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In [1], Atiyah and Bott studied Yang-Mills functional over a
Riemann surface from the point of view of Morse theory. We
generalize their study to all closed, compact, connected, possibly
nonorientable surfaces.

1. Introduction

Let G be a compact, connected Lie group. In [1], Atiyah and Bott identified
the affine space A of connections on a principal G-bundle P over a Riemann
surface with the affine space C of holomorphic structures on P¢ = P x4 G,
where GC is the complexification of G. The identification A = C is an iso-
morphism of affine spaces, thus a diffeomorphism. It was conjectured in [1]
that under this identification the Morse stratification of the Yang—Mills func-
tional on A exists and coincides with the stratification of C from algebraic
geometry [14,25]. The conjecture was proved by Daskalopoulos in [6] (see
also [24] by Rade). The top stratum Css of C consists of semi-stable holomor-
phic structures on PC. Atiyah and Bott showed that the stratification of C is
GC-perfect, where G = Aut(PC). It has strong implications on the topology
of the moduli space M(P) of S-equivalence classes of semi-stable holomor-
phic structures on P®. When M(P) is smooth, Atiyah and Bott found
a complete set of generators of the cohomology groups H*(M(P); Q) and
recursive relations which determine the Poincaré polynomial P;(M(P);Q).
When M (P) is singular, their results give generators of the equivariant coho-
mology groups He(Css; Q) and formula for the equivariant Poincaré series
PY (Cos; Q).

Under the isomorphism A = C, the top stratum Css corresponds to Ags
which is the stable manifold of N, the set of central Yang—Mills connec-
tions, where the Yang-Mills functional achieves its absolute minimum [1,6].
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When the absolute minimum is zero, Ny is the set of flat connections (con-
nections with zero curvature). By [6, Theorem C],

M(P) gNSS/g’

where G = Aut(P). So M(P) can be identified with the moduli space of
gauge equivalence classes of central Yang—Mills connections on P. When
the absolute minimum of the Yang—Mills functional is zero, or equivalently,
the obstruction class o(P) € H?(%, 71 (Q)) is torsion, M(P) is the moduli
space of gauge equivalence classes of flat connections on P. It is known that
flat G-connections give rise to representations m1(X) — G, where m(X) is
the fundamental group of the base Riemann surface 3 of P. More precisely,

U  M(P)=Hom(m(),6)/G,
P € Pring (%)
o(P) torsion
where G acts on the representation variety Hom(7;(X), G) by conjugation.
Yang—Mills G-connections (critical points of the Yang—Mills functional) give
rise to representations I'r(X) — G, where I'r(X) is the central extension of
m1(X) [1, Section 6].

In this paper, we study the Yang—Mills functional on the space of connec-
tions on a principal G-bundle P over a closed, compact, connected, nonori-
entable surface ¥. The pull back P of P to the orientable double cover
7:% — ¥ is always topologically trivial (Proposition 2.8), and A+ 7*A
gives an inclusion from the space A of connections on P into the space A of
connections on P. The Yang-Mills functional on A is the restriction of that
on A. In the nonorientable case, the absolute minimum of the Yang-Mills
functional is always zero, achieved by flat connections (see, for example [11]).
We have

lJ M(P)=Hom(m(%),G)/G
PePring (X)

where M(P) is the moduli space of gauge equivalence classes of flat connec-
tions on P.

Let X be a compact, connected, nonorientable surface without boundary.
Then ¥ is diffeomorphic to the connected sum of m > 0 copies of RP?, and
the Euler characteristic x(X) =2 —m. We derive the following results in
this paper:

(i) We establish an exact correspondence between the gauge equivalence
classes of Yang—Mills G-connections on ¥ and conjugacy classes of
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representations I'r(X) — G, where I'r(X) is the super central extension
of m(X) (Section 4).

(ii) We show that the moduli space of gauge equivalence classes of flat
connections on any fixed principal G-bundle P over ¥ is nonempty
and connected if x(X) < 0. This extends [11, Theorem 5.2] to the case
¥ = 4RP? (Section 5.4).

(iii) When G = U(n), we give an explicit description of the G-equivariant
Morse stratification of the Yang—Mills functional, compute the Morse
index of each stratum, and relate lower strata to top strata of spaces
of U(m)-connections (m < n) on ¥ and on its orientable double cover.
This reduction also gives us a reduction of equivariant Poincaré series

(Section 7).

We will describe the reduction (iii) for other classical groups in a subsequent
work [12].

In the orientable case, the reduction (iii) and the understanding of the
topology of the gauge group are sufficient to determine the equivariant
Poincaré series of the top stratum recursively (by induction on dimension of
the group G). In the nonorientable case, we need to compute the difference
of the equivariant Morse and Poincaré series; this difference vanishes in the
orientable case due to equivariant perfectness of the stratification. We will
address this in future works.

Using the Morse theory for the Yang—Mills functional over a closed (ori-
entable or nonorientable) surface (studied in [1] and in this paper, respec-
tively), D. Ramras proved an Atiyah—Segal theorem for surface groups in
[26]: for any closed surface ¥ # S2, RP? K} .(m1(%)) = K*(X) for * > 0
when X is orientable, and for * > 0 when X is nonorientable, where K} are
Carlsson’s deformation K-groups. Using algebraic topology methods, T.
Baird computed the SU(2)-equivariant cohomology of Hom(m (%), SU(2))
and the ordinary cohomology of the quotient space Hom(m (X),SU(2))/
SU(2) for any closed nonorientable surface ¥ [4].

For the purpose of Morse theory, we should consider the Sobolev space of
L%71 connections A*~! and the group of L% gauge transformations G* and
(GE)*, where k > 2. We will not emphasize the regularity issues through
out the paper, but refer the reader to [1, Section 14] and [6] for details.

We now give a clear description of the remaining sections. In Section 2,
we review various representation varieties of flat connections, and show that
the pull-back of any principal G-bundle over a nonorientable surface to its
orientable double cover is topologically trivial. In Section 3, we review
definitions of the Yang—Mills functional and Yang—Mills connections over
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an orientable surface, and give corresponding definitions for a nonorientable
surface. We describe involutions on the principal G-bundles and on the space
of connections induced by the deck transformation on the orientable double
cover of the nonorientable surface. Section 4 contains our main construction
and justification. We introduce the super central extension of the fundamen-
tal group of a surface; it is the central extension if and only if the surface is
orientable. We establish a precise correspondence between Yang—Mills con-
nections and representations of the super central extension. We introduce
representation varieties for Yang—Mills connections, and describe an invo-
lution on symmetric representation varieties induced by the deck transfor-
mation on the orientable double cover. We also introduce extended moduli
spaces for nonorientable surfaces. In Section 5, we discuss the G-equivariant
Morse stratification and reduction for general compact connected Lie groups.
As a byproduct, we reproduce and extend the results on connected com-
ponents of the moduli space of flat connections over closed nonorientable
surfaces [10,11]. We specialize to the case G = U(n) in Section 6 (orientable
case) and Section 7 (nonorientable case). We give explicit description of the
G-equivariant Morse stratification of the space of connections. The main
reference of Section 6 of this paper is [1]. In [1, Section 7], the reduction
is derived at the level of strata, which are infinite dimensional manifolds.
Knowing the exact correspondence between Yang—Mills connections and rep-
resentations, we work mainly at the level of representation varieties which
are finite dimensional.

2. Flat connections and representations

Let G be a compact, connected Lie group, and let P be a principal G-
bundle on a closed, compact, connected surface ¥. We say a connection
A € A(P) is flat if its curvature vanishes. Let NVy(P) C A(P) be the set of
flat connections on P. Note that when ¥ is orientable, Ny(P) can be empty.

2.1. Representation varieties of flat connections

We first introduces some notation similar to that in [11, Section 2.3]. Let
Zé be the closed, compact, connected, orientable surface with ¢ > 0 handles.
Let ©f be the connected sum of ) and RP?, and let X4 be the connected
sum of Eg and a Klein bottle. Any closed, compact, connected surface is of
the form Ef, where £ is a nonnegative integer, 1 = 0, 1, 2. Ef is orientable if
and only if ¢ = 0. Use 1 as the identity of 71(X) and e as the identity of G.
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We have

¢
m(%6) = <A1,B1, - Ay, B | T]14i, Bi] = 1> ;

i=1

¢
m(2)) = <A1,Bl,---7Ae,Beac \ H[AiaBi] = 02>7

i=1

i=1

L
Wl(zg) - <A17Bla s 7Ava€7D7C ‘ H[AHBZ] = CDC—1D> :

It is known that a flat connection gives rise to a homomorphism m (¥) —
G. Introduce representation varieties

l
Xi(G) = {(alablv covagbe) € G* | ] Tlaisbi] = e} :
1=1
l
Xif{alt(G) = {((Il,bl, s ,(I(,bg,C) € GQZJFI | H[az,bl] = 02} ,
i=1

l
X2 (@) = {(al,bl, —yag by dye) € G| T [l bi) = cdc—ld} .
=1

Then
U M(P)/Go(P) = Hom(m (£).G) = Xy, (G)
PePring (2¥f)

fori=0,1,2,¢ > 0, where Gy(P) is the based gauge group which consists of
gauge transformations on G that take value the identity e € G = Aut(Py,)
at a fixed point of zg € Xf. The action of Go(P) on Ny(P) is free. Let
G(P) = Aut(P) be the gauge group. Then Gy(P) is a normal subgroup of
G(P), and

G =G(P)/Go(P).

Example 2.1.
XU Q) = {(a1,b, ... a0, b)) € UQ)*} = U1)*,
Xgh(U) = {(a1,b1, ... ap,be, ) € UQ)P | 2 =1} = U(1)% x {£1},
XP2U ) = {(a1,b, ..., ae, by, dyc) € U2 | @ =1} = U (1)
x {£1}.
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Let G act on G2+ by

g-(c1y. .. co0pi) = (gclg_l, . ,ch_H-g_l) )

This action preserves the subset Xﬁﬁt(G) C G** so G acts on Xﬁ’ait(G),
and

J  M(P)/G(P) = Hom(m (), G)/G = X (G)/G
PePring (2f)

is the moduli space of gauge equivalence classes of flat G-connections on Ef .
We also have homotopy equivalences

U MNP ~ Hom(m (%), G)"Y ~ Xt (G)"C
PePring (2¥)

where X"G denotes the homotopic orbit space EG xg X.

Notation 2.2. In the rest of this paper, we will use the following notation:
Denote the 20-vector by V = (a1,b1,. .., as,by) € G**. Define m(V) and
t(V) by

14
(2.1) m(V) = ] [lai, b,
i=1
(2.2) t(V) = (bg,az,...,bl,al).

Then m(x(V)) =m(V)~L. Given g € G, define

Vgt = (gar97 " gbig™, ..., gaeg ™", gbeg ™).

With the above notation, the representation varieties Xg’ait(G) can be
written as follows:

Xp(G) ={V € G* | m(V) = e},
X (@) = {(V.0) | V € G¥, ce G, m(V) = )},
XE2(G) = {(Vid) | V € G¥, d,c € G, m(V) = cde'd}.
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2.2. Symmetric representation varieties of flat connections

Let ¥ be a closed, compact, connected, nonorientable surface, and let  :
Y — ¥ be the orientable double cover. The goal of this and the next
subsection is to relate the representation varieties of ¥ to those of 3.

Let ¥ = Eﬁ , where ¢ = 1,2. Then ¥ is homeomorphic to the connected
sum of 2¢ + i copies of RP2, and its orientable double cover ¥ is Eg”iil, a
Riemann surface of genus 2¢ + ¢ — 1.

