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Yang–Mills connections on nonorientable surfaces
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Dedicated to the memory of Raoul Bott

In [1], Atiyah and Bott studied Yang–Mills functional over a
Riemann surface from the point of view of Morse theory. We
generalize their study to all closed, compact, connected, possibly
nonorientable surfaces.

1. Introduction

Let G be a compact, connected Lie group. In [1], Atiyah and Bott identified
the affine space A of connections on a principal G-bundle P over a Riemann
surface with the affine space C of holomorphic structures on P C = P ×G GC,
where GC is the complexification of G. The identification A ∼= C is an iso-
morphism of affine spaces, thus a diffeomorphism. It was conjectured in [1]
that under this identification the Morse stratification of the Yang–Mills func-
tional on A exists and coincides with the stratification of C from algebraic
geometry [14, 25]. The conjecture was proved by Daskalopoulos in [6] (see
also [24] by R̊ade). The top stratum Css of C consists of semi-stable holomor-
phic structures on P C. Atiyah and Bott showed that the stratification of C is
GC-perfect, where GC = Aut(P C). It has strong implications on the topology
of the moduli space M(P ) of S-equivalence classes of semi-stable holomor-
phic structures on P C. When M(P ) is smooth, Atiyah and Bott found
a complete set of generators of the cohomology groups H∗(M(P ); Q) and
recursive relations which determine the Poincaré polynomial Pt(M(P ); Q).
When M(P ) is singular, their results give generators of the equivariant coho-
mology groups H∗

GC(Css; Q) and formula for the equivariant Poincaré series
P GC

t (Css; Q).
Under the isomorphism A ∼= C, the top stratum Css corresponds to Ass

which is the stable manifold of Nss, the set of central Yang–Mills connec-
tions, where the Yang–Mills functional achieves its absolute minimum [1,6].
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When the absolute minimum is zero, Nss is the set of flat connections (con-
nections with zero curvature). By [6, Theorem C],

M(P ) ∼= Nss/G,

where G = Aut(P ). So M(P ) can be identified with the moduli space of
gauge equivalence classes of central Yang–Mills connections on P . When
the absolute minimum of the Yang–Mills functional is zero, or equivalently,
the obstruction class o(P ) ∈ H2(Σ, π1(G)) is torsion, M(P ) is the moduli
space of gauge equivalence classes of flat connections on P . It is known that
flat G-connections give rise to representations π1(Σ) → G, where π1(Σ) is
the fundamental group of the base Riemann surface Σ of P . More precisely,

⋃

P ∈ PrinG(Σ)
o(P ) torsion

M(P ) = Hom(π1(Σ), G)/G,

where G acts on the representation variety Hom(π1(Σ), G) by conjugation.
Yang–Mills G-connections (critical points of the Yang–Mills functional) give
rise to representations ΓR(Σ) → G, where ΓR(Σ) is the central extension of
π1(Σ) [1, Section 6].

In this paper, we study the Yang–Mills functional on the space of connec-
tions on a principal G-bundle P over a closed, compact, connected, nonori-
entable surface Σ. The pull back P̃ of P to the orientable double cover
π : Σ̃ → Σ is always topologically trivial (Proposition 2.8), and A �→ π∗A
gives an inclusion from the space A of connections on P into the space Ã of
connections on P̃ . The Yang–Mills functional on A is the restriction of that
on Ã. In the nonorientable case, the absolute minimum of the Yang–Mills
functional is always zero, achieved by flat connections (see, for example [11]).
We have

⋃

P∈PrinG(Σ)

M(P ) = Hom(π1(Σ), G)/G

where M(P ) is the moduli space of gauge equivalence classes of flat connec-
tions on P .

Let Σ be a compact, connected, nonorientable surface without boundary.
Then Σ is diffeomorphic to the connected sum of m > 0 copies of RP2, and
the Euler characteristic χ(Σ) = 2 − m. We derive the following results in
this paper:

(i) We establish an exact correspondence between the gauge equivalence
classes of Yang–Mills G-connections on Σ and conjugacy classes of



Yang–Mills connections 619

representations ΓR(Σ) → G, where ΓR(Σ) is the super central extension
of π1(Σ) (Section 4).

(ii) We show that the moduli space of gauge equivalence classes of flat
connections on any fixed principal G-bundle P over Σ is nonempty
and connected if χ(Σ) < 0. This extends [11, Theorem 5.2] to the case
Σ = 4RP2 (Section 5.4).

(iii) When G = U(n), we give an explicit description of the G-equivariant
Morse stratification of the Yang–Mills functional, compute the Morse
index of each stratum, and relate lower strata to top strata of spaces
of U(m)-connections (m < n) on Σ and on its orientable double cover.
This reduction also gives us a reduction of equivariant Poincaré series
(Section 7).

We will describe the reduction (iii) for other classical groups in a subsequent
work [12].

In the orientable case, the reduction (iii) and the understanding of the
topology of the gauge group are sufficient to determine the equivariant
Poincaré series of the top stratum recursively (by induction on dimension of
the group G). In the nonorientable case, we need to compute the difference
of the equivariant Morse and Poincaré series; this difference vanishes in the
orientable case due to equivariant perfectness of the stratification. We will
address this in future works.

Using the Morse theory for the Yang–Mills functional over a closed (ori-
entable or nonorientable) surface (studied in [1] and in this paper, respec-
tively), D. Ramras proved an Atiyah–Segal theorem for surface groups in
[26]: for any closed surface Σ �= S2, RP2, K∗

def(π1(Σ)) ∼= K∗(Σ) for ∗ > 0
when Σ is orientable, and for ∗ ≥ 0 when Σ is nonorientable, where K∗

def are
Carlsson’s deformation K-groups. Using algebraic topology methods, T.
Baird computed the SU(2)-equivariant cohomology of Hom(π1(Σ), SU(2))
and the ordinary cohomology of the quotient space Hom(π1(Σ), SU(2))/
SU(2) for any closed nonorientable surface Σ [4].

For the purpose of Morse theory, we should consider the Sobolev space of
L2

k−1 connections Ak−1 and the group of L2
k gauge transformations Gk and

(GC)k, where k ≥ 2. We will not emphasize the regularity issues through
out the paper, but refer the reader to [1, Section 14] and [6] for details.

We now give a clear description of the remaining sections. In Section 2,
we review various representation varieties of flat connections, and show that
the pull-back of any principal G-bundle over a nonorientable surface to its
orientable double cover is topologically trivial. In Section 3, we review
definitions of the Yang–Mills functional and Yang–Mills connections over
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an orientable surface, and give corresponding definitions for a nonorientable
surface. We describe involutions on the principal G-bundles and on the space
of connections induced by the deck transformation on the orientable double
cover of the nonorientable surface. Section 4 contains our main construction
and justification. We introduce the super central extension of the fundamen-
tal group of a surface; it is the central extension if and only if the surface is
orientable. We establish a precise correspondence between Yang–Mills con-
nections and representations of the super central extension. We introduce
representation varieties for Yang–Mills connections, and describe an invo-
lution on symmetric representation varieties induced by the deck transfor-
mation on the orientable double cover. We also introduce extended moduli
spaces for nonorientable surfaces. In Section 5, we discuss the G-equivariant
Morse stratification and reduction for general compact connected Lie groups.
As a byproduct, we reproduce and extend the results on connected com-
ponents of the moduli space of flat connections over closed nonorientable
surfaces [10,11]. We specialize to the case G = U(n) in Section 6 (orientable
case) and Section 7 (nonorientable case). We give explicit description of the
G-equivariant Morse stratification of the space of connections. The main
reference of Section 6 of this paper is [1]. In [1, Section 7], the reduction
is derived at the level of strata, which are infinite dimensional manifolds.
Knowing the exact correspondence between Yang–Mills connections and rep-
resentations, we work mainly at the level of representation varieties which
are finite dimensional.

2. Flat connections and representations

Let G be a compact, connected Lie group, and let P be a principal G-
bundle on a closed, compact, connected surface Σ. We say a connection
A ∈ A(P ) is flat if its curvature vanishes. Let N0(P ) ⊂ A(P ) be the set of
flat connections on P . Note that when Σ is orientable, N0(P ) can be empty.

2.1. Representation varieties of flat connections

We first introduces some notation similar to that in [11, Section 2.3]. Let
Σ�

0 be the closed, compact, connected, orientable surface with � ≥ 0 handles.
Let Σ�

1 be the connected sum of Σ�
0 and RP2, and let Σ�

2 be the connected
sum of Σ�

0 and a Klein bottle. Any closed, compact, connected surface is of
the form Σ�

i , where � is a nonnegative integer, i = 0, 1, 2. Σ�
i is orientable if

and only if i = 0. Use 1 as the identity of π1(Σ) and e as the identity of G.
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We have

π1(Σ�
0) =

〈
A1, B1, . . . , A�, B� |

�∏

i=1

[Ai, Bi] = 1

〉
,

π1(Σ�
1) =

〈
A1, B1, . . . , A�, B�, C |

�∏

i=1

[Ai, Bi] = C2

〉
,

π1(Σ�
2) =

〈
A1, B1, . . . , A�, B�, D, C |

�∏

i=1

[Ai, Bi] = CDC−1D

〉
.

It is known that a flat connection gives rise to a homomorphism π1(Σ) →
G. Introduce representation varieties

X�,0
flat(G) =

{
(a1, b1, . . . , a�, b�) ∈ G2� |

�∏

i=1

[ai, bi] = e

}
,

X�,1
flat(G) =

{
(a1, b1, . . . , a�, b�, c) ∈ G2�+1 |

�∏

i=1

[ai, bi] = c2

}
,

X�,2
flat(G) =

{
(a1, b1, . . . , a�, b�, d, c) ∈ G2�+2 |

�∏

i=1

[ai, bi] = cdc−1d

}
.

Then ⋃

P∈PrinG(Σ�
i)

N0(P )/G0(P ) ∼= Hom(π1(Σ�
i), G) ∼= X�,i

flat(G)

for i = 0, 1, 2, � ≥ 0, where G0(P ) is the based gauge group which consists of
gauge transformations on G that take value the identity e ∈ G ∼= Aut(Px0)
at a fixed point of x0 ∈ Σ�

i . The action of G0(P ) on N0(P ) is free. Let
G(P ) = Aut(P ) be the gauge group. Then G0(P ) is a normal subgroup of
G(P ), and

G = G(P )/G0(P ).

Example 2.1.

X�,0
flat(U(1)) = {(a1, b1, . . . , a�, b�) ∈ U(1)2�} = U(1)2�,

X�,1
flat(U(1)) = {(a1, b1, . . . , a�, b�, c) ∈ U(1)2�+1 | c2 = 1} = U(1)2� × {±1},

X�,2
flat(U(1)) = {(a1, b1, . . . , a�, b�, d, c) ∈ U(1)2�+2 | d2 = 1} = U(1)2�+1

× {±1}.
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Let G act on G2�+i by

g · (c1, . . . , c2�+i) =
(
gc1g

−1, . . . , gc2�+ig
−1) .

This action preserves the subset X�,i
flat(G) ⊂ G2�+i, so G acts on X�,i

flat(G),
and

⋃

P∈PrinG(Σ�
i)

N0(P )/G(P ) ∼= Hom(π1(Σ�
i), G)/G ∼= X�,i

flat(G)/G

is the moduli space of gauge equivalence classes of flat G-connections on Σ�
i .

We also have homotopy equivalences

⋃

P∈PrinG(Σ�
i)

N0(P )hG(P ) ∼ Hom(π1(Σ�
i), G)hG ∼ X�,i

flat(G)hG

where XhG denotes the homotopic orbit space EG ×G X.

Notation 2.2. In the rest of this paper, we will use the following notation:
Denote the 2�-vector by V = (a1, b1, . . . , a�, b�) ∈ G2�. Define m(V ) and

r(V ) by

m(V ) =
�∏

i=1

[ai, bi],(2.1)

r(V ) = (b�, a�, . . . , b1, a1).(2.2)

Then m(r(V )) = m(V )−1. Given g ∈ G, define

gV g−1 = (ga1g
−1, gb1g

−1, . . . , ga�g
−1, gb�g

−1).

With the above notation, the representation varieties X�,i
flat(G) can be

written as follows:

X�,0
flat(G) = {V ∈ G2� | m(V ) = e},

X�,1
flat(G) = {(V, c) | V ∈ G2�, c ∈ G, m(V ) = c2},

X�,2
flat(G) = {(V, d, c) | V ∈ G2�, d, c ∈ G, m(V ) = cdc−1d}.
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2.2. Symmetric representation varieties of flat connections

Let Σ be a closed, compact, connected, nonorientable surface, and let π :
Σ̃ → Σ be the orientable double cover. The goal of this and the next
subsection is to relate the representation varieties of Σ to those of Σ̃.

Let Σ = Σ�
i , where i = 1, 2. Then Σ is homeomorphic to the connected

sum of 2� + i copies of RP2, and its orientable double cover Σ̃ is Σ2�+i−1
0 , a

Riemann surface of genus 2� + i − 1.
In the rest of this subsection, we follow [8, Section 5] closely. Define

Z�,1
flat(G) = {(V, c, V̄ , c̄) | V, V̄ ∈ G2�, c, c̄ ∈ G, m(V ) = cc̄,m(V̄ ) = c̄c},

Z�,2
flat(G) = {(V, d, c, V̄ , d̄, c̄) | V, V̄ ∈ G2�, d, c, d̄, c̄ ∈ G, m(V ) = cd̄c−1d,

m(V̄ ) = c̄dc̄−1d̄}

Lemma 2.3. For i = 1, 2, define Φ�,i
G : G2(2�+i) → G2(2�+i−1) by

Φ�,1
G (V, c, V̄ , c̄) = (V, c r(V̄ ) c−1),

Φ�,2
G (V, d, c, V̄ , d̄, c̄) = (V, d−1c r(V̄ ) c−1d, d−1, cc̄),

where V, V̄ ∈ G2�, c, d, c̄, d̄ ∈ G. Then

Φ�,i
G (Z�,i

flat(G)) = X2�+i−1,0
flat (G).

Proof. It is straightforward to check Φ�,i
G (Z�,i

flat(G)) ⊂ X2�+i−1,0
flat (G). It remains

to show that X2�+i−1,0
flat (G) ⊂ Φ�,i

G (Z�,i
flat(G)).

1. X2�,0
flat (G) ⊂ Φ�,1

G (Z�,1
flat(G)): Given (V1, V2) ∈ X2�,0

flat (G), where V1, V2 ∈
G2�, we have m(V1)m(V2) = e. Let

c̄ = m(V1) = m(V2)−1 = m(r(V2)).

Then

(V1, e, r(V2), c̄) ∈ Z�,1
flat(G), (V1, V2) = Φ�,1

G (V1, e, r(V2), c̄).

2. X2�+1,0
flat (G) ⊂ Φ�,2

G (Z�,2
flat(G)): Given (V1, V2, a, b) ∈ X2�+1,0

flat (G), where
V1, V2 ∈ G2� and a, b ∈ G, we have m(V1)m(V2)[a, b] = e. Let

d = a−1, d̄ = am(V1), c = a−1, c̄ = ab.
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Then

(V1, d, c, r(V2), d̄, c̄) ∈ Z�,2
flat(G), (V1, V2, a, b) = Φ�,2

G (V1, d, c, r(V2), d̄, c̄).

�

Let G2 act on Z�,1
flat(G), Z�,2

flat(G) by

(g1, g2) · (V, c, V̄ , c̄) = (g1V g−1
1 , g1cg

−1
2 , g2V̄ g−1

2 , g2c̄g
−1
1 ),

(g1, g2) · (V, d, c, V̄ , d̄, c̄) = (g1V g−1
1 , g1dg−1

1 , g1cg
−1
2 , g2V̄ g−1

2 , g2d̄g−1
2 g2c̄g

−1
1 ),

respectively, where V, V̄ ∈ G2� and g1, g2, c, c̄, d, d̄ ∈ G.

