∈ J(ỹ) (see text following (3.20)); for if j �= J(ỹ)
then ỹ /∈ ˜Zj , hence ỹ, x̃ /∈ supp η̃j , and so η̃j(ỹ) = η̃j(x̃) = 0. Consider an
m-simplex s̃ (= s̃ν) of the “fundamental domain” ˜F ⊂ ˜X. After integrating
(3.24) over ỹ ∈ Bs̃(x̃, ε) for ε � �, and next over x̃ ∈ s̃, dividing by cmεm+2,
and letting ε → 0 whilst invoking (2.18), (2.21), and (2.23) (applied with ˜X
replaced by s̃) we obtain from (3.24)

(3.25) (1 − τ)E(ϕ̃i|s̃) �
k

∑

j=1

∫

s̃
e(ϕ̃j

i )η̃
j dμ̃ + C8 τ−1 d2

i

with C8 = k
∑k

1
∫

s |∇ηj |2dμ, noting moreover that d
˜Y (ϕ̃j

i , ϕ̃i) � di on ˜Zj

according to (3.21).
Because the η̃j form a partition of unity on ˜X, (3.25) may be rewritten as

follows after summation over the m-simplexes s̃ of ˜F followed by projection,
invoking (3.3):

(3.26) (1 − τ)E(ϕi) � E(ψi) +
k

∑

j=1

∫

X

(

e(ϕj
i ) − e(ψi)

)

ηjdμ + C9 τ−1d2
i ,

where we may take C9 equal to C8 times the number of m-simplexes
of X.

Still following [25] we proceed to show that the term in (3.26) with sum-
mation over j approaches 0 as i → ∞ because (ϕj

i )i and (ψi) are
E-minimizing sequences. Applying quadrilateral comparison [25, (2.1iv)]
with t = 1

2 and α = 0 to the χ∗-equivariant midpoint map w̃j
i = 1

2 ϕ̃j
i + 1

2 ψ̃i :
s◦ → ˜Y we obtain after projection in view of the uniform equicontinuity of
the χ∗-equivariant maps ϕ̃j

i , ψ̃i, and w̃j
i :

d2
Y (wj

i (x), wj
i (y)) � 1

2d2
Y (ϕj

i (x), ϕj
i (y)) + 1

2d2
Y (ψi(x), ψi(y))

− 1
4

(

dY (ϕj
i (x), ϕj

i (y)) − dY (ψi(x), ψi(y))
)2
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for d
˜X(x̃, ỹ) sufficiently small that d

˜Y (w̃j
i (x̃), w̃j

i (ỹ)) � rY , etc.; cf. (2.2) and
subsequent text. It follows by (2.18), (2.19), for any open m-simplex s◦ of
X and any f ∈ Cc(s◦, [0, 1]) that (up to a dimensional constant factor)

lim sup
ε→0

m + 2
4

∫∫

x,y∈s◦

dX(x,y)�ε

(

dY

(

ϕj
i (x), ϕj

i (y)
)

ε
− dY (ψi(x), ψi(y))

ε

)2

f(x)
dμ(x) dμ(y)

εm

�
∫

s◦

(

1
2
e(ϕj

i ) +
1
2
e(ψi) − e(wj

i )
)

f dμ.(3.27)

According to [25, p. 648 (top)] the left-hand member of (3.27) equals

(3.28)
∫

Sm−1

∫

s◦

(

|(ϕj
i )∗(ω)| − |(ψi)∗(ω)|

)2
f dμ dσ(ω),

where for example |(ψi)∗(ω)|2 denotes the directional energy density of ψi ∈
E(s◦, Y ) (cf. [25, Theorem 1.9.6 and eq. (1.10v)]) in the direction corre-
sponding to ω ∈ Sm−1 (the unit sphere in R

m with surface measure σ). On
the other hand, by [25, (1.10ii)] applied to the maps ϕj

i and ψi, and the
function ηjf (in place of f):

∫

s◦

(

e(ϕj
i ) − e(ψi)

)

ηjf dμ(3.29)

=
∫

s◦

∫

Sm−1

(

|(ϕj
i )∗(ω)|2 − |(ψi)∗(ω)|2

)

dσ(ω) ηjf dμ.

By the Cauchy–Schwarz inequality applied to the product

(

|(ϕj
i )∗(ω)| + |(ψi)∗(ω)|

)

ηj
√

f ×
(

|(ϕj
i )∗(ω)| − |(ψi)∗(ω)|

)
√

f,

the square of the right-hand member of (3.29) is no bigger than
∫

s◦

∫

Sm−1

(

|(ϕj
i )∗(ω)| + |(ψi)∗(ω)|

)2
dσ(ω)(ηj)2f dμ ×

∫

s◦

∫

Sm−1

(

|(ϕj
i )∗(ω)| − |(ψi)∗(ω)|

)2
dσ(ω)f dμ(3.30)

� 2
(

E(ϕj
i ) + E(ψi)

)

∫

s◦

(

1
2
e(ϕj

i ) +
1
2
e(ψi) − e(wj

i )
)

f dμ

in view of (3.27) and (3.28), inserting (ηj)2f � 1, using (a + b)2 � 2a2 + 2b2,
and again invoking [25, 1.10ii]. In the limit as f → 1 pointwise through
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an increasing sequence we altogether obtain (up to a dimensional constant
factor) by dominated convergence and by (2.22), (3.7), (3.29), and (3.30),

(3.31)
∫

s◦

(

e(ϕj
i ) − e(ψi)

)

ηj dμ � 2
√

E(ψi)
√

E(ψi) − E(wj
i ).

Because the midpoint map w̃j
i = 1

2 ϕ̃j
i + 1

2 ψ̃i is χ∗-equivariant along with ϕ̃j
i

and ψ̃i, its projection wj
i belongs to H and so has energy �E0. Adding over

all m-simplexes s of X we conclude that the sum term in (3.26) indeed has
the limit 0 as i → ∞. By (3.26) we therefore obtain

(3.32) lim sup
i→∞

[(1 − τ)E(ϕi)] � E0,

and hence lim supi E(ϕi) � E0, by letting τ → 0. In the opposite direction,
E0 � E(ϕi) by definition of E0. Consequently, limi E(ϕi) = E0, and the
sequence (ϕ̃i) is indeed minimizing; cf. (3.4) and (3.5).