In the rest of this subsection, we follow [8, Section 5] closely. Define

{(V,e,V,0) | V,V eG¥, c,ee G, m(V)=ce,m(V)=éc},
{(V,d,c,V,d,e) | V,V € G¥, d,e,d,ce G, m(V) = cdc d,
m(V) = edetd}

ﬂat (G)
Zga (@)

Lemma 2.3. Fori=1,2, define @éG’i  G220H) _y G2+ gy

o5 (V,e,V,6) = (V,ex(V) e D),
OLA(V,d,e,V,d ) = (V,d 'ex(V) ¢ ld,d Y, ce),
where V,V € G*, ¢,d,¢,d € G. Then

B (2 (©) = Xil (G,

Proof. 1t is straightforward to check <I> “ ﬂat(G)) C X%H*l’O(G). It remains

flat
to show that Xgﬁ:” @) ‘I)G (Zﬁ;(G))

1 X;50(@) c 98 (Zh(G): Given (Wi, Va) € X2520(G), where Vi, Vs €
G*, we have m(V;)m(V3) = e. Let

c=m(Vi) =m(Va) "' = m(x(V2)).
Then
(V1,e,te(Va), @) € Zgh (@),  (V1,Va) = 5! (W1, e, t(Va), ©).

2. XotH0(@y c ®L2(Z5%(G)): Given (Vi Va,a,b) € Xptt (@), where

flat

Vi,V € G** and a,b € G, we have m(Vy)m(V3)[a,b] = e. Let

d=at, d=am(Vy), c=a' é=ab.
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Then

(‘/17d7 cat(‘/Q)7J7 C) Zgazt(G)a (V17‘/27a7 b) = q)éz(‘/iadv Cat(V2)7C?7 E)
O

Let G? act on Zflalt(G) ZflaQt(G) by

(91,92) - (Voe, V&) = (1Vgy ' g1egy 5 92V g5 5 92897 ),
(917 92) ' (‘/a d7 c, V7 da E) = (glv.gl_lv gldgl_la 91692_17 92V92_17 g2d92_lg2591_1)7

respectively, where V,V € G* and g1, ¢2,¢,¢,d,d € G.

(G) — X%H*l’o(G) induces home-

Lemma 2.4. The surjection (I)éf : Zb o

flat
omorphisms

(2.3) Zgh(G)/G? = X F (G /G = Hom(m (S2H71),6) /G

and a homotopy equivalence

(2.4) Z5

2 0+i—1,
(O ~ X TR @)

flat

where X"C denotes the homotopic orbit space EG x¢ X.

Proof. The case i =1 of (2.3) was proved in [8]; the case i = 2 is similar.

To see (2.4), let G; = Gx{l}CGxGanng—{l}xGCGxG S0
that G1 = G2 = G, and the Gi-action and Ga-action on Zﬂ (G) commute.
Note that G2 is a closed normal subgroup of G x G and that G acts on
ZEZ .(G) freely, so the natural projection Zlcl (G) — Zﬁ;t( )/G2 induces a
homotopy equivalence

l, L, 1

Zan (GO~ (Z31(G) [ G)" .
It is straightforward to check that the surJectlon <I>£ ! Zg;t(G)HXgﬁ:” L@
descends to a homeomorphism <I> : Zgn (G) /Gg — Xﬁﬁj’ 10(G). More-

over, <I>G is G-equivariant with respect to the G1-action on Zﬁ (G)/G2 and
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the G-action on Xgﬁ;”_l’o(G), SO @éf induces a homotopy equivalence

(Zu(G)/G2)" ~ X MG

flat

By [11, Theorem 3.3], when ¢ > 0 there is a bijection
mo(Hom(71(2§), G)/G) — m1(Gss),

where Ggs = [G, G| is the maximal connected semi-simple subgroup of G.
Since G? and G are connected, we conclude that

Corollary 2.5. Suppose that i =1,2 and ¢ > 0. Then when (¢,i) # (0,1)
there is a bijection

WO(ZéZt(G)) — m1(Gss)-

2.3. Involution on symmetric representation varieties of flat
connections

In this section, ¢ = 1,2.
Let 7 : Zﬁgt(G) — Zﬁgt(G) be the involution defined in (§]:

T(V,v,V,0) = (V,9,V, ),

where V,V € G* and v, v € G*. There is an injection I : Xg’ait(G) — Zﬂat(G)
given by (V,v) — (V,v,V,v) such that

I(Xga (@) = Zgi (G,

where Zﬁgt(G)T is the fixed locus of the involution 7. We will show that
Zfl’ait(G)T corresponds to topologically trivial flat G-bundles over the Rie-
mann surface E%Hi_l. To do so, we first recall the definition of the obstruc-
tion map, which detects the topological type of a flat G-bundle.

Let H be the connected component of the identity of the center of G,
and let G55 = [G, G] be the commutator group. Then H is a compact torus,
and G is the maximal connected semi-simple subgroup of G. Let pss:
GSS — Ggsand p : G — G be universal coverings. Then G = h x GSS, where
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h = Lie(H). Define p* : G2* — G* by

p** (a1, b1, ..., a0, be) — (p(ar), p(br), - .., plar), p(be))-

With the above notation, the obstruction map o: X (G) — Ker(pss) =
71(Gss) is defined as follows: given V € G, pick V GM such that p2¢(V)
=V, and define o(V) = m(V). Then o(V) € Kerp N Gss = Kerpgs, and the
definition is independent of choice of V. The flat G-bundle associated to V/
is topologically trivial if and only if o(V') = €, where € is the identity element
of G. A

Let o : Xﬁﬁl_l’o((}) — Ker(pss) be the obstruction map, and let

o= ooq)“ Zé;t(G) — m1(Gss).

Let e be the identity element of G.
Lemma 2.6. o (7(y)) = o'(y)~" fory € Z5'(Q).

Proof. We will prove the case i = 1. The case ¢ = 2 is similar.
Given y = (V,¢,V,¢) € Zﬁalt(G), where V,V € G and ¢, ¢ € G, pick
V/,V'e G* and ¢, € G such that p*(V') =V, p* (V') =V, p(c) =

and p(@) =c¢. Then
pm(V)(d) ™) =m(V)(ce) " =e, p(m(V)(@)7h) =m(V)(ee) ™ =e.

Let k=m(V')(¢@)~" and k=m(V')(@¢)~". Then k,k € Kerp C Z(Q).
We have

d(y)=0d(V,c ) =o(V,cx(V)e™) = m(V)m(e(V
=m(V)dm(V)"H) = (k@) (kdd) ) = kbt
d(1(y)) =0 (V,e,V,c) = kk™!
So o (7(y)) =o' (y) ™ 0

Lemma 2.7. o ol(x)=¢ forall x € Xﬁﬁt(G).

Proof. We will prove the case i = 1. The case ¢ = 2 is similar.
~ Given (V) GNngt(G), where V € G? and ¢ € G, pick V' € G* and ¢ €
G such that p?(V) =V and p(¢) =c. Then p(m(V)é2) =m(V)c 2 =e.
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Let k= m(V)é 2 € Kerp € Z(G). Then

o ol(V,e)=d(V,e,V,e) = o(V,ct(V)e™!) = m(V)m(ee(V)é )

yem(V)tet = ke e(ké®) el = e

<t

:m(

By [11, Theorem 5.2], any topological principal G-bundle on a closed,
connected, nonorientable surface admits a flat connection. By Lemma 2.7,
the pullback of a flat G-bundle over Zf under the orientable double cover
Z(Q)Z'H_l — ¢ is a topologically trivial flat G-bundle over Zg“i_l. We con-
clude that:

Proposition 2.8. Let G be a compact, connected Lie group. Let Y be a
closed, connected, nonorientable surface, and let m : Y — X be the orientable
double cover. Then the pullback 7 P of any topological principal G-bundle
P — ¥ is topologically trivial.

3. Yang—Mills functional and Yang—Mills connections

In this section, we will define Yang—Mills functional and Yang—Mills connec-
tions on nonorientable closed surfaces.

3.1. Yang—Mills functional and Yang—Mills connections on
orientable surfaces

We first recall the Yang—Mills functional and Yang—Mills connections on
orientable closed surfaces, following [1].

Let G be a compact connected Lie group. Let ¥ be a Riemann surface.
There is a unique Kéahler metric h such that the scalar curvature is a constant
and the Kéhler form w is the unique harmonic 2-form on ¥ such that fz w =
1. We call it the canonical metric of the Riemann surface.

Let A(P) denote the space of C* connections on P. Then A(P) is
an affine space whose associated (real) vector space is Q2!(3,ad(P)). The
Yang—Mills functional L : A(P) — R is defined by

(3.1) L(A) = /Z Tr(F(A) A *F(A)),

where F'(A) is the curvature form of A.
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Let A; = A +tn be a line of connections, where n € Q!(3, ad(P)). Then

1
F(Ay) = F(A) + tdan + §t2 [0, 7],

L(Ay) = L(A) + 2t | Tr(dan A *F(A)) + O(t?)

= L(A)+2t | Tr(nAs*dy* F(A)) + O(t?)

T~

So A is a critical point of L iff it satisfies the Yang—Mills equation:
(3.2) dyF(A) =xdy x F(A) =0.

We call critical points Yang—Mills connections on P. Note that flat connec-
tions are Yang—Mills connections.

3.2. Involution on the principal bundle

Let X be a connected, nonorientable, closed surface. Then ¥ is diffeomor-
phic to the connected sum of m > 0 copies of RP?’s. Let 7:% — X be
the orientable double cover, and let 7: % — 3 be the deck transformation.
Then ¥ is a Riemann surface of genus m — 1, and 7 is an anti-holomorphic,
anti-symplectic involution with no fixed point.

Let P — X be a principal G-bundle. Let P = 7*P be the pullback prin-
cipal G-bundle on ¥. By Proposition 2.8, P is topologically trivial. There
is an involution 7 : P — P which is G- equivariant and covers 7 : DI )

More explicitly, fix a trivialization P 2 % x G. The right G-action on P
is given by

(z,h) - g=(z,h-g),
where g € G, (z,h) € ¥ x G. It is straightforward to check that

(z,h) - (9192) = ((z,h) - g1) - go.
The involution 7 is G-equivariant with respect to the above G-action:
7(z,h)-g=7((z,h)-9)

for (z,h) € P, g € G. Let s : ¥ — G be defined by

7(z,e) = (7(2), 5(2)),
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where e € G is the identity element. By the G-equivariance,

(3.3) T(z,h) = (1(2), s(x)h).

We have 7 o 7 = idg, so

(3.4) s(r(z)) = s(z) L.

Conversely, given any smooth map s : > — G such that (3.4) holds, we
define 7, : P — P by (3.3). Then 7, is a G-equivariant involution on P which
covers the involution 7 on %, so Py = P /7s is a principal G-bundle over X.

In particular, we can take s to be a constant map: s(z) = €, where € € G,

€2 = e. The involution 7. = 75 on P 2 % x G is given by

(@, h) — (7(x), €h).
The zero connection on 3 x G descends to a flat connection A.on P, = p /Te
which corresponds to

4,
(67 . ) S Xﬂe:t

(G) C G2£+i )

The topological type of P. = P /Te can be determined by the following
way (see [11]). We use the notation in Section 2.3. Choose é € p~'(e), where
p: G — G is the universal covering. The obstruction class

[€?] € Kerp/2Kerp = 711(G) /2m (G) = H*(3; m(G))

is independent of the choice of € and determines the topological type of P..
Recall that Kerp = 71(G) is abelian, and

Pring(2) = H2(3; m(Q)).

Conversely, a principal G-bundle over ¥ of any topological type arises
this way. Recall that

Kerp C Z(G) C b x T,

where T, is some maximal torus of Gss. Given k € Kerp/2Kerp represented
by a € Kerp, choose € € h x T, such that é = a. Let € = p(é) € G. Then

€2 = e, and € defines a principal G-bundle P. — ¥ with obstruction class k.

Example 3.1. G =U(n). Let € € U(n) such that € = I, (in particular,
det(e) = £1). Then ¢;(P;) = ci(det(F)), where det(Fx) is the U(1)-bundle
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on X which is the quotient of ¥ x U(1) by the involution

(z,h) — (7(x), det(e)h)

for €%, heU(1). So P.= Py if det(e) = 1, where ¢;(Py) =0 and
ci(P.)=1in H?(X;7Z) =2 Z/27.