Lemma 2.4. The surjection Φ�,i
G : Z�,i

flat(G) → X2�+i−1,0
flat (G) induces home-

omorphisms

(2.3) Z�,i
flat(G)/G2 ∼= X2�+i−1,0

flat (G)/G ∼= Hom(π1(Σ2�+i−1
0 ), G)/G

and a homotopy equivalence

(2.4) Z�,i
flat(G)hG2 ∼ X2�+i−1,0

flat (G)hG,

where XhG denotes the homotopic orbit space EG ×G X.

Proof. The case i = 1 of (2.3) was proved in [8]; the case i = 2 is similar.
To see (2.4), let G1 = G × {1} ⊂ G × G and G2 = {1} × G ⊂ G × G, so

that G1 ∼= G2 ∼= G, and the G1-action and G2-action on Z�,i
flat(G) commute.

Note that G2 is a closed normal subgroup of G × G and that G2 acts on
Z�,i

flat(G) freely, so the natural projection Z�,i
flat(G) → Z�,i

flat(G)/G2 induces a
homotopy equivalence

Z�,i
flat(G)h(G×G) ∼ (Z�,i

flat(G)/G2)hG1 .

It is straightforward to check that the surjection Φ�,i
G :Z�,i

flat(G)→X2�+i−1,0
flat (G)

descends to a homeomorphism Φ̄�,i
G : Z�,i

flat(G)/G2 → X2�+i−1,0
flat (G). More-

over, Φ̄�,i
G is G-equivariant with respect to the G1-action on Z�,i

flat(G)/G2 and
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the G-action on X2�+i−1,0
flat (G), so Φ̄�,i

G induces a homotopy equivalence

(Z�,i
flat(G)/G2)hG1 ∼ X2�+i−1,0

flat (G)hG.

�

By [11, Theorem 3.3], when � > 0 there is a bijection

π0(Hom(π1(Σ�
0), G)/G) −→ π1(Gss),

where Gss = [G, G] is the maximal connected semi-simple subgroup of G.
Since G2 and G are connected, we conclude that

Corollary 2.5. Suppose that i = 1, 2 and � ≥ 0. Then when (�, i) �= (0, 1)
there is a bijection

π0(Z
�,i
flat(G)) −→ π1(Gss).

2.3. Involution on symmetric representation varieties of flat
connections

In this section, i = 1, 2.
Let τ : Z�,i

flat(G) → Z�,i
flat(G) be the involution defined in [8]:

τ(V, v, V̄ , v̄) = (V̄ , v̄, V, v),

where V, V̄ ∈ G2� and v, v̄ ∈ Gi. There is an injection I : X�,i
flat(G) → Z�,i

flat(G)
given by (V, v) �→ (V, v, V, v) such that

I(X�,i
flat(G)) = Z�,i

flat(G)τ ,

where Z�,i
flat(G)τ is the fixed locus of the involution τ . We will show that

Z�,i
flat(G)τ corresponds to topologically trivial flat G-bundles over the Rie-

mann surface Σ2�+i−1
0 . To do so, we first recall the definition of the obstruc-

tion map, which detects the topological type of a flat G-bundle.
Let H be the connected component of the identity of the center of G,

and let Gss = [G, G] be the commutator group. Then H is a compact torus,
and Gss is the maximal connected semi-simple subgroup of G. Let ρss :
G̃ss → Gss and ρ : G̃ → G be universal coverings. Then G̃ = h × G̃ss, where
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h = Lie(H). Define ρ2� : G̃2� → G2� by

ρ2�(ã1, b̃1, . . . , ã�, b̃�) �−→ (ρ(ã1), ρ(b̃1), . . . , ρ(ã�), ρ(b̃�)).

With the above notation, the obstruction map o : X�,0
flat(G) → Ker(ρss) ∼=

π1(Gss) is defined as follows: given V ∈ G2�, pick Ṽ ∈ G̃2� such that ρ2�(Ṽ )
= V , and define o(V ) = m(Ṽ ). Then o(V ) ∈ Kerρ ∩ Gss = Kerρss, and the
definition is independent of choice of Ṽ . The flat G-bundle associated to V
is topologically trivial if and only if o(V ) = ẽ, where ẽ is the identity element
of G̃.

Let o : X2�+i−1,0
flat (G) → Ker(ρss) be the obstruction map, and let

o′ = o ◦ Φ�,i
G : Z�,i

flat(G) −→ π1(Gss).

Let e be the identity element of G.

Lemma 2.6. o′(τ(y)) = o′(y)−1 for y ∈ Z�,i
flat(G).

Proof. We will prove the case i = 1. The case i = 2 is similar.
Given y = (V, c, V̄ , c̄) ∈ Z�,1

flat(G), where V, V̄ ∈ G2� and c, c̄ ∈ G, pick
V ′, V̄ ′ ∈ G̃2� and c′, c̄′ ∈ G̃ such that ρ2�(V ′) = V , ρ2�(V̄ ′) = V̄ , ρ(c′) = c,
and ρ(c̄′) = c̄. Then

ρ(m(V ′)(c′c̄′)−1) = m(V )(cc̄)−1 = e, ρ(m(V̄ ′)(c̄′c′)−1) = m(V̄ )(c̄c)−1 = e.

Let k = m(V ′)(c′c̄′)−1 and k̄ = m(V̄ ′)(c̄′c′)−1. Then k, k̄ ∈ Kerρ ⊂ Z(G̃).
We have

o′(y) = o′(V, c, V̄ , c̄) = o(V, cr(V̄ )c−1) = m(V ′)m(c′
r(V̄ ′)(c′)−1)

= m(V ′)c′
m(V̄ ′)−1(c′)−1 = (kc′c̄′)c′(k̄c̄′c′)−1(c′)−1 = kk̄−1,

o′(τ(y)) = o′(V̄ , c̄, V, c) = k̄k−1.

So o′(τ(y)) = o′(y)−1. �

Lemma 2.7. o′ ◦ I(x) = ẽ for all x ∈ X�,i
flat(G).

Proof. We will prove the case i = 1. The case i = 2 is similar.
Given (V, c) ∈ X�,1

flat(G), where V ∈ G2� and c ∈ G, pick Ṽ ∈ G̃2� and c̃ ∈
G̃ such that ρ2�(Ṽ ) = V and ρ(c̃) = c. Then ρ(m(Ṽ )c̃−2) = m(V )c−2 = e.
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Let k = m(Ṽ )c̃−2 ∈ Kerρ ⊂ Z(G̃). Then

o′ ◦ I(V, c) = o′(V, c, V, c) = o(V, cr(V )c−1) = m(Ṽ )m(c̃r(Ṽ )c̃−1)

= m(Ṽ )c̃m(Ṽ )−1c̃−1 = kc̃2 · c̃(kc̃2)−1c̃−1 = ẽ.

�

By [11, Theorem 5.2], any topological principal G-bundle on a closed,
connected, nonorientable surface admits a flat connection. By Lemma 2.7,
the pullback of a flat G-bundle over Σ�

i under the orientable double cover
Σ2�+i−1

0 → Σ�
i is a topologically trivial flat G-bundle over Σ2�+i−1

0 . We con-
clude that:

Proposition 2.8. Let G be a compact, connected Lie group. Let Σ be a
closed, connected, nonorientable surface, and let π : Σ̃ → Σ be the orientable
double cover. Then the pullback π∗P of any topological principal G-bundle
P → Σ is topologically trivial.

3. Yang–Mills functional and Yang–Mills connections

In this section, we will define Yang–Mills functional and Yang–Mills connec-
tions on nonorientable closed surfaces.

3.1. Yang–Mills functional and Yang–Mills connections on
orientable surfaces

We first recall the Yang–Mills functional and Yang–Mills connections on
orientable closed surfaces, following [1].

Let G be a compact connected Lie group. Let Σ be a Riemann surface.
There is a unique Kähler metric h such that the scalar curvature is a constant
and the Kähler form ω is the unique harmonic 2-form on Σ such that

∫
Σ ω =

1. We call it the canonical metric of the Riemann surface.
Let A(P ) denote the space of C∞ connections on P . Then A(P ) is

an affine space whose associated (real) vector space is Ω1(Σ, ad(P )). The
Yang–Mills functional L : A(P ) → R is defined by

(3.1) L(A) =
∫

Σ
Tr(F (A) ∧ ∗F (A)),

where F (A) is the curvature form of A.
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Let At = A + tη be a line of connections, where η ∈ Ω1(Σ, ad(P )). Then

F (At) = F (A) + tdAη +
1
2
t2[η, η],

so

L(At) = L(A) + 2t

∫

Σ
Tr(dAη ∧ ∗F (A)) + O(t2)

= L(A) + 2t

∫

Σ
Tr(η ∧ ∗dA ∗ F (A)) + O(t2)

So A is a critical point of L iff it satisfies the Yang–Mills equation:

(3.2) d∗
AF (A) = ∗dA ∗ F (A) = 0.

We call critical points Yang–Mills connections on P . Note that flat connec-
tions are Yang–Mills connections.

3.2. Involution on the principal bundle

Let Σ be a connected, nonorientable, closed surface. Then Σ is diffeomor-
phic to the connected sum of m > 0 copies of RP2’s. Let π : Σ̃ → Σ be
the orientable double cover, and let τ : Σ̃ → Σ̃ be the deck transformation.
Then Σ̃ is a Riemann surface of genus m − 1, and τ is an anti-holomorphic,
anti-symplectic involution with no fixed point.

Let P → Σ be a principal G-bundle. Let P̃ = π∗P be the pullback prin-
cipal G-bundle on Σ̃. By Proposition 2.8, P̃ is topologically trivial. There
is an involution τ̃ : P̃ → P̃ which is G-equivariant and covers τ : Σ̃ → Σ̃.

More explicitly, fix a trivialization P̃ ∼= Σ̃ × G. The right G-action on P̃
is given by

(x, h) · g = (x, h · g),

where g ∈ G, (x, h) ∈ Σ̃ × G. It is straightforward to check that

(x, h) · (g1g2) = ((x, h) · g1) · g2.

The involution τ̃ is G-equivariant with respect to the above G-action:

τ̃(x, h) · g = τ̃((x, h) · g)

for (x, h) ∈ P̃ , g ∈ G. Let s : Σ̃ → G be defined by

τ̃(x, e) = (τ(x), s(x)),
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where e ∈ G is the identity element. By the G-equivariance,

(3.3) τ̃(x, h) = (τ(x), s(x)h).

We have τ̃ ◦ τ̃ = idP̃, so

(3.4) s(τ(x)) = s(x)−1.

Conversely, given any smooth map s : Σ̃ → G such that (3.4) holds, we
define τ̃s : P̃ → P̃ by (3.3). Then τ̃s is a G-equivariant involution on P̃ which
covers the involution τ on Σ̃, so Ps = P̃ /τ̃s is a principal G-bundle over Σ.

In particular, we can take s to be a constant map: s(x) ≡ ε, where ε ∈ G,
ε2 = e. The involution τ̃ε ≡ τ̃s on P̃ ∼= Σ̃ × G is given by

(x, h) �−→ (τ(x), εh).

The zero connection on Σ̃ × G descends to a flat connection Aε on Pε = P̃ /τ̃ε

which corresponds to

(e, . . . , e, ε) ∈ X�,i
flat(G) ⊂ G2�+i.

The topological type of Pε = P̃ /τ̃ε can be determined by the following
way (see [11]). We use the notation in Section 2.3. Choose ε̃ ∈ ρ−1(ε), where
ρ : G̃ → G is the universal covering. The obstruction class

[ε̃2] ∈ Kerρ/2Kerρ ∼= π1(G)/2π1(G) ∼= H2(Σ; π1(G))

is independent of the choice of ε̃ and determines the topological type of Pε.
Recall that Kerρ ∼= π1(G) is abelian, and

PrinG(Σ) ∼= H2(Σ; π1(G)).

Conversely, a principal G-bundle over Σ of any topological type arises
this way. Recall that

Kerρ ⊂ Z(G̃) ⊂ h × T̃ss,

where T̃ss is some maximal torus of G̃ss. Given k ∈ Kerρ/2Kerρ represented
by a ∈ Kerρ, choose ε̃ ∈ h × T̃ss such that ε̃2 = a. Let ε = ρ(ε̃) ∈ G. Then
ε2 = e, and ε defines a principal G-bundle Pε → Σ with obstruction class k.

Example 3.1. G = U(n). Let ε ∈ U(n) such that ε2 = In (in particular,
det(ε) = ±1). Then c1(Pε) = c1(det(Pε)), where det(Pε) is the U(1)-bundle
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on Σ which is the quotient of Σ̃ × U(1) by the involution

(x, h) �−→ (τ(x), det(ε)h)

for x ∈ Σ̃, h ∈ U(1). So Pε
∼= P± if det(ε) = ±1, where c1(P+) = 0 and

c1(P−) = 1 in H2(Σ; Z) ∼= Z/2Z.

3.3. Involution on the adjoint bundle

Let g denote the Lie algebra of G. Let P̃ = Σ̃ × G be the trivial principal
G-bundle as above. Let ad(P̃ ) = P̃ ×G g, where G acts on P̃ × g by

g · (x, h, X) = (x, hg,Ad(g−1)(X))

for g ∈ G, (x, h) ∈ Σ̃ × G = P̃ , X ∈ g. Then ad(P̃ ) ∼= Σ̃ × g, and the natural
projection P̃ × g → Σ̃ × g is given by

(x, h, X) �−→ (x,Ad(h)(X)).

Let s : Σ̃ → G be a smooth map such that s(τ(x)) = s(x)−1, as in (3.4);
define τ̃s : P̃ → P̃ by τ̃s(x, h) = (τ(x), s(x)h), as in (3.3). The involution τ̃s

on P̃ induces an involution on ad(P̃ ):

(x, X) �−→ (τ(x), Ad(s(x))(X)).

We use the same notation τ̃s to denote it. We have

ad(P̃ )/τ̃s
∼= Ps ×G g.

3.4. Involution on the space of connections

τ̃s : ad(P̃ ) → ad(P̃ ) induces an involution

τ̃∗
s : A(P̃ ) −→ A(P̃ ),

where A(P̃ ) ∼= Ω1(Σ̃; g).
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More explicitly, given θ ∈ Ω1(Σ̃) and X ∈ Ω0(Σ̃; g),

τ̃∗
s (X ⊗ θ) = Ad(s)(τ∗X) ⊗ τ∗θ.

Similarly, τ̃s : ad(P̃ ) → ad(P̃ ) induces an involution on Ω2(Σ̃; g). The cur-
vature form F (A) can be viewed as an element in Ω2(Σ̃; g):

F (A) = X ⊗ ω

where X : Σ̃ → g and ω is the volume form of Σ̃. We have

F (τ̃∗
s A) = τ̃∗

s (F (A)) = τ̃∗
s (X ⊗ ω) = Ad(s)(τ∗X) ⊗ τ∗ω = −Ad(s)(τ∗X) ⊗ ω,

where we have used the fact that τ is anti-symplectic.
Recall that A(P̃ ) is a Kähler manifold: the complex structure is given

by α �→ ∗α, and the symplectic form Ω is given by

Ω(α, β) =
∫

Σ̃
Tr(α ∧ β).

The involution τ̃∗
s : A(P̃ ) → A(P̃ ) is anti-holomorphic and anti-symplectic.

The fixed locus A(P̃ )τ̃∗
s can be identified with A(Ps), the space of G-

connections on Ps = P̃ /τ̃s. A(P̃ )τ̃∗
s is a totally geodesic, totally real,

Lagrangian submanifold of A(P̃ ).

