
communications in

analysis and geometry

Volume 16, Number 3, 591–615, 2008

Homogeneous Lagrangian submanifolds
Lucio Bedulli and Anna Gori

We characterize isometric actions on compact Kähler manifolds
admitting a Lagrangian orbit, describing under which condition
the Lagrangian orbit is unique. We furthermore give the complete
classification of simple groups acting on the complex projective
space with a Lagrangian orbit, and we give the explicit list of these
orbits.

1. Introduction

A Lagrangian submanifold of a 2n-dimensional symplectic manifold (M, ω)
is an n-dimensional submanifold on which the symplectic form ω vanishes.
Lagrangian submanifolds play an important role in symplectic geometry and
topology.

In the Kähler setting i.e., when M admits an integrable almost complex
structure J such that the bilinear form g(X, Y ) = ω(X, JY ) defines a Rie-
maniann metric on M , the associated Riemannian properties of Lagrangian
submanifolds have been studied by different authors (see [7, 16, 25, 26, 31]),
in particular in relation to the analysis of minimal Lagrangian submanifolds.
In [25] the author asks for a group theoretical machinery producing minimal
Lagrangian submanifolds in Hermitian symmetric spaces.

In the present paper we first study the existence problem of homogeneous
Lagrangian submanifolds in compact Kähler manifolds, coming to the char-
acterization of isometric actions admitting a Lagrangian orbit, by imposing
an additional hypothesis on M , holding for a large class of Kähler manifolds
including irreducible Hermitian symmetric spaces. Namely we require the
space H1,1(M) to be 1-dimensional.

Theorem 1.1. Let K be a compact connected group of isometries acting in
a Hamiltonian fashion on a compact Kähler manifold M with h1,1(M) = 1.
Then M admits a K-homogeneous Lagrangian submanifold if and only if
KC has an open Stein orbit in M .

In [1, p. 161] it is proved that if G := KC acts holomorphically on a
complex manifold with an open Stein orbit, then there exists a totally real
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K-orbit O, i.e., at every point of O the tangent space does not contain
complex lines.

A counterexample shows that when h1,1 > 1, even the presence of an
open Stein KC-orbit does not guarantee the existence of a Lagrangian
K-orbit.

When K is semisimple, it turns out that the Lagrangian orbit is unique
and, when M is Kähler–Einstein, it is also minimal. In the general case, we
describe the actions having infinitely many Lagrangian orbits, characterizing
the minimal ones in Section 3.

Theorem 1.2. A Lagrangian K-orbit K · p is isolated (actually unique)
if and only if the smallest subgroup K ′ of K such that K · p = K ′ · p is
semisimple.

Some similar results have been obtained in [27], where it is assumed that
there exists a principal Lagrangian orbit.

Our main tool will be the moment map, which can be defined whenever
we consider an Hamiltonian group action on M . More precisely, let (M, ω, J)
be a compact 2n-dimensional Kähler manifold, acted on in a Hamiltonian
fashion by a compact connected subgroup K of its full isometry group.
This means that there exists a smooth map μ : M → k∗ = Lie(K)∗, called a
moment map, with the following properties:

1. dμp(v)(X) = ωp(v, ̂Xp) for all p ∈ M , v ∈ TpM and X ∈ k. Here ̂Xp

stands for the fundamental field associated to X, evaluated at p;

2. μ is K-equivariant with respect to the coadjoint action of K on k∗.

If M is connected and μ1 and μ2 are two moment maps, one easily sees
that there exists c in the dual of the Lie algebra of the center of K, such
that μ1 = μ2 + c. In general the matter of existence of the moment map
is more delicate. However, whenever the Lie group K is semisimple there
exists a (unique) moment map (see e.g., [20]). Moreover if (M, ω), as in
our situation, is a compact Kähler manifold and K is a connected compact
group of holomorphic isometries then the existence problem can be easily
solved: a moment map exists if and only if K acts trivially on the Albanese
manifold of M (see e.g., [18]).

In [14] the authors have studied the critical set of the squared moment
map ||μ||2, where || · || denotes the norm induced by an Ad(K)-invariant
inner product on k∗. In particular it is proved that if a point x ∈ M
realizes the maximum of ||μ||2, then the orbit K · x is complex; hence
K · x = KC · x is a closed KC-orbit; it is therefore natural to consider the
“dual” problem, i.e., to investigate the K-orbits through points y ∈ M that
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attain the minimum of ||μ||2. At least when K is semisimple and KC has
an open Stein orbit on M , Theorem 1.1 is a step in this direction, since
Lagrangian orbits correspond to zeroes of the moment map.

While in Theorem 1.1, we prove the existence of a Lagrangian orbit L,
we do not exhibit an effective way to single out L. At least for self-dual
representations, we give in Remark 4.5 an explicit expression, in terms of
the highest weight vector, of a point through which the orbit is Lagrangian.
Using this result and several ad hoc arguments, we finally give the complete
classification of Lagrangian submanifolds of the complex projective space on
which a simple group of isometries of the whole space acts transitively.

Theorem 1.3. Let K be a simple compact Lie group acting on the complex
projective space P(V ), by means of a unitary representation ρ : K → U(V ).
The group K has a Lagrangian orbit in P(V ) if and only if it appears in
Table 1.