3.3. Involution on the adjoint bundle

Let g denote the Lie algebra of G. Let P =Y x G be the trivial principal
G-bundle as above. Let ad(P) = P x¢g g, where G acts on P x g by

g (x,h,X) = (x,hg, Ad(g~")(X))

forg € G, (z,h) € ¥ x G =P, X €g. Thenad(P) = % x g, and the natural
projection P x g — X x g is given by

(z,h, X) — (z,Ad(h)(X)).
Let s : 2 — G be a smooth map such that s( x)) = 1 asin (3.4);

s(z)”
define 7; : P — P by 7(x, h) = (1 7(x),s(z)h), as in (3.3). The 1nvolut10n Ts
on P induces an involution on ad(P):

(z, X) — (7(2), Ad(s(2))(X)).

We use the same notation 75 to denote it. We have
ad(p)/%s =~ P, Xgg.

3.4. Involution on the space of connections
7, : ad(P) — ad(P) induces an involution
75 A(P) — A(P),

s

where A(P) = Q'(%; g).
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More explicitly, given § € Q1(X) and X € Q°(%; g),
THX ®0)=Ad(s)(7"X) @ 776.

Similarly, 7, : ad(P) — ad(P) induces an involution on Q2(2;g). The cur-
vature form F(A) can be viewed as an element in Q2(%; g):

FA)=X®uw
where X : 3 — g and w is the volume form of Y. We have
F(7fA) =7 (F(A) =7 (X @w)=Ad(s)(T"X) @ T"w = —Ad(s)(7"X) ® w,

where we have used the fact that 7 is anti-symplectic.
Recall that A(P) is a Kéhler manifold: the complex structure is given
by a — *a, and the symplectic form 2 is given by

Q(a,ﬂ):/Tr(a/\ﬂ).

by

The involution 77 : A(P) — A(P) is anti-holomorphic and anti-symplectic.
The fixed locus A(P)™ can be identified with A(Ps), the space of G-
connections on Py = P/7,. A(P)™ is a totally geodesic, totally real,
Lagrangian submanifold of A(P).

3.5. Yang—Mills functional and Yang—Mills connections on
nonorientable surfaces

Let (M, g) be a Riemannian manifold with an isometric involution 7 : M —
M. Tt is straightforward to check the following statements.

Lemma 3.2. Let f: M — R be a smooth function such that f o1 = f.

1. Let N be the set of critical points of f. Then T(N) = N.

2. Let X be the gradient vector field of f. Then
(a) For any p € M, we have 7.(X(p)) = X (7(p)).
(b) If v : I — M is an integral curve of X, where I is an open subset
of R, soisToy:I— M.
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Let M7 be the fixed locus of 7. Suppose that

M7 =M
i€l

is a union of connected components, where each M is a submanifold of
M. Then each M] is a totally geodesic submanifold of M because 7 is an
isometry. It is straightforward to check the following statements.

Lemma 3.3. Let f : M — R be a smooth function such that foT = f, and
let f7: M™ — R be the restriction of f.Then

1. X(p) € T,(MT) for anyp € M7, and X|p- is the gradient vector field
of f7.

2. The set of critical points of fT: M™ — R is NT = NNMT", where N
18 the set of critical points of f: M — R.

In our case, M = A(P) and f is the Yang-Mills functional L. We define
the YangMills functional on A(P)™ = A(Ps) to be L™ : A(P)" — R. We
call the critical points of L™ Yang-Mills connections on P. By Lemma 3.2,
A is a Yang-Mills connection on P if and only if 7*A is a Yang—Mills con-
nection on P.

It is worth mentioning that our definition of Yang—Mills connections
on non-orientable surfaces is different from the one introduced by S. Wang
in [29].

4. Yang—Mills connections and representations

In this section, we introduce the super central extension of the fundamental
group of a surface, and establish a precise correspondence between Yang—
Mills connections and representations of super central extension. We intro-
duce representation varieties for Yang—Mills connections on orientable and
nonorientable surfaces, and introduce extended moduli spaces for nonori-
entable surfaces.

4.1. Super central extension of the fundamental group

To relate Yang—Mills connections to representations, we need to introduce
certain extension of the fundamental group of the surface.

Let ¥ be a closed, compact, connected surface. Given a € m(X), let
deg(a) = w1 (Tx)[a] € Z/2Z, where [a] is the image of a under the group
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homomorphism 7 (2) — H1 (2 Z) = 71(X)/[m1 (), m1(X)], and wy (Ts) € H'
(3;Z/2Z) is the first Stiefel-Whitney class of the tangent bundle of X.
More geometrically, if v: S! — ¥ is a loop representing a € 71(X), then
deg(a) = 0 € Z/2Z if the rank 2 real vector bundle v*T% over S! is ori-
entable (or equivalently, topologically trivial); deg(a) = 1 € Z/2Z if v*Tx. is
non-orientable (or equivalently, topologically non-trivial). The group homo-
morphism deg : m(X) — Z/27 is trivial if and only if ¥ is orientable.

We are now ready to define the super central extension I'r(X) of m(X).
It fits in a short exact sequence of groups:

15 R-% (3 5 m(D) - 1.

Given r € R, let J, = a(r), so that J,, 4y, = Jp, Jp,. Given a € I'r(X), we
have

J; 0
-1 _ r . .
aJya” = {Jr g if deg(f(a)) = {1 € Z/)2Z.

This defines I'g(X) up to group isomorphism. We will give a more explicit
description later.

When ¥ is orientable, I'r(X) is the central extension of 7;(X) defined
in [1].

4.2. Representation varieties for orientable surfaces

Recall that any closed, compact, connected surface is diffeomorphic to X8,
a Riemann surface of genus ¢, for some nonnegative integer £. I'r(X%§) is
generated by

Ay, B1,..., Ay, By, J,
where r € R, with relations
(1) Jrdry = Jryars
(2) [As, Jr] =[Bi, Jr] =1, i=1,...,0, reR;
(3) [Tizi[As Bi] = 1.

Let p: Tr(2§) — G be a group homomorphism. From the relation (1),
we must have p(J,.) = exp(rX) for some X € g, where g is the Lie algebra
of G. From relation (2) we must have p(4;), p(B;) € Gx, where Gx is the
stabilizer of X of the adjoint action of G on g. Combined with relation (3),
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Hom(T'r(2§), G) can be identified with
0 _ 20 20 _
Xym(@) ={(V;X) € G" x g |V € (Gx)",m(V) = exp(X)},

where m(aq,b1,...,ap,bp) = Hle[ai, b;] was defined in Section 2.1.

Let N(P) C A(P) be the space of Yang-Mills connections on P. By
Theorem 6.16 in [1], AV(P) is nonempty for any underlying principal G-
bundle P. Let Ny(P) C A(P) be the space of flat connections on P, as
in Section 2. The natural inclusion Ny(P) C N(P) induces an inclusion
X (G) = X3(G), V = (V,0).

Let G(P) be the gauge group, and let Gy(P) be the based gauge group,
as before.

Theorem 4.1 [1, Theorem 6.7]. There is a bijective correspondence
between conjugacy classes of homomorphisms T'r(X) and gauge equivalence
classes of Yang—Mills G-connections over 3. In other words, we have home-
omorphisms

U N(P)/Go(P) = Hom(I'z(5§), G) = Xyny(G),
PePring (2§)
U N(P)/G(P) = Hom(Ta(S6),G)/G = X45(G)/G,

PePring (2§)

where g € G acts on G x g by g- (V,X) = (gVg~', Ad(g)(X)).

4.3. Holonomy on the double cover

Let ¥ be a closed, compact, connected, nonorientable surface, and let  :
¥ — ¥ be the orientable double cover. Then ¥ is a closed, compact, con-
nected orientable surface. Let 7: % — ¥ be the deck transformation which
is an orientation reversing involution.

Let A € A(P) be a Yang-Mills connection. Recall that A € A(P) is a
Yang-Mills connection if and only if there exists u : ¥ — G such that

F(A) =Ad(u)(X) @ w,

where X is a constant vector in g, or equivalently, if there exists A e .A(]B)
and u € G(P) such that A =u- A" and F(4') = X @ w.
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We fix a trivialization P — 3 x G such that
F(A) =X Quw,

where X € g and w is the volume form. Using this trivialization, we may
define the holonomy along a path (holonomies along based loops are defined
without using the trivialization of P). Given a path v:[0,1] = %, let
7:[0,1] — P be the horizontal lifting of v (with respect to the connec-
tion A) with (0) = (7(0), e), where e is the identity element. Then §(1) =
(7(1),g71) for some g € Gx, where Gx is the stabilizer of X € g of the
adjoint action of G on g. We call g € G the holonomy along ~.

Let 4 : [0,1] — P be another horizontal lifting of v with 4’ (0) = (v(0), h),
where h € G. By G-invariance of the connection, we have 4/ = 4 - h, so

7(1) = (v(1), 97 h) = (v(1), A(h " gh) ).

To summarize, if we change the trivialization by a constant gauge transfor-
mation h, the curvature form changes from F(A4) = X @ w € Q%(X;g) to

F(A) = Ad(h")X @ w € Q*(Z;q)

and the holonomy along ~ changes from g € Gx to h™lgh € Gad(h-—1)x-
Recall that 3 is diffeomorphic to Ef for some £ > 0 and i = 1,2, where X
is the connected sum of a Riemann surface of genus £ and the real projective
plane, and ¥ is the connected sum of a Riemann surface of genus £ and a
Klein bottle. We will discuss the case ¥¢ in detail. The case ¥4 is similar.
Suppose that s: % — @ satisfies (3.4), so it defines an involution 7 :
P — P. Now look at Figure 1.

Figure 1: Holonomy on the double cover Y3.
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A;, B; are loops passing through p € ¥, A;, B; are loops passing through
p_ =7(py), C is a path from p, to p_, and C is a path from p_ to py.
The holonomies along A;, B;, A;, B; depend on the connection, not on the
trivialization. The holonomies along C' and C' depend on the connection
and the trivialization. We choose the trivialization as follows. Let the
trivialization of P at p4 and p_ be given by h — h and h — s(p+)h, respec-
tively. We define ¢ and ¢ as follows. Let v :[0,1] — P be the horizon-
tal lifting of C' such that v(0) = (p4,e). Then (1) = (p_,s(ps)c ). Let
7:[0,1] = P be the horizontal lifting of C' such that 5(0) = (p_, s(p)).
Then 5(1) = (py,& ). Let o/(t) =7(t)-c~!. Then +' is also a horizontal
lifting of C, 7'(0) = (p—,s(p4)e™"), ¥(1) = (p, ¢ 'e™h) = (p4, (c©) ™). So
v U~/ is a horizontal lifting of CC, and the holonomy along C'C'is cé. Denote
the holonomies along A;, B;, A;, B; by a;, b;, @;, b;, respectively.

We cut X into two discs Dy and D_ = 7(D,). The (oriented) boundaries
of Dy and D_ are

12 l

oDy = [[I4 Blc—'C~Y, oD = [[[4:, BICC.

=1 =1

/wzl, /w:/ w—i—/ w, T'w=-w
by by D, —-D_

where —D_ is D_ with the reversed orientation. We conclude that

f oo
w = —.
Dy 2

Let z = s(py) € G. From the above discussion, we have

Recall that

m(V)e et = exp(— /D X ®w) = exp(X/2),

m(V)e et = exp (— Ad(z"HX ® w) = exp(—Ad(z 1) X/2).