Step 4. Existence and harmonicity of E-minimizers. Using the above
minimizing sequence of χ∗-equivariant maps ϕ̃i : ˜X → ˜Y we commence as
indicated in the proof of [25, Theorem 2.7.1]. Since (ϕ̃i) is uniformly Hölder
equicontinuous, so is the sequence of projected maps ϕi : X → Y . By Ascoli’s
theorem, a subsequence, again denoted (ϕi), converges uniformly to a con-
tinuous map ϕ : X → Y . Fix i ∈ {1, 2, . . .} so that dY (ϕ(x), ϕi(x)) � rY for
all x ∈ X, with rY from the paragraph containing (2.2). Also fix x0 ∈ X
and x̃0 ∈ p−1

X (x0). Let ϕ̃ : ˜X → ˜Y denote the unique lift of ϕ : X → Y such
that d

˜Y (ϕ̃(x̃0), ϕ̃i(x̃0)) = dY (ϕ(x0), ϕi(x0)) (� rY ). Because ϕ̃ and ϕ̃i are
continuous and ΓY is discrete, it follows that d

˜Y (ϕ̃(x̃), ϕ̃i(x̃)) � rY for every
x̃ ∈ ˜X. We show that ϕ̃ is χ∗-equivariant. For any γ ∈ ΓX the continuous
map χ∗(γ)−1 ◦ ϕ̃ ◦ γ from ˜X to ˜Y is likewise a lift of ϕ because

pY ◦ (χ∗(γ)−1 ◦ ϕ̃ ◦ γ) = pY ◦ ϕ̃ ◦ γ = ϕ ◦ pX ◦ γ = ϕ ◦ pX ;

cf. (2.3). Because ϕ̃i is χ∗-equivariant (see end of Step 2), we have

d
˜Y

(

(χ∗(γ)−1 ◦ ϕ̃ ◦ γ)(x̃), ϕ̃i(x̃)
)

= d
˜Y

(

ϕ̃(γ(x̃)), ϕ̃i(γ(x̃))
)

� rY

for any x̃ ∈ ˜X, noting that χ∗(γ) and γ are isometries of ˜Y and ˜X, respec-
tively. By uniqueness of ϕ̃ we have χ∗(γ)−1 ◦ ϕ̃ ◦ γ = ϕ̃, and so indeed ϕ̃ is
χ∗-equivariant. Its projection ϕ therefore belongs to H. From the uniform
convergence ϕi → ϕ we infer that D2(ϕi, ϕ) =

∫

X d2
Y (ϕi(x)), ϕ(x))dμ(x) → 0

because μ(X) < ∞. This means that ϕi → ϕ in L2(X, Y ) (cf. the paragraph
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following the one containing (2.17)), and consequently

E(ϕ) � lim inf
i→∞

E(ϕi) = E0

by [9, Lemma 9.1]. Thus ϕ is an E-minimizer relative to H.
For the proof that every E-minimizer ϕ relative to H is harmonic in X

in the sense of (c), and hence of (a) and (b) in Remark 2.6, cf. Lemma
2.7, fix a point p ∈ X. Since Y is complete and has nonpositive curvature,
ϕ(p) has a convex open neighbourhood V in Y such that V is a CAT(0)
space, [2, p. 159 f]. Thus any two points y, z of V can be joined by a
unique constant-speed geodesic [0, 1] � t �→ ζ(y, z; t) ∈ V , [2, pp. 4, 160];
and ζ depends continuously on (y, z, t) ∈ V × V × [0, 1], [2, p. 158 ff]. For a
given neighbourhood N of p in X choose a connected open set U � X with
p ∈ U ⊂ N so that ϕ(U) � V . Consider any continuous map ψ ∈ E(X, Y )
such that ψ = ϕ in X \ U and ψ(U) ⊂ V . We prove that ψ ∈ H, hence
E(ψ) � E(ϕ), and so, by varying p and N , that ϕ satisfies (c) in Remark
2.6. Define Ψ : X × [0, 1] → Y by

Ψ(x, t) =

{

ζ(ϕ(x), ψ(x); t) for x ∈ U, t ∈ [0, 1]
ϕ(x) = ψ(x) for x ∈ X \ U, t ∈ [0, 1].

For U � x → x0 ∈ ∂U and [0, 1] � t → t0 ∈ [0, 1] we have ϕ(x) → ϕ(x0) ∈ V
and ψ(x) → ψ(x0) = ϕ(x0), and hence ζ(ϕ(x), ψ(x); t) → ζ(ϕ(x0), ϕ(x0); t0)
= ϕ(x0), that is, Ψ(x, t) → Ψ(x0, t0). Thus Ψ is continuous both relative to
U and to X \ U , and hence on all of X. Clearly Ψ(x, 0) = ϕ(x), Ψ(x, 1) =
ψ(x); so indeed ψ ∈ H, and ϕ is harmonic according to Remark 2.6. It may
be added that every minimizing χ∗-equivariant map ϕ̃ : ˜X → ˜Y likewise is
harmonic, harmonicity being a local property by Lemma 2.7.

Step 5. The uniqueness assertion. We begin by proving that any two
χ∗-equivariant energy minimizers ϕ̃0, ϕ̃1 have constant distance d

˜Y (ϕ̃0(·),
ϕ̃1(·)). First note that the restriction of the distance function d

˜Y (ϕ̃0, ϕ̃1)
to each m-simplex s̃ (= s̃ν) of the “fundamental domain” ˜F is of class
E(s̃, R) = W 1,2(s̃); see for example [14, p. 252 (bottom)]. For any t ∈ [0, 1]
the restriction of the map ϕ̃t := (1 − t)ϕ̃0 + tϕ̃1 (with the usual abuse of
notation) to each s̃ is of class E(s̃, ˜Y ) by the energy convexity property
(3.33)

E(ϕ̃t|s̃) � (1 − t)E(ϕ̃0|s̃) + tE(ϕ̃1|s̃) − t(1 − t)
∫

s̃
|∇d

˜Y (ϕ̃0, ϕ̃1)|2 dμ̃

(valid for any two maps ϕ̃0, ϕ̃1 ∈ E(s̃, ˜Y )), cf. [9, eq. (11.2); 25, 2.2iv]. Also,
each ϕ̃t is χ∗-equivariant, γ ∈ ΓX and χ∗(γ) ∈ ΓY being isometries. For the
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projection ϕt ∈ H of ϕ̃t we therefore have from (3.4) after summation over
all m-simplexes s̃ of ˜F

E0 � E(ϕt) � E0 − t(1 − t)
∫

˜F
|∇d

˜Y (ϕ̃0, ϕ̃1)|2 dμ̃ � E0,

and hence
∫

˜F |∇d
˜Y (ϕ̃0, ϕ̃1)|2 dμ̃ = 0, by taking 0 < t < 1. It follows that

d
˜Y (ϕ̃0, ϕ̃1) is constant in any s̃. Because every open star ˜S of ˜X is contained

in some open ball of radius rX (cf. the beginning of the proof of the present
Theorem 3.2), ˜F can be chosen so as to contain ˜S, cf. text between (3.12)
and (3.13)); hence d

˜Y (ϕ̃0, ϕ̃1) equals a constant d̃ in ˜S. Thus d
˜Y (ϕ̃0, ϕ̃1)

is locally constant in ˜X, and therefore constant in all of ˜X (connected).
By projection, this leads to Hartman’s uniqueness result [21] in the present
setting, as stated after the formulation of Theorem 3.2: If d̃ < rY then
d̃ = d

˜Y (ϕ̃0(x̃), ϕ̃1(x̃)) = dY (ϕ0(x), ϕ1(x)) by (2.2) and subsequent text, and
the geodesic segment t �→ ϕt(x) therefore becomes minimizing. Finally, if
ϕ0(x) = ϕ1(x) at some point x then d̃ = 0 and consequently ϕ0 = ϕ1. �

Remark 3.3. Under the hypotheses on X and Y in Theorem 3.2, Hölder
continuity of a harmonic map ϕ : X → Y (cf. Proposition 3.1, now with X
compact) holds in the global uniform sense that there are constants C, α > 0
depending only on (X, ΛX) such that

(3.34) dY (ϕ(x), ϕ(y)) � C
√

E(ϕ) dα
X(x, y), x, y ∈ X.