The paper is organized as follows. In the second section, we introduce
some notations and give the proof of Theorems 1.1 and 1.2. In the third
section we analyse the minimality of Lagrangian submanifolds, while in the
last section we give the complete classification of simple Lie groups that
admit an homogeneous Lagrangian submanifold L in the complex projec-
tive space.

Notations and conventions. Lie groups and their Lie algebras will be
indicated with capital and gothic letters, respectively. The semisimple part
of groups and algebras will be denoted using a subscript s. The connected
component of the indentity of a Lie group G will be denoted by Go. More-
over, after identifying, by means of a Ad(K)-invariant inner product 〈, 〉
on k∗, the Lie algebra k and its dual k∗, we will alternatively consider μ as
a k-valued map.

2. Existence and uniqueness

Let M be a compact complex manifold with a Kähler form ω and K be a
compact group of isometries acting on M in a Hamiltonian fashion. From
now on we fix a moment map μ and focus on the set of points of M sent by μ
to the center z(k) of k; we will denote this set by Z. The defining properties
of μ imply that the K-orbit K · p is ω-isotropic if and only if p ∈ Z; indeed,
for every X, Y in k and q = kp in K · p

ωq( ̂Xq, ̂Yq) = dμq( ̂Xq)(Y ) =
d

dt |t=0
exp tXk · μ(p)(Y ).
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Since the K-action on M is holomorphic, it induces, when M is compact,
an action of the complexified group G := KC on M. With these notation we
state

Lemma 2.1. Let p be in Z. Then the following statements are equivalent

1. the K-orbit through p is Lagrangian;

2. the G-orbit Ω through p is open in M , i.e., M is a G-almost homoge-
neous space.

In this case the G-orbit is a Stein manifold.

Proof. Denote by O the K-orbit through p.
(1) ⇒ (2) The tangent space to the G-orbit through p is given by

Tp(G · p) = TpO + JTpO,

and the sum must be direct since JTpO∩TpO = {0} because O is Lagrangian.
Hence dim TpG · p = 2 dimTpO = dimM and the G-orbit is open. (2) ⇒ (1)
Since the G-orbit is open, dimTpO + dimJTpO ≥ 2n. Now the conclusion
follows recalling that O is isotropic (μ(p) ∈ z(k)), hence dim O ≤n. Let H ≤
K be the isotropy subgroup at p. When we consider the complexified action,
the Lie algebra of the stabilizer, gp, is given by the set of vectors W =
X + iY such that ̂Wp = 0. Now, recalling that JTpO = (TpO)⊥ we get that
̂Xp = ̂Yp = 0, therefore the complex isotropy is reductive and the open orbit
Ω = KC/HC is Stein due to a theorem of Matsushima [24]. �

An immediate consequence is the following.

Corollary 2.2. The complement of Ω in M has complex codimension 1.

Theorem 1.1 proves that, by imposing an additional hypothesis on the
cohomology of M , the existence of an open Stein G-orbit is indeed sufficient
to guarantee the presence of a Lagrangian K-orbit, while in Theorem 1.2 we
characterize the actions having infinitely many Lagrangian orbits. Now we
recall two results that will be used in proving the theorems, the first one is
due to Kirwan.

Lemma 2.3 [20, p. 97]. Let x and y be two points in a Kähler manifold
M , acted on in a Hamiltonian fashion by a group of isometries K, such
that μ(x) = μ(y) = 0. Suppose that x and y lie in different K-orbits, then
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there exist two KC-invariant disjoint neighborhoods Ux and Uy of x and y,
respectively.

The following is a classical result in Kähler geometry (see e.g., [21,
Theorem 7.4] for a proof), it is essentially a consequence of ∂∂-lemma, hold-
ing for compact Kähler manifolds.

Proposition 2.4. Let L → M be a line bundle on a compact Kähler mani-
fold M . If ω is any real, closed (1, 1)-form such that [ω] = cR

1 (L) ∈ H2
dR(M),

then there exists a Hermitian metric along the fibers of L whose curvature
form is Θ = i/(2π)ω.

Now we can prove Theorem 1.1.
Note that a compact Kähler manifold M with h1,1(M) = 1 is necessarily

projective. Indeed, since the Kähler form ω is of type (1, 1), we can scale
it so that we obtain an integral class [ω̃] ∈ H2(M ; Z) and use the Kodaira
embedding theorem.

Note that the hypotheses of Theorem 1.1 are naturally satisfied when
M is a compact irreducible Hermitian symmetric space.

Proof of Theorem 1.1. We need only to prove that if G = KC has an open
Stein orbit, then there exists a Lagrangian K-orbit. Denote again by Ω =
G · p the open Stein orbit and by Y its complement in M . By Corollary 2.2,
Y is a divisor of M and therefore it determines a holomorphic line bundle L
on M and a section σ ∈ H0(L) such that Y is the vanishing locus of σ. We
scale ω so that we obtain a positive generator of the free part of H2(M ; Z) ∩
H1,1(M). Since h1,1(M) = 1 the first Chern class of L is a positive integer
multiple of the class of the scaled Kähler form ω on M :

c1(L) = m[ω] ∈ H1,1(M).

Now, by Proposition 2.4, it is possible to find a Hermitian metric h on the
fibers of L such that its curvature form is

Θ = m
i

2π
ω.