3.5. Yang–Mills functional and Yang–Mills connections on
nonorientable surfaces

Let (M, g) be a Riemannian manifold with an isometric involution τ : M →
M . It is straightforward to check the following statements.

Lemma 3.2. Let f : M → R be a smooth function such that f ◦ τ = f .

1. Let N be the set of critical points of f . Then τ(N) = N .

2. Let X be the gradient vector field of f . Then
(a) For any p ∈ M , we have τ∗(X(p)) = X(τ(p)).
(b) If γ : I → M is an integral curve of X, where I is an open subset

of R, so is τ ◦ γ : I → M .
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Let M τ be the fixed locus of τ . Suppose that

M τ =
⋃

i∈I

M τ
i

is a union of connected components, where each M τ
i is a submanifold of

M . Then each M τ
i is a totally geodesic submanifold of M because τ is an

isometry. It is straightforward to check the following statements.

Lemma 3.3. Let f : M → R be a smooth function such that f ◦ τ = f , and
let f τ : M τ → R be the restriction of f .Then

1. X(p) ∈ Tp(M τ ) for any p ∈ M τ , and X|Mτ is the gradient vector field
of f τ .

2. The set of critical points of f τ : M τ → R is N τ = N ∩ M τ , where N
is the set of critical points of f : M → R.

In our case, M = A(P̃ ) and f is the Yang–Mills functional L. We define
the Yang–Mills functional on A(P̃ )τ̃∗

s ∼= A(Ps) to be Lτ̃∗
s : A(P̃ )τ̃∗

s → R. We
call the critical points of Lτ̃∗

s Yang–Mills connections on P . By Lemma 3.2,
A is a Yang–Mills connection on P if and only if π∗A is a Yang–Mills con-
nection on P̃ .

It is worth mentioning that our definition of Yang–Mills connections
on non-orientable surfaces is different from the one introduced by S. Wang
in [29].

4. Yang–Mills connections and representations

In this section, we introduce the super central extension of the fundamental
group of a surface, and establish a precise correspondence between Yang–
Mills connections and representations of super central extension. We intro-
duce representation varieties for Yang–Mills connections on orientable and
nonorientable surfaces, and introduce extended moduli spaces for nonori-
entable surfaces.

4.1. Super central extension of the fundamental group

To relate Yang–Mills connections to representations, we need to introduce
certain extension of the fundamental group of the surface.

Let Σ be a closed, compact, connected surface. Given a ∈ π1(Σ), let
deg(a) = w1(TΣ)[a] ∈ Z/2Z, where [a] is the image of a under the group
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homomorphism π1(Σ) → H1(Σ; Z) = π1(Σ)/[π1(Σ), π1(Σ)], and w1(TΣ) ∈ H1

(Σ; Z/2Z) is the first Stiefel–Whitney class of the tangent bundle of Σ.
More geometrically, if γ : S1 → Σ is a loop representing a ∈ π1(Σ), then
deg(a) = 0 ∈ Z/2Z if the rank 2 real vector bundle γ∗TΣ over S1 is ori-
entable (or equivalently, topologically trivial); deg(a) = 1 ∈ Z/2Z if γ∗TΣ is
non-orientable (or equivalently, topologically non-trivial). The group homo-
morphism deg : π1(Σ) → Z/2Z is trivial if and only if Σ is orientable.

We are now ready to define the super central extension ΓR(Σ) of π1(Σ).
It fits in a short exact sequence of groups:

1 → R
α−→ ΓR(Σ)

β−→ π1(Σ) → 1.

Given r ∈ R, let Jr = α(r), so that Jr1+r2 = Jr1Jr2 . Given a ∈ ΓR(Σ), we
have

aJra
−1 =

{
Jr

J−r = J−1
r

if deg(β(a)) =

{
0
1

∈ Z/2Z.

This defines ΓR(Σ) up to group isomorphism. We will give a more explicit
description later.

When Σ is orientable, ΓR(Σ) is the central extension of π1(Σ) defined
in [1].

4.2. Representation varieties for orientable surfaces

Recall that any closed, compact, connected surface is diffeomorphic to Σ�
0,

a Riemann surface of genus �, for some nonnegative integer �. ΓR(Σ�
0) is

generated by

A1, B1, . . . , A�, B�, Jr

where r ∈ R, with relations

(1) Jr1Jr2 = Jr1+r2 ;

(2) [Ai, Jr] = [Bi, Jr] = 1, i = 1, . . . , �, r ∈ R;

(3)
∏�

i=1[Ai, Bi] = J1.

Let ρ : ΓR(Σ�
0) → G be a group homomorphism. From the relation (1),

we must have ρ(Jr) = exp(rX) for some X ∈ g, where g is the Lie algebra
of G. From relation (2) we must have ρ(Ai), ρ(Bi) ∈ GX , where GX is the
stabilizer of X of the adjoint action of G on g. Combined with relation (3),
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Hom(ΓR(Σ�
0), G) can be identified with

X�,0
YM(G) = {(V, X) ∈ G2� × g | V ∈ (GX)2�,m(V ) = exp(X)},

where m(a1, b1, . . . , a�, b�) =
∏�

i=1[ai, bi] was defined in Section 2.1.
Let N (P ) ⊂ A(P ) be the space of Yang–Mills connections on P . By

Theorem 6.16 in [1], N (P ) is nonempty for any underlying principal G-
bundle P . Let N0(P ) ⊂ A(P ) be the space of flat connections on P , as
in Section 2. The natural inclusion N0(P ) ⊂ N (P ) induces an inclusion
X�,0

flat(G) ↪→ X�,0
YM(G), V �→ (V, 0).

Let G(P ) be the gauge group, and let G0(P ) be the based gauge group,
as before.

Theorem 4.1 [1, Theorem 6.7]. There is a bijective correspondence
between conjugacy classes of homomorphisms ΓR(Σ) and gauge equivalence
classes of Yang–Mills G-connections over Σ. In other words, we have home-
omorphisms

⋃

P∈PrinG(Σ�
0)

N (P )/G0(P ) ∼= Hom(ΓR(Σ�
0), G) ∼= X�,0

YM(G),

⋃

P∈PrinG(Σ�
0)

N (P )/G(P ) ∼= Hom(ΓR(Σ�
0), G)/G ∼= X�,0

YM(G)/G,

where g ∈ G acts on G2� × g by g · (V, X) = (gV g−1, Ad(g)(X)).

4.3. Holonomy on the double cover

Let Σ be a closed, compact, connected, nonorientable surface, and let π :
Σ̃ → Σ be the orientable double cover. Then Σ̃ is a closed, compact, con-
nected orientable surface. Let τ : Σ̃ → Σ̃ be the deck transformation which
is an orientation reversing involution.

Let A ∈ A(P̃ ) be a Yang–Mills connection. Recall that A ∈ A(P̃ ) is a
Yang–Mills connection if and only if there exists u : Σ̃ → G such that

F (A) = Ad(u)(X) ⊗ ω,

where X is a constant vector in g, or equivalently, if there exists A′ ∈ A(P̃ )
and u ∈ G(P̃ ) such that A = u · A′ and F (A′) = X ⊗ ω.
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We fix a trivialization P̃ → Σ̃ × G such that

F (A) = X ⊗ ω,

where X ∈ g and ω is the volume form. Using this trivialization, we may
define the holonomy along a path (holonomies along based loops are defined
without using the trivialization of P̃ ). Given a path γ : [0, 1] → Σ̃, let
γ̃ : [0, 1] → P̃ be the horizontal lifting of γ (with respect to the connec-
tion A) with γ̃(0) = (γ(0), e), where e is the identity element. Then γ̃(1) =
(γ(1), g−1) for some g ∈ GX , where GX is the stabilizer of X ∈ g of the
adjoint action of G on g. We call g ∈ G the holonomy along γ.

Let γ̃′ : [0, 1] → P̃ be another horizontal lifting of γ with γ̃′(0) = (γ(0), h),
where h ∈ G. By G-invariance of the connection, we have γ̃′ = γ̃ · h, so

γ̃′(1) = (γ(1), g−1h) = (γ(1), h(h−1gh)−1).

To summarize, if we change the trivialization by a constant gauge transfor-
mation h, the curvature form changes from F (A) = X ⊗ ω ∈ Ω2(Σ̃; g) to

F (A) = Ad(h−1)X ⊗ ω ∈ Ω2(Σ̃; g)

and the holonomy along γ changes from g ∈ GX to h−1gh ∈ GAd(h−1)X .
Recall that Σ is diffeomorphic to Σ�

i for some � ≥ 0 and i = 1, 2, where Σ�
1

is the connected sum of a Riemann surface of genus � and the real projective
plane, and Σ�

2 is the connected sum of a Riemann surface of genus � and a
Klein bottle. We will discuss the case Σ�

1 in detail. The case Σ�
2 is similar.

Suppose that s : Σ̃ → G satisfies (3.4), so it defines an involution τ̃s :
P̃ → P̃ . Now look at Figure 1.

A

¯

¯

¯

B

C

C
A

Bp+

p−

Figure 1: Holonomy on the double cover Σ2
0.
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Ai, Bi are loops passing through p+ ∈ Σ̃, Āi, B̄i are loops passing through
p− = τ(p+), C is a path from p+ to p−, and C̄ is a path from p− to p+.
The holonomies along Ai, Bi, Āi, B̄i depend on the connection, not on the
trivialization. The holonomies along C and C̄ depend on the connection
and the trivialization. We choose the trivialization as follows. Let the
trivialization of P̃ at p+ and p− be given by h �→ h and h �→ s(p+)h, respec-
tively. We define c and c̄ as follows. Let γ : [0, 1] → P̃ be the horizon-
tal lifting of C such that γ(0) = (p+, e). Then γ(1) = (p−, s(p+)c−1). Let
γ̄ : [0, 1] → P̃ be the horizontal lifting of C̄ such that γ̄(0) = (p−, s(p+)).
Then γ̄(1) = (p+, c̄−1). Let γ′(t) = γ̄(t) · c−1. Then γ′ is also a horizontal
lifting of C̄, γ′(0) = (p−, s(p+)c−1), γ′(1) = (p+, c̄−1c−1) = (p+, (cc̄)−1). So
γ ∪ γ′ is a horizontal lifting of CC̄, and the holonomy along CC̄ is cc̄. Denote
the holonomies along Ai, Bi, Āi, B̄i by ai, bi, āi, b̄i, respectively.

We cut Σ̃ into two discs D+ and D− = τ(D+). The (oriented) boundaries
of D+ and D− are

∂D+ =
�∏

i=1

[Āi, B̄i]C−1C̄−1, ∂D− =
�∏

i=1

[Ai, Bi]C̄−1C−1.

Recall that
∫

Σ̃
ω = 1,

∫

Σ̃
ω =

∫

D+

ω +
∫

−D−

ω, τ∗ω = −ω

where −D− is D− with the reversed orientation. We conclude that

∫

D±

ω = ±1
2
.

Let z = s(p+) ∈ G. From the above discussion, we have

m(V )c̄−1c−1 = exp
(
−

∫

D−

X ⊗ ω
)

= exp(X/2),

m(V̄ )c−1c̄−1 = exp
(
−

∫

D+

Ad(z−1)X ⊗ ω
)

= exp(−Ad(z−1)X/2).

Moreover,

V ∈ (GX)2�, cz−1 ∈ GX , V̄ ∈ (GAd(z−1)(X))
2�, c̄z ∈ GAd(z−1)(X).
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So we shall define a symmetric representation variety

Z�,1
YM(G)z =

{
(V, c, V̄ , c̄, X) ∈ G2(2�+1) × g | V ∈ (GX)2�, cz−1 ∈ GX ,

V̄ ∈ (GAd(z−1(X))
2�, c̄z ∈ GAd(z−1)(X),m(V ) = exp(X/2)cc̄,

m(V̄ ) = exp(−Ad(z−1)X/2)c̄c
}

.

Our next goal is to rewrite Z�,1
YM(G)z without using z. Given (V, c, V̄ , c̄,

X) ∈ Z�,1
YM(G)z, we have c̄z ∈ GAd(z−1)(X), which implies Ad(z−1)(X) =

Ad(c̄)(X). So

m(V̄ ) = exp(−Ad(c̄)(X)/2)c̄c = c̄ exp(−X/2)c.

We also have

cc̄ ∈ GX , V̄ ∈ (GAd(c̄)(X))
2�, c̄c ∈ GAd(c̄)(X),

which imply
cV̄ c−1 ∈ (GX)2�.

Define

Z�,1
YM(G) =

{
(V, c, V̄ , c̄, X) ∈ G2(2�+1) × g | V, cV̄ c−1 ∈ (GX)2�,

m(V ) = exp(X/2)cc̄, m(V̄ ) = c̄ exp(−X/2)c
}

Then

Z�,1
YM(G)z = {(V, c, V̄ , c̄, X) ∈ Z�,1

YM(G) | Ad(c̄)(X) = Ad(z−1)(X)},

where V, V̄ ∈ G2�, c, c̄ ∈ G, X ∈ g, and

Z�,1
YM(G) =

⋃

z∈G

Z�,1
YM(G)z.

The involution τ̃s : A(P̃ ) → A(P̃ ) induces a map τz : Z�,1
YM(G)z →

Z�,1
YM(G)z−1

given by

(V, c, V̄ , c̄, X) �−→ (V̄ , c̄, V, c,−Ad(z−1)X),

or equivalently,

(4.1) (V, c, V̄ , c̄, X) �−→ (V̄ , c̄, V, c,−Ad(c̄)X).
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Note that (4.1) defines an involution τ : Z�,1
YM(G) → Z�,1

YM(G). Similarly, the
involution τ̃∗

s : A(P̃ ) → A(P̃ ) induces an involution τ : Z�,2
YM(G) → Z�,2

YM(G)
given by

(4.2) (V, d, c, V̄ , d̄, c̄, X) �−→ (V̄ , d̄, c̄, V, d, c,−Ad(c̄)X).

4.4. Symmetric representation varieties

In this subsection, i = 1, 2. Based on the discussion in Section 4.3, we define
symmetric representation varieties as follows:

Z�,1
YM(G) =

{
(V, c, V̄ , c̄, X) ∈ G2(2�+1) × g | V, cV̄ c−1 ∈ (GX)2�,

m(V ) = exp(X/2)cc̄, m(V̄ ) = c̄ exp(−X/2)c
}
,

Z�,2
YM(G) =

{
(V, d, c, V̄ , d̄, c̄, X) ∈ G2(2�+2) × g | V, d−1c V̄ c−1d ∈ (GX)2�,

d−1, cc̄ ∈ GX , m(V ) = exp(X/2)cd̄c−1d,

m(V̄ ) = c̄d exp(−X/2)c̄−1d̄
}
,

where m(a1, b1, . . . , a�, b�) =
∏�

i=1[ai, bi] is defined as in Section 2.1.

Lemma 4.2. For i = 1, 2, define Φ�,i
G : G2(2�+i) × g → G2(2�+i−1) × g by

Φ�,1
G (V, c, V̄ , c̄, X) = (V, c r(V̄ ) c−1, X),

Φ�,2
G (V, d, c, V̄ , d̄, c̄, X) = (V, d−1c r(V̄ ) c−1d, d−1, cc̄, X),

where V, V̄ ∈ G2�, c, d ∈ G, X ∈ g, and r(a1, b1, . . . , a�, b�) = (b�, a�,
. . . , b1, a1). Then

Φ�,i
G (Z�,i

YM(G)) = X2�+i−1,0
YM (G).