With the extra requirement that dX(x, y) � � for a suitable constant � > 0,
this holds according to Proposition 3.1, X being compact. Since (X, dX) is a
geodesic space [9, Proposition 4.1(b)], we may join any two points x and y of
X by a geodesic η in X of length dX(x, y) � the diameter of (X, dX), and it
suffices to apply the version of (3.34) for dX(x, y) � � after first subdividing
η into a fixed number of arcs of length not exceeding � (cf. the analogous
paragraph following the one containing (2.12)).

Remark 3.4. We shall need in Section 5 that, for variable Riemannian
metric g on X, the constants rX , C, α, �, δ0, and C1 through C9 in the proof
of Theorem 3.2 can be chosen so as to depend only on X, ΛX (as already
noted concerning C, α, � in Proposition 3.1). If re

X denotes a value of rX

relative to the Euclidean Riemannian metric ge on X (see [9, p. 49]), then
we may take rX = Λ−1

X re
X for the constant rX relative to a given Riemannian

metric g on X with ellipticity constant ΛX ; cf. [9, (4.1)]. This is because
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the intrinsic Riemannian distances dX and de
X satisfy

(3.35) Λ−1
X de

X � dX � ΛXde
X ,

cf. [9, p. 52 (bottom)]. It follows that BX(x,Λ−1
X re

X) ⊂ Be
X(x, re

X) for x ∈ X;
and since pX |Be

X(x, re
X) is an isometry, by (2.2), we infer that pX |BX(x,

Λ−1
X re

X) is injective and hence likewise an isometry; cf. [31, Proposition 3.5.7].
In this way, rX depends on X, ΛX only. In view of (3.35) the same holds
for δ0, cf. (3.10). It is easily verified that C1 through C9 likewise depend on
(X, ΛX) only.

4. The Dirichlet homotopy problem

We continue considering a compact admissible Riemannian polyhedron (X, g),
but now with bX �= ∅; and a compact geodesic space Y of nonpositive cur-
vature. We therefore have the equivalent definitions (a), (b), and (c) of har-
monicity of a continuous map ϕ : X → Y , formulated in Remark 2.6 above,
cf. Lemma 2.7.

Let Ω denote a nonvoid connected open subset of X, and denote by ∂Ω
the topological boundary and by Ω the closure of Ω in X. Note that X is a
harmonic space in the sense of Brelot [4, Part IV; 5, § 3.1]; see [9, Theorem
7.1]. We require throughout that Ω is regular in the sense of potential theory
and that Ω ∩ bX is not dense in bX. Recall that Ω is said to be regular if
∂Ω �= ∅ and every continuous function ∂Ω → R has a (necessarily unique)
continuous extension Ω → R which is harmonic in Ω. Equivalently, every
point x ∈ ∂Ω shall be regular, that is, X \ Ω shall be nonthin at x in the
sense of Brelot [4, p. 137], or see [1, Theorem 7.5.1; 5, § 6.3]. In particular,
X \ bX is always regular. The boundary of a regular domain can, however,
be rather “wild”; cf. [14, Example 2].

We proceed to show that the Dirichlet homotopy problem for harmonic
maps has a unique solution. For any map χ ∈ C(X, Y ) (i.e., χ : X → Y is
continuous) write

Cχ(Ω, Y ) = {ϕ ∈ C(X, Y ) : ϕ = χ on X \ Ω}.

Denote by Hχ(Ω, Y ) the class of all maps in Cχ(Ω, Y ) which are homotopic
with χ, the homotopy being through maps of class Cχ(Ω, Y ). Denote by H
the homotopy class of all maps in C(X, Y ) which are freely homotopic to χ;
then Hχ(Ω, Y ) ⊂ H.



718 Bent Fuglede

Theorem 4.1. Let Ω be a connected regular open subset of a compact
admissible Riemannian polyhedron (X, g) with bX �= ∅, and suppose that
Ω ∩ bX is not dense in bX. Let (Y, dY ) be a compact geodesic space of non-
positive curvature; and let a continuous map χ : X → Y of finite energy be
given. Then there exists in Hχ(Ω, Y ) a unique map ϕ0 of least energy, and
ϕ0|Ω is harmonic and (locally uniformly) Hölder continuous.

In earlier work on the Dirichlet problem for harmonic maps (for exam-
ple in [13,25]), the present regular domain Ω was replaced by the particular
regular domain Ω = X \ bX. For that case, Theorem 4.1 can be established
alternatively by modifying the proof given below, notably by using [13, The-
orem 1] (as in the proof of Theorem 3.2 above) in place of [14, Theorem 1],
needed in Step 2 of the present proof.

Proof of Theorem 4.1. Again, we pass to the universal covers ˜X and ˜Y . In
view of [42, Theorem 35, p. 317] we may assume that every simplex of X
has diameter � rX from (2.2), and from (2.8) in the proof of Proposition 2.2.
According to [18, Theorem 1 and Corollary 3] the connected open set Ω ⊂ X
is an admissible Riemannian polyhedron (along with X) with a triangulation
TΩ such that every simplex of (Ω, TΩ) is a subset of some simplex of X, and
hence has diameter �rX . Define ˜Ω = p−1

X (Ω).
Henceforth, until Step 4 below, we suppose that Ω is not dense in X.
Step 1. A quasi-equivariant minimizer ϕ̃0. Fix a base point x0 ∈ X \ Ω

and a point x̃0 ∈ p−1
X (x0). For any ϕ ∈ Hχ(Ω, Y ) there exists a continu-

ous map Φ : X × [0, 1] → Y such that Φ(x, 0) = χ(x) and Φ(x, 1) = ϕ(x)
for x ∈ X, and that Φ(x, t) = χ(x) for x ∈ X \ Ω and t ∈ [0, 1]. Because
X × [0, 1] has the same properties as listed in Section 2 for X itself, allow-
ing lifting of continuous maps into Y , there exists a lift ˜Φ : ˜X × [0, 1] → ˜Y .
For each t ∈ [0, 1] the restriction ˜Φ(·, t) : ˜X → ˜Y is a lift of Φ(·, t) : X → Y .
In particular, χ̃ := ˜Φ(·, 0) is a lift of χ. For x̃ ∈ ˜X \ ˜Ω we have x := pX(x̃) ∈
X \ Ω, and hence ˜Φ(x̃, t) ∈ p−1

Y (Φ(x, t)) = p−1
Y (χ(x)) for t ∈ [0, 1]. Because

ΓY is discrete and ˜Φ(x̃, ·) is continuous it follows that ˜Φ(x̃, t) is indepen-
dent of t ∈ [0, 1] for each x̃ ∈ ˜X \ ˜Ω. Hence ϕ̃(x̃) := ˜Φ(x̃, 1) = ˜Φ(x̃, 0) = χ̃(x̃)
for x̃ ∈ ˜X \ ˜Ω, in particular ϕ̃(x̃0) = χ̃(x̃0). Since ϕ ∈ Hχ(Ω, Y ) ⊂ H there
is accordingly a unique homomorphism χ∗ : ΓX → ΓY such that ϕ̃ is χ∗-
equivariant, as in (3.2). Denote by A the class of all (quasicontinuous) maps
ϕ̃ ∈ Eloc( ˜X, ˜Y ) which are quasi-equivariant in the sense that (3.2) holds q.e.:

(4.1) ϕ̃ ◦ γ = χ∗(γ) ◦ ϕ̃ q.e. in ˜X for all γ ∈ ΓX .
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Denote

Aχ̃ = {ϕ̃ ∈ A : ϕ̃ = χ̃ q.e. in ˜X \ ˜Ω}.