Dy

Moreover,

Ve(Gx)", ' eGx, Ve(Gaaenix)™ €€ Gage1)x):
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So we shall define a symmetric representation variety

Zyu(G) = {(V’ e, V.6, X) eGP x g | Ve (Gx)¥, cz7! € Gy,
Ve (GAd(zfl(X))ﬂ, ¢z € Gaq-1)(x), (V) = exp(X/2)ce,
m(V) = exp(~Ad(>") X/2)ec}

Our next goal is to rewrite Zf{li/[(G)z without using z. Given (V,¢, V¢,
X) e Zélh(G)z, we have ¢z € Gaq(;-1)(x), Which implies Ad(z71)(X) =
Ad(e)(X). So
m(V) = exp(—Ad(e)(X)/2)éc = cexp(—X/2)c.
We also have

@€ Gx, Ve (Graex)¥, @€ Grae)x)

which imply
Vel e (Gx)™
Define

Z (G) = {(V,e,V,6,X) € G*HD) 5 g | VeVt e (Gx)%,
m(V) = exp(X/2)ce, m(V) = cexp(—X/2)c}

Zon(G) = {(V,e.V,2,X) € Zyy,(G) | Ad(2)(X) = Ad(z"1)(X)},
where V,V € G* ¢,c € G, X € g, and

Zyn(G) = | Zon(G)*.
zeG

The involution 7, :.A(P) — A(P) induces a map 7, : Zf(li/[(G)Z —
751 (@)* 7 given b
v (G)?  given by

(V7 c, V'} é? X) — (Va Eu V7 C, —Ad(Z_l)X)7
or equivalently,

(4.1) (V,e,V,e,X) — (V,&,V,e,—Ad(e) X).
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Note that (4.1) defines an involution 7 : Zf(’i/[(G) — Zi;i/[(G). Similarly, the
involution 77 : A(P) — A(P) induces an involution 7 : ZéiA(G) — Zf(’i/[(G)
given by

(4.2) (V,d,e,V,d,e,X) — (V,d, & V,d,c,~Ad (&) X).

4.4. Symmetric representation varieties

In this subsection, ¢ = 1, 2. Based on the discussion in Section 4.3, we define
symmetric representation varieties as follows:

Zon(G) = {(V,e,V,6,X) € G2V x g | V,cVe ™ € (Gx)¥,
m(V) = exp(X/2)ce, m(V) = cexp(—X/2)c},
Zo(G) = {(V,d,c,V,d, &, X) € G** x g | V,d eV ld e (Gx)¥,
d'cce Gx, m(V)=exp(X/2)cdcd,
m(V) = edexp(—X/2)e"'d},

where m(aq,b1,...,ap,b7) = Hle[ai, b;] is defined as in Section 2.1.
Lemma 4.2. Fori=1,2, define @lg DGR g GRS g by

q)(él (‘/a ¢, V) 57 )

X) = (V,ex(V)e ™, X),
L (V,d, ¢, V,d, ¢ X)

(V,d ter(V)etd,d™, ce, X),

where V,V € G*, ¢, dcG, Xcg, and t(a,bi,...,as b)) = (by,ay,
...,b1,a1). Then

i rrlyi 20+i—1,0
(I)GZ(ZYT\/I(G)) = XY1\J/EZ (G).
There are inclusions Zé’ait(G) — Zf{lfv[(G) given by (V,v,V,0)
(V,v, V,@,O), where V,V € G%, and v,7 € G*. We use the same notation

for CIDZG’Z in Lemma 2.3 and Lemma 4.2, since <IJZG’i in Lemma 2.3 is just the
T li -
restriction of @/ in Lemma 4.2.

Proof of Lemma 4.2. 1. Claim: Q)ZG’l(Zf(’I{/I(G)) C X%E’N?(G).



Yang-Mills connections 639

Given (V,c,V,¢,X) € Zf{’i/[(G), where V,V € G* ¢,c € G,and X €
g, we have

V,cVel e (Gx)¥, m(V) =exp(X/2)ce, m(V) = cexp(—X/2)c

Straightforward calculations show that c¢ = exp(—X/2)m(V) € Gx,
and

m(ct(V)e™) = em(e(V)) ¢! = exp(X/2)(ce) L.
So if (V,¢,V,& X) € Zor,(G), then

m(V)m(ce(V) ™) = exp(X/2)céexp(X/2)(cc)
— exp(X/2) exp(Ad(ce)(X)/2) = exp(X),

where we have used c¢ € Gx, i.e., Ad(c¢)(X) = X. In other words,
O (V,e,V, 2, X) = (Vier(V)e ™, X) € Xyl (G).
: 0, 01, L,
2. Claim: X%N?(G) C <I>G1(ZY1{/I(G)).

Given (V1,Va, X) € X250(G), where Vi,Va € G2 and X € g, we
have

Vi, Vo € (Gx)%, m(V1)m(Va) = exp(X).
Let ¢ = exp(—X/2)m(V}). Then ¢ € Gx, and

¢ = exp(—X/2) exp(X)m(V3) " = exp(X/2)m(x(Va)).
We have
m(V1) = exp(X/2)¢, m(x(V2)) = exp(—X/2)¢ = cexp(—X/2),

SO
(Vi,e,t(Va), & X) € Z41,(G),
and

(Vi, Va, X) = D51 (Vi, e,2(Va), 6 X) € 951 (Z,(@)).

3. Claim: ®42(252,(G)) € X210,
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Given (V,d,c,V,d, ¢, X) € Zf{lﬁ/[(G), where V,V € G%*,d,c,d,c € G,
and X € g, we have

V,d ter(V) e ld € (Gx)¥, m(V) = exp(X/2)cde1d, m(V)
= cdexp(—X/2)c 1d.

Straightforward computations show that

m(V)m(d tee(V) e td)[d, cd) = m(V)d tem(V) " Letd[d ™, e
— exp(X/2) exp(Ad(cB) (X),/2)
= exp(X)

where we also used c¢ € Gx, i.e., Ad(cc)(X) = X. In other words,
O (V,d,c,V,d,e,X) = (V,d  er(V)e Hd,d 7Y, ce, X) € XehbM0(@).

4. Claim: Xeyb"(@) € @52 (Z93,(Q)).
Given (V1,Va,a,b,X) € X%ﬁl’o(G), where Vi,V € G? and a,b €
G, we have

Vi,Va € (Gx)*, a,beGx, m(Vi)m(Vz)[a,b] = exp(X).

Let
d=a"', d=aexp(—X/2m(V1), c=a"', ¢=ab.
Then
exp(X/2)ede™td = m(V7),
and

cdexp(—X/2)e td = aba™t exp(—X/2)b ! exp(—X/2)m(V})
= [a, bl exp(—Ad(b)(X)/2) exp(-X/2)
x exp(X)(m(V2)[a, b]) " = m(x(V2))

where we have used that b € Gx (i.e. Ad(b)(X) = X) in the last equal-
ity. So
(Vi,d,e,t(Va),d, e, X) € Zir (G),
and
(Vi,Va,a,b, X) = ®2 (W1, d, ¢,¢(Va), d, &, X).
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2 £,1 0,2
Let G* act on Zyy(G), Zyy(G) by

(glaQZ) : (Vv, c, V,E,X) = (91Vg;1,glcg;1a92‘79513gQnglvAd(gl)(X))a
(91792) : (V, da C, Vvdv EaX) = (91Vgl_17gldgl_17glcg2_17g2v.92_1792
x dgy "', g2tgy ', Ad(g1) (X)),

respectively, where V,V € G?¢, and g1, g2, ¢, ¢, d,d € G. Slight modification
of the proof of Lemma 2.4 gives the following:

Lemma 4.3. The surjection @gi : Zf}f\/I(G) — X%\f—l’o(G) induces home-
omorphisms

X} ~ v20+i—1,0 ~ i—
43)  Zyu(G)/G* = X3 (@)/G = Hom(Te(55471), G) /@
and a homotopy equivalence
(4.4) Zo( @) ~ X5
between homotopic orbit spaces.

4.5. Involution on representation varieties for Yang—Mills
connections

Lemma 4.4. Fori=1,2, define 7 : G*2+) x g — G221 x g by

)=(V,¢,V,e,—Ad(¢)X),
’ J? Ev ‘/7 d7 ¢, _Ad(é)X)7

0 0
T(Zyn(G)) = Zyu(G)
and T o T restricts to the identity map on ngliv[(G).

Remark 4.5. Based on (4.1) and (4.2), the involution 7 defined in
Lemma 4.4 is the one induced by the Z/27Z deck transformation on the
double cover.
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Proof of Lemma 4.4. We first prove 7'( ( )) C Zf(f\/[( G). i=1: Given
(V,e,V,6,X) € Zéi/[((}) where V,V € GM ¢,c € G,and X € g, we have
V,eVe e (Gx)¥, cce Gy,
so ¢ Ve = (ce) " (Ve ) (ce) € (Gx)%, or equivalently,
(i) V € (eGxe ") = (Gaaex)* = (G_ada@x)™
If we let X = —Ad(¢)(X), then we have V € (G ¢)*. We also have
(ii) eVe e (eGxe™1)? = (Gaaex)* = (Gx)*.
To summarize, we have
(4.5) V,eVele (Gg)*
We also have

m(V) = cexp(—X/2)c = (cexp(—X/2)é )éc

(4.6) = exp(X/2)ec,
m(V) = exp(X/2)cé = ccexp(X/2) = c(cexp(X/2)c e
(4.7) = cexp(—X/2)é.

By (4.5)(4.7), we get 7(V,¢,V,6 X) = (V,¢V,¢,X) € Z41 (G).  This
proves

T(Zai(@)) C Ziay ().

i =2: Given (V,d,c,V,d, ¢, X) € Zf(’%/[(G), where V,V € G*, d,c,d,c € G,
and g € X, we have

V,d teVeld e G%f, cc € Gx,
so ¢ Ve = (ce)td(d " eVeld)d ™ (ce) € G¥%, or equivalently,
(i) V e (eGxe™)* = (Gra@x)* = (Gx)™,
where X = —Ad(¢)(X). We also have
(i) ¢ '(éc)e = cc € Gx, ie., éc € Gpaqex) = Gx-
On the other hand,
(iii) ¢~ tde = (ce)Lexp(—X/2)m(V)d~t(ce) € Gx, ie.,d€ Gx.
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(iv) V € (Gx)*,soeVe! € (GAd(E)X)% = (G %)%, and thus
d-leveld e (Gg)*.
To summarize, we have
(4.8) V,dtevetd e (Gx)*, dléceGyg.
We also have

m(V) = édexp(—X/2)¢ 'd = cexp(—X/2)de'd
(4.9) = exp(X /2)eded,
m(V) = exp(X/2)cdc'd
=cd - d Y(ce) teexp(X/2)é (ec) - d - ¢ d;
= cdexp(Ad (d ') o Ad ((ec)™!) (-X/2) ¢ 'd
(4.10) = cdexp(—X /2)c1d,

where we have used d—1, (éc) ! € G g in the last equality. By (4.8)—(4.10),
r(Vid,e,V.d,e, X) = (V,d,c,V,d,c,X) € Zy3(G).
This proves
T(Z%a(G)) © Z33(G).

It remains to show that 7o 7 : Zi}f\d (G) — Z@&(G) is the identity map.
We first consider the case i = 1: given (V,¢,V,¢,X) € th{/[(G),

ror(V,e,V,6,X) =7(V,e,V,e,—Ad(e)(X) = (V,¢,V, ¢, Ad(ce) (X))
(V7 C’ ‘77 E? X)7

where we have used c¢ € Gx. The case i = 2 can be proved in the same way.
Thus we have

T(Z9(G)) C Zgy(G),  Zgiy(G) = 7o T(Zyy(G)) C T(Z4y(G)).
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4.6. Representation varieties for nonorientable surfaces

From the above discussion, we have

(4.11) U NP)/G(P) = 23 (G) /(G x G)

P€Pring (2f)

for i =1,2, where 7: G x G — G x G is given by (g1, 92) — (g2,91). We
now relate the right hand side of (4.11) to representations of the super
central extension I'g(X¢) of m ().

I'r(X]) is generated by

AlvBla v 7A€7-B€70a JT7

where r € R, with relations
(1) oy ey = oy

(2) Ay, A7 =BiJ. B =, i=1,....0, reR;
(3) CJ,Ct=J_,., reckR;

(4) TTiz[4s, Bi] = hiC2.

Let p: T'r(2¢) — G be a group homomorphism. From relation (1) we must
have p(J,) = exp(rX) for some X € g. From relation (2) we must have
p(A;), p(B;) € Gx. From relation (3) we have Ad(p(C))(X)=—-X. Com-
bined with relation (4), Hom(T'r(2¢), G) can be identified with

Xu(6) = {(Ve. X) € G*H x g | V € (Gx)™,
Ad(¢)(X) = X, m(V) = exp(X)C2}
There is a homeomorphism Xf(’i/I(G) = Zﬁ,’l{/[(G)T given by
(V,e,X)— (V,e,V,¢,2X), VeG¥ceG, X eg.