On the other hand, the curvature on Ω is exactly (see e.g., [21])

∂∂ log ‖σ‖2,

where ‖ · ‖ is the norm induced by h. Thus we have found a strictly
plurisubharminic real-valued function ρ such that ω = i∂∂ρ. Note that by
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construction ρ : Ω → R is an exhaustion function. Observe that we can
assume ρ to be K-invariant, since this can be achieved by averaging over
the compact group K.

Starting from ρ we can define a map φ : Ω → k∗ as follows

φ(p)(X) :=
1
2
(J ̂X)p(ρ).

Clearly the K-invariance of ρ implies the K-equivariance of φ. Moreover,
for every p ∈ Ω, v ∈ TpΩ and X ∈ k, we have that dφp(v)(X) = ωp(v, ̂Xp)
(see [17] for the proof). Hence, φ is a moment map for the Hamiltonian
action of K on Ω and therefore its extension to the whole M differs from μ
by an element z of z(k).

Let now xo ∈ Ω be a critical point of the exhaustion function ρ, then
dρxo

= 0 and φ(xo)(X) =
1
2
(J ̂Xxo

)(ρ) = 0 for all X ∈ k. Thus μ(xo) belongs
to the Lie algebra of the center of K, and the K-orbit through xo is
Lagrangian by Lemma 2.1. �

Remark 2.5. If the assumption of the Hodge number h1,1(M) in Theorem
1.1 is not satisfied we cannot reach the same conclusion. Indeed consider
the example of SU(3) acting on P

2 × P
2 as follows

A · ([x], [y]) = ([Ax], [Āy])

with A ∈ SU(3) and x, y ∈ C
3 \ {0}. Since h1,1(P2 × P

2) = 2 we can choose
an SU(3)-invariant symplectic form ωε = ω0 ⊕ (1 + ε)ω0 on P

2 × P
2, where

ω0 is the Fubini-Study 2-form on P
2 and ε is a small positive constant. In

this case, there exists an open Stein G-orbit (see e.g., [2]), while the image
of the moment map does not contain 0 (see also [4] for the picture of the
moment polytope in this case).

Remark 2.6. If the group KC has an open Stein orbit in M with h1,1(M) =
1, the same is true for (K · Z)C, where Z centralizes K. Indeed consider
p ∈ M such that K · p is Lagrangian (cf. Theorem 1.1), then μ(p) ∈ z(k)
where μ is a moment map for the K-action. On the other hand μ is the
composition of the moment map μ′ for the action of K ′ := K · Z with the
projection induced by the inclusion on the dual of the Lie algebras. Therefore
μ′(p) ∈ z(k′) and for dimensional reasons K ′ · p is Lagrangian and the claim
follows from Lemma 2.1.

Assuming the existence of a Lagrangian orbit in the Kähler manifold M ,
we prove Theorem 1.2.
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Proof of Theorem 1.2. In the semisimple case, the moment map is unique,
therefore, using the same notation as in Theorem 1.1 we have μ(xo) = 0 at
the critical point xo of ρ, and μ−1(0) ∩ Ω �= ∅. Take x and y in μ−1(0) ∩ Ω,
applying Lemma 2.3, we deduce that x and y belong to the same K-orbit,
and μ−1(0) ∩ Ω is therefore compact. Then, since when M is compact the
fibers of the moment map are connected [20], we get that μ−1(0) is contained
in Ω and it is a single K-orbit.

If the semisimple part of K, which will be denoted by Ks, has a
Lagrangian orbit L, then K has a unique Lagrangian orbit. Indeed, com-
bining Theorem 1.1 and the previous remark, we get that there exists a
Lagrangian K-orbit, this is contained in μ−1

s (0) = L, where μs is the moment
map for the Ks action, and it is therefore unique.

Now assume that K · p is a Lagrangian orbit and denote by H the con-
nected component of the identity of the isotropy subgroup Kp. At the Lie
algebra level k can be written as the direct sum ks ⊕ z(k). Consider the pro-
jection π : k → z(k). Suppose that π(h) �= 0, and consider Z ′ ⊂ Z a subtorus
such that its Lie algebra satisfies

z(k) = π(h) ⊕ z
′,

and call K ′ the group Ks · Z ′. We first prove that K ′ · p has the same
dimension of K · p and therefore K ′ · p is Lagrangian. The set of tangent
vectors to the K ′-orbit is given by

̂k′|p = ̂ks|p + ̂z′
|p,

while the set of vectors tangent to the K-orbit is given by

̂k|p = ̂ks|p + ̂z′
|p + ̂π(h)|p.

By construction ̂π(h)|p is contained in ̂ks|p, hence the K- and K ′-orbits
through p coincide.

In fact K ′ is the smallest subgroup of K such that K ′ · p = K · p. Denote
by H ′ the connected component of the identity of K ′

p; the projection π(h′)
is {0}, i.e., H ′ ⊆ Ks.

Now we assume that Z ′ has dimension at least 1 (i.e., K ′ is not semisim-
ple) and we prove that the Lagrangian orbit K · p is not isolated. Then take
a subtorus Z ′′ ≤ Z ′ of codimension 1 in Z ′ (possibly Z ′′ = {e}) and note
that for dimensional reasons K ′′ = Ks · Z ′′ has no Lagrangian orbit. Denote
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by μ′′ the moment map associated to the K ′′-action on M . Consider the set
MH′

, i.e., the set

{x ∈ M | H ′ · x = x}.