There are inclusions Z�,i
flat(G) ↪→ Z�,i

YM(G) given by (V, v, V̄ , v̄) �→
(V, v, V̄ , v̄, 0), where V, V̄ ∈ G2�, and v, v̄ ∈ Gi. We use the same notation
for Φ�,i

G in Lemma 2.3 and Lemma 4.2, since Φ�,i
G in Lemma 2.3 is just the

restriction of Φ�,i
G in Lemma 4.2.

Proof of Lemma 4.2. 1. Claim: Φ�,1
G (Z�,1

YM(G)) ⊂ X2�,0
YM (G).
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Given (V, c, V̄ , c̄, X) ∈ Z�,1
YM(G), where V, V̄ ∈ G2�, c, c̄ ∈ G, and X ∈

g, we have

V, cV̄ c−1 ∈ (GX)2�, m(V ) = exp(X/2)cc̄, m(V̄ ) = c̄ exp(−X/2)c

Straightforward calculations show that cc̄ = exp(−X/2)m(V ) ∈ GX ,
and

m(cr(V̄ )c−1) = cm(r(V̄ )) c−1 = exp(X/2)(cc̄)−1.

So if (V, c, V̄ , c̄, X) ∈ Z�,1
YM(G), then

m(V )m(c r(V̄ ) c−1) = exp(X/2)cc̄ exp(X/2)(cc̄)−1

= exp(X/2) exp(Ad(cc̄)(X)/2) = exp(X),

where we have used cc̄ ∈ GX , i.e., Ad(cc̄)(X) = X. In other words,

Φ�,1
G (V, c, V̄ , c̄, X) = (V, c r(V̄ )c−1, X) ∈ X2�,0

YM (G).

2. Claim: X2�,0
YM (G) ⊂ Φ�,1

G (Z�,1
YM(G)).

Given (V1, V2, X) ∈ X2�,0
YM (G), where V1, V2 ∈ G2� and X ∈ g, we

have

V1, V2 ∈ (GX)2�, m(V1)m(V2) = exp(X).

Let c̄ = exp(−X/2)m(V1). Then c̄ ∈ GX , and

c̄ = exp(−X/2) exp(X)m(V2)−1 = exp(X/2)m(r(V2)).

We have

m(V1) = exp(X/2)c̄, m(r(V2)) = exp(−X/2)c̄ = c̄ exp(−X/2),

so

(V1, e, r(V2), c̄, X) ∈ Z�,1
YM(G),

and

(V1, V2, X) = Φ�,1
G (V1, e, r(V2), c̄, X) ∈ Φ�,1

G (Z�,1
YM(G)).

3. Claim: Φ�,2
G (Z�,2

YM(G)) ⊂ X2�+1,0
YM (G).
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Given (V, d, c, V̄ , d̄, c̄, X) ∈ Z�,2
YM(G), where V, V̄ ∈ G2�, d, c, d̄, c̄ ∈ G,

and X ∈ g, we have

V, d−1c r(V̄ ) c−1d ∈ (GX)2�, m(V ) = exp(X/2)cd̄c−1d, m(V̄ )

= c̄d exp(−X/2)c̄−1d̄.

Straightforward computations show that

m(V )m(d−1c r(V̄ ) c−1d)[d−1, cc̄] = m(V )d−1cm(V̄ )−1c−1d[d−1, cc̄]
= exp(X/2) exp(Ad(cc̄)(X)/2)
= exp(X)

where we also used cc̄ ∈ GX , i.e., Ad(cc̄)(X) = X. In other words,

Φ�,2
G (V, d, c, V̄ , d̄, c̄, X) = (V, d−1c r(V̄ )c−1d, d−1, cc̄, X) ∈ X2�+1,0

YM (G).

4. Claim: X2�+1,0
YM (G) ⊂ Φ�,2

G (Z�,2
YM(G)).

Given (V1, V2, a, b, X) ∈ X2�+1,0
YM (G), where V1, V2 ∈ G2� and a, b ∈

G, we have

V1, V2 ∈ (GX)2�, a, b ∈ GX , m(V1)m(V2)[a, b] = exp(X).

Let

d = a−1, d̄ = a exp(−X/2)m(V1), c = a−1, c̄ = ab.

Then
exp(X/2)cd̄c−1d = m(V1),

and

c̄d exp(−X/2)c̄−1d̄ = aba−1 exp(−X/2)b−1 exp(−X/2)m(V1)
= [a, b] exp(−Ad(b)(X)/2) exp(−X/2)

× exp(X)(m(V2)[a, b])−1 = m(r(V2))

where we have used that b ∈ GX (i.e. Ad(b)(X) = X) in the last equal-
ity. So

(V1, d, c, r(V2), d̄, c̄, X) ∈ Z�,2
YM(G),

and
(V1, V2, a, b, X) = Φ�,2

G (V1, d, c, r(V2), d̄, c̄, X).

�
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Let G2 act on Z�,1
YM(G), Z�,2

YM(G) by

(g1, g2) · (V, c, V̄ , c̄, X) = (g1V g−1
1 , g1cg

−1
2 , g2V̄ g−1

2 , g2c̄g
−1
1 , Ad(g1)(X)),

(g1, g2) · (V, d, c, V̄ , d̄, c̄, X) = (g1V g−1
1 , g1dg−1

1 , g1cg
−1
2 , g2V g−1

2 , g2

× d̄g−1
2 , g2c̄g

−1
1 , Ad(g1)(X)),

respectively, where V, V̄ ∈ G2�, and g1, g2, c, c̄, d, d̄ ∈ G. Slight modification
of the proof of Lemma 2.4 gives the following:

Lemma 4.3. The surjection Φ�,i
G : Z�,i

YM(G) → X2�+i−1,0
YM (G) induces home-

omorphisms

(4.3) Z�,i
YM(G)/G2 ∼= X2�+i−1,0

YM (G)/G ∼= Hom(ΓR(Σ2�+i−1
0 ), G)/G

and a homotopy equivalence

(4.4) Z�,i
YM(G)hG2 ∼ X2�+i−1,0

YM (G)hG

between homotopic orbit spaces.

4.5. Involution on representation varieties for Yang–Mills
connections

Lemma 4.4. For i = 1, 2, define τ : G2(2�+i) × g → G2(2�+i) × g by

τ(V, c, V̄ , c̄, X) = (V̄ , c̄, V, c,−Ad(c̄)X),
τ(V, d, c, V̄ , d̄, c̄, X) = (V̄ , d̄, c̄, V, d, c,−Ad(c̄)X),

where V ∈ G2�, c, c̄, d, d̄ ∈ G, X ∈ g. Then

τ(Z�,i
YM(G)) = Z�,i

YM(G)

and τ ◦ τ restricts to the identity map on Z�,i
YM(G).

Remark 4.5. Based on (4.1) and (4.2), the involution τ defined in
Lemma 4.4 is the one induced by the Z/2Z deck transformation on the
double cover.
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Proof of Lemma 4.4. We first prove τ(Z�,i
YM(G)) ⊂ Z�,i

YM(G). i = 1: Given
(V, c, V̄ , c̄, X) ∈ Z�,1

YM(G), where V, V̄ ∈ G2�, c, c̄ ∈ G, and X ∈ g, we have

V, cV̄ c−1 ∈ (GX)2�, cc̄ ∈ GX ,

so c̄−1V̄ c̄ = (cc̄)−1(cV̄ c−1)(cc̄) ∈ (GX)2�, or equivalently,

(i) V̄ ∈ (c̄GX c̄−1)2� = (GAd(c̄)(X))2� = (G−Ad(c̄)(X))2�.

If we let X̄ = −Ad(c̄)(X), then we have V̄ ∈ (GX̄)2�. We also have

(ii) c̄V c̄−1 ∈ (c̄GX c̄−1)2� = (GAd(c̄)(X))2� = (GX̄)2�.

To summarize, we have

(4.5) V̄ , c̄V c̄−1 ∈ (GX̄)2�.

We also have

m(V̄ ) = c̄ exp(−X/2)c = (c̄ exp(−X/2)c̄−1)c̄c
= exp(X̄/2)c̄c,(4.6)

m(V ) = exp(X/2)cc̄ = cc̄ exp(X/2) = c(c̄ exp(X/2)c̄−1)c̄
= c exp(−X̄/2)c̄.(4.7)

By (4.5)–(4.7), we get τ(V, c, V̄ , c̄, X) = (V̄ , c̄, V, c, X̄) ∈ Z�,1
YM(G). This

proves
τ(Z�,1

YM(G)) ⊂ Z�,1
YM(G).

i = 2: Given (V, d, c, V̄ , d̄, c̄, X) ∈ Z�,2
YM(G), where V, V̄ ∈ G2�, d, c, d̄, c̄ ∈ G,

and g ∈ X, we have

V, d−1cV̄ c−1d ∈ G2�
X , cc̄ ∈ GX ,

so c̄−1V̄ c̄ = (cc̄)−1d(d−1cV̄ c−1d)d−1(cc̄) ∈ G2�
X , or equivalently,

(i) V̄ ∈ (c̄GX c̄−1)2� = (GAd(c̄)(X))2� = (GX̄)2�,

where X̄ = −Ad(c̄)(X). We also have

(ii) c̄−1(c̄c)c̄ = cc̄ ∈ GX , i.e., c̄c ∈ GAd(c̄)(X) = GX̄ .

On the other hand,

(iii) c̄−1d̄c̄ = (cc̄)−1 exp(−X/2)m(V )d−1(cc̄) ∈ GX , i.e., d̄ ∈ GX̄ .
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(iv) V ∈ (GX)2�, so c̄V c̄−1 ∈ (GAd(c̄)X)2� = (GX̄)2�, and thus

d̄−1c̄V c̄−1d̄ ∈ (GX̄)2�.

To summarize, we have

(4.8) V, d̄−1c̄V c̄−1d̄ ∈ (GX)2�, d̄−1, c̄c ∈ GX̄ .

We also have

m(V̄ ) = c̄d exp(−X/2)c̄−1d̄ = c̄ exp(−X/2)dc̄−1d̄

= exp(X̄/2)c̄dc̄−1d̄,(4.9)

m(V ) = exp(X/2)cd̄c−1d

= cd̄ · d̄−1(c̄c)−1c̄ exp(X/2)c̄−1(c̄c) · d̄ · c−1d;

= cd̄ exp(Ad
(
d̄−1) ◦ Ad

(
(c̄c)−1) (−X̄/2

)
c−1d

= cd̄ exp(−X̄/2)c−1d,(4.10)

where we have used d̄−1, (c̄c)−1 ∈ GX̄ in the last equality. By (4.8)–(4.10),

τ(V, d, c, V̄ , d̄, c̄, X) = (V̄ , d̄, c̄, V, d, c, X̄) ∈ Z�,2
YM(G).

This proves

τ(Z�,2
YM(G)) ⊂ Z�,2

YM(G).

It remains to show that τ ◦ τ : Z�,i
YM(G) → Z�,i

YM(G) is the identity map.
We first consider the case i = 1: given (V, c, V̄ , c̄, X) ∈ Z�,1

YM(G),

τ ◦ τ(V, c, V̄ , c̄, X) = τ(V̄ , c̄, V, c,−Ad(c̄)(X) = (V, c, V̄ , c̄,Ad(cc̄)(X))
= (V, c, V̄ , c̄, X),

where we have used cc̄ ∈ GX . The case i = 2 can be proved in the same way.
Thus we have

τ(Z�,i
YM(G)) ⊂ Z�,i

YM(G), Z�,i
YM(G) = τ ◦ τ(Z�,i

YM(G)) ⊂ τ(Z�,i
YM(G)).

�
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4.6. Representation varieties for nonorientable surfaces

From the above discussion, we have

(4.11)
⋃

P∈PrinG(Σ�
i)

N (P )/G(P ) ∼= Z�,i
YM(G)τ/(G × G)τ

for i = 1, 2, where τ : G × G → G × G is given by (g1, g2) �→ (g2, g1). We
now relate the right hand side of (4.11) to representations of the super
central extension ΓR(Σ�

i) of π1(Σ�
i).

ΓR(Σ�
1) is generated by

A1, B1, . . . , A�, B�, C, Jr,

where r ∈ R, with relations

(1) Jr1Jr2 = Jr1+r2 ;

(2) AiJrA
−1
i = BiJrB

−1
i = Jr, i = 1, . . . , �, r ∈ R;

(3) CJrC
−1 = J−r, r ∈ R;

(4)
∏�

i=1[Ai, Bi] = J1C
2.

Let ρ : ΓR(Σ�
1) → G be a group homomorphism. From relation (1) we must

have ρ(Jr) = exp(rX) for some X ∈ g. From relation (2) we must have
ρ(Ai), ρ(Bi) ∈ GX . From relation (3) we have Ad(ρ(C))(X) = −X. Com-
bined with relation (4), Hom(ΓR(Σ�

1), G) can be identified with

X�,1
YM(G) =

{
(V, c, X) ∈ G2�+1 × g | V ∈ (GX)2�,

Ad(c)(X) = −X, m(V ) = exp(X)c2
}

There is a homeomorphism X�,1
YM(G)

∼=−→ Z�,1
YM(G)τ given by

(V, c, X) �−→ (V, c, V, c, 2X), V ∈ G2�, c ∈ G, X ∈ g.

There is an inclusion X�,1
flat(G) ↪→ X�,1

YM(G) given by (V, c) �→ (V, c, 0).
ΓR(Σ�

2) is generated by

A1, B1, . . . , A�, B�, D, C, Jr,
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where r ∈ R, with relations

(1) Jr1Jr2 = Jr1+r2 ;

(2) AiJrA
−1
i = BiJrB

−1
i = DJrD

−1 = Jr, i = 1, . . . , �, r ∈ R;

(3) CJrC
−1 = J−r, r ∈ R;

(4)
∏�

i=1[Ai, Bi] = J1CDC−1D.

Let ρ : ΓR(Σ�
2) → G be a group homomorphism. From relation (1) we

must have ρ(Jr) = exp(rX) for some X ∈ g. From relation (2) we must have
ρ(Ai), ρ(Bi), ρ(D) ∈ GX . From relation (3) we have Ad(ρ(C))(X) = −X.
Combined with the relation (4), Hom(ΓR(Σ�

2), G) can be identified with

X�,2
YM(G) = {(V, d, c, X) ∈ G2�+2 × g | V ∈ (GX)2�, d ∈ GX ,

Ad(c)(X) = −X, m(V ) = exp(X)cdc−1d}.

There is a homeomorphism X�,2
YM(G)

∼=−→ Z�,2
YM(G)τ given by

(V, d, c, X) �−→ (V, d, c, V, d, c, 2X), V ∈ G2�, d, c ∈ G, X ∈ g.

There is an inclusion X�,2
flat(G) ↪→ X�,2

YM(G) given by (V, d, c) �→ (V, d, c, 0).
We obtain the following analog of Theorem 4.1 for nonorientable sur-

faces.

Theorem 4.6. There is a bijective correspondence between conjugacy
classes of homomorphisms ΓR(Σ) → G and gauge equivalence classes of
Yang–Mills G-connections over Σ. In other words, for i = 1, 2, we have

⋃

P∈PrinG(Σ�
i)

N (P )/G0(P ) ∼= Hom(ΓR(Σ�
i), G) ∼= X�,i

YM(G),

⋃

P∈PrinG(Σ�
i)

N (P )/G(P ) ∼= Hom(ΓR(Σ�
i), G)/G ∼= X�,i

YM(G)/G,

where g ∈ G acts on G2�+1 × g by

g · (V, c, X) = (gV g−1, gcg−1, Ad(g)(X)),

and on G2�+2 × g by

g · (V, d, c, X) = (gV g−1, gdg−1, gcg−1, Ad(g)(X)).
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4.7. Extended moduli spaces

The representation variety X�,0
YM(G) is a subset of Lisa Jeffrey’s extended

moduli space [15]. In this subsection, we define extended moduli spaces for
nonorientable surfaces.