There is an inclusion Xé’alt(G) — Xf{li/[(G) given by (V,¢) — (V,¢,0).
I'r(XZ5) is generated by

AlaBl)' "7AéuBZaD)Cv JT'a
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where r € R, with relations
(1) oy ey = Ty
(2) Ay A7 = Bi, By =DJ, D = J,, i=1,....0, reR;
(3) CJ,Ct=J_,., reckR;
(4) Ty [Ai, B)] = hCDC'D.

Let p:T'r(X%) — G be a group homomorphism. From relation (1) we
must have p(J,) = exp(rX) for some X € g. From relation (2) we must have
p(4;), p(B;), p(D) € Gx. From relation (3) we have Ad(p(C))(X)=—-X.
Combined with the relation (4), Hom(T'g(X%), G) can be identified with

X(G) = {(Vid,e,X) € 6**? x g | V € (Gx)* d € Gy,
Ad(e)(X) = —X, m(V) = exp(X)cdc ' d}.
There is a homeomorphism Xf(’f/[(G) = thﬁ(G)T given by
(Vid,e,X) — (V,d,c,V,d,c,2X), VeG¥ dceG X eg.
There is an inclusion ngt(G) — Xf(’f/[(G) given by (V,d,c) — (V,d,c,0).

We obtain the following analog of Theorem 4.1 for nonorientable sur-
faces.

Theorem 4.6. There is a bijective correspondence between conjugacy
classes of homomorphisms T'r(X) — G and gauge equivalence classes of
Yang—Mills G-connections over . In other words, for i = 1,2, we have

J  N(P)/Go(P) = Hom(Tr(S)), G) = X4, (G),

PePring (2f)

) N(P)/G(P) = Hom(Te (=), G)/G = X41,(G)/G,
PePring (2f)

where g € G acts on G2F1 x g by
g (V7 ¢, X) = (ng_lagCg_laAd(g)(X))a

and on G**2 x g by

g-(Vid,e, X) = (gVg~ ' gdg", geg™ ", Ad(g)(X)).
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4.7. Extended moduli spaces

The representation variety Xf(’g/[(G) is a subset of Lisa Jeffrey’s extended
moduli space [15]. In this subsection, we define extended moduli spaces for
nonorientable surfaces.

Let Eé’r be the compact, connected, orientable surface with ¢ handles
and r boundary components Si, ..., S, with coordinates (s1,...,s,) € R/Z.
Let Ei’r be the connected sum of £§ and RP?, and let Eg’r be the connected
sum of Zé and a Klein bottle. The following discussion is a straightforward
generalization of the case i = 0 in [15].

Suppose that » > 0 and ¢ = 0,1,2. Then any principal G-bundle P over

Or . . .. :
3, is topologically trivial. Let A(P) be the space of smooth connections

on P. Then
A( ) QEZ r( )
Define

A%(Ef’T) ={Ae€ A(P) | F(A) =0, A|y, = X; ds; on some open
neighborhood U; of S; for some X; €g, j=1,...,r},

and define the compactly supported gauge group

G M) ={s: " 5 G| s(z)=e for x € U, where U is an open
neighborhood of 9% 1.

We define a moduli space
’, ¢, l,
MgG(Ei T) = ‘A%(Ei r)/gc(zi r)»
and introduce representation varieties

NEEE) = {(Vikay ook Xy, X, € G QT x g7 |

m(V) = exp(X1) exp(Ad(k2)X2) - - - exp(Ad(k,) X;)},
NEEY = {(Vye ko, ke, Xy, X € G X GT x g |

m(V) = exp(X1) exp(Ad(k2) X3) - - - exp(Ad(k,) X, )2},
NE(ES) = {(Vid, ¢, kay ook, X1y, Xy € GHEX GTH g |

m(V) = exp(X1) exp(Ad(k) X3)) - - - exp(Ad(k,) X, )ede ™ d}.
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where m(aq,by,...,ap,by) = Hle[ai, b;| as before. In particular,

SO
Xou(G) C N&(EPY.

The following statement follows from the proof of [15, Proposition 5.3]:

Proposition 4.7. Let £ > 0,7 > 0 be integers, and let 1 =0,1,2. Then
there is a homeomorphism

0\ ~v l,r
M%(Ei ):Ncg:(zi )
5. Equivariant Morse stratification of space of connections

In this section, we discuss the G-equivariant Morse stratification and reduc-
tion for general compact connected Lie groups. As a byproduct, we repro-
duce and extend the results on connected components of the moduli space
of flat connections over closed nonorientable surfaces [10,11].

5.1. Morse stratification with involution

Let (M, g) be a Riemannian manifold. Let f : M — R be a smooth function,
and let ¢, be the gradient flow of f. Suppose that the gradient flow is defined
for any time ¢t € R and the limits

Jim @), lim ¢()
exist for any x € M. Let N be the set of critical points of f, and let

N =[] N,
HEA

be the union of connected components. Suppose that each IV, is a closed
nondegenerate critical submanifold of M. Given a critical subset N, define
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its stable manifold S, and unstable manifold U, by
Sp={z€M| lim ¢(x) € Na}, Uy={we M| lim éifx) €N,

Then

M= S,

HEA

is a disjoint union of Morse strata. We assume that each S, is a submanifold
of M.

Suppose that f is invariant under some isometric involution 7 : M — M.
By Lemma 3.2, 7 induces an involution 79 : A — A such that

T(Nu) = Neyys 7(Su) = Sryys - 7(Un) = Ury)-

Proposition 5.1. Let (M,w, J) be an almost Kdhler manifold with an anti-
symplectic, anti-holomorphic involution 7 : M — M. Suppose that f : M —
R is a T-invariant smooth function. Suppose that N, is a closed subset of
M and a connected component of the set of critical points N of f. Suppose
that the set

Su={reM]| Jim () € N,)
is an almost complex submanifold of M. If
S, ={reM"| 1tl}ir_noo ¢t(z) € N}

is nonempty, then Sy, is the stable manifold of NJ with respect to 7, and
the real codimension of S, in M™ is equal to the complex codimension of S,
m M.

Note that M™ and S}, are not necessarily connected.

5.2. Morse stratification and Morse inequalities

Let ¥ be a closed, compact, connected surface. Then X is diffeomorphic to
¥ for some integer £ > 0 and i € {0,1,2}. Recall that x(X¢) =2 — 2¢ —i.
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Let G be a compact, connected Lie group. By Theorem 4.1 and
Theorem 4.6, we know that

lJ  N(P)/Go(P) = Hom(Ix(X),G),
PePring (X)
U N(P)/G(P) = Hom(Tg(%),G)/G.

PePring (%)

Let Hom(I'g(X), G) p € Hom(I'r(X), G) be the subset corresponding to P €
Pring (%), so that

Hom(Tr(2),G)= ) Hom(Tgr(%),G)p,
PePring (X)
N(P)/QQ(P) = HOH](PR(E), G)p, N(P)/Q(P) = HOH](FR(E), G)p/G

For a fixed topological principal G-bundle P over X, let
{Nu(P) | i€ mo(N(P))}

be the set of connected components of N(P). Let G(P)’ be the connected
component of the identity of G(P). Then G(P)" is a normal subgroup
of G(P), and the discrete set mo(G(P)) can be identified with the group
G(P)/G(P)'. The action of G(P) on N(P) is continuous, and induces an
action of mo(G(P)) = G(P)/G(P)" on my(N(P)). Define

A = mo(N(P))/m0(G(P))-

Remark 5.2. When ¥ is orientable, the action of 7o(G(P)) on mo(N(P))
is trivial by the results in [1], so A = mo(N(P)).

Let 7 : mo(N(P)) = A = mo(N(P))/m0(G(P)) be the projection. Given
u € A, define
Nu(P) = U Na(P).
pem=1(u)
Then G(P) acts on N, (P), and N,(P)/G(P) is connected. Note that the
quotient G(P)/Go(P) = G is connected, so

Vu(P) & N.(P)/Go(P)

is connected.

Hom(Tr(X), G)p = | Vu(P)
nEA
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is a disjoint union of connected components. Each N,(P) is a closed subset
of N(P), thus of A(P). Define

Au(P) = {A€ A(P) | Tim_¢1(A) € Nu(P)},

where ¢, is the gradient flow of Lp. The limit exists by results in [6] and [24].
Notice that Lp is constant on each N, (P), and Lp achieves its minimum on
N,(P) within A, (P). Each A,(P) is a submanifold of A(P), and the map
A, (P) — N,(P) given by A — t_l}r_noo ¢1(A) is a G(P)-equivariant deforma-

tion retraction. We have

(5.1) AP) = J Au(P)

nEA

is a smooth stratification. This stratification is G(P)-equivariant in the sense
that G(P) acts on each stratum. We call (5.1) the G(P)-equivariant Morse
stratification of A(P) with respect to Lp.

Remark 5.3. Given i € mo(N(P)), define

Ap(P) = {A € A(P) | lim_o1(4) € Ny(P)}.

Then Aj is a connected submanifold of A(P), and is a Morse stratum of
Lp. When ¥ is orientable, the Morse stratification coincides with the G(P)-
equivariant Morse stratification by Remark 5.2; when ¥ is nonorientable, a
priori the Morse stratification can be finer than the G(P)-equivariant Morse
stratification.

We now assume that x(X) < 0. Let Nss be the set where the Yang—Mills
functional Lp achieves absolute minimum. Then N is connected (by results
in [1] when ¥ is orientable, and by Theorem 5.6 when ¥ is nonorientable).
N is the unique connected component of the critical set N (P) with zero
Morse index, and its stable manifold A is the unique codimension zero
Morse stratum (which is also a G(P)-equivariant Morse stratum). Define

V:es(P) :A/;s/go(P)'

Then Vs(P) is connected.
When the obstruction class o(P) € H?(X,71(G)) is a torsion element
(which is always true when X is nonorientable), Nss(P) = Np(P) is the
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space of flat connections on P, and
Vss(P) = Hom(m (X), G) p,

where Hom(71(X), G) p is the connected component of Hom(7;(X), G) asso-
ciated to the topological G-bundle P (see [1,11]).

In general, we are interested in the cohomology of the moduli space
M(P) of gauge equivalence classes of minimal Yang-Mills connections on
P. More explicitly,

M(P) = Nus(P)/G(P) = Vs (P)/G.
When M(P) is smooth and G(P) acts on Ngs(P) freely, we have
H*(M(P)v@) = Hé(P)(Nss(P)»Q) = Hé(v:ss(P),@)

The deformation retraction r: A, (P) — N, (P) given by the gradient
flow of Lp is G(P)-equivariant, thus the following equivariant pairs are equiv-
alent for the purpose of (singular) equivariant cohomology:

(Au(P), G(P)) ~ (Nu(P),G(P)) ~ (Nu(P)/G0(P),G(P)/G0(P))
~ (Vu(P), G).

In other words, we have the following homotopy equivalences of homotopic
orbit spaces:

Au(PYP9E) o N (PYPE) o v (PYRE

As a consequence, we have the following isomorphisms of (singular) equiv-
ariant cohomology:

(5:2)  Hipy(Au(P):Q) = Hipy (Nu(P): Q) = He(Vi(P); Q).
Let K be a field and let

PP 1) = 3 ity (A, P )
>0

be the equivariant Poincaré series. Let

M7 (Lpi ) = P (A, (P); K)
REA
(5.3) = PP (Us(P); )+ D PP (4, (P); K)

HEN
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be the G(P)-equivariant Morse series of Lp : A(P) — R, where ), is the
real codimension of the stratum A, (P) in A(P) and A’ = { € A| A, > 0}.

The Morse stratification is smooth and G(P)-equivariant, so we have
equivariant Morse inequalities [6,17]: there exists a power series R (t) with
nonnegative coefficients such that

(5.4) MIPN(Lp K) — PP (AP); K) = (1 + )Rk (t).

A priori (5.4) holds for K = Z/27. If the normal bundle v(A,) of A, (P) in
A(P) is orientable, then (5.4) holds for any K. When ¥ is orientable, v(A,)
is a complex vector bundle and has a canonical orientation.