We first prove that μ′′(MH′
) is contained in zm′′(h′), where k′′ = h′ ⊕ m′′ and

zm′′(h′) = {X ∈ m′′| [X, h′] = 0}. Clearly μ′′(MH′
) is contained in zk′′(h′).

Moreover let γ(t) be a smooth curve contained in MH′
joining p and a

point x ∈ MH′
. We get

d

dt
〈μ′′(γ(t)), h′〉 = 〈dμ′′

γ(t)(γ
′(t)), h′〉 = ωγ(t)(γ

′(t), ̂h′|γ(t)
) ≡ 0,

where the last equality holds since ̂h′
|γ(t) = 0. Now recall that the orbit

K ′ · p is Lagrangian hence μ′′(p) = c ∈ z(k′′) = z′′ which is orthogonal to h′.
Therefore μ′′(x) is orthogonal to h′ and belongs to m′′ ∩ zk′′(h′) = zm′′(h′) as
claimed.

Now the dimension of MH′
is given by

dim MH′
= 2 dim (K ′ · p)H′

= 2(dim (K ′′ · p)H′
+ 1) = 2(dim zm′′(h′) + 1).

This will be used in proving that Q = μ′′−1(c) ∩ MH′
is a submanifold.

Note that

Ker dμ′′
p = {Y ∈ TpM | ω(Y, ̂Xp) = 0 for all X ∈ k

′′} = (J ̂k′′|p)
⊥
= TpK

′ · p ⊕V1,

where V1 has dimension 1 and is contained in TpK
′ · p⊥, indeed K ′ · p is

Lagrangian and TpM = TpK
′ · p ⊕ J ̂k′′|p ⊕ V1. Moreover V1 is contained in

TpM
H′

; indeed H ′ acts by isotropy on TpM and leaves ̂k′′|p invariant hence

(J ̂k′′|p)
⊥

invariant. Therefore V1 is H ′-invariant, hence fixed, since it is
1-dimensional and H ′ is compact.

We conclude that

Ker dμ′′
p ∩ Tp(MH′

) = (TpK
′ · p)H′

⊕ V1

and

dim(Ker dμ′′
p ∩ Tp(MH′

)) = dim zm′′(h′) + 2.

Counting the dimension of the image, it follows that μ′′
|MH′ is a submersion

at p, hence Q is a manifold locally around p whose dimension is dim zm′′(h′) +
2. Note that for dimensional reasons Q \ K ′ · p �= ∅. To complete the proof
it is sufficient to observe that if we take y ∈ Q \ K ′ · p, sufficiently close to
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p, then the K ′-orbit through y is Lagrangian. Indeed K ′ · y is isotropic for
μ′′(y) ∈ z′′, and furthermore H ′ ⊆ K ′

y; by the Slice Theorem K ′
y
o is con-

jugated to a subgroup of H ′ hence dim K ′
y ≤ dim H ′ so that dimK ′ · y =

dim K ′ · p. �
The uniqueness of the Lagrangian K-orbit in the semisimple case is

independent of the assumption on h1,1(M).
In fact, using the equivariant version of the Lagrangian embedding the-

orem (see e.g., [15, p. 315]), we can also state the following proposition
holding in the purely symplectic setting.

Proposition 2.7. Let (M, ω) be a compact connected symplectic manifold
acted on in a Hamiltonian fashion by a compact Lie group K. Let μ : M → k∗

be a moment map associated to the action. Then, for each α fixed by the
coadjoint action of K, there exists at most one Lagrangian orbit in μ−1(α).

Proof. Let α ∈ k∗ be fixed by K. Suppose that K · x ∼= K/H be a Lagrangian
orbit contained in μ−1(α). Then, by the equivariant Lagrangian embedding
theorem, a neighborhood of K · x in M is equivariantly symplectomorphic
to a neighborhood of the zero section in the cotangent bundle T ∗(K/H) �
K ×H (h0), where h0 denotes the annihilator of h in k∗. Up to a constant vec-
tor, the moment map μ on K ×H (h0) is given by μ([k, β]) = k · β. Therefore
μ−1(0) equals the zero section K ×H {0}. Hence in M the orbit K · x is a
connected component of the fiber μ−1(α). But the level sets of the moment
map are connected, hence K · x = μ−1(α). �

A similar argument is also used in the paper [6, Theorem 1.1] now in
preparation, where the dimension of the moduli space of Lagrangian orbits
is computed.

Coming back to the Kähler case, another remark can be done: whenever
the zero level set μ−1(0) meets the open Stein orbit Ω, we can argue that Ω
coincides with the set of semistable points M ss := {x ∈ M | G · x ∩ μ−1(0) �=
∅}. Indeed Ω is always contained in M ss, moreover (see e.g., [30]) M ss is the
smallest G-invariant subset of M that contains μ−1(0), therefore M ss = Ω.
In the Kähler case it is easy to see that the stratum associated to the mini-
mum critical set of ‖μ‖2 (see [20, p. 80] for the precise definition) coincides
with the set of semistable points. Duistermaat showed (see, for example [22])
that this stratum retracts to the zero set; we have thus proved the following.