Then χ̃ ∈ Aχ̃; in particular Aχ̃ �= ∅.
Every map ϕ̃ ∈ A has a quasicontinuous projection ϕ ∈ E(X, Y ). Indeed,

(3.2) holds in ˜X \ ˜P for some polar set ˜P ⊂ ˜X. Replacing ˜P by the countable
union of polar sets γ( ˜P ), γ ∈ ΓX , we arrange that ˜P becomes ΓX -invariant.
For any x ∈ X off the polar set pX(P̃ ) define ϕ(x) = (pY ◦ ϕ̃)(x̃) for x̃ ∈
p−1

X (x) ⊂ ˜X \ ˜P ; this does not depend on the choice of x̃ on account of (3.2).
Finally, ϕ ∈ Eloc(X, Y ) = E(X, Y ), and ϕ is quasicontinuous along with ϕ̃,
both because pX and pY are local isometries.

Every continuous map ϕ̃ ∈ A is χ∗-equivariant in the sense of (3.2),
that is, (4.1) holds everywhere in ˜X. If even ϕ̃ ∈ Aχ̃ then the continuous
projection ϕ : X → Y is of class Cχ(Ω, Y ), and even of class Hχ(Ω, Y ), as
shown by geodesic homotopy; see the text following (3.2), and note that we
now have Φ(x, t) = χ(x) for x ∈ X \ Ω.

For a given triangulation of X, and hence of ˜X, consider a compact
“fundamental domain” ˜F ⊂ ˜X of ΓX as in the paragraph containing (3.3)
and its predecessor. Thus ˜F is a union of m-simplexes s̃ν projected by pX

isometrically on the m-simplexes sν of X, ν ∈ {1, . . . , n}. For ε � rX we have
BX(x, ε) = pX(B

˜X(x̃, ε)) for all x̃ ∈ p−1
X (x) according to (2.2). Since pY is

nonexpanding, the projection ϕ of a map ϕ̃ ∈ A therefore satisfies ϕ|sν ∈
L2(sν , Y ) and hence ϕ ∈ L2(X, Y ). Furthermore, eε(ϕ) ◦ pX � eε(ϕ̃), and
hence e(ϕ) ◦ pX � e(ϕ̃) and E(ϕ) � E(ϕ̃| ˜F ) =

∑n
ν=1 E(ϕ̃|s̃ν) =

∫

˜F e(ϕ̃) dμ̃
(< ∞); cf. Lemma 2.3(b). If ϕ̃ is continuous then so is ϕ, and the sign �
can here be replaced in the last two cases by equality (as in (3.3)), pY being
locally isometric.

There exists a constant c1 such that the following Poincaré-style inequal-
ity holds (cf. [6, Proposition 2.2]):

(4.2)
∫

˜F
(u − ū)2dμ̃ � c1

∫

˜F
|∇u|2 dμ̃

for any function u ∈ W 1,2
loc ( ˜X) which is essentially ΓX-invariant: u ◦ γ = u

μ-a.e. in ˜X for every γ ∈ ΓX . Here ū = μ̃( ˜F )−1 ∫

˜F u dμ̃ denotes the average
of u over ˜F . We prove (4.2) in the equivalent projected form where ˜F and
μ̃ are replaced by X and μ, respectively, and u is replaced by any function
u ∈ W 1,2(X). The result may then be viewed as a particular case of [9,
Theorem 5.1] (where X is noncompact), but we give a simpler, direct proof.
We may assume that ū = 0; otherwise replace u by u − ū. If there were
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no such constant c1 there would be a sequence of functions (un) ⊂ W 1,2(X)
such that

∫

X
undμ = 0,

∫

X
u2

n dμ = 1, lim
n→∞

∫

X
|∇un|2 dμ = 0.

After passing to a subsequence we may assume that un converges in L2(X, μ)
and pointwise μ-a.e. in X to some u ∈ L2(X, μ) with

∫

X |∇u|2dμ = 0; this
follows from [25, § 1.6], or from [9, Lemmas 9.1 and 9.2] applied to Y = R

with X replaced by any (m − 1)-simplex s of X; cf. [9, Corollary 9.2].
Consequently, u equals a constant cs μ-a.e. on each m-simplex s. For
two m-simplexes s, s′ such that s ∩ s′ is an (m − 1)-simplex we have cs = cs′

in view of [25, Theorem 1.12.2]. For arbitrary m-simplexes s, s′ of the
admissible polyhedron X there is a chain s0, . . . , sp of m-simplexes of X
such that sj−1 ∩ sj is an (m − 1)-simplex of X for j ∈ {1, . . . , p}, and that
s0 = s, sp = s′; see [18, Lemma 5]. We conclude that cs = cs′ , and so
there is a constant c such that u = c μ-a.e. in s for all m-simplexes s of
X. Consequently, un → c in L2(X, μ), and pointwise μ-a.e. in X. The
constant c equals 0 because 0 =

∫

X undμ → c μ(X), but on the other hand
c = 1/

√

μ(X) because 1 =
∫

X u2
n dμ → c2μ(X). This contradiction estab-

lishes (4.2).
Write

(4.3) E0 = inf{E(ϕ̃| ˜F ) : ϕ̃ ∈ Aχ̃},

and consider a corresponding minimizing sequence (ϕ̃i) ⊂ Aχ̃. The mid-
point map of two maps ϕ̃, ϕ̃′ ∈ Aχ̃ is likewise of class Aχ̃. Furthermore,
the distance function d

˜Y (ϕ̃, ϕ̃′) ∈ W 1,2( ˜X) (see for example [14, paragraph
preceding (2.4)]) is essentially ΓX -invariant in view of (4.1). Now apply [25,
Theorem 2.2] or [14, (3.3), (3.5)] (involving quadrilateral comparison) to
each of the essentially ΓX -invariant functions ũij := d

˜Y (ϕ̃i, ϕ̃j) ∈ W 1,2
loc ( ˜X)

considered on each m-simplex s̃ν . After summation over ν, this leads to

(4.4) lim
i,j→∞

∫

˜F
|∇ũij |2 dμ̃ = 0.

Because ũij is ΓX -invariant the integrals in (4.4) and in (4.5) (below) do not
depend on the particular choice of ˜F . Denoting by aij the mean value of
ũij | ˜F with respect to μ̃| ˜F , we obtain from (4.2) and (4.4)

(4.5) lim
i,j→∞

∫

˜F
(ũij − aij)2dμ̃ = 0.
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Note that ũij = 0 q.e. (in particular μ̃-a.e.) in ˜F \ ˜Ω, and that μ̃( ˜F \ ˜Ω) > 0
(under our temporary hypothesis that Ω �= X). It follows from (4.5) (with
integration over ˜F \ ˜Ω only) that aij → 0 as i, j → ∞. Inserting this in (4.5)
as it stands yields

∫

˜F
ũ2

ijdμ̃ � 2
∫

˜F
(ũij − aij)2dμ̃ + 2a2

ij

∫

˜F
dμ̃ → 0 as i, j → ∞

since ũ2
ij � 2(ũij − aij)2 + 2a2

ij . Clearly, this applies with ˜F replaced by
any m-simplex of ˜F , or even of ˜X, hence also with ˜F replaced by any closed
star ˜S in ˜X. The Cauchy sequence (ϕ̃i) in L2(˜S, ˜Y ) therefore converges to
a map ϕ̃0 ∈ L2(˜S, ˜Y ), i.e.,

∫

˜S
d2

˜Y
(ϕ̃i, ϕ̃0) dμ̃ → 0 as i → ∞.