Equation (5.2) and (5.3) imply

M Lp; K =Y t"PH(Vu(P); K)
HEA
(5.5) = PE(Vas(P); K) + Y tMPE(Vu(P); K)
peN

where now we consider the equivariant cohomology of V,,(P), the represen-
tation variety, which is finite dimensional but singular, as opposed to A, (P),
which is smooth but infinite dimensional.

5.3. Equivariant Poincaré series

When ¥ is orientable, Atiyah and Bott [1] provide an algorithm to compute
the equivariant Poincaré series

PP (Ags(P);Q) = PPP) (N (P); Q).

We now outline this algorithm.

Let GC be the complexification of G. Then G is a connected reductive
algebraic group over C. (For example, if G = U(n) then G¢ = GL(n,C).)
There is a bijection

Pring(X) — Pringe (%)
given by P — P x¢g G©.

We can consider C(€), the space of (0, 1)-connections on & = P xg G°.
Using Harder—Narasimhan filtration, Atiyah—Bott gave a stratification for
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C(&) by
= U e
na=
where g denotes Harder-Narasimhan type p and each C, is connected
[1, Chapter 7, 10].
Atiyah-Bott proved that the Harder Narasimhan stratification is GC-
equivariantly perfect over Q, i.e.,

(56)  PI(C(€);Q) =PI (C + Y PI(C(6); ),

=

where Css is the semi-stable stratum, = = {u € 2| C,(§) # Css(§)}. Now
C(&) is contractible, so

(5.7) H§e(C(€);2) = Hie(pt; Z) = H*(BGY; Z) = H(BG(P); Z).
Thus

(58)  P(BG(P);Q) = P (Cus(€);Q) + > MBI (C(€); Q).

HEE!

On the other hand, there is a natural isomorphism i:C(§) — A(P),
and it was proven in [6] (conjectured by [1]) that the Harder—Narasimhan
stratification coincides with the Morse stratification defined by Lp as in
Section 5.2, i.e. E= mo(N(P)) = A. So the codimension of C, in C equals
to the codimension of A, =1i(C,) in A. In particular, Ass = i(Css). The
moduli space M(P) of minimal (central) Yang-Mills connections on P can
be identified with the moduli space of S-equivalence classes of semi-stable
holomorphic structures on £ [1,25].

The equivariant perfectness of Harder-Narasimhan stratification |JC,
now implies that

PI(A(P);Q) = PY(C = " tP7(Cu(€); Q)
HEE
= > PO (AP Q) = M (L ),
HEA

i.e., Rg(t) = 0 and Morse stratification is G(P)-equivariantly perfect:

(5.9)  R(BG(P);Q) = PE(V, + ) MPE(V(P); Q).

peN’
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The equivariant pair (V,(P),G) can be reduced further (cf: [1, Section
10]):

(VH(P)7G) ~ (‘/;S(Pu)7Gu)7

where G, is a compact Lie subgroup of G with dimg G, < dimgr G, and P,
is a principal G,-bundle. So we have P (V,,(P); Q) = PtG“ (Vss(Py); Q) and

(5.10)  P(BG(P);Q) = PE (Vs P);Q) + Y t% P (Vas(P); Q).
nEAN’

The left hand side of (5.10) has been computed (see [1, Theorem 2.15] and
[22, Theorem 3.3]). So P (Vis(P);Q) can be computed recursively. The
case G = U(n) is particularly nice because

Ul. G, is of the form U(ny) x --- x U(n;), so the inductive reduction only
involves type A classical groups.

U2. H*(BG(P);Z) is torsion free, so rank H'(BG(P); Z)= dimg H'(BG(P);
Q).

Neither Ul nor U2 is true for a general compact connected Lie group G.

Finally, we point out difficulties (N1-N4 below) in generalizing the above
approach to nonorientable surfaces, and then end this subsection by a sum-
mary of our progress in resolving them.

N1. It is not clear if v(A,) is orientable in general, so a priori Morse
inequalities hold only for Z/27Z.:

Pi(BG(P);Z/2Z) = P8 (Ves(P);Z/2Z) + Y " PE(V,(P); Z/2Z)
peEN
(5.11) — (L+t)Rz0z(t).

N2. The left hand side of (5.11) is difficult to compute when H*(BG(P);Z)
has 2-torsion elements. When ¥ is nonorientable, H*(BG(P);Z) has
2-torsion elements even when G = U(n). (We thank Paul Selick for
pointing this out to us.)

N3. Suppose that for a particular P we can prove that v(.A,) is orientable
for all u € A. We can consider rational cohomology
(5.12)

P(BG(P);Q) = PF(Vas(P); Q) + > P (Vu(P); Q) — (1+ t)Ro(t).
HEA’
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Although P,(BG(P);Q) is easier to handle than P,(BG(P);Z/27), it
is tricky to compute Rq(t), which is not necessarily zero.

N4. When the base ¥ of the principal G-bundle P is nonorientable, we still
have reduction (V,,(P),G) ~ (V,(P'),G}), where G, is a compact Lie
subgroup of G with dimg G, < dimg G, but V//(P’) is not of the form
Vss(Py), where P, a principal G-bundle over ¥.

We will describe equivariant Morse stratification and the reduction N4
for G = U(n) in Section 7 of this paper, and for other classical groups in [12].
In a joint work with Ramras, we will prove that v(A,) in N1 is orientable
when G = U(n), so we may consider Q coefficient as in N3.

5.4. Connected components of moduli spaces of flat connections

Let G be any compact connected Lie group. Let ¥ be a closed, compact,
connected, nonorientable surface, and let 7 : ¥ — X be its orientable double
cover. Let P — ¥ be a principal G-bundle. By Proposition 2.8, the pull
back principal G-bundle P = 7*P — % is topologically trivial, and there is
an involution 7 : P — P which covers the deck transformation 7:% — %
such that P/7 = P.

The involution 7 induces an involution 7* on the space A(P) of con-
nections on P. The space A(P) of connections on P can be identified with
the fixed locus A(P)™". Each G(P)-equivariant Morse stratum A, (P) of Lp
is a union of connected components of A, (P)™" = A,(P)NA(P)"", where
A, (P) is a Morse stratum in A(P). The real codimension of A,(P) in
A(P) is equal to the complex codimension d, of A, (P) in A(P) (see Propo-
sition 5.1).

Let N(P) and Ny(P) be the space of flat connections on P and on
P, respectively. Then Ny(P) = Ny(P)™". By discussion in Section 3.2,
No(P) is nonempty. Let Ay (P) = Ags(P) N A(P)™ be the stable manifold
of No(P) = Nss(P), so that it is the union of all codimension zero Morse
strata. By results in [1], Ags(P) is connected when x(X) < 0. We will show
that Ags(P) is connected when y(X) < 0.

Proposition 5.4. Given two points Ay, A1 € Ass(P), there exists a smooth
map 7y : [0,1] — A(P) such that v(0) = Ao, v(1) = A1, and v is transversal
to A, (P) if d, > 0. In particular, y~1(A,) is empty if d,, > 1.

Proof. Let Q = Q(X, adP) be the vector space associated to the affine space
A(P). Given Ap, A1 € Ass(P), define

®:[0,1] x Q2 — A(P), ®(t,a)=(1—1t)Ag+tA; + sin(nt)a.
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Note that
o} 1 = 1(A +A) +
2,& - 2 0 1 a,
so @ is surjective. d® ,) : R X Q —  is given by

(5.13) (u,b) — ((A1 — Ap) + mcos(mt)a) u + sin(mt)b,
where u € R, b € Q. Given a € Q let v,(t) = ®(¢t,a). Then
d®(t.q)(u, b) = d(7a)i(u) + sin(mt)b.

We claim that ® is transversal to A, (P) for any p € A'. Fix A € A/, we
need to show that

Im (d®;,0)) + To(t,0)Au(P) = To,a) AP) =

for any (t,a) € ®~1(A,(P)). Note that ®(0,a) = Ay € Ass and ®(1,a) =
Ay € Ays(P) for any a € , so if (t,a) € @71 (A, (P)), we must have 0 < t <
1. By (5.13), Im (d<I>(t7a)) =Qif0 <t < 1. So @ is transversal to A, (P) for
any p1 € A'. We conclude that ®~1(A,(P)) is a submanifold of [0, 1] x 2 of
codimension d,; it is nonempty because ® is surjective.

For any pue€ A, we define m,:® 1(A,) > Q by (t,a)—a. By
Lemma 5.5, a is a regular value of 7, if and only of ~, : [0,1] — A(P) is
transversal to A, (P). Let €, be the set of regular values of 7,. By the
Sard-Smale theorem, €2, is residual in €. So

=%

peN

is residual in Q. By the Baire category theorem, ' is nonempty. For any
ae, v, :[0,1] - A(P) has the desired properties. O

Lemma 5.5. Let X,Y,Z be linear spaces, and let W be a linear subspace
of Z. Let L: X XY — Z be a linear map such that Im(L)+ W = Z. Let
7: LY W) =Y be defined by (z,y) — y. Then 7 is surjective if and only
if L(X x{0})+W = Z.

Proof. 1. Claim: 7 is surjective = L(X x {0})+ W = Z.
Given any z € Z, we have z = L(z,y) + w for some (z,y) € X XY
and w € W. Since 7 is surjective, there is (z/,y') € X x Y such that
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L(z',y) =w € W and w(a/,y') = y. We have
Liz,y)+w=2 L@y)-w'=0 y=v,

z=L(x —2',0) + (w +w') € Im(X x {0}) + W.

2. Claim: L(X x {0}) + W = Z = 7 is surjective.

Given any y € Y, we have L(0,y) € Z, so L(0,y) = L(x,0) + w for
some z € X and w € W. We have L(—x,y) = w, so (—z,y) € L~Y(W)
and w(—x,y) = y.

U

We now assume that x(X) < 0. The formula of d,, is given by [1, (10.7)]:

dy= Y (a(p)+3—1)>0,
a(p)>0

where § > 2 is the genus of X. Note that d, > 2 if d, #0, so the real
codimension of any lower stratum in A(P) is at least two. Since Ny(P) is a
deformation retraction of Ags(P), Proposition 5.4 implies the following.

Theorem 5.6. Let X be a closed, compact, connected, nonorientable sur-
face with negative Euler characteristic, or equivalently, ¥ = Zf wherei =1,2
and £ > 1. Let G be a compact, connected Lie group, and let P be a prin-
cipal G-bundle over X. Then the space No(P) of flat connections on P is
nonempty and connected.

Corollary 5.7. Let P be as in Theorem 5.6. Then the moduli space M(P)
of gauge equivalence classes of flat connections on P is nonempty and con-
nected.

Note that the connectedness of Ny(P) implies the connectedness of
M(P) = Ny(P)/G(P), but not vice versa, so in general Theorem 5.6 is
stronger than Corollary 5.7.

Corollary 5.7 extends [11, Theorem 5.2] to the case ¥ = 4RP?. We thank
the referee of [9] for suggesting this approach to us. During the revision of
this paper, Ramras (see [26, Proposition 4.9]) obtained the following exten-
sion of Theorem 5.6 in the case G = U(n):
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Theorem 5.8. Let 3 be a closed, compact, connected, nonorientable sur-
face which is not RP? (or equivalently, x(X) < 0). Let P be a principal
U(n)-bundle (n > 2) over ¥, and let Ny(P) be the space of flat connections
on P. Then Ny(P) is (1 — x(X))(n — 1) — 1 connected.

More recent results by Ramras on exact connectivity of Ny(P) can be
found in [27, Section 4].