Proposition 2.8. If μ−1(0) ∩ Ω is not empty, then Ω has μ−1(0) as a
deformation retract, and thus has the same homotopy type of the Lagrangian
orbit.
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Remark 2.9. Let K · p be a Lagrangian K-orbit. One can easily show that,
if Z ∈ z(k), then Kp = Kexp iZp and all the orbits through exp iZp are totally
real (i.e., at every point the tangent space is transversal to its image via the
complex structure), but not in general Lagrangian. Consider for example the
action on CP

N , with N = (n2 + 3n)/2 − 1 induced by the representation ρ of
T 2 × SU(n) on V = S2(Cn) ⊕ C

n, defined by ρ(g)(X, Y ) = (αAXAt, βAy)
for g = (α, β, A) ∈ T 2 × SU(n), where we see the elements of S2

C
n as sym-

metric matrices. Here there are more than one K-Lagrangian orbit but,
moving through points exp itZp, one does not meet any (other) Lagrangian
orbit. Azad, Loeb and Qureshi [3] give necessary and sufficient conditions
under which one can prove that there are infinitely many totally real orbits;
more precisely this is the case whenever NG(Gp)/Gp is not finite. In the
non-semisimple case this condition is always satisfied.

Remark 2.10. Whenever the isotropy of a Lagrangian K-orbit is discrete,
the set of Lagrangian orbits is a manifold whose dimension equals the dimen-
sion of the center of the group [27]. This situation holds whenever there
exists a regular (i.e., principal or exceptional) Lagrangian K-orbit. Never-
theless note that if a Lagrangian orbit K · p is principal and contained in
Mμ, where Mμ is the set of points x in M whose orbits K · μ(x) has maxi-
mal dimension, then necessarily K must be abelian. Indeed, in general when
p ∈ Mμ ∩ Mprinc, Kμ(p)/Ko

p is abelian (see e.g., [18]); since in this case K · p
is principal and Lagrangian Ko

p is trivial, so Kμ(p) is abelian, but μ(p) ∈ z(k),
hence Kμ(p) = K and the claim follows.

Remark 2.11. As a consequence of Theorem 1.1 we have incidentally
proved that linear representations of complex semisimple Lie groups are
balanced, in the sense of [32], if and only if they have an open Stein orbit.

3. Minimality of Lagrangian orbits

We here give a proof of the minimality of the Lagrangian orbit in the
semisimple case, however this can be proved also as a consequence of the
more general fact stated in Proposition 3.2.

Proposition 3.1. If K is semisimple and M is Kähler–Einstein, the
K-orbit is also minimal.

Proof. If H denotes the mean curvature vector of the Lagrangian orbit O, it
is known (see Dazord [12]) that the 1-form α ∈ Λ1(O) which is the ω-dual of
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H restricted to O is closed. But α is K-invariant, hence for every X, Y ∈ k

we have

0 = dα( ̂X, ̂Y ) = ̂Xα(̂Y ) − ̂Y α( ̂X) − α([ ̂X, ̂Y ]) = −α([ ̂X, ̂Y ]),

so that α([̂k,̂k]) = α(̂k) = 0 and α ≡ 0. This means H = 0. �
Actually one can characterize the minimal Lagrangian orbit L in the

general case.
When (M, ω) is compact we can define a canonical moment map, μ̃, that

is characterized by the fact that
∫

M μωn = 0. If further M is Kähler–Einstein
with Einstein constant c, then μ̃ can be explicitly written (see e.g., [13,28]):

μ̃(p)(Y ) :=
1
2c

div(J ̂Yp)

for every Y ∈ k.

Proposition 3.2. Let μ̃ be the canonical moment map of a Kähler–Einstein
manifold, then a Lagrangian orbit O is minimal if and only if μ̃(O) = 0.

The previous result is stated and proved in [27] assuming that the
Lagrangian orbit is principal. Actually Proposition 3.2 holds without any
assumption on the type of Lagrangian orbits. Indeed, since L is Lagrangian,
in order to prove that L is minimal, it is sufficient to show that the mean
curvature vector H at some point p of L is orthogonal to Ĵkp as done in [27]
in Proposition 3.2. Once an orthonormal frame {ei} at p is fixed, we have

〈H, J ̂Y 〉 = 〈∇ei
ei, J ̂Y 〉

= ei

∑

〈ei, J ̂Y 〉 −
∑

〈ei,∇ei
J ̂Y 〉

= −
∑

〈ei,∇ei
J ̂Y 〉

= −1
2
divJ ̂Y

= cμ̃p(Y ) = 0.

Combining the previous proposition and the fact that the zero level set of
the moment map is a single orbit when it meets the open Stein KC-orbit
(see proof of Theorem 1.2), we get

Corollary 3.3. Let K be a compact connected group of isometries acting
in a Hamiltonian fashion on a compact Kähler–Einstein manifold M . Then
M admits at most one minimal Lagrangian K-orbit.
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Corollary 3.4. Under the same hypotheses of Theorem 1.1, assuming fur-
ther that KC is simply connected, M is Kähler–Einstein and the isotropy
subgroup KC

q at a point q of the Stein orbit has finite connected components,
we get that M admits a unique Lagrangian K-orbit which turns out to be
minimal.