The sequence (E(ϕ̃i)) is bounded because E(ϕ̃i|s̃) � E(ϕ̃i| ˜F ) → E0 for any
m-simplex s̃ of ˜S and any choice of a “fundamental domain” ˜F containing
s̃. It follows by Lemma 2.5 with X replaced by ˜S (compact and admissible)
that ϕ̃0 ∈ E(˜S, ˜Y ), and after passing to a subsequence, still denoted (ϕ̃i),
that

(4.6)
1
k

k
∑

i=1

d
˜Y (ϕ̃i, ϕ̃0) → 0 q.e. in ˜S as k → ∞

when also ϕ̃0 is taken to be quasicontinuous in ˜S. As the stars ˜S vary,
the corresponding maps ϕ̃0 (after being redefined on a μ-nullset) become
restrictions of a single quasicontinuous map ϕ̃0 ∈ Eloc( ˜X, ˜Y ), and (4.6) holds
q.e. in ˜X. Since ˜X has a countable base, countably many stars ˜S cover ˜X,
and (4.6) therefore holds q.e. in ˜X as k → ∞.

We show that ϕ̃0 ∈ Aχ̃. Because each ϕ̃i ∈ A we have for γ ∈ ΓX by
the triangle inequality, interpolating the point ϕ̃i ◦ γ = χ∗(γ) ◦ ϕ̃i, summing
over i ∈ {1, . . . , k}, and dividing by k:

d
˜Y (ϕ̃0 ◦ γ, χ∗(γ) ◦ ϕ̃0) � 1

k

k
∑

i=1

d
˜Y (ϕ̃0 ◦ γ, ϕ̃i ◦ γ)

+
1
k

k
∑

i=1

d
˜Y (χ∗(γ) ◦ ϕ̃i, χ∗(γ) ◦ ϕ̃0)

→ 0 q.e. in ˜X as k → ∞,(4.7)
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according to (4.6). Here we use that ΓY is countable and that χ∗(γ) ∈ ΓY

is an isometry of ˜Y . From (4.7) it follows that d
˜Y (ϕ̃0 ◦ γ, χ∗(γ) ◦ ϕ̃0) = 0,

that is,

(4.8) χ∗(γ) ◦ ϕ̃0 = ϕ̃0 ◦ γ q.e. in ˜X

for every γ ∈ ΓX . Because ϕ̃0 ∈ Eloc( ˜X, ˜Y ) we conclude from (4.8) that
ϕ̃0 ∈ A. Inserting ϕ̃i = χ̃ q.e. in ˜X \ ˜Ω in (4.6) (with ˜S replaced by ˜X)
we obtain d

˜Y (χ̃, ϕ̃0) = 0 q.e. in ˜X \ ˜Ω. Thus ϕ̃0 = χ̃ q.e. in ˜X \ ˜Ω, and so
altogether ϕ̃0 ∈ Aχ̃.

Finally, by definition of E0,

E0 � E(ϕ̃0| ˜F ) =
n

∑

ν=1

E(ϕ̃0|s̃ν) �
n

∑

ν=1

lim inf
i→∞

E(ϕ̃i|s̃ν)

� lim inf
i→∞

n
∑

ν=1

E(ϕ̃i|s̃ν) = lim
i→∞

E(ϕ̃i| ˜F ) = E0,

the second inequality by [25, Theorem 1.6.1] or [9, Lemma 9.1] (on lower
semicontinuity of energy), applied to the m-simplexes s̃ν of ˜F . Consequently,
E(ϕ̃0| ˜F ) = E0, and so ϕ̃0 ∈ Aχ̃ minimizes the energy of restrictions of all
maps of class Aχ̃ to any prescribed “fundamental domain” ˜F for ΓX , as in
the paragraph preceding the one containing (3.3).

Step 2. The remaining properties of ϕ̃0 and its projection ϕ0. Fix a
point p̃ ∈ ˜Ω ∪ ∂˜Ω. By suitably subdividing the given triangulation of X and
hence of ˜X we obtain by [37, Lemma 1, p. 144] a triangulation T of X
in which p := pX(p̃) is a vertex, and by [42, Theorem 35] that every open
star is contained in some ball in X of radius rX . It follows that p̃ is a
vertex of the induced triangulation ˜T of ˜X, and the open star ˜S of p̃ in
( ˜X, ˜T ) is contained in B

˜X(p̃, rX) because B
˜X(p̃, rX) projects isometrically

on BX(p, rX) (cf. (2.2)) and hence pX(˜S) = S. It follows that ˜S ⊂ ˜F for a
suitable “fundamental domain” ˜F in ( ˜X, ˜T ). According to [18, Theorem 1
and Corollary 3], ˜S is admissible, along with ˜X. Furthermore, ˜S satisfies
the Poincaré inequality

(4.9)
∫

˜S
ũ2dμ̃ � c2

∫

˜S
|∇ũ|2dμ̃ for all ũ ∈ W 1,2

0 (˜S),

for some constant c2; see [9, Remark 5.5, p. 76] or [13, Lemma 1(c)]. In
a triangulation of ˜S denote by ω̃ � ˜S an open star containing p̃. (Here ω̃
replaces the disc D in [28, p. 63], or the star Bj in the paragraph containing
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(3.6) above, both for the free homotopy problem.) Then F̃ ∩ γ(ω̃) = ∅ for
all γ ∈ ΓX \ {id}, cf. (2.2) and subsequent text. Given a (quasicontinuous)
map θ̃ ∈ E(˜S, ˜Y ) such that θ̃ = ϕ̃0 in ˜S \ (ω̃ ∩ ˜Ω) (that is, in ˜S \ ω̃ and in
˜S \ ˜Ω), define θ̃′ : ˜X → ˜Y in analogy with (3.6) by

(4.10) θ̃′ =

{

χ∗(γ) ◦ θ̃ ◦ γ−1 in γ(ω̃) for any γ ∈ ΓX

ϕ̃0 elsewhere in ˜X.

In particular, θ̃′ = ϕ̃0 in ˜F \ ˜S because ˜F is “almost fundamental” and hence
˜F \ ˜S ⊂ ˜F \ ω̃ = ˜F \

⋃

γ∈ΓX
γ(ω̃). For every γ ∈ ΓX we have

(4.11) θ̃′ = χ∗(γ) ◦ θ̃ ◦ γ−1 q.e. in γ(˜S).

Indeed, this holds (even everywhere) in γ(ω̃) by the former equation of
(4.10). And (4.11) also holds q.e. in γ(˜S \ ω̃) because we have, q.e. in that
set,

θ̃′ = ϕ̃0 = χ∗(γ) ◦ ϕ̃0 ◦ γ−1 = χ∗(γ) ◦ θ̃ ◦ γ−1

according to the latter equation of (4.10) followed by (4.8), and next by
ϕ̃0 = θ̃ in ˜S \ ω̃, whence ϕ̃0 ◦ γ−1 = θ̃ ◦ γ−1 in γ(˜S \ ω̃). Explicitly, the latter
equation of (4.10) reads

(4.12) θ̃′ = ϕ̃0 in ˜R := ˜X \
⋃

γ∈ΓX

γ(ω̃).