6. U (n)-connections on orientable surfaces

6.1. Connected components of the representation variety and
their reductions

Any point in
Hom(I'r(56), U (n))/U(n) = Xy3,(U(n))/U(n)

can be represented by (V, X) € U(n)?* x u(n), where X is a diagonal matrix.
Actually, there is a unique representative such that

1 0
X = 27v/—1

where p1 > -+ > py,. Suppose that

,u:(,ul,...,,un):()\l,---,Al,...,)\m,...,)\m)

ni N

where \y > --- > A\, and ny + --- +n,, =n. Then
Un)x =U(ny) x -+ xU(ngy),

and
exp(X) =m(V) € SU(n1) x -+ x SU(nyp,),

where m(ay,by,...,ap,by) = Hle[ai, b;| as before.
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Given an nj; x n; matrix Aj;, let diag(Ai,...,Ay,) denote the n xn
matrix
A 0
0 Am

where n = ny + - - - + n,,. With this notation, we have

X = 2nv—-1diag (Miln,, .., Amln,,),
exp(X) = diag(e_%m)‘llnl, e e_%ﬁ)‘mlnm),

where efzwﬁ)‘ffnj € SU(n;), or equivalently, e~2mV=1ImA; = 1. Qo
k‘j = )\j’I’Lj eZ
and

k k
X = —27r\/—71diag(—1 Iny, .. — In>
ni

Nm

For each pair (n, k) € Zo X Z, define

ni niy Nm MNm
n e
nj € Lok €L,y mj=m, kj=k — m
j=1 j=1 fim
Given
k k k k
(6 1) = (:U’l?‘ 7“”) == -1 ) m7 ) = eIn,k‘v
ni ni 'm Nm
n m
let
. k1 km
(6.2) X, =—2rv-1diag ( —1p,,...,—1In,, |,
ni N

and let C), be the conjugacy class of X,.
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Note that if (V, X) € Xf(’g/[(U(n)), then X € C), for some p € Upey In k-
From now on, we identify Hom(T'r(2§), U(n)) with Xf(g/[(U(n))
Given p € ey In i, define

Xyn(U )y = {(V.X) € Un)* x C,y | V € (U(n)x)*, m(V) = exp(X)}.

Then

X)) =U U x5@m).
k€Z pel, i

The G-action on Xf(’l(\)/[(U(n)) preserves Xf(’l(\)/[(U(n))u. We will show that

Proposition 6.1.

{Xfé&(U(n))u lne Y In,k}

kEZ

are the connected components of Xf;g/[(U(n)) = Hom(I'g(2§),U(n)). Given

Bk kw ke

(63) M:(Mba,u‘n): (R PR B EIn,k‘a
niy niq Nm, Nm,
—_— —_——
ni Nm
we have a homeomorphism
m
£,0 £,0
64) X UMUm) = [ X8Um) 0 o /UM
j=1 ™ g

and a homotopy equivalence of homotopic orbit spaces

m

XU =TT (X)) e

goeny T
J

B

)hU(nJ').

<

=1

Proof. Let pbeasin (6.3). Let 7 : Xél(\]/[(U(n)) — C}, be defined by (V, X)) —
X. Then 7 is a fibration, so there is a homeomorphism

(6.5) Xom(Un)/U(n) = 774(X,) /U (n)x,,
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and a homotopy equivalence

XU @) ) = 7= (XM 0,

where U(n)x, = U(n1) x --- x U(ny,). We have
T H(X)) 2 {V e UMK, [ m(V) = exp(X,,)}

= [[{V € U(my)* | m(V) = e 2V h/np, 3
j=1

m
0,0
= HXYM(U(nj))Q,,_,7Q~

This proves (6.4). The set

Xﬁf’l(\)/[(U(”j))ﬁ B o= (VeUm)* | m(V) = e*QWlekj/nJ[nj}

AR
n;j n;

is nonempty and connected by [11, Theorem 3]. So 7~ 1(X,) is nonempty and
connected. Together with (6.5), this implies that Xf(’l(\)/[(U (n)), is nonempty
and connected.

Define T : X5 (U(n)) — R™ by

T(V,X) = <*/2fTrX, (‘/2?>2 Tr(X?),..., <\/2?>n TY(X”)> ,

where V € U(n)?* and X € u(n). The characteristic polynomial

Px(t) =det(tl — X) = (t+2nvV—1p1) - - (t + 20V —1py)
of a matrix X is determined by Tr X, Tr(X?),..., Tr(X"), and the conjugacy
class of X in u(n) is determined by Px(t), so T(V,X) =T(V', X’) if and

only if X and X’ are in the same conjugacy class.
Given p € (J,cz In,k, define

n n n
Uy = (Zui,ZMi---,ZM?> € Q"
=1 =1 =1

Note that v, = v, if and only if p = p'.
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The function T is a continuous function, and its image {v, | p € Upez
I, 1.} is a discrete set, so

{Xég/[(U(”))u = Tﬁl(vu) | e U In,k}

kEZ

are connected components of th?/[(U (n)). O

6.2. Equivariant Morse stratification and equivariant Poincaré
series

Let P™* be the topological principal U(n)-bundle on 3§ with c;(P™*) =
klw] € H?(X). Let A™F be the space of U(n)-connections on P™F, and let
N™F c A™F be the space of Yang-Mills U (n)-connections on P™F. Let G*
be the group of gauge transformations on P™* and let Gy * be the subgroup
of gauge transformations which take value of the identity e at a fixed point
zo € X5, We have

Hom(T' (), U(n)) = |_J Hom(T&(26), U(n))x,
kEZ

where Hom(Ig(25), U(n)), = N™F/GIF. The connected components of
Hom(T'g(2§),U(n))y are

£7

(XU ), | 1€ Ly}

Let NV, be the preimage of X@&(U(n))u under the projection
N™E s Nk JGIF 2 Hom(Tg (85), U (n))i.-

so that Xél(\]/[(U(n))# = N,./Go(P).

We fix (n,k) € Zsg x Z, and write G = G™*. Let A, be the stable man-
ifold of NV, with respect to Yang-Mills functional. Then

AvF =] A,

pel,

is the G-equivariant Morse stratification of A™* given by the Yang-Mills
functional [1,6,25,30]. Let A, be the real codimension of A, in A™E Tt was
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computed in [1, Section 7] that

Ap=2dy, dy = (mi—pj+ (- 1))
1<j

The gradient flow of the Yang—Mills functional gives a G-equivariant defor-

mation retraction A, — N,. For the purpose of equivariant cohomology,
the following equivariant pairs are equivalent:

(A G) ~ (N G) ~ (Xgng (U (), U(n)).

In other words, we have the following homotopy equivalences of homotopic
orbit spaces:

hU (n)
A~ NG~ X (U(n)), .

Together with the reduction Proposition 6.1, we conclude that

Theorem 6.2. Let K be a field. For any

R TR R

:U':(le-'aun): UEERRE gy T gy EIn,k‘a
ny niy Nm Nm

we have
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6.3. Involution
Given p € I, , define

Zon(U ) ={(V.e,V,2,X) € Un)*** x €, | V,eVe ™ € (Un)x)¥,
m(V) = exp(X/2)ce, m(V) = ¢ exp(—X/2)c},
ZZ2(UM), = {(V,d,e,V,d,& X) € Un)*** 2 x C, | d™",cc e Un)x
V,dteVetd e (U(n)x)%, m(V) = exp(X/2)ede1d,
m(V) = éd exp(—X/2)e d}.

Then for i =1, 2,

=UJ U 2u@m),

kE€Z pel, i

£,i £.i 204+i—-1,0
Py (Zym(U(n))0) = X4 U m),.
Define 19 : I, — I —1 by
(MI;MQ,--.,/,Ln> — (_Mm---a_ﬂ%—ﬂl).

It is easy to check that if X € C,, then —Ad(¢)(X) € C; (). So
Ly £,i
T(ZYM(U(n))u) = ZYM(U(n))To(u)'
Thus we conclude that:

Theorem 6.3. The set

Ze(Un)), = Z (U ()™ 0 Zgy (U (1),

is nonempty if and only if X, is conjugate to —X,,, i.e., To(p) = p. In other
words, if we define

In =I5 = {n € Ino [ To(p) = p}.

Then

ZouUm)™ = |J 29U
HEL,
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7. U(n)-connections on nonorientable surfaces

7.1. Connected components of the representation variety and
their reductions

Given € Ik, let C,/ denote the conjugacy class of X,/2 in u(n).
th{/[(U(n)); can be identified with

XU (), ={(V,e, X) € Un)* ™ x Cppo | V € (U(n)x)%,
Ad(e)(X) = —X, m(V) = exp(X)c?},

while Zy3((U(n))7, can be identified with

e:
X))y = {(Vid, e, X) € U™ x Cppa | (V,d) € (U(n)x)*",
Ad(e)(X) = =X, m(V) = exp(X)ede d}.
Note that a Yang-Mills connection on a principal U(n)-bundle P over a

nonorientable surface ¥ induces a flat connection on the U(1)-bundle det(P).
More explicitly, define

det : U(n)?* — U(1)%,
(a1,b1, ..., az,bg) — (det(ay),det(by), ..., det(as),det(by)) € U(1)%.
We have

det : Xor (U(n)) = XELU1)  (V,e, X) —> (det(V), det(c)),
det : X532, (U(n)) = Xi2(U1))  (V,d, ¢, X) — (det(V'), det(d), det(c)),

where Xﬁ’alt(U(l)) and Xg’azt(U(l)) are as in Example 2.1. Let

Xf{;;)‘lt(U(l))il = {(alvbla s ,ag,bg,C) € U(l)%—i_l | c= :|:1}a
XE2U@) = {(a1, by, ag, by, d,e) € U)X | d = +1}.

Then X{fi’;t(U(l))Jrl and ngt(U(l))_l are the two connected components of

X (U(1)). Let

Xy (Um) ! = (det) ™ (XG(U)F).

Xor(U(n)E = X§4,(U(n)), N Xga (U (n)*.
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Then
X (Un) = Xy (Un)i U Xy, (U(n), .

Any p € I, is of the following form:

w=|v0,...,0,70(v) |,
——

No

where v € Ly i, 7o(v) € I/ —, 0’ >0, n9 > 0, k > 0.
We will show that

Proposition 7.1. Let u = (v,0,...,0,79(v)) € I, = I,,, where
—— )
Mo
v e Ly, n',ng>0, 20 +ng=mn, k>0.
(i) Suppose that ng > 0. Fori=1,2, Xf{’fv[(U(n)):[l, Xf,’fv[(U(n));l are
nonempty and connected for £ > 1.

(ii) Suppose that ng =0 so that 2n’ =n > 0. Fori=1,2,
0,0 Ly 1\ itk
(7.1) Xym(U(n)), = Xy (U ()"

Xf(’fv[(U(n))u is nonempty and connected unless i =1 and { = 0.

Proof. (i) ng > 0. v is of the form

g ey

(B ke by

murERRin R ey -
ni Nom
where
k k
71 >0 > om > 07
ny Nm,
and
k k k k
X, = —2my/—1 diag(—lInl, e 0Ly, — S ——1]n1).
n Nm Nm ni

Let m; : X\Zh{/{(U(”))u — €2 be defined by (V,¢, X) — X, and let 7 :
X@%A(U(n))u — €9 be defined by (V,d,c, X)+— X. Then m and 7 are
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fibrations. So

X (U(n)u/U(n) = 77 H(X,/2) /U (1),

where
Un)y=Un)x,;2=Un)x,.
Let
I,
0
I,
eu = Ino € U(n)
I,
0
I,
Then

Ad(eu) Xy = =Xy, det(e,) = (=1)", e
We have 7; 1(X,/2) = V., where
Vi ={(V,d) e Uit | m(V) = exp(X,u/2)enc’e,c’},
VMQ ={(V,d,d) U(”)ZHQ |m(V) = eXP(Xu/2)euC/d(euC/)_1d}-

Ugder the identification 7; '(X,/2) = V;, the actions of U(n), on V#1 and
V,; are given by
g-(V,d)=(gVg™" (eugen)dg™") and
g-(Vod,d) = (gVg~" g9dg™", (epgen)c'g ™),

respectively, where V' € U(n)ff, and g,¢,d € U(n),.
Any a;, b;, ¢, d € U(n), are of the form

a; = diag(A},. .., Ai,flim...,fﬁ),
b; = diag(B%,...,B BB’ ..., B}),
¢ = diag(Cy, . Cm,C Cy- -, C1),

d = diag(D1,...Dm, D, Dy, ..., Dy),

where

Al AL BI Bi Cj, Cj, Dj, DjeU(n;), A', B', C, De€U(n).
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If (V,¢') € V], we have

Lo ey L
(72) LBl =e = ;05 [[ALB]=e ™ CC;
=1 =1
for j=1,...,m, and
E . .
(7.3) [[4", B =c>
=1

By (7.2), we have

77r\/71k,j

1:det(e z Oj@) = (—1)" det(C;) det(C;).