Proof. From Theorem 1.1 we get that there is a Lagrangian K-orbit L;
moreover any other Lagrangian K-orbit has the same homotopy type of L by
Proposition 2.8 and therefore has finite fundamental group. But, according
to Chen (see [9, Theorem 1.1]), in a Kähler–Einstein manifold, the mean
curvature of every compact Lagrangian submanifold with b1 = 0 must vanish
somewhere. The homogeneity implies that all the Lagrangian orbits are
minimal. The conclusion follows from Corollary 3.3. �

Obviously the same result holds if KC is only supposed to have finite
fundamental group.

4. The classification of simple Lie groups with a Lagrangian
orbit in the complex projective space

In this section we give the complete classification of simple compact Lie
groups K with a Lagrangian orbit in the complex projective space. We give
also an explicit description of Lagrangian orbits, except in case K = E7.
This part can be treated combining the results of Section 2 with the work
of Sato and Kimura [29] and Kimura [19].

Consider a finite-dimensional unitary representation of a compact Lie
group K on a Hermitian vector space (V, 〈, 〉). Endow P(V ) with the Fubini-
Study Kähler form and consider the induced K-action. Note that this action
is automatically Hamiltonian since P(V ) is simply connected. The map
μ : P(V ) → k∗ defined for every v ∈ V and X ∈ k by

(4.1) μ([v])(X) =
1
i

〈X · v, v〉
〈v, v〉

is a moment map for the K-action on P(V ).
Here we recall notations and results from [29]. Given a connected com-

plex linear algebraic group G, and a rational representation ρ of G on a
finite-dimensional complex vector space V , a triplet (G, ρ, V ) is prehomoge-
neous if V has a Zariski dense G-orbit.
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We give here an easy-to-prove lemma that allows to find relations
between almost homogeneous actions on the projective space and preho-
mogeneus triplets.

Lemma 4.1. Let G be any complex, connected Lie group. G acts with an
open dense orbit on CP

n−1 if and only if G × GL(1) acts with an open dense
orbit on C

n, i.e., (G × GL(1), ρ, Cn) is a prehomogeneus triplet.

Hence, due to Theorem 1.1, in order to classify the action of compact
simple Lie groups on the projective space admitting a Lagrangian orbit, it
is sufficient to go through the list of prehomogeneous triplets in [29], and
consider those that have reductive generic isotropy, i.e., those that have
an open Stein G-orbit. They are exactly regular PV spaces of [29, p. 59].
These spaces are characterized by the existence of a relative invariant, i.e.,
a rational function f such that there exists a rational character χ of G
satisfying f(ρ(g)x) = χ(g)f(x) for any g ∈ G and x ∈ V . We here enclose a
lemma that will be useful in the sequel; the proof can be found in [29, p. 64].

Lemma 4.2. If ρ is an irreducible representation, then the polynomial f
that defines the hypersurface Y is irreducible.

In [29] prehomogeneous vector spaces are classified up to an equivalence
relation which we are going to describe.

Definition 4.3. Two triplets (G, ρ, V ) and (G′, ρ′, V ′) are called equivalent
if there exist a rational isomorphism σ : ρ(G) → ρ′(G′) and an isomorphism
τ : V → V ′, both defined over C such that the diagram

V
τ ��

ρ(g)
��

V ′

σ(ρ(g))
��

V
τ �� V ′

is commutative for all g ∈ G. This equivalence relation will be denoted by
(G, ρ, V ) ∼= (G′, ρ′, V ′).

We say that two triplets (G, ρ, V ) and (G′, ρ′, V ′) are castling transforms
of each other when there exist a triplet (G̃, ρ̃, V (m)) and a positive number



Homogeneous Lagrangian submanifolds 605

n with m > n ≥ 1 such that

(G, ρ, V ) ∼= (G̃ × SL(n), ρ̃ ⊗ Λ1, V (m) ⊗ V (n))

and

(G′, ρ′, V ′) ∼= (G̃ × SL(m − n), ρ̃∗ ⊗ Λ1, V (m)∗ ⊗ V (m − n)),

where ρ̃∗ is the dual representation of ρ̃ on the dual vector space V (m)∗ of
V (m). We recall that V (n) is a complex vector space of dimension n. A
triplet (G, ρ, V ) is called reduced if there is no castling transform (G′, ρ′, V ′)
with dimV ′ < dim V.

Note that in fact in each class there is only one representative of the form
G × GL(1), where G is simple and it is necessarily reduced. This can be seen
a posteriori as follows. Suppose that (G′, ρ′, V ′) is a reduced and castling
equivalent to (G × GL(1), ρ, V ), then there should exist a representation ρ̃ :
˜G → GL(V (m)) such that (G × GL(1), ρ, V ) ∼= (G̃ × SL(n), ρ̃ ⊗ Λ1, V (m) ⊗
V (n)). But now we would have (at least locally) G � SL(n) and GL(1) = ˜G
since G is simple, hence G′ = GL(1) × SL(m − n), but the correspondent
triple does not appear in the list of [29, p. 144–146].

4.1. Stabilizer and fundamental group

We here collect some results and remarks that will be used in order to single
out Lagrangian homogeneous submanifolds in the complex projective space.

Assume that a complex Lie group G = KC acts with an open Stein
orbit Ω = P

n \ Y on P
n. Denote by L the Lagrangian K-orbit. Owing to

Proposition 2.8, we get that Ω has the same homotopy type of L. We give
here a well-known result on the topology of the complement of an algebraic
hypersurface Y in P

n (see e.g., [23]).