The sets γ(˜S) (γ ∈ ΓX) together with the interior ˜R◦ of ˜R form a countable
open cover of ˜X because ω̃ � ˜S. From (4.11) and (4.12) it follows that θ̃′ is
quasicontinuous and of locally finite energy in ˜X because ϕ̃0 and each χ∗(γ) ◦
θ̃ ◦ γ−1 have these two properties in ˜R◦ ⊂ ˜X and in γ(˜S), respectively, cf. (i)
preceding Equation (2.21). Similarly, θ̃′ = ϕ̃0 = χ̃ q.e. in ˜X \ ˜Ω. Altogether,
this shows that θ̃′ ∈ Aχ̃.

In what follows we assume for convenience that ω̃ ∩ ˜Ω is connected (oth-
erwise consider each component of ω̃ ∩ ˜Ω separately). In the display (4.13)
below, the first equation holds because θ̃ = θ̃′ in ω̃ by (4.10) with γ = id. The
second equation in (4.13) holds by Lemma 2.3(b) (applied with ˜X replaced
by ˜F , or rather by each m-simplex of ˜F ) because μ̃(∂ ˜S) = 0. The inequality
E(θ̃′| ˜F ) � E(ϕ̃0| ˜F ) holds because ϕ̃0, θ̃

′ ∈ Aχ̃ and that ϕ̃0 is energy mini-
mizing relative to Aχ̃; see the end of Step 1. Again by Lemma 2.3(b) we
similarly have e(θ̃′| ˜F ) = e(ϕ̃0| ˜F ) μ-a.e. in ˜F \ ˜S because θ̃′ = ϕ̃0 in ˜F \ ˜S,
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as noted after (4.10). Altogether we thus obtain

E(θ̃) = E(θ̃′|˜S) = E(θ̃′| ˜F ) −
∫

˜F\˜S
e(θ̃′| ˜F ) dμ̃

� E(ϕ̃0| ˜F ) −
∫

˜F\˜S
e(ϕ̃0| ˜F ) dμ̃ = E(ϕ̃0|˜S)(4.13)

again because μ̃(∂ ˜S) = 0. In view of the property of θ̃ imposed in the lines
preceding (4.10) we conclude that ϕ̃0|˜S is the unique variational solution
to the ordinary Dirichlet problem in ˜S, minimizing the energy of maps θ̃ of
class

Eχ̃|˜S(ω̃ ∩ ˜Ω, ˜Y ) := {θ̃ ∈ E(˜S, ˜Y ) : θ̃ = χ̃ in ˜S \ (ω̃ ∩ ˜Ω)};

cf. [14, Theorem 1], applied with X, Y,Ω, ϕ, χ replaced by ˜S, ˜Y , ω̃ ∩ ˜Ω, ϕ̃0|˜S,
χ̃|˜S, noting that ˜S is admissible and satisfies the Poincaré inequality (4.9),
and that ω̃ ∩ ˜Ω � ˜S.

Every component of ω̃ ∩ ˜Ω is regular. We shall, however, only need that
every point x̃ ∈ ω̃ ∩ ∂˜Ω is regular for ω̃ ∩ ˜Ω, that is, ˜X \ (ω̃ ∩ ˜Ω) is non-thin
at x̃; and that holds because even ˜X \ ˜Ω is non-thin at x̃, noting that X \ Ω
is non-thin at x := pX(x̃) because Ω is regular, that pX is a local isometry,
and that thinness is a local property.

We have chosen p̃ ∈ ˜Ω ∪ ∂˜Ω. Suppose first that p̃ ∈ ∂˜Ω. Because we
have seen that the points of ω̃ ∩ ∂˜Ω are regular for ω̃ ∩ ˜Ω, and because χ̃ is
continuous, it follows from [14, Theorem 1] or [16, Theorem 4] (applied as
above) that a version of ϕ̃0 is continuous up to the boundary at the portion
ω̃ ∩ ∂˜Ω � p̃ of the boundary of ω̃ ∩ ˜Ω, and hence up to the entire boundary
∂˜Ω, by varying p̃ (and ω̃).

If instead p̃ ∈ ˜Ω, and hence p̃ ∈ ˜S ∩ ˜Ω, choose the open star ω̃ � p̃, now
in a triangulation of ˜S ∩ ˜Ω, and so that ω̃ � ˜S ∩ ˜Ω. Then ϕ̃0 is, in particular,
locally energy minimizing in ω̃ ∩ ˜Ω = ω̃ (cf. the paragraph preceding the one
containing (3.6)). It follows by [11, Theorem 1] or [17, Theorem 1] (applied as
above, noting that now ˜Ω ∩ ω̃ = ω̃) that a version of ϕ̃0 is (locally uniformly)
Hölder continuous in ω̃, and hence in ˜Ω, by varying p̃.

Because ϕ̃0 = χ̃ q.e. off ˜Ω, and χ̃ is continuous, we altogether conclude
that ϕ̃0 (∈ Aχ̃) has a continuous version satisfying (3.2) and (4.1) everywhere
in ˜X (with ϕ̃ replaced by ϕ̃0), so ϕ̃0 is χ∗-equivariant. It follows that ϕ̃0
has a continuous projection ϕ0 : X → Y , freely homotopic with χ, as shown
in the paragraph containing (3.2). The homotopy Φ constructed there has
Φ(x, t) = χ(x) for x ∈ X \ Ω, and ϕ0 is therefore homotopic with χ through
maps of class Cχ(Ω, Y ), so ϕ0 ∈ Hχ(Ω, Y ).
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To show that E(ϕ0) � E(ϕ) for every ϕ ∈ Hχ(Ω, Y ), note first that
E(ϕ̃0| ˜F ) � E(ϕ̃| ˜F ) by (4.3) for any ϕ̃ ∈ Aχ̃ (see the end of Step 1). For
continuous ϕ̃ ∈ Aχ̃ we have shown in (3.3) that E(ϕ̃| ˜F ) = E(ϕ), where now
ϕ ∈ Hχ(Ω, Y ) denotes the projection of ϕ̃ (see the paragraph containing
(3.2)). As shown in the beginning of Step 1, every map ϕ ∈ Hχ(Ω, Y ) has
a χ∗-equivariant lift ϕ̃ which equals χ̃ in ˜X \ ˜Ω, and so ϕ̃ ∈ Aχ̃. Conse-
quently, E(ϕ0) = E(ϕ̃0| ˜F ) � E(ϕ̃| ˜F )=E(ϕ), so ϕ0 minimizes energy within
Hχ(Ω, Y ). Furthermore, ϕ0 is (locally uniformly) Hölder continuous in Ω
because ϕ̃0 is so in ˜Ω and because pX and pY are local isometries.

The proof that ϕ0 is harmonic in Ω (cf. Remark 2.6) is the same as in
Step 4 of the proof of Theorem 3.2, except that X, ϕ shall now be replaced by
Ω, ϕ0, and any subset of X by its intersection with Ω (though the homotopy
Ψ is still defined on X × [0, 1], and the set X \ U shall remain unaltered).