By (7.3), we have 1 =det(C?) =det(C)?. Recall that det(c) = det(e,)
det(c)) = (—=1)" det(¢), so

(7.4) det(c) = (=1)"** det(C), det(C) = £1.
Note that the equations in (7.2) are exactly the defining equations for

e7
Zond(U ) e s

geeey T
n; n;
J J

where th{/[(U(n))H is defined as in Section 6.3, and (7.3) is exactly the defin-
ing equation for Xﬁ’alt(U(no)). So we have the following homeomorphism:

m

(75) Vi = X (U(no) x [T 2y @ (ng) sy v,
j=1 g g
If (V,d,d) e Vi, we have
e VIR
[[14i.Bil=e = ¢;D;C; ' Dy,
(7.6) s
n\/jlkj

H[Az’BJZ]:e i CijC_'lej
i=1
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forj=1,...,m, and
g . .
(7.7) [[14", B =cbc'D.
i=1
By (7.6), we have
—mV/=Tk;

1 = det (e Dij) = (—1)% det(D;) det(D;).
By (7.7), we have 1 = det(D?) = det(D)2. We conclude that
(7.8) det(d) = (=1)* det(D), det(D) = +1.
Note that the equations in (7.6) are exactly the defining equations for

9

0,2
23U

where Zf(’i/[(U (n)), is defined as in Section 6.3, and (7.7) is exactly the defin-
ing equation for Xﬁ’jt(U (ng)). So we have the following homeomorphism:

(7.9) V22 Xg2 (Uno) x [[ 29U @) s 5

AR BV
nj n;

j=1
The homeomorphisms (7.5), (7.9) are U(n),-equivariant: for i = 1,2, it
is straightforward to check that the action of
Un)y=U(ni) x - xU(nm) x U(ng) x U(ng) x -+ x U(ny)

on V! is compateible with the action of U(ng) on Xﬁ’ait(U(no)) and the actions
of U(n;)? on Zyy,(U(nj))r, . So

Xu(U (), /U (n)
= VJ/U('”)#
=~ X¢' (U(ng))/U(ng) x H(ijfw(U(nj))g g/U(nj)Q)
j=1

goeny
n;
J

1%

XU (n0))/Uno) x [T(XRFT WMD) /U(n))
j=1

12

X5 (U(n0))/U(ng) x X250 (), JU ().
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From (7.4) and (7.8), we see that

XU () /U (n)
= (X (Umo)) =V ) fUng) x XU ), /U (),

where
X (U (o)™ = X9, (U (n0))5 -

-----

Recall from Proposition 6.1 that if 2 4+¢ — 1 > 1, then
Xt U @),
is nonempty and connected. By Theorem 5.6,
i i -
X (Uno) ™, Xy (U(no)) ™!

are nonempty and connected for £ > 1. We conclude that Xﬁ,’fvl(U (n)):jl and
Xf(’i/[(U (n));1 are nonempty and connected for ¢ > 1.

(ii) mo = 0. The calculations in this case are the same as those in (i),
except that we do not have the factor U(ng) so we do not have the matrices
A, B'.C, D. We conclude that det(c) = (—1)"**¥ when i = 1 and det(d) =
(—1)* when i = 2. So

K0 = M

and

ww(U

Recall that X@ﬁl—? 0
So for i =1,2, XYM(U (n)), is nonempty and connected unless i =1 and
¢ =0. O

A

n))u/U(n) = Xt U (), /U ().
(

U(n')), is nonempty and connected if 2¢ +7 —1 > 1.

—

Let I, = I7%. Then I, = I3 U I;* U I;;™, where

I? = {p € I, u; = 0 for some i},
It ={u= (v,70(v)) | v € Lyx,n'i + k is even},
b= ={u= (v,0W) | v € Lyxn'i+kis odd},

where i = 1,2. When n is odd, we have I,, = I0.
The proof of Proposition 7.1 gives the following.
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Proposition 7.2. Suppose that i =1,2 and £ > 1.
(1) If n is odd, the connected components of Xfﬂlv[(U(n)) = Hom(I'g (%),
U(n)) are
Lyi £, _
{XymU )t e LY U{Xyy(Un),"  pe I}

(ii) Ifn is even, the connected components of Xf(’fvl(U(n)) = Hom(I'g (%),
U(n)) are
0 0 ti i,
XU e 19} U (X Um), = XUUm)E | e It}
DX ), | € I U{XA(U () = X (U ()" € 17}

Proposition 7.3. Let p= (v,0,...,0, 70(v)) € I,,, where
———

Mo
ve Ly, n',ng > 0, o2n' +ng = n,

ey ey , ,
ni ni m Nm ni Nm

ni Nom

(i) If ng > 0, then for i = 1,2, we have a homeomorphism

12

Xon(U(n)E/U(n)
X U no) =0 0 (0) x [T (AT W) s s [UGy)

Jj=1

and a homotopy equivalence

(xlaawmpz)" ~

£, _1\ni'+k hU(no) m i
(Xﬂ;t(U(no))i( o ) X H(X%l\]; 1’0(U(nj))57_7. &
i

(ii) If no = 0, then for i = 1,2, we have a homeomorphism

XU, /U = [T (35 U m) s w [Umy)

=1 nj nj
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and a homotopy equivalence

0 hU(n) e 20+i—1,0 hU (n;)
X~ T Um)s w)
7=1

J
lj ’A..777.,'

<)

7.2. Equivariant Morse stratification and equivariant Poincaré
series

For i = 1,2, let P™* and P™~ be the principal U(n)-bundles on ©¢ with
c1(P™T) =0 and ¢;(P™7) =1 in H%(X%Z/27) = 7./2Z, respectively. Let
A(ZH™* be the space of connections on P™* — ¥¢ and let N(X¢)™*
denote the space of Yang-Mills U(n)-connections on P+ — Zf . Let g™+
and G % denote the gauge group and based gauge group, respec-
tively. N(Zf)é’i is the space of flat U (1)-connections on P1* — ¥ and we
have (see [10,11])

X (UQ)F = N ()57 /G0™, X (UL /U1) = N (2™ /G4
Since c1(P) = c1(det(P)) € H*(X;Z/2Z), we have
Hom(I'g (), U(n)) = Xy, (U(n)) ' U X443, (U(n) 7,

Xyn(U ) = N(EH™/G5, Xyy(U )= /U (n) = N ()™ /G™*.

+

The connected components of Xf{fv[(U(n)) are

(XU | pe I U{X3(UM), | 1 IEF)

When 7 is odd, both Iyt and I~ are empty. Given p € 12, let N(Ef)f be
+1

the preimage of Xﬁ,’f\/I(U(n))u

under the projection
N(EH™ — N(E)™ /G5 = XU ().

Given g € IF, let N(£), be the preimage of Xf(’fv[(U(n))u under the
projection

N(E™ — N(E)™ /G5 = Xy (Um)*.
In other words,

nt ~ v,
NEHE/IGYE = X (Um)E, eIl

NEDL/GYT = X (Un))  pe IbE.
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In particular,

.....

is the space of flat connections on P” + Ee The Yang—Mills functional
achieves its absolute minimum 0 on N (Ef)" N The moduli space of gauge
equivalence classes of flat connections on P+ — Ef is given by

M(EL, PE) = N (S0 /GME 2 Vg (BF, P /U (n),
where
Voo (B, PPE) = XE2 (U () = N(SHa* /g0

Now assume x(2¢) =2 —2¢(—i < 0. Let 7:% — % be the orientable
double cover. Then 7* P™* = P™0 2 %} x U(n). There are involutions 7+ :
PO — PO wwhich cover the deck transformation 7 : ¥ — ¥ such that P™0/

= P™*. Let A(X)™* denote the space of connections on P™* — ¥, and
let A(X)™° denote the space of connections on P — 3. Then

AD)™E = (A0

Given p € 19 (vesp. pe ILTUILT), let A ) (resp. A(X),) be the sta-
ble manifold of the critical set N (X): (resp. N(X),) of the Yang Mills
functional on A(X)*. Then for i = 1, 2

= [J AEHEU UAEz

ReI peli®

is the G-equivariant Morse stratification of A(X{)™* given by the Yang-Mills
functional.
We have

N(Zf)ff C (.A(f])Z’O)Ti for pu € I, N(Zf)# - (.A(EJ)Z’O)Ti for p € It*,

By results in [1] and [6], A, is a complex submanifold of A. We also know
that 7% induces anti-holomorphic involution on A. By Proposition 5.1, for
€ 1Y, we have

codims (A(S), A(%)"*) = codime (A(S),, AE)"™)
= > (na — g = X(59)).

a<fB

The above formula also holds for p € =
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We have the following equivalent equivariant pairs for the purpose of
equivariant (singular) cohomology:

(A(ZHE G™5) ~ (N(BDE, G™F) ~ (Xea(Um)EL U(n), pe IY;

7

(A(S9),, GF) ~ (N(E9),, G™F) ~ (X (U(n), Uln)), e 15,

In other words, we have the following homotopy equivalences of homotopic
orbit spaces:

hgn,i 0
» o pE I

ns

) hU (n)

(as02)" " ~ (V)" ~ (X!
hU(n)

hgn,i hgn,i Z,' .
A(Ef)u ~ N(Ef)u ~ Xyp(U(n)), , pe Ly
Together with the reduction Proposition 7.3, we have

Theorem 7.4. Leti=1,2, and let K be a field. Given p= (v,0,...,0,

AR
10(v)) € I, where v € Iy jp,n',ng > 0,20 +ng = n, '
k k km km k km
v = (—1—1——> L LN
ny ny N, N, ny Nm
we have the following identities.
(i) no>0<=pecl?:
* ~ * ~ * 0,0
HE(A(S)5: K) = Hy(N (5055 K) = Hyy (X (U(n)5: K)
= HZ}(n (Vs (S, Pro 0™ )y
®®H* EQ(—H 1 Pn“ J) K),
U(n) ;-4
Ptg<A<zf>u;K> = PYN(Z)i K) = B! ><XYM<U<n>>f;K>
_ PtU(no)(Vss(Ellf’Png +(1)" l+k H E2£+z 1 , P J)7K).

J=1
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(i) no=0< pe Ip™:

PE(A(D), K) = PYN (59, K) = PP (X5 (UM) 5 K)

m
= [T P/ (Va3 Py ).
j=1

Example 7.5. n=2. For ¥,

IM = 0,00y U{(2r —1,1 = 2r) | r € Zso},
IL= = {(0,0)} U {(2r, —2r) | 7 € Z>0}.

For Zg,

2T = {(0,0)} U {(2r, —2r) | r € Zo},
27 ={(0,0)}U{(2r — 1,1 —=2r) | r € Zo}.

In other words, the G-equivariant strata of A(P*™) (resp. A(P*7)) are
{AE), | p € I37 (resp. Iy7)}. The codimension of each stratum is

d2r,72r =4r+4+20+1i— 2, dQT,Ll,QT =4r +20+1i— 4.

The equivariant Poincaré series for stratum p = (r,—r) is

PE(AED-) = YO (XG0 @) = P (K350 ),
(1 + t)2(2£+i—1)

U i—
— Pt (1)(U(1)2(2€+ 1)) _ "

Example 7.6. n = 3. Sincen is odd, ng =1 or 3. Thus,

1% = {(0,0,0)} U {(r,0,—7) | 7 € Z=o}.
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The G-equivariant strata of A(P>%) are {.Aff | w € I9}. The codimension of
each stratum is

dro—r =4r+3(20+1i—2).

The equivariant Poincaré series for stratum p = (r,0,—7r) is

A (X0

r,0,—r
_ PtU(l) (ngt(wl))i(—l)m) PtU(l) (Xéﬁi_l’O(U(l))T)

(1 + t)3(2€+z‘—1)

_ PtU(l)(U(l)QHi*l)PtU(l)(U(1)2(2”"*1)) _ =
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