Let Σ�,r
0 be the compact, connected, orientable surface with � handles

and r boundary components S1, . . . , Sr with coordinates (s1, . . . , sr) ∈ R/Z.
Let Σ�,r

1 be the connected sum of Σ�
0 and RP2, and let Σ�,r

2 be the connected
sum of Σ�

0 and a Klein bottle. The following discussion is a straightforward
generalization of the case i = 0 in [15].

Suppose that r > 0 and i = 0, 1, 2. Then any principal G-bundle P over
Σ�,r

i is topologically trivial. Let A(P ) be the space of smooth connections
on P . Then

A(P ) ∼= Ω1
Σ�,r

i

(g).

Define

AgG(Σ�,r
i ) = {A ∈ A(P ) | F (A) = 0, A|Uj

= Xj dsj on some open
neighborhood Uj of Sj for some Xj ∈ g, j = 1, . . . , r},

and define the compactly supported gauge group

Gc(Σ�,r
i ) = {s : Σ�,r

i → G | s(x) = e for x ∈ U, where U is an open

neighborhood of ∂Σ�,r
i }.

We define a moduli space

Mg

G(Σ�,r
i ) = AgF (Σ�,r

i )/Gc(Σ�,r
i ),

and introduce representation varieties

N gG(Σ�,r
0 ) = {(V, k2, . . . , kr, X1, . . . , Xr ∈ G2� × Gr−1 × g

r |
m(V ) = exp(X1) exp(Ad(k2)X2) · · · exp(Ad(kr)Xr)},

N gG(Σ�,r
1 ) = {(V, c, k2, . . . , kr, X1, . . . , Xr ∈ G2� × Gr × g

r |
m(V ) = exp(X1) exp(Ad(k2)X2) · · · exp(Ad(kr)Xr)c2},

N gG(Σ�,r
2 ) = {(V, d, c, k2, . . . , kr, X1, . . . , Xr ∈ G2� × Gr+1 × g

r |
m(V ) = exp(X1) exp(Ad(k2)X2)) · · · exp(Ad(kr)Xr)cdc−1d}.
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where m(a1, b1, . . . , a�, b�) =
∏�

i=1[ai, bi] as before. In particular,

N gG(Σ�,1
0 ) = {(V, X) ∈ G2� × g | m(V ) = exp(X)},

N gG(Σ�,1
1 ) = {(V, c, X) ∈ G2�+1 × g | m(V ) = exp(X)c2},

N gG(Σ�,1
2 ) = {(V, d, c, X) ∈ G2�+2 × g | m(V ) = exp(X)cdc−1d},

so

X�,i
YM(G) ⊂ N gG(Σ�,1

i ).

The following statement follows from the proof of [15, Proposition 5.3]:

Proposition 4.7. Let � ≥ 0, r > 0 be integers, and let i = 0, 1, 2. Then
there is a homeomorphism

Mg

G(Σ�,r
i ) ∼= N gG(Σ�,r

i ).

5. Equivariant Morse stratification of space of connections

In this section, we discuss the G-equivariant Morse stratification and reduc-
tion for general compact connected Lie groups. As a byproduct, we repro-
duce and extend the results on connected components of the moduli space
of flat connections over closed nonorientable surfaces [10,11].

5.1. Morse stratification with involution

Let (M, g) be a Riemannian manifold. Let f : M → R be a smooth function,
and let φt be the gradient flow of f . Suppose that the gradient flow is defined
for any time t ∈ R and the limits

lim
t→∞

φt(x), lim
t→−∞

φt(x)

exist for any x ∈ M . Let N be the set of critical points of f , and let

N =
⋃

μ∈Λ

Nμ

be the union of connected components. Suppose that each Nμ is a closed
nondegenerate critical submanifold of M . Given a critical subset Nμ, define
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its stable manifold Sμ and unstable manifold Uμ by

Sμ = {x ∈ M | lim
t→−∞

φt(x) ∈ Nμ}, Uμ = {x ∈ M | lim
t→+∞

φt(x) ∈ Nμ}.

Then

M =
⋃

μ∈Λ

Sμ

is a disjoint union of Morse strata. We assume that each Sμ is a submanifold
of M .

Suppose that f is invariant under some isometric involution τ : M → M .
By Lemma 3.2, τ induces an involution τ0 : Λ → Λ such that

τ(Nμ) = Nτ0(μ), τ(Sμ) = Sτ0(μ), τ(Uμ) = Uτ0(μ).

Proposition 5.1. Let (M, ω, J) be an almost Kähler manifold with an anti-
symplectic, anti-holomorphic involution τ : M → M . Suppose that f : M →
R is a τ -invariant smooth function. Suppose that Nμ is a closed subset of
M and a connected component of the set of critical points N of f . Suppose
that the set

Sμ = {x ∈ M | lim
t→−∞

φt(x) ∈ Nμ}

is an almost complex submanifold of M . If

Sτ
μ = {x ∈ M τ | lim

t→−∞
φt(x) ∈ N τ

μ}

is nonempty, then Sτ
μ is the stable manifold of N τ

μ with respect to f τ , and
the real codimension of Sτ

μ in M τ is equal to the complex codimension of Sμ

in M .

Note that M τ and Sτ
μ are not necessarily connected.

5.2. Morse stratification and Morse inequalities

Let Σ be a closed, compact, connected surface. Then Σ is diffeomorphic to
Σ�

i for some integer � ≥ 0 and i ∈ {0, 1, 2}. Recall that χ(Σ�
i) = 2 − 2� − i.
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Let G be a compact, connected Lie group. By Theorem 4.1 and
Theorem 4.6, we know that

⋃

P∈PrinG(Σ)

N (P )/G0(P ) ∼= Hom(ΓR(Σ), G),

⋃

P∈PrinG(Σ)

N (P )/G(P ) ∼= Hom(ΓR(Σ), G)/G.

Let Hom(ΓR(Σ), G)P ⊂ Hom(ΓR(Σ), G) be the subset corresponding to P ∈
PrinG(Σ), so that

Hom(ΓR(Σ), G) =
⋃

P∈PrinG(Σ)

Hom(ΓR(Σ), G)P ,

N (P )/G0(P ) ∼= Hom(ΓR(Σ), G)P , N (P )/G(P ) ∼= Hom(ΓR(Σ), G)P /G.

For a fixed topological principal G-bundle P over Σ, let

{Nμ̃(P ) | μ̃ ∈ π0(N (P ))}

be the set of connected components of N (P ). Let G(P )′ be the connected
component of the identity of G(P ). Then G(P )′ is a normal subgroup
of G(P ), and the discrete set π0(G(P )) can be identified with the group
G(P )/G(P )′. The action of G(P ) on N (P ) is continuous, and induces an
action of π0(G(P )) ∼= G(P )/G(P )′ on π0(N (P )). Define

Λ = π0(N (P ))/π0(G(P )).

Remark 5.2. When Σ is orientable, the action of π0(G(P )) on π0(N (P ))
is trivial by the results in [1], so Λ = π0(N (P )).

Let π : π0(N (P )) → Λ = π0(N (P ))/π0(G(P )) be the projection. Given
μ ∈ Λ, define

Nμ(P ) =
⋃

μ̃∈π−1(μ)

Nμ̃(P ).

Then G(P ) acts on Nμ(P ), and Nμ(P )/G(P ) is connected. Note that the
quotient G(P )/G0(P ) = G is connected, so

Vμ(P ) def= Nμ(P )/G0(P )

is connected.
Hom(ΓR(Σ), G)P =

⋃

μ∈Λ

Vμ(P )
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is a disjoint union of connected components. Each Nμ(P ) is a closed subset
of N (P ), thus of A(P ). Define

Aμ(P ) = {A ∈ A(P ) | lim
t→−∞

φt(A) ∈ Nμ(P )},

where φt is the gradient flow of LP . The limit exists by results in [6] and [24].
Notice that LP is constant on each Nμ(P ), and LP achieves its minimum on
Nμ(P ) within Aμ(P ). Each Aμ(P ) is a submanifold of A(P ), and the map
Aμ(P ) → Nμ(P ) given by A �→ lim

t→−∞
φt(A) is a G(P )-equivariant deforma-

tion retraction. We have

(5.1) A(P ) =
⋃

μ∈Λ

Aμ(P )

is a smooth stratification. This stratification is G(P )-equivariant in the sense
that G(P ) acts on each stratum. We call (5.1) the G(P )-equivariant Morse
stratification of A(P ) with respect to LP .

Remark 5.3. Given μ̃ ∈ π0(N (P )), define

Aμ̃(P ) = {A ∈ A(P ) | lim
t→−∞

φt(A) ∈ Nμ̃(P )}.

Then Aμ̃ is a connected submanifold of A(P ), and is a Morse stratum of
LP . When Σ is orientable, the Morse stratification coincides with the G(P )-
equivariant Morse stratification by Remark 5.2; when Σ is nonorientable, a
priori the Morse stratification can be finer than the G(P )-equivariant Morse
stratification.

We now assume that χ(Σ) < 0. Let Nss be the set where the Yang–Mills
functional LP achieves absolute minimum. Then Nss is connected (by results
in [1] when Σ is orientable, and by Theorem 5.6 when Σ is nonorientable).
Nss is the unique connected component of the critical set N (P ) with zero
Morse index, and its stable manifold Ass is the unique codimension zero
Morse stratum (which is also a G(P )-equivariant Morse stratum). Define

Vss(P ) = Nss/G0(P ).

Then Vss(P ) is connected.
When the obstruction class o(P ) ∈ H2(Σ, π1(G)) is a torsion element

(which is always true when Σ is nonorientable), Nss(P ) = N0(P ) is the
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space of flat connections on P , and

Vss(P ) ∼= Hom(π1(Σ), G)P ,

where Hom(π1(Σ), G)P is the connected component of Hom(π1(Σ), G) asso-
ciated to the topological G-bundle P (see [1, 11]).

In general, we are interested in the cohomology of the moduli space
M(P ) of gauge equivalence classes of minimal Yang–Mills connections on
P . More explicitly,

M(P ) def= Nss(P )/G(P ) ∼= Vss(P )/G.

When M(P ) is smooth and G(P ) acts on Nss(P ) freely, we have

H∗(M(P ); Q) ∼= H∗
G(P )(Nss(P ); Q) ∼= H∗

G(Vss(P ); Q).

The deformation retraction r : Aμ(P ) → Nμ(P ) given by the gradient
flow of LP is G(P )-equivariant, thus the following equivariant pairs are equiv-
alent for the purpose of (singular) equivariant cohomology:

(Aμ(P ),G(P )) ∼ (Nμ(P ),G(P )) ∼ (Nμ(P )/G0(P ),G(P )/G0(P ))
∼ (Vμ(P ), G).

In other words, we have the following homotopy equivalences of homotopic
orbit spaces:

Aμ(P )hG(P ) ∼ Nμ(P )hG(P ) ∼ Vμ(P )hG.

As a consequence, we have the following isomorphisms of (singular) equiv-
ariant cohomology:

(5.2) H∗
G(P )(Aμ(P ); Q) ∼= H∗

G(P )(Nμ(P ); Q) ∼= H∗
G(Vμ(P ); Q).

Let K be a field and let

P
G(P )
t (Aμ(P ); K) =

∑

i≥0

tidimH i
G(P )(Aμ(P ); K)

be the equivariant Poincaré series. Let

M
G(P )
t (LP ; K) =

∑

μ∈Λ

tλμP
G(P )
t (Aμ(P ); K)

= P
G(P )
t (Ass(P ); K) +

∑

μ∈Λ′

tλμP
G(P )
t (Aμ(P ); K)(5.3)
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be the G(P )-equivariant Morse series of LP : A(P ) → R, where λμ is the
real codimension of the stratum Aμ(P ) in A(P ) and Λ′ = {μ ∈ Λ | λμ > 0}.

The Morse stratification is smooth and G(P )-equivariant, so we have
equivariant Morse inequalities [6,17]: there exists a power series RK(t) with
nonnegative coefficients such that

(5.4) M
G(P )
t (LP ; K) − P

G(P )
t (A(P ); K) = (1 + t)RK(t).

A priori (5.4) holds for K = Z/2Z. If the normal bundle ν(Aμ) of Aμ(P ) in
A(P ) is orientable, then (5.4) holds for any K. When Σ is orientable, ν(Aμ)
is a complex vector bundle and has a canonical orientation.

Equation (5.2) and (5.3) imply

M
G(P )
t (LP ; K) =

∑

μ∈Λ

tλμPG
t (Vμ(P ); K)

= PG
t (Vss(P ); K) +

∑

μ∈Λ′

tλμPG
t (Vμ(P ); K)(5.5)

where now we consider the equivariant cohomology of Vμ(P ), the represen-
tation variety, which is finite dimensional but singular, as opposed to Aμ(P ),
which is smooth but infinite dimensional.

5.3. Equivariant Poincaré series

When Σ is orientable, Atiyah and Bott [1] provide an algorithm to compute
the equivariant Poincaré series

P
G(P )
t (Ass(P ); Q) = P

G(P )
t (Nss(P ); Q).

We now outline this algorithm.
Let GC be the complexification of G. Then GC is a connected reductive

algebraic group over C. (For example, if G = U(n) then GC = GL(n, C).)
There is a bijection

PrinG(Σ) −→ PrinGC(Σ)

given by P �→ P ×G GC.
We can consider C(ξ), the space of (0, 1)-connections on ξ = P ×G GC.

Using Harder–Narasimhan filtration, Atiyah–Bott gave a stratification for
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C(ξ) by

C(ξ) =
⋃

μ∈Ξ

Cμ(ξ)

where μ denotes Harder–Narasimhan type μ and each Cμ is connected
[1, Chapter 7, 10].

Atiyah–Bott proved that the Harder–Narasimhan stratification is GC-
equivariantly perfect over Q, i.e.,

(5.6) P GC

t (C(ξ); Q) = P GC

t (Css(ξ); Q) +
∑

μ∈Ξ′

tλμP GC

t (Cμ(ξ); Q),

where Css is the semi-stable stratum, Ξ′ = {μ ∈ Ξ | Cμ(ξ) �= Css(ξ)}. Now
C(ξ) is contractible, so

(5.7) H∗
GC(C(ξ); Z) = H∗

GC(pt; Z) = H∗(BGC; Z) = H∗(BG(P ); Z).

Thus

(5.8) Pt(BG(P ); Q) = P GC

t (Css(ξ); Q) +
∑

μ∈Ξ′

tλμP GC

t (Cμ(ξ); Q).

On the other hand, there is a natural isomorphism i : C(ξ) → A(P ),
and it was proven in [6] (conjectured by [1]) that the Harder–Narasimhan
stratification coincides with the Morse stratification defined by LP as in
Section 5.2, i.e. Ξ ∼= π0(N (P )) ∼= Λ. So the codimension of Cμ in C equals
to the codimension of Aμ = i(Cμ) in A. In particular, Ass = i(Css). The
moduli space M(P ) of minimal (central) Yang–Mills connections on P can
be identified with the moduli space of S-equivalence classes of semi-stable
holomorphic structures on ξ [1, 25].