Proposition 4.4. Let Y be an algebraic hypersurface of P
n. If its irredu-

cible components Y1, . . . , Yr have degree d1, . . . , dr, respectively, then H1(Pn\
Y ; Z) = Z

r/(d1, . . . , dr).

From the previous proposition it follows that, if Y is irreducible of degree
d > 1, then H1(Pn \ Y ; Z) is cyclic of order d. The open Stein orbit P

n \ Y
contains the Lagrangian orbit L = K/Kp and retracts onto it. From the
homotopy sequence, whenever K is simply connected π1(K/Kp) � Kp/Ko

p .
Hence we get a method in order to determine the number of connected
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components of the stabilizer Kp. If NK(Ko
p)/Ko

p is abelian then Kp/Ko
p =

Zd. Indeed Kp/Ko
p ⊂ NK(Ko

p)/Ko
p is abelian, hence

Kp/Ko
p = π1(K/Kp) = H1(K/Kp) = Zd.

Remark 4.5 (Self-dual representations). Let V be a (N + 1)-dimensional
complex self-dual representation of a compact Lie group K and μ be the
corresponding moment map. Assume that G = KC has an open Stein orbit
Ω = G/H in P

N . Assume also that the highest weight λ of the representation
satisfies 2λ /∈ R+. Denote by P = −P the set of weights. If v±1 ∈ V±λ are
two non-zero vectors with the same norm, then [v] := [v1 + v−1] ∈ P

N is a
point in μ−1(0) (see [11]). If moreover 2λ /∈ R+ + R+, then

(k[v])
C = Ker λ

⊕

±α∈Aλ

kα,

where Aλ = {α ∈ R+ : −λ + α /∈ P} = {α ∈ R+ : 〈λ, α〉 = 0}. Indeed

X = H +
∑

α∈R+

cαEα +
∑

α∈R−

dαEα

belongs to (k[v])C if and only if

X · v = λ(H)(v1 − v−1) +
∑

α∈R+

cαEαv−1 +
∑

α∈R−

dαEαv1 = c · v

and the conclusion follows from the fact that the weight spaces V−λ+α and
Vλ−β are distinct for α, β ∈ R+.

Remark 4.6. If Ω = KC/HC is the open Stein orbit, then there exists
p ∈ Ω such that Kp = H. Now, by the K-equivariance of μ, H = Kp ⊆ Kμ(p)
which is the centralizer of a torus T in K.

In some situation the only centralizer of a torus which contains H is the
whole group K. In this case we have Kμ(p) = K and we can conclude that
μ(p) = 0 if K is semisimple.

4.2. The case-by-case classification

In what follows a compact Lie group K acts on the complex finite-
dimensional vector space V by a linear representation ρ. Moreover we
will identify the fundamental highest weights Λl with the corresponding
irreducible representations.
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1. K = SU(n), ρ = 2Λ1. Identify the representation space V with the set
of symmetric n by n complex matrices. Now the Hermitian prod-
uct on V preserved by K is explicitly given by 〈A, B〉 = tr(AB) and
we get immediately μ(In) = 0. Moreover if Q is the n by n matrix
diag(−1, 1, . . . , 1), the stabilizer at In is

{α · SO(n) : αn = 1} ∪ {αQ · SO(n) : αn = −1}

Therefore the K-orbit through In is Lagrangian in P(V ) and KIn
/

Ko
In

� Zn. Indeed it is generated by eiπ/n if n is even, and by ei2π/n

if n is odd.

2. K = SU(n), ρ = Λ1 ⊕ Λ∗
1. Identify V with C

n ⊕ C
n∗. Take p = (e1, e

∗
1).

A direct calculation shows that μ(p) = 0. The real isotropy is
SU(n − 1) · Z2.

3. K = SU(n), ρ = Λ1 ⊕ · · · ⊕ Λ1 n times. Identify V with C
n ⊕ · · · ⊕

C
n. Take p = (e1, e2, . . . , en). A slightly more complicated calculation

shows that μ(p) = 0. The complex isotropy of p is discrete while the
real one is Zn.

4. K = SU(2n), ρ = Λ2. Identify the representation space V with the set
of anti-symmetric 2n by 2n complex matrices. The argument of case
4.2 applies to p = Jn =

[ 0 −In

In 0

]

. The real stabilizer is

{ω · Sp(n) : ω4n = 1}.

Since −I2n ∈ Sp(n) we have KJn
= Sp(n) · Z2n and the K-orbit

through Jn is Lagrangian.

5. K = SU(2n + 1), ρ = Λ2 ⊕ Λ1. Identify the Λ2 part of V with anti-
symmetric complex matrices and take p = ( ˜Jn, e1) where ˜Jn =

[ 1 0
0 Jn

]

.
Again, if μ is the moment map associated to the hermitian metric
h((X, v),
(Y, w)) = Tr(tXY ) + 2tvw, a straightforward computation proves that
μ(p) = 0, and the real isotropy at p is Sp(n)Zn+1.