Step 3. Uniqueness. Consider two solutions ϕ0, ϕ1 to the Dirichlet
homotopy problem, that is, ϕ0, ϕ1 ∈ Hχ(Ω, Y ) have (the same) minimal
energy. Then ϕ0, ϕ1 lift to continuous energy minimizing χ∗-equivariant
maps ϕ̃0, ϕ̃1. Step 5 of the proof of Theorem 3.2 carries over (with H replaced
by Hχ(Ω, Y )). Thus d

˜Y (ϕ̃0, ϕ̃1) is a constant d̃, which equals 0 because
ϕ̃0 = ϕ̃1 on ˜X \ ˜Ω �= ∅. Consequently, ϕ̃0 = ϕ̃1, and so indeed ϕ0 = ϕ1, by
projection. Thus ϕ = ϕ0 is the unique solution to our Dirichlet homotopy
problem for the present case Ω �= X.

Step 4. The general case Ω ∩ bX �= bX, in particular bX �= ∅. Here
Ω ⊂ X \ σ for some nonvoid relatively open subset σ of bX. By subdivision
of the triangulation of X we arrange that σ contains an (m − 1)-simplex τ
of bX. (To justify this, write σ = U ∩ bX for some open subset U of X.
Choose a point a ∈ σ and an open subset V of X \ {a} so that U ∪ V = X.
According to [42, Theorem 35] there exists a subdivision of the triangulation
of X such that an open star S containing a is a subset of U , the alternative
S ⊂ V being ruled out since a /∈ V . Because a ∈ bX, there exists an (m − 1)-
simplex τ of S contained in bX, and hence τ ⊂ U ∩ bX = σ.)

Consider the disjoint union X∗ of X and another copy X ′ of X, though
glued together along τ . Then X∗ is a compact admissible Riemannian poly-
hedron (possibly with boundary), and X and X ′ are compact subpolyhedra
of X∗.7 Denote by ι : X∗ → X∗ the natural involution of X∗, interchang-
ing X and X ′. For any map ϕ ∈ Hχ(Ω, Y ) denote ϕ∗ the extension of

7For the easy proof that X∗ is admissible, apply [18, Lemma 5] as in [13, p. 773,
third and fourth paragraphs]. Here Z+ and Z− correspond to the present X and its
stated copy, and hence Z is the present X∗; furthermore, Z0 := Z+ ∩ τ = Z− ∩ τ
corresponds to the present τ .
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ϕ by χ ◦ ι|X∗ \ X; then ϕ∗ ∈ E(X∗, Y ) and E(ϕ∗) = E(ϕ) + E(χ ◦ ι|X ′) =
E(ϕ) + E(χ); cf. [9, Theorem 9.1 and Remark 9.1]. In particular, χ∗ ∈
E(X∗, Y ) is the symmetric extension of χ to X∗, and clearly ϕ∗ ∈ Hχ∗(Ω, Y ).
Conversely, for any ϕ∗ ∈ Hχ∗(Ω, Y ), the restriction ϕ := ϕ∗|X is of class
Hχ(Ω, Y ). Furthermore, ϕ is then an energy minimizer relative to Hχ(Ω, Y )
if and only if ϕ∗ is the unique energy minimizer ϕ∗

0 relative to Hχ∗(Ω, Y ).
Note at this point that Ω ⊂ X is a connected regular open subset also of
X∗, but Ω is not dense in X∗; thus Theorem 4.1 applies with X, χ replaced
by X∗, χ∗. We conclude that the restriction ϕ0 of ϕ∗

0 to X is the unique
energy minimizer relative to Hχ(Ω, Y ), and ϕ0|Ω = ϕ∗

0|Ω is indeed har-
monic and (locally uniformly) Hölder continuous, by Theorem 4.1 applied
to X∗, χ∗, Ω. �

5. The case of Riemannian manifold targets

In this final section we specialize the target by replacing the metric space
(Y, dY ) with a (smooth) Riemannian manifold (Y, h) without boundary (in
particular, Y is locally compact and carries an intrinsic Riemannian distance
dY associated with the Riemannian metric h). On the other hand, we no
longer require that the Riemannian metric g on the compact admissible
m-dimensional source polyhedron X be simplex-wise smooth, but merely
measurable, again with elliptic bounds ΛX , Λ−1

X , that is,

Λ−2
X �

m
∑

i,j=1

gij(x)ξiξj =
m

∑

i,j=1

gij(x)ξiξj � Λ2
X

for a.e. x ∈ X and for every m-tuple (ξ1, . . . , ξm), respectively (ξ1, . . . , ξm),
in R

m with Euclidean norm |ξ| = 1. Measurability and the term “almost
everywhere (a.e.)” refer to a fixed Riemannian volume measure on X, for
example the measure μe corresponding to the Euclidean Riemannian metric
ge on X (cf. [9, p. 52]). We then dispose of an alternative concept of
energy, of a more explicit character and defined for example in terms of an
isometric C1-embedding of (Y, h) as a Riemannian submanifold of some R

N ,
as in Nash’s theorem: A map ϕ : X → Y is said to be of class E(X, Y ) if
the components ϕ1, . . . , ϕN of ϕ : X → Y ↪→ R

N are of class W 1,2(X). In
the affirmative case the energy density of ϕ is defined by

(5.1) e(ϕ) =
N

∑

ν=1

|∇ϕν |2 =
N

∑

ν=1

gij∂iϕ
ν∂jϕ

ν ∈ L1(X, μ)
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(using the standard summation convention); and the energy is defined by
E(ϕ) =

∫

X e(ϕ) dμ (< ∞). Here μ denotes the Riemannian volume measure
on X corresponding to g, that is, dμ =

√
det g dμe in terms of the covariant

components gij (i, j = 1, . . . , m) of g and their determinant. For an equiva-
lent, covariant definition of E(ϕ), see [9, Definition 9.2 and Lemma 9.3]. If
g is simplex-wise smooth and if ϕ(X) has compact closure in Y , then the
energy density e(ϕ) from (5.1) equals a.e. the energy density e(ϕ) defined
by (2.21) (i.e., as the weak limit of the ε-approximate energy density eε(ϕ)
from (2.18) as ε → 0), provided that E(ϕ) < ∞ in the one sense or the
other [9, Theorem 9.2(b)]. The hypothesis ϕ(X) � Y is of course fulfilled if
Y is compact, or if X is compact and ϕ is continuous. Every map X → Y
of finite energy in the present sense has a quasicontinuous version (because
every function of class W 1,2(X) has so [9, p. 106 f]).

Recall that a complete Riemannian manifold (Y, h) with intrinsic
Riemannian distance function dY is a geodesic space, and (Y, dY ) has non-
positive Alexandrov curvature if and only if (Y, h) has nonpositive sectional
curvature [2, p. 173].

Propositions 2.1 and 2.2, as well as Lemma 2.4, do not involve energy
of maps, and hence carry over right away to the present setting without
requiring that the Riemannian metric g on X be simplex-wise smooth.
For the proof of Lemma 2.5 with the present energy concept (5.1), use [9,
Remark 9.6, p. 165 f] concerning lower semicontinuity of energy.