The equivariant perfectness of Harder–Narasimhan stratification
⋃

Cμ

now implies that

P G
t (A(P ); Q) = P GC

t (C(ξ); Q) =
∑

μ∈Ξ

tλμP GC

t (Cμ(ξ); Q)

=
∑

μ∈Λ

tλμP G
t (Aμ(P ); Q) = M

G(P )
t (LP ; Q),

i.e., RQ(t) = 0 and Morse stratification is G(P )-equivariantly perfect:

(5.9) Pt(BG(P ); Q) = PG
t (Vss(P ); Q) +

∑

μ∈Λ′

tλμPG
t (Vμ(P ); Q).
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The equivariant pair (Vμ(P ), G) can be reduced further (cf: [1, Section
10]):

(Vμ(P ), G) ∼ (Vss(Pμ), Gμ),

where Gμ is a compact Lie subgroup of G with dimR Gμ < dimR G, and Pμ

is a principal Gμ-bundle. So we have PG
t (Vμ(P ); Q) = P

Gμ

t (Vss(Pμ); Q) and

(5.10) Pt(BG(P ); Q) = PG
t (Vss(P ); Q) +

∑

μ∈Λ′

tλμP
Gμ

t (Vss(Pμ); Q).

The left hand side of (5.10) has been computed (see [1, Theorem 2.15] and
[22, Theorem 3.3]). So PG

t (Vss(P ); Q) can be computed recursively. The
case G = U(n) is particularly nice because

U1. Gμ is of the form U(n1) × · · · × U(nr), so the inductive reduction only
involves type A classical groups.

U2. H∗(BG(P ); Z) is torsion free, so rankH i(BG(P ); Z)= dimQ H i(BG(P );
Q).

Neither U1 nor U2 is true for a general compact connected Lie group G.
Finally, we point out difficulties (N1–N4 below) in generalizing the above

approach to nonorientable surfaces, and then end this subsection by a sum-
mary of our progress in resolving them.

N1. It is not clear if ν(Aμ) is orientable in general, so a priori Morse
inequalities hold only for Z/2Z:

Pt(BG(P ); Z/2Z) = PG
t (Vss(P ); Z/2Z) +

∑

μ∈Λ′

tλμPG
t (Vμ(P ); Z/2Z)

− (1 + t)RZ/2Z(t).(5.11)

N2. The left hand side of (5.11) is difficult to compute when H∗(BG(P ); Z)
has 2-torsion elements. When Σ is nonorientable, H∗(BG(P ); Z) has
2-torsion elements even when G = U(n). (We thank Paul Selick for
pointing this out to us.)

N3. Suppose that for a particular P we can prove that ν(Aμ) is orientable
for all μ ∈ Λ. We can consider rational cohomology

(5.12)

Pt(BG(P ); Q) = PG
t (Vss(P ); Q) +

∑

μ∈Λ′

tλμPG
t (Vμ(P ); Q) − (1 + t)RQ(t).
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Although Pt(BG(P ); Q) is easier to handle than Pt(BG(P ); Z/2Z), it
is tricky to compute RQ(t), which is not necessarily zero.

N4. When the base Σ of the principal G-bundle P is nonorientable, we still
have reduction (Vμ(P ), G) ∼ (V ′

μ(P ′), Gμ), where Gμ is a compact Lie
subgroup of G with dimR Gμ < dimR G, but V ′

μ(P ′) is not of the form
Vss(Pμ), where Pμ a principal Gμ-bundle over Σ.

We will describe equivariant Morse stratification and the reduction N4
for G = U(n) in Section 7 of this paper, and for other classical groups in [12].
In a joint work with Ramras, we will prove that ν(Aμ) in N1 is orientable
when G = U(n), so we may consider Q coefficient as in N3.

5.4. Connected components of moduli spaces of flat connections

Let G be any compact connected Lie group. Let Σ be a closed, compact,
connected, nonorientable surface, and let π : Σ̃ → Σ be its orientable double
cover. Let P → Σ be a principal G-bundle. By Proposition 2.8, the pull
back principal G-bundle P̃ = π∗P → Σ̃ is topologically trivial, and there is
an involution τ̃ : P̃ → P̃ which covers the deck transformation τ : Σ̃ → Σ̃
such that P̃ /τ̃ = P .

The involution τ̃ induces an involution τ̃∗ on the space A(P̃ ) of con-
nections on P̃ . The space A(P ) of connections on P can be identified with
the fixed locus A(P̃ )τ̃∗

. Each G(P )-equivariant Morse stratum Aμ(P ) of LP

is a union of connected components of Aμ(P̃ )τ̃∗
= Aμ(P̃ ) ∩ A(P̃ )τ̃∗

, where
Aμ(P̃ ) is a Morse stratum in A(P̃ ). The real codimension of Aμ(P ) in
A(P ) is equal to the complex codimension dμ of Aμ(P̃ ) in A(P̃ ) (see Propo-
sition 5.1).

Let N0(P̃ ) and N0(P ) be the space of flat connections on P̃ and on
P , respectively. Then N0(P ) = N0(P̃ )τ̃∗

. By discussion in Section 3.2,
N0(P ) is nonempty. Let Ass(P ) = Ass(P̃ ) ∩ A(P̃ )τ̃∗

be the stable manifold
of N0(P ) = Nss(P ), so that it is the union of all codimension zero Morse
strata. By results in [1], Ass(P̃ ) is connected when χ(Σ̃) < 0. We will show
that Ass(P ) is connected when χ(Σ) < 0.

Proposition 5.4. Given two points A0, A1 ∈ Ass(P ), there exists a smooth
map γ : [0, 1] → A(P ) such that γ(0) = A0, γ(1) = A1, and γ is transversal
to Aμ(P ) if dμ > 0. In particular, γ−1(Aμ) is empty if dμ > 1.

Proof. Let Ω = Ω1(Σ, adP ) be the vector space associated to the affine space
A(P ). Given A0, A1 ∈ Ass(P ), define

Φ : [0, 1] × Ω → A(P ), Φ(t, a) = (1 − t)A0 + tA1 + sin(πt)a.
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Note that

Φ
(

1
2
, a

)
=

1
2
(A0 + A1) + a,

so Φ is surjective. dΦ(t,a) : R × Ω → Ω is given by

(5.13) (u, b) �−→ ((A1 − A0) + π cos(πt)a) u + sin(πt)b,

where u ∈ R, b ∈ Ω. Given a ∈ Ω let γa(t) = Φ(t, a). Then

dΦ(t,a)(u, b) = d(γa)t(u) + sin(πt)b.

We claim that Φ is transversal to Aμ(P ) for any μ ∈ Λ′. Fix λ ∈ Λ′, we
need to show that

Im
(
dΦ(t,a)

)
+ TΦ(t,a)Aμ(P ) = TΦ(t,a)A(P ) = Ω

for any (t, a) ∈ Φ−1(Aμ(P )). Note that Φ(0, a) = A0 ∈ Ass and Φ(1, a) =
A1 ∈ Ass(P ) for any a ∈ Ω, so if (t, a) ∈ Φ−1(Aμ(P )), we must have 0 < t <
1. By (5.13), Im

(
dΦ(t,a)

)
= Ω if 0 < t < 1. So Φ is transversal to Aμ(P ) for

any μ ∈ Λ′. We conclude that Φ−1(Aμ(P )) is a submanifold of [0, 1] × Ω of
codimension dμ; it is nonempty because Φ is surjective.

For any μ ∈ Λ′, we define πμ : Φ−1(Aμ) → Ω by (t, a) �→ a. By
Lemma 5.5, a is a regular value of πμ if and only of γa : [0, 1] → A(P ) is
transversal to Aμ(P ). Let Ωμ be the set of regular values of πμ. By the
Sard–Smale theorem, Ωμ is residual in Ω. So

Ω′ =
⋂

μ∈Λ′

Ωμ

is residual in Ω. By the Baire category theorem, Ω′ is nonempty. For any
a ∈ Ω′, γa : [0, 1] → A(P ) has the desired properties. �

Lemma 5.5. Let X, Y, Z be linear spaces, and let W be a linear subspace
of Z. Let L : X × Y → Z be a linear map such that Im(L) + W = Z. Let
π : L−1(W ) → Y be defined by (x, y) �→ y. Then π is surjective if and only
if L(X × {0}) + W = Z.

Proof. 1. Claim: π is surjective ⇒ L(X × {0}) + W = Z.
Given any z ∈ Z, we have z = L(x, y) + w for some (x, y) ∈ X × Y

and w ∈ W . Since π is surjective, there is (x′, y′) ∈ X × Y such that



Yang–Mills connections 657

L(x′, y′) = w′ ∈ W and π(x′, y′) = y. We have

L(x, y) + w = z, L(x′, y′) − w′ = 0, y = y′,

so

z = L(x − x′, 0) + (w + w′) ∈ Im(X × {0}) + W.

2. Claim: L(X × {0}) + W = Z ⇒ π is surjective.
Given any y ∈ Y , we have L(0, y) ∈ Z, so L(0, y) = L(x, 0) + w for

some x ∈ X and w ∈ W . We have L(−x, y) = w, so (−x, y) ∈ L−1(W )
and π(−x, y) = y.

�

We now assume that χ(Σ) < 0. The formula of dμ is given by [1, (10.7)]:

dμ =
∑

α(μ)>0

(α(μ) + g̃ − 1) ≥ 0,

where g̃ ≥ 2 is the genus of Σ̃. Note that dμ ≥ 2 if dμ �= 0, so the real
codimension of any lower stratum in A(P ) is at least two. Since N0(P ) is a
deformation retraction of Ass(P ), Proposition 5.4 implies the following.

Theorem 5.6. Let Σ be a closed, compact, connected, nonorientable sur-
face with negative Euler characteristic, or equivalently, Σ = Σ�

i where i = 1, 2
and � ≥ 1. Let G be a compact, connected Lie group, and let P be a prin-
cipal G-bundle over Σ. Then the space N0(P ) of flat connections on P is
nonempty and connected.

Corollary 5.7. Let P be as in Theorem 5.6. Then the moduli space M(P )
of gauge equivalence classes of flat connections on P is nonempty and con-
nected.

Note that the connectedness of N0(P ) implies the connectedness of
M(P ) = N0(P )/G(P ), but not vice versa, so in general Theorem 5.6 is
stronger than Corollary 5.7.

Corollary 5.7 extends [11, Theorem 5.2] to the case Σ = 4RP2. We thank
the referee of [9] for suggesting this approach to us. During the revision of
this paper, Ramras (see [26, Proposition 4.9]) obtained the following exten-
sion of Theorem 5.6 in the case G = U(n):
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Theorem 5.8. Let Σ be a closed, compact, connected, nonorientable sur-
face which is not RP2 (or equivalently, χ(Σ) ≤ 0). Let P be a principal
U(n)-bundle (n ≥ 2) over Σ, and let N0(P ) be the space of flat connections
on P . Then N0(P ) is (1 − χ(Σ))(n − 1) − 1 connected.

More recent results by Ramras on exact connectivity of N0(P ) can be
found in [27, Section 4].

6. U(n)-connections on orientable surfaces

6.1. Connected components of the representation variety and
their reductions

Any point in

Hom(ΓR(Σ�
0), U(n))/U(n) ∼= X�,0

YM(U(n))/U(n)

can be represented by (V, X) ∈ U(n)2� × u(n), where X is a diagonal matrix.
Actually, there is a unique representative such that

X = −2π
√

−1

⎛

⎜⎝
μ1 0

. . .
0 μn

⎞

⎟⎠

where μ1 ≥ · · · ≥ μn. Suppose that

μ = (μ1, . . . , μn) = (λ1, · · · , λ1︸ ︷︷ ︸
n1

, . . . , λm, . . . , λm︸ ︷︷ ︸
nm

)

where λ1 > · · · > λm and n1 + · · · + nm = n. Then

U(n)X = U(n1) × · · · × U(nm),

and

exp(X) = m(V ) ∈ SU(n1) × · · · × SU(nm),

where m(a1, b1, . . . , a�, b�) =
∏�

i=1[ai, bi] as before.
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Given an nj × nj matrix Aj , let diag(A1, . . . , Am) denote the n × n
matrix ⎛

⎜⎝
A1 0

. . .
0 Am

⎞

⎟⎠

where n = n1 + · · · + nm. With this notation, we have

X = −2π
√

−1 diag (λ1In1 , . . . , λmInm
) ,

exp(X) = diag
(
e−2π

√
−1λ1In1 , . . . , e

−2π
√

−1λmInm

)
,

where e−2π
√

−1λjInj
∈ SU(nj), or equivalently, e−2π

√
−1njλj = 1. So

kj = λjnj ∈ Z

and

X = −2π
√

−1diag
(k1

n1
In1 , . . . ,

km

nm
Inm

)
.

For each pair (n, k) ∈ Z>0 × Z, define

In,k =

⎧
⎪⎪⎨

⎪⎪⎩
μ = (μ1, . . . , μn) =

⎛

⎜⎜⎝
k1

n1
, . . . ,

k1

n1︸ ︷︷ ︸
n1

, . . . ,
km

nm
, . . . ,

km

nm︸ ︷︷ ︸
nm

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣

nj ∈ Z>0, kj ∈ Z,

m∑

j=1

nj = n,

m∑

j=1

kj = k,
k1

n1
> · · · >

km

nm

⎫
⎬

⎭ .

Given

(6.1) μ = (μ1, . . . , μn) =

⎛

⎜⎜⎝
k1

n1
, . . . ,

k1

n1︸ ︷︷ ︸
n1

, . . . ,
km

nm
, . . . ,

km

nm︸ ︷︷ ︸
nm

⎞

⎟⎟⎠ ∈ In,k,

let

(6.2) Xμ = −2π
√

−1diag
(

k1

n1
In1 , . . . ,

km

nm
Inm

)
,

and let Cμ be the conjugacy class of Xμ.
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Note that if (V, X) ∈ X�,0
YM(U(n)), then X ∈ Cμ for some μ ∈

⋃
k∈Z

In,k.
From now on, we identify Hom(ΓR(Σ�

0), U(n)) with X�,0
YM(U(n)).

Given μ ∈
⋃

k∈Z
In,k, define

X�,0
YM(U(n))μ = {(V, X) ∈ U(n)2� × Cμ | V ∈ (U(n)X)2�, m(V ) = exp(X)}.

Then

X�,0
YM(U(n)) =

⋃

k∈Z

⋃

μ∈In,k

X�,0
YM(U(n))μ.

The G-action on X�,0
YM(U(n)) preserves X�,0

YM(U(n))μ. We will show that

Proposition 6.1.
{

X�,0
YM(U(n))μ | μ ∈

⋃

k∈Z

In,k

}

are the connected components of X�,0
YM(U(n)) = Hom(ΓR(Σ�

0), U(n)). Given

(6.3) μ = (μ1, . . . , μn) =

⎛

⎜⎜⎝
k1

n1
, . . . ,

k1

n1︸ ︷︷ ︸
n1

, . . . ,
km

nm
, . . . ,

km

nm︸ ︷︷ ︸
nm

⎞

⎟⎟⎠ ∈ In,k,

we have a homeomorphism

(6.4) X�,0
YM(U(n))μ/U(n) =

m∏

j=1

X�,0
YM(U(nj)) kj

nj
,...,

kj

nj

/U(nj)

and a homotopy equivalence of homotopic orbit spaces

X�,0
YM(U(n))hU(n)

μ =
m∏

j=1

(
X�,0

YM(U(nj)) kj

nj
,...,

kj

nj

)hU(nj)
.

Proof. Let μ be as in (6.3). Let π : X�,0
YM(U(n)) → Cμ be defined by (V, X) �→

X. Then π is a fibration, so there is a homeomorphism

(6.5) X�,0
YM(U(n))μ/U(n) = π−1(Xμ)/U(n)Xμ

,
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and a homotopy equivalence

X�,0
YM(U(n))hU(n)

μ = π−1(Xμ)hU(n)Xμ ,

where U(n)Xμ
= U(n1) × · · · × U(nm). We have

π−1(Xμ) ∼= {V ∈ U(n)2�
Xμ

| m(V ) = exp(Xμ)}

∼=
m∏

j=1

{V ∈ U(nj)2� | m(V ) = e−2π
√

−1kj/njInj
}

=
m∏

j=1

X�,0
YM(U(nj)) kj

nj
,...,

kj

nj

.

This proves (6.4). The set

X�,0
YM(U(nj)) kj

nj
,...,

kj

nj

= {V ∈ U(nj)2� | m(V ) = e−2π
√

−1kj/njInj
}

is nonempty and connected by [11, Theorem 3]. So π−1(Xμ) is nonempty and
connected. Together with (6.5), this implies that X�,0

YM(U(n))μ is nonempty
and connected.

Define T : X�,0
YM(U(n)) → Rn by

T (V, X) =

(√
−1
2π

Tr X,

(√
−1
2π

)2

Tr(X2), . . . ,
(√

−1
2π

)n

Tr(Xn)

)
,

where V ∈ U(n)2� and X ∈ u(n). The characteristic polynomial

PX(t) = det(tI − X) = (t + 2π
√

−1μ1) · · · (t + 2π
√

−1μn)

of a matrix X is determined by TrX, Tr(X2), . . . ,Tr(Xn), and the conjugacy
class of X in u(n) is determined by PX(t), so T (V, X) = T (V ′, X ′) if and
only if X and X ′ are in the same conjugacy class.

Given μ ∈
⋃

k∈Z
In,k, define

vμ =

(
n∑

i=1

μi,

n∑

i=1

μ2
i , . . . ,

n∑

i=1

μn
i

)
∈ Qn.

Note that vμ = vμ′ if and only if μ = μ′.
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The function T is a continuous function, and its image {vμ | μ ∈
⋃

k∈Z

In,k} is a discrete set, so

{
X�,0

YM(U(n))μ = T−1(vμ) | μ ∈
⋃

k∈Z

In,k

}

are connected components of X�,0
YM(U(n)). �

6.2. Equivariant Morse stratification and equivariant Poincaré
series

Let Pn,k be the topological principal U(n)-bundle on Σ�
0 with c1(Pn,k) =

k[ω] ∈ H2(Σ�
0). Let An,k be the space of U(n)-connections on Pn,k, and let

N n,k ⊂ An,k be the space of Yang–Mills U(n)-connections on Pn,k. Let Gn,k

be the group of gauge transformations on Pn,k, and let Gn,k
0 be the subgroup

of gauge transformations which take value of the identity e at a fixed point
x0 ∈ Σ�

0. We have

Hom(ΓR(Σ�
0), U(n)) =

⋃

k∈Z

Hom(ΓR(Σ�
0), U(n))k,

where Hom(ΓR(Σ�
0), U(n))k

∼= N n,k/Gn,k
0 . The connected components of

Hom(ΓR(Σ�
0), U(n))k are

{X�,0
YM(U(n))μ | μ ∈ In,k}.

Let Nμ be the preimage of X�,0
YM(U(n))μ under the projection

N n,k → N n,k/Gn,k
0

∼= Hom(ΓR(Σ�
0), U(n))k.

so that X�,0
YM(U(n))μ = Nμ/G0(P ).

We fix (n, k) ∈ Z>0 × Z, and write G = Gn,k. Let Aμ be the stable man-
ifold of Nμ with respect to Yang–Mills functional. Then

An,k =
⋃

μ∈In,k

Aμ.

is the G-equivariant Morse stratification of An,k given by the Yang–Mills
functional [1,6,25,30]. Let λμ be the real codimension of Aμ in An,k. It was
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computed in [1, Section 7] that

λμ = 2dμ, dμ =
∑

i<j

(μi − μj + (� − 1)).

The gradient flow of the Yang–Mills functional gives a G-equivariant defor-
mation retraction Aμ → Nμ. For the purpose of equivariant cohomology,
the following equivariant pairs are equivalent:

(Aμ,G) ∼ (Nμ,G) ∼ (X�,0
YM(U(n))μ, U(n)).

In other words, we have the following homotopy equivalences of homotopic
orbit spaces:

Aμ
hG ∼ Nμ

hG ∼ X�,0
YM(U(n))μ

hU(n)
.

Together with the reduction Proposition 6.1, we conclude that

Theorem 6.2. Let K be a field. For any

μ = (μ1, . . . , μn) =

⎛

⎜⎜⎝
k1

n1
, . . . ,

k1

n1︸ ︷︷ ︸
n1

, . . . ,
km

nm
, . . . ,

km

nm︸ ︷︷ ︸
nm

⎞

⎟⎟⎠ ∈ In,k,

we have

H∗
G(Aμ; K) = H∗

G(Nμ; K) = H∗
U(n)(X

�,0
YM(U(n))μ; K)

∼=
m⊗

j=1

H∗
U(nj)(Vss(Pnj ,kj ); K),(6.6)

P G
t (Aμ; K) = P G

t (Nμ; K) = P
U(n)
t (X�,0

YM(U(n))μ; K)

=
m∏

i=1

P
U(nj)
t (Vss(Pnj ,kj ); K).(6.7)
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6.3. Involution

Given μ ∈ In,k, define

Z�,1
YM(U(n))μ = {(V, c, V̄ , c̄, X) ∈ U(n)2(2�+1) × Cμ | V, cV̄ c−1 ∈ (U(n)X)2�,

m(V ) = exp(X/2)cc̄, m(V̄ ) = c̄ exp(−X/2)c},

Z�,2
YM(U(n))μ = {(V, d, c, V̄ , d̄, c̄, X) ∈ U(n)2(2�+2) × Cμ | d−1, cc̄ ∈ U(n)X ,

V, d−1cV̄ c−1d ∈ (U(n)X)2�, m(V ) = exp(X/2)cd̄c−1d,

m(V̄ ) = c̄d exp(−X/2)c̄−1d̄}.

Then for i = 1, 2,

Z�,i
YM(U(n)) =

⋃

k∈Z

⋃

μ∈In,k

Z�,i
YM(U(n))μ,

Φ�,i
U(n)(Z

�,i
YM(U(n))μ) = X2�+i−1,0

YM (U(n))μ.

Define τ0 : In,k → In,−k by

(μ1, μ2, . . . , μn) �−→ (−μn, . . . ,−μ2,−μ1).

It is easy to check that if X ∈ Cμ, then −Ad(c̄)(X) ∈ Cτ0(μ). So

τ(Z�,i
YM(U(n))μ) = Z�,i

YM(U(n))τ0(μ).

Thus we conclude that:

Theorem 6.3. The set

Z�,i
YM(U(n))τ

μ = Z�,i
YM(U(n))τ ∩ Z�,i

YM(U(n))μ

is nonempty if and only if Xμ is conjugate to −Xμ, i.e., τ0(μ) = μ. In other
words, if we define

In = Iτ0
n,0 = {μ ∈ In,0 | τ0(μ) = μ}.

Then

Z�,i
YM(U(n))τ =

⋃

μ∈In

Z�,i
YM(U(n))τ

μ.
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7. U(n)-connections on nonorientable surfaces

7.1. Connected components of the representation variety and
their reductions

Given μ ∈ In,k, let Cμ/2 denote the conjugacy class of Xμ/2 in u(n).
Z�,1

YM(U(n))τ
μ can be identified with

X�,1
YM(U(n))μ = {(V, c, X) ∈ U(n)2�+1 × Cμ/2 | V ∈ (U(n)X)2�,

Ad(c)(X) = −X, m(V ) = exp(X)c2},

while Z�,2
YM(U(n))τ

μ can be identified with

X�,2
YM(U(n))μ = {(V, d, c, X) ∈ U(n)2�+2 × Cμ/2 | (V, d) ∈ (U(n)X)2�+1,

Ad(c)(X) = −X, m(V ) = exp(X)cdc−1d}.

Note that a Yang–Mills connection on a principal U(n)-bundle P over a
nonorientable surface Σ induces a flat connection on the U(1)-bundle det(P ).
More explicitly, define

det : U(n)2� −→ U(1)2�,

(a1, b1, . . . , a�, b�) �−→ (det(a1), det(b1), . . . ,det(a�), det(b�)) ∈ U(1)2�.

We have

det : X�,1
YM(U(n)) → X�,1

flat(U(1)) (V, c, X) �−→ (det(V ), det(c)),

det : X�,2
YM(U(n)) → X�,2

flat(U(1)) (V, d, c, X) �−→ (det(V ), det(d), det(c)),

where X�,1
flat(U(1)) and X�,2

flat(U(1)) are as in Example 2.1. Let

X�,1
flat(U(1))±1 = {(a1, b1, . . . , a�, b�, c) ∈ U(1)2�+1 | c = ±1},

X�,2
flat(U(1))±1 = {(a1, b1, . . . , a�, b�, d, c) ∈ U(1)2�+2 | d = ±1}.

Then X�,i
flat(U(1))+1 and X�,i

flat(U(1))−1 are the two connected components of
X�,i

flat(U(1)). Let

X�,i
YM(U(n))±1 = (det)−1

(
X�,i

flat(U(1))±
)

,

X�,i
YM(U(n))±1

μ = X�,i
YM(U(n))μ ∩ X�,i

YM(U(n))±.
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Then

X�,i
YM(U(n))μ = X�,i

YM(U(n))+1
μ ∪ X�,i

YM(U(n))−1
μ .

Any μ ∈ In is of the following form:

μ =

⎛

⎝ν, 0, . . . , 0︸ ︷︷ ︸
n0

, τ0(ν)

⎞

⎠ ,

where ν ∈ In′,k, τ0(ν) ∈ In′,−k, n′ ≥ 0, n0 ≥ 0, k > 0.
We will show that

Proposition 7.1. Let μ = (ν, 0, . . . , 0︸ ︷︷ ︸
n0

, τ0(ν)) ∈ In = Iτ0
n,0, where

ν ∈ In′,k, n′, n0 ≥ 0, 2n′ + n0 = n, k > 0.

(i) Suppose that n0 > 0. For i = 1, 2, X�,i
YM(U(n))+1

μ , X�,i
YM(U(n))−1

μ are
nonempty and connected for � ≥ 1.

(ii) Suppose that n0 = 0 so that 2n′ = n > 0. For i = 1, 2,

(7.1) X�,i
YM(U(n))μ = X�,i

YM(U(n))(−1)n′i+k

μ .

X�,i
YM(U(n))μ is nonempty and connected unless i = 1 and � = 0.

Proof. (i) n0 > 0. ν is of the form

ν =
(k1

n1
, . . .

k1

n1︸ ︷︷ ︸
n1

, . . . ,
km

nm
, . . . ,

km

nm︸ ︷︷ ︸
nm

)
,

where
k1

n1
> · · · >

km

nm
> 0,

and

Xμ = −2π
√

−1 diag
(k1

n1
In1 , . . . ,

km

nm
Inm

, 0In0 ,−
km

nm
Inm

, . . . ,−k1

n1
In1

)
.

Let π1 : X�,1
YM(U(n))μ → Cμ/2 be defined by (V, c, X) �→ X, and let π2 :

X�,2
YM(U(n))μ → Cμ/2 be defined by (V, d, c, X) �→ X. Then π1 and π2 are
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fibrations. So

X�,i
YM(U(n))μ/U(n) ∼= π−1

i (Xμ/2)/U(n)μ,

where

U(n)μ = U(n)Xμ/2 = U(n)Xμ
.

Let

eμ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

In1

0 ·
Inm

In0

Inm

· 0
In1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ U(n)

Then

Ad(eμ)Xμ = −Xμ, det(eμ) = (−1)n′
, e2

μ = In.

We have π−1
i (Xμ/2) ∼= V i

μ, where

V 1
μ = {(V, c′) ∈ U(n)2�+1

μ | m(V ) = exp(Xμ/2)eμc′eμc′},

V 2
μ = {(V, d, c′) ∈ U(n)2�+2

μ | m(V ) = exp(Xμ/2)eμc′d(eμc′)−1d}.

Under the identification π−1
i (Xμ/2) ∼= V i

μ, the actions of U(n)μ on V 1
μ and

V 2
μ are given by

g · (V, c′) = (gV g−1, (eμgeμ)c′g−1) and

g · (V, d, c′) = (gV g−1, gdg−1, (eμgeμ)c′g−1),

respectively, where V ∈ U(n)2�
μ , and g, c′, d ∈ U(n)μ.

Any ai, bi, c
′, d ∈ U(n)μ are of the form

ai = diag(Ai
1, . . . , A

i
m, Ai, Āi

m, . . . , Āi
1),

bi = diag(Bi
1, . . . , B

i
m, Bi, B̄i

m, . . . , B̄i
1),

c′ = diag(C̄1, . . . C̄m, C, Cm, . . . , C1),
d = diag(D1, . . . Dm, D, D̄m, . . . , D̄1),

where

Ai
j , Āi

j , Bi
j , B̄i

j , Cj , C̄j , Dj , D̄j ∈ U(nj), Ai, Bi, C, D ∈ U(n0).
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If (V, c′) ∈ V 1
μ , we have

(7.2)
�∏

i=1

[Ai
j , B

i
j ] = e

−π
√

−1kj

nj CjC̄j ,

�∏

i=1

[Āi
j , B̄

i
j ] = e

π
√

−1kj

nj C̄jCj

for j = 1, . . . , m, and

(7.3)
�∏

i=1

[Ai, Bi] = C2.

By (7.2), we have

1 = det
(
e

−π
√

−1kj

nj CjC̄j

)
= (−1)kj det(Cj) det(C̄j).

By (7.3), we have 1 = det(C2) = det(C)2. Recall that det(c) = det(eμ)
det(c′) = (−1)n′

det(c′), so

(7.4) det(c) = (−1)n′+k det(C), det(C) = ±1.

Note that the equations in (7.2) are exactly the defining equations for

Z�,1
YM(U(nj)) kj

nj
,...,

kj

nj

,

where Z�,1
YM(U(n))μ is defined as in Section 6.3, and (7.3) is exactly the defin-

ing equation for X�,1
flat(U(n0)). So we have the following homeomorphism:

(7.5) V 1
μ

∼= X�,1
flat(U(n0)) ×

m∏

j=1

Z�,1
YM(U(nj)) kj

nj
,...,

kj

nj

.

If (V, d, c′) ∈ V 2
μ , we have

�∏

i=1

[Ai
j , B

i
j ] = e

−π
√

−1kj

nj CjD̄jC
−1
j Dj ,

�∏

i=1

[Āi
j , B̄

i
j ] = e

π
√

−1kj

nj C̄jDjC̄
−1
j D̄j

(7.6)
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for j = 1, . . . , m, and

(7.7)
�∏

i=1

[Ai, Bi] = CDC−1D.

By (7.6), we have

1 = det
(
e

−π
√

−1kj

nj DjD̄j

)
= (−1)kj det(Dj) det(D̄j).

By (7.7), we have 1 = det(D2) = det(D)2. We conclude that

(7.8) det(d) = (−1)k det(D), det(D) = ±1.

Note that the equations in (7.6) are exactly the defining equations for

Z�,2
YM(U(nj)) kj

nj
,...,

kj

nj

,

where Z�,2
YM(U(n))μ is defined as in Section 6.3, and (7.7) is exactly the defin-

ing equation for X�,2
flat(U(n0)). So we have the following homeomorphism:

(7.9) V 2
μ

∼= X�,2
flat(U(n0)) ×

m∏

j=1

Z�,2
YM(U(nj)) kj

nj
,...,

kj

nj

.