The proof of Lemma 2.7 (the three equivalent definitions of harmonicity
of a map) reduces to the case where Y is simply connected, in the same
way as described in the latter part of the proof of the lemma. For the
simply connected case, discussed in the former part of the proof, the energy
convexity property in the present setting can be found in [13, Lemma 3 and
eq. (10.1)]; furthermore, one shall replace [13, Theorem 1] by [13, Theorem 4]
in order to establish the present version of Lemma 2.7 above. (Similarly, in
footnote 5 to Remark 2.8, the reference to [13, Theorem 3] shall be replaced
by [13, Theorem 5] in order to recover Remark 2.8 in the present setting.)

For Proposition 3.1 one begins by using [9, Proposition 12.1] to recover
[9, Lemma 10.2(b)]. Next, use [11, Theorem 3 and Corollary 1], the latter
about the weak Poincaré inequality (see [9, Remark 9.6 (p. 165)]), leading
to (3.1), from where the above proof of Proposition 3.1 carries over to the
present setting.

Finally, note that Lemma 2.3 now becomes obvious, and that Lemma 2.3
(b) remains valid for measurable A, even if μ(∂A) > 0, because this reduces
to the case Y = R of functions of class W 1,2

loc (X) in view of (5.1); cf. [9,
Remark 5.2, p. 65]. For that reason the hypothesis μ(∂Ω) = 0 in
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Theorem 4.1 can be omitted in the present setting of maps into a Riemannian
manifold, see Theorem 5.2 below.

Proceeding to the solution of our two homotopy problems in the present
setting of manifold target, we shall need the following lemma about approxi-
mating a measurable Riemannian metric on X by simplex-wise smooth ones:

Lemma 5.1. Let X be a compact admissible polyhedron, and let g be a
measurable Riemannian metric on X with elliptic bounds ΛX , Λ−1

X . Consider
a sequence (gn) of simplex-wise smooth Riemannian metrics on X such that
gn → g pointwise a.e. as n → ∞, and furthermore that ΛX , Λ−1

X are elliptic
bounds for each gn as well. For any continuous map ϕ ∈ E(X, Y ) (in the
present sense) and any function f ∈ C(X) we then have

∫

X
f e(ϕ) dμ = lim

n→∞

∫

X
f en(ϕ) dμ,

where en(ϕ) denotes the energy density of ϕ relative to gn, cf. (5.1); and μn

denotes the volume measure on X relative to gn; that is, dμn =
√

det gn dμe =
√

det gn/ det g dμ.

Proof. A sequence (gn) as in Lemma 5.1 is constructed in [13, p. 791, last
paragraph]. In view of (5.1),

∫

X
f en(ϕ) dμn =

N
∑

ν=1

∫

X
f gij

n ∂iϕ
ν∂jϕ

ν
√

det gn/ det g dμ

→
N

∑

ν=1

∫

X
f gij∂iϕ

ν∂jϕ
ν dμ =

∫

X
f e(ϕ) dμ

as n → ∞. By dominated convergence we have in fact (when f � 0)

f

N
∑

ν=1

gij
n ∂iϕ

ν∂jϕ
ν � Λ2

Xf

N
∑

ν=1

m
∑

i=1

|∂iϕ
ν |2 ∈ L1(X, μ),

and
√

det gn � Λm
X ,

√
det g � Λ−m

X . �

For the proof of Theorem 3.2 in the present setting of manifold target,
refer in Step 2 for energy convexity to [13, Lemma 3] instead of [9, (11.2); 25,
2.2iv]; and to [14, Theorem 3] instead of [14, Theorem 1]. Inserting τ = 1

2
in the last estimate in (3.23) leads after projection to Hölder equicontinuity
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of the ϕi:

(5.2) dY (ϕi(x), ϕi(y)) � C10
√

E(ψi) dα
X(x, y) for x, y ∈ X

(with C10 = 2
√

C7), first relative to gn (simplex-wise smooth) and next rel-
ative to the given measurable Riemannian metric g in view of Lemma 3.1,
noting that C10 is independent of n, by Remark 3.4.

In Step 3, again first for gn and next for g, form in (3.31) the sum
over the m-simplexes s of X and over j ∈ {1, . . . , k}, and insert the result-
ing inequality in (3.26). Likewise, insert the former estimate (3.19) in the
remainder term in (3.26). Together, this leads to

(1 − τ)E(ϕi) � E(ψi) + C11
√

E(ψi)
k

∑

j=1

√

E(ψi) − E(wj
i )

+ C2
5C9τ

−1E(ψi)m/(m+2α)(E(ψi) − E(wjl
i )

)2α/(m+2α)(5.3)

(where C11 equals twice the number of m-simplexes in X). The midpoint
maps w̃j

i = 1
2 ϕ̃j

i + 1
2 ψ̃i and w̃jl

i = 1
2 ϕ̃j

i + 1
2 ϕ̃l

i being χ∗-equivariant (along with
ϕ̃j

i and ψ̃i, respectively ϕ̃l
i), their projections wj

i and wjl
i are of class H, and

of energy �E0. Inserting this in (5.3) and making i → ∞, whereby E(ψi) −
E0 → 0, we recover (3.32) and conclude that the sequence (ϕ̃j

i ) indeed is
minimizing. Step 4 (harmonicity) carries over right away to the present
setting, using [9, Remark 9.6] in place of Lemma 9.1 there.

In the proof of Theorem 4.1 (in the fifth paragraph of Step 1) the inequal-
ities e(ϕ) ◦ pX � e(ϕ̃) and hence E(ϕ) � E(ϕ̃| ˜F ), etc., clearly remain in
force in the present setting, with equality if ϕ̃ is continuous. At the end of
Step 1, [9, Lemma 9.1] (lower semicontinuity of energy) carries over in view
of [9, Remark 9.6]. In the case p̃ ∈ ∂˜Ω replace [14, Theorem 1] and [16, The-
orem 4] by [14, Theorem 3]. In the case p̃ ∈ ˜Ω replace [11, Theorem 1]
and [17, Theorem 1] by [14, Theorem 3]. The rest of the proof of Theorem 4.1
carries over right away, again in view of [9, Lemma 9.1] (lower semicon-
tinuity) and [13, Lemma 3] (energy convexity).

By way of summary, we have obtained the following combined version of
Theorems 3.2 and 4.1 in the present setting of a manifold codomain, whereby
g is no longer required to be simplex-wise smooth:

Theorem 5.2. Suppose that the admissible Riemannian polyhedron X is
compact and has measurable Riemannian metric g with elliptic bounds.
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Furthermore, suppose that the smooth Riemannian manifold (Y, h) with-
out boundary is compact and has nonpositive sectional curvature. The con-
clusions of Theorems 3.2 and 4.1 then hold true in terms of the energy
concept (5.1).
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Théorie du Potentiel, Paris, 9e année, n◦ 1, 1964–1965.

[8] G. Daskalopoulos and C. Mese, Harmonic maps from 2-complexes,
Commun. Anal. Geom. 14 (2006), 497–549.

[9] J. Eells, and B. Fuglede, Harmonic maps between riemannian polyhedra,
Cambridge Tracts in Mathematics, 142, Cambridge University Press,
2001.



Homotopy problems for harmonic maps 731

[10] J. Eells, and J.H. Sampson, Harmonic mappings of Riemannian mani-
folds, Amer. J. Math. 86 (1964), 109–160.
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