The homeomorphisms (7.5), (7.9) are U(n)μ-equivariant: for i = 1, 2, it
is straightforward to check that the action of

U(n)μ = U(n1) × · · · × U(nm) × U(n0) × U(nm) × · · · × U(n1)

on V i
μ is compatible with the action of U(n0) on X�,i

flat(U(n0)) and the actions
of U(nj)2 on Z�,i

YM(U(nj)) kj

nj
,...,

kj

nj

. So

X�,i
YM(U(n))μ/U(n)
∼= V i

μ/U(n)μ

∼= X�,i
flat(U(n0))/U(n0) ×

m∏

j=1

(
Z�,i

YM(U(nj)) kj

nj
,...,

kj

nj

/U(nj)2
)

∼= X�,i
flat(U(n0))/U(n0) ×

m∏

j=1

(
X2�+i−1,0

YM (U(nj)) kj

nj
,...,

kj

nj

/U(nj)
)

∼= X�,i
flat(U(n0))/U(n0) × X2�+i−1,0

YM (U(n′))ν/U(n′).
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From (7.4) and (7.8), we see that

X�,i
YM(U(n))±1

μ /U(n)

∼=
(
X�,i

flat(U(n0))±(−1)n′i+k
)
/U(n0) × X2�+i−1,0

YM (U(n′))ν/U(n′),

where

X�,i
flat(U(n0))±1 = X�,i

YM(U(n0))±1
0,...,0.

Recall from Proposition 6.1 that if 2� + i − 1 ≥ 1, then

X2�+i−1,0
YM (U(n′))ν

is nonempty and connected. By Theorem 5.6,

X�,i
flat(U(n0))+1, X�,i

flat(U(n0))−1

are nonempty and connected for � ≥ 1. We conclude that X�,i
YM(U(n))+1

μ and
X�,i

YM(U(n))−1
μ are nonempty and connected for � ≥ 1.

(ii) n0 = 0. The calculations in this case are the same as those in (i),
except that we do not have the factor U(n0) so we do not have the matrices
Ai, Bi,C, D. We conclude that det(c) = (−1)n′+k when i = 1 and det(d) =
(−1)k when i = 2. So

X�,i
YM(U(n))μ = X�,i

YM(U(n))(−1)n′i+k

μ

and

X�,i
YM(U(n))μ/U(n) ∼= X2�+i−1,0

YM (U(n′))ν/U(n′).

Recall that X2�+i−1,0
YM (U(n′))ν is nonempty and connected if 2� + i − 1 ≥ 1.

So for i = 1, 2, X�,i
YM(U(n))μ is nonempty and connected unless i = 1 and

� = 0. �

Let In = Iτ0
n,0. Then In = I0

n ∪ Ii,+
n ∪ Ii,−

n , where

I0
n = {μ ∈ In, μi = 0 for some i},

Ii,+
n = {μ = (ν, τ0(ν)) | ν ∈ In′,k, n

′i + k is even},

Ii,−
n = {μ = (ν, τ0(ν)) | ν ∈ In′,k, n

′i + k is odd},

where i = 1, 2. When n is odd, we have In = I0
n.

The proof of Proposition 7.1 gives the following.
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Proposition 7.2. Suppose that i = 1, 2 and � ≥ 1.

(i) If n is odd, the connected components of X�,i
YM(U(n)) = Hom(ΓR(Σ�

i),
U(n)) are

{X�,i
YM(U(n))+1

μ | μ ∈ I0
n} ∪ {X�,i

YM(U(n))−1
μ | μ ∈ I0

n}.

(ii) If n is even, the connected components of X�,i
YM(U(n)) = Hom(ΓR(Σ�

i),
U(n)) are

{X�,i
YM(U(n))+1

μ | μ ∈ I0
n} ∪ {X�,i

YM(U(n))μ = X�,i
YM(U(n))+1

μ | μ ∈ Ii,+
n }

∪{X�,i
YM(U(n))−1

μ | μ ∈ I0
n} ∪ {X�,i

YM(U(n))μ = X�,i
YM(U(n))−1

μ | μ ∈ Ii,−
n }.

Proposition 7.3. Let μ = (ν, 0, . . . , 0︸ ︷︷ ︸
n0

, τ0(ν)) ∈ In, where

ν ∈ In′,k, n′, n0 ≥ 0, 2n′ + n0 = n,

ν =
(k1

n1
, . . . ,

k1

n1︸ ︷︷ ︸
n1

, . . . ,
km

nm
, . . . ,

km

nm︸ ︷︷ ︸
nm

)
,

k1

n1
> · · · >

km

nm
> 0.

(i) If n0 > 0, then for i = 1, 2, we have a homeomorphism

X�,i
YM(U(n))±

μ /U(n) ∼=

X�,i
flat(U(n0))±(−1)ni′+k

/U(n0) ×
m∏

j=1

(
X2�+i−1,0

YM (U(nj)) kj

nj
,...,

kj

nj

/
U(nj)

)

and a homotopy equivalence

(
X�,i

YM(U(n))±
μ

)hU(n)
∼

(
X�,i

flat(U(n0))±(−1)ni′+k
)hU(n0)

×
m∏

j=1

(
X2�+i−1,0

YM (U(nj)) kj

nj
,...,

kj

nj

)hU(nj)
.

(ii) If n0 = 0, then for i = 1, 2, we have a homeomorphism

X�,i
YM(U(n))μ/U(n) ∼=

m∏

j=1

(
X2�+i−1,0

YM (U(nj)) kj

nj
,...,

kj

nj

/
U(nj)

)
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and a homotopy equivalence

X�,i
YM(U(n))μ

hU(n) ∼
m∏

j=1

(
X2�+i−1,0

YM (U(nj)) kj

nj
,...,

kj

nj

)hU(nj)
.

7.2. Equivariant Morse stratification and equivariant Poincaré
series

For i = 1, 2, let Pn,+ and Pn,− be the principal U(n)-bundles on Σ�
i with

c1(Pn,+) = 0 and c1(Pn,−) = 1 in H2(Σ�
i ; Z/2Z) ∼= Z/2Z, respectively. Let

A(Σ�
i)

n,± be the space of connections on Pn,± → Σ�
i , and let N (Σ�

i)
n,±

denote the space of Yang–Mills U(n)-connections on Pn,± → Σ�
i . Let Gn,±

and Gn,±
0 denote the gauge group and based gauge group, respec-

tively. N (Σ�
i)

1,±
0 is the space of flat U(1)-connections on P 1,± → Σ�

i , and we
have (see [10,11])

X�,i
flat(U(1))±1 = N (Σ�

i)
1,±
0 /G1,±

0 , X�,i
flat(U(1))±1/U(1) = N (Σ�

i)
1,±
0 /G1,±.

Since c1(P ) = c1(det(P )) ∈ H2(Σ; Z/2Z), we have

Hom(ΓR(Σ�
i), U(n)) = X�,i

YM(U(n))+1 ∪ X�,i
YM(U(n))−1,

X�,i
YM(U(n))±1 = N (Σ�

i)
n,±/Gn,±

0 , X�,i
YM(U(n))±1/U(n) = N (Σ�

i)
n,±/Gn,±.

The connected components of X�,i
YM(U(n))± are

{X�,i
YM(U(n))±1

μ | μ ∈ I0
n} ∪ {X�,i

YM(U(n))μ | μ ∈ Ii,±
n }.

When n is odd, both Ii,+
n and Ii,−

n are empty. Given μ ∈ I0
n, let N (Σ�

i)
±
μ be

the preimage of X�,i
YM(U(n))±1

μ under the projection

N (Σ�
i)

n,± −→ N (Σ�
i)

n,±/Gn,±
0 = X�,i

YM(U(n))±1.

Given μ ∈ Ii,±
n , let N (Σ�

i)μ be the preimage of X�,i
YM(U(n))μ under the

projection

N (Σ�
i)

n,± −→ N (Σ�
i)

n,±/Gn,±
0 = X�,i

YM(U(n))±1.

In other words,

N (Σ�
i)

±
μ /Gn,±

0
∼= X�,i

YM(U(n))±1
μ , μ ∈ I0

n;

N (Σ�
i)μ/Gn,±

0
∼= X�,i

YM(U(n))μ, μ ∈ Ii,±
n .
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In particular,
N (Σ�

i)
±
0, . . . , 0
︸ ︷︷ ︸

n

= N (Σ�
i)

n,±
0

is the space of flat connections on Pn,± → Σ�
i . The Yang–Mills functional

achieves its absolute minimum 0 on N (Σ�
i)

n,±
0 . The moduli space of gauge

equivalence classes of flat connections on Pn,± → Σ�
i is given by

M(Σ�
i , P

n,±) = N (Σ�
i)

n,±
0 /Gn,± ∼= Vss(Σ�

i , P
n,±)/U(n),

where
Vss(Σ�

i , P
n,±) = X�,i

flat(U(n))± = N (Σ�
i)

n,±
0 /Gn,±

0 .

Now assume χ(Σ�
i) = 2 − 2� − i < 0. Let π : Σ̃ → Σ be the orientable

double cover. Then π∗Pn,± = Pn,0 ∼= Σ̃ × U(n). There are involutions τ± :
Pn,0 → Pn,0 which cover the deck transformation τ : Σ̃ → Σ̃ such that Pn,0/
τ± = Pn,±. Let A(Σ)n,± denote the space of connections on Pn,± → Σ, and
let A(Σ̃)n,0 denote the space of connections on Pn,0 → Σ̃. Then

A(Σ)n,± ∼= (A(Σ̃)n,0)τ±
.

Given μ ∈ I0
n (resp. μ ∈ Ii,+

n ∪ Ii,−
n ), let A(Σ)±

μ (resp. A(Σ)μ) be the sta-
ble manifold of the critical set N (Σ)±

μ (resp. N (Σ)μ) of the Yang–Mills
functional on A(Σ)±. Then for i = 1, 2,

A(Σ�
i)

n,± =
⋃

μ∈I0
n

A(Σ�
i)

±
μ ∪

⋃

μ∈Ii,±
n

A(Σ�
i)μ

is the G-equivariant Morse stratification of A(Σ�
i)

n,± given by the Yang–Mills
functional.

We have

N (Σ�
i)

±
μ ⊂ (A(Σ̃)n,0

μ )τ±
for μ ∈ I0

n, N (Σ�
i)μ ⊂ (A(Σ̃)n,0

μ )τ±
for μ ∈ Ii,±

n .

By results in [1] and [6], Aμ is a complex submanifold of A. We also know
that τ± induces anti-holomorphic involution on A. By Proposition 5.1, for
μ ∈ I0

n, we have

codimR

(
A(Σ)±

μ ,A(Σ)n,±)
= codimC

(
A(Σ̃)μ,A(Σ̃)n,0

)

=
∑

α<β

(μα − μβ − χ(Σ�
i)).

The above formula also holds for μ ∈ Ii,±
n .
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We have the following equivalent equivariant pairs for the purpose of
equivariant (singular) cohomology:

(A(Σ�
i)

±
μ ,Gn,±) ∼ (N (Σ�

i)
±
μ ,Gn,±) ∼ (X�,i

YM(U(n))±1
μ , U(n)), μ ∈ I0

n;

(A(Σ�
i)μ,Gn,±) ∼ (N (Σ�

i)μ,Gn,±) ∼ (X�,i
YM(U(n))μ, U(n)), μ ∈ Ii,±

n .

In other words, we have the following homotopy equivalences of homotopic
orbit spaces:

(
A(Σ�

i)
±
μ

)hGn,±

∼
(
N (Σ�

i)
±
μ

)hGn,±

∼
(
X�,i

YM(U(n))±1
μ

)hU(n)
, μ ∈ I0

n;

A(Σ�
i)μ

hGn,±

∼ N (Σ�
i)μ

hGn,±

∼ X�,i
YM(U(n))μ

hU(n)
, μ ∈ Ii,±

n .

Together with the reduction Proposition 7.3, we have

Theorem 7.4. Let i = 1, 2, and let K be a field. Given μ = (ν, 0, . . . , 0︸ ︷︷ ︸
n0

,

τ0(ν)) ∈ In, where ν ∈ In′,k, n
′, n0 ≥ 0, 2n′ + n0 = n,

ν =
(k1

n1
, . . . ,

k1

n1︸ ︷︷ ︸
n1

, . . . ,
km

nm
, . . . ,

km

nm︸ ︷︷ ︸
nm

)
,

k1

n1
> · · · >

km

nm
> 0,

we have the following identities.

(i) n0 > 0 ⇐⇒ μ ∈ I0
n :

H∗
G(A(Σ�

i)
±
μ ; K) ∼= H∗

G(N (Σ�
i)

±
μ ; K) ∼= H∗

U(n)(X
�,i
YM(U(n))±

μ ; K)

∼= H∗
U(n0)(Vss(Σ�

i , P
n0,±(−1)n′i+k

); K)

⊗
m⊗

j=1

H∗
U(nj)(Vss(Σ2�+i−1

0 , Pnj ,kj ); K),

P G
t (A(Σ�

i)
±
μ ; K) = P G

t (N (Σ�
i)

±
μ ; K) = P

U(n)
t (X�,i

YM(U(n))±1
μ ; K)

= P
U(n0)
t (Vss(Σ�

i , P
n0,±(1)n′i+k

); K) ·
m∏

j=1

P
U(nj)
t (Vss(Σ2�+i−1

0 , Pnj ,kj ); K).
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(ii) n0 = 0 ⇔ μ ∈ Ii,±
n :

H∗
G(A(Σ�

i)μ; K) ∼= H∗
G(N (Σ�

i)μ; K) ∼= H∗
U(n)(X

�,i
YM(U(n))μ; K)

∼=
m⊗

j=1

H∗
U(nj)(Vss(Σ2�+i−1

0 , Pnj ,kj ); K),

P G
t (A(Σ�

i)μ; K) = P G
t (N (Σ�

i)μ; K) = P
U(n)
t (X�,i

YM(U(n))μ; K)

=
m∏

j=1

P
U(nj)
t (Vss(Σ2�+i−1

0 , Pnj ,kj ); K).

Example 7.5. n = 2. For Σ�
1,

I1,+
n = {(0, 0)} ∪ {(2r − 1, 1 − 2r) | r ∈ Z>0},

I1,−
n = {(0, 0)} ∪ {(2r, −2r) | r ∈ Z>0}.

For Σ�
2,

I2,+
n = {(0, 0)} ∪ {(2r, −2r) | r ∈ Z>0},

I2,−
n = {(0, 0)} ∪ {(2r − 1, 1 − 2r) | r ∈ Z>0}.

In other words, the G-equivariant strata of A(P 2,+) (resp. A(P 2,−)) are
{A(Σ�

i)μ | μ ∈ Ii,+
2 (resp. Ii,−

2 )}. The codimension of each stratum is

d2r,−2r = 4r + 2� + i − 2, d2r−1,1−2r = 4r + 2� + i − 4.

The equivariant Poincaré series for stratum μ = (r, −r) is

P G
t

(
A(Σ�

i)r,−r

)
= P

U(2)
t

(
X�,i

YM(U(2))r,−r

)
= P

U(1)
t

(
X2�+i−1,0

YM (U(1))r

)

= P
U(1)
t (U(1)2(2�+i−1)) =

(1 + t)2(2�+i−1)

1 − t2
.

Example 7.6. n = 3. Since n is odd, n0 = 1 or 3. Thus,

I0
n = {(0, 0, 0)} ∪ {(r, 0,−r) | r ∈ Z>0}.
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The G-equivariant strata of A(P 3,±) are {A±
μ | μ ∈ I0

3}. The codimension of
each stratum is

dr,0,−r = 4r + 3(2� + i − 2).

The equivariant Poincaré series for stratum μ = (r, 0,−r) is

P
U(3)
t

(
X�,i

YM(U(3))±1
r,0,−r

)

= P
U(1)
t

(
X�,i

flat(U(1))±(−1)i+r
)

P
U(1)
t

(
X2�+i−1,0

YM (U(1))r

)

= P
U(1)
t (U(1)2�+i−1)PU(1)

t (U(1)2(2�+i−1)) =
(1 + t)3(2�+i−1)

(1 − t2)2
.
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