6. K = SU(2), ρ = 3Λ1. This case has also been treated in [10] and [5].
The representation is self-dual, hence we apply Remark 4.6. Here
λ = 3ε1 and the set of simple roots R = {±α} with α = ε1 − ε2. Hence
P is the set {λ, λ − α, λ − 2α, λ − 3α} and k[v] = {0}. Explicitly, iden-
tifying the representation space with the space of complex homoge-
neous polynomial of degree 3, we can take [v] = z3

1 + z3
2 and K[v] is
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a non-abelian group of order 12 whose abelianization is isomorphic
to Z4. More precisely K[v] is isomorphic to the unique non-trivial
semidirect product Z3 � Z4 in which Z3 is normal.

7. K = SU(6) ρ = Λ3. The representation is again self-dual, here λ =
ε1 + ε2 + ε3 and P = {εi + εj + εk; i < j < k} and Aλ = {εi − εj ; i <
j < 3}∪{εi − εj ; 4 ≤ i < j} hence k[v] = su(3) ⊕ su(3). Explicitly [v] =
[e1 ∧ e2 ∧ e3 + e4 ∧ e5 ∧ e6] and K[v] has four connected components
given by
{[

A 0
0 D

]

: A, D ∈ SU(3)
}

∪
{[

A 0
0 D

]

: A, D ∈U(3), det A = det D = −1
}

∪
{[

0 B
C 0

]

: det B = det C = i

}

∪
{[

0 B
C 0

]

: det B = det C = −i

}

.

Hence the fundamental group of the Lagrangian orbit has order 4.
But, since H1(L, Z) is equal to Z4 (indeed the invariant has degree
4 [29, p. 144]), π1(L) = Z4.

8. K = SU(7), ρ = Λ3. Take p such that K · p is the Lagrangian K-orbit
in P(V ). By [29, p. 144] we know that Ko

p = G2. Let g ∈ NK(G2), then
g induces an automorphism of the Lie algebra g2 which is necessarily
inner, since g2 has only inner automorphisms. Therefore there exists
h ∈ G2 such that gh induces the identity on g2, i.e., centralizes G2.
Now, recalling that G2 acts irreducibly on C

7, we get that gh is a
scalar multiple of the identity and NK(G2) ⊂ G2 · Z7, where Z7 is the
center of SU(7), and Kp = G2 · Z7.

9. K = SU(8), ρ = Λ3. In this case, if p is such that K · p is the
Lagrangian K-orbit in P(V ), following the explicit calculations in [29]
(p. 87–90), we know that Ko

p is the image in SU(8) of SU(3) via
the map AdC : SU(3) → Aut(sl(3, C)), hence Ko

p � SU(3)/Z3. We
claim that the cardinality of NK(Ko

p)/Ko
p is not greater than 16,

therefore the cardinality of H1(K/Kp, Z) cannot be greater than 16,
while from [29] we know that its cardinality is exactly 16. Recall
that every automorphism of su(3) is given by the composition of an
inner and an outer (the conjugation σ) automorphism; let g be in
NK(Ko

p) and φg the induced automorphism on Ko
p . Then two possi-

bilities arise. In the first case there exists h ∈ Ko
p such that φg = φh,

in other words gh−1 commutes with Ko
p , which acts irreducibly on

C
8, hence, by the Schur Lemma, it is a scalar multiple of the iden-

tity, i.e., an element of the center Z8 of SU(8). Otherwise there exists
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h ∈ Ko
p such that φg = φh ◦ σ; in this case put go = h−1 ◦ g. Therefore

NK(Ko
p) = Ko

p · (Z8 ∪ goZ8), and has at most order 16. Now, since Ko
p

has no center, we conclude that Kp = K0
p · Z16.

10. K = Sp(n), ρ = Λ1 ⊕ Λ1. Identify V with C
2n ⊕ C

2n. Take p = (e1, e2),
μ(p) = 0. The complex isotropy at p is locally isomorphic to Sp(n −
1, C) while the real isotropy is Sp(n − 1) · Z2.

11. K = Sp(3), ρ = Λ3. The action is the restriction of the SU(6) action
on the same space. Therefore the stabilizer is given by the intersection
of Sp(3) with the stabilizer obtained in (7). Hence K[v] is

{[

A 0
0 A

]

: A ∈ SU(3) detA = 1
}

∪
{[

A 0
0 A

]

: A ∈ U(3), det A = −1
}

∪
{[

0 B

−B 0

]

: B ∈ U(3); detB = i

}

∪
{[

0 B

−B 0

]

: B ∈ U(3); detB = −i

}

And we conclude as in (7).

12. K = SO(n), ρ = Λ1. The representation ρ is self-dual, nevertheless
it is easier to see that μ(p) = 0, where p = [1:0 : · · · :0]. and Kp =
SO(n − 1) · Z2.

13. K = Spin(7), ρ = spin rep. The orbits of Spin(7) are the same of SO(8)
(see the previous case), therefore the Lagrangian orbit is

Spin(7)
G2 · Z2

=
SO(8)

SO(7) · Z2
= RP

7.

14. K = Spin(9), ρ = spin rep. The case is completely analogous to the
previous one considering the inclusion Spin(9) ⊂ SO(16). Thus the
Lagrangian orbit is

Spin(9)
Spin(7) · Z2

=
SO(16)

SO(15) · Z2
= RP

15.

15. K = Spin(10), ρ = Λe ⊕ Λe where Λe is the even half-spin representa-
tion. The complex isotropy through the point p = (1 + e1234,
e15 + e2345) is locally isomorphic to GC

2 (see [29] also for notations
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and conventions on the spin representation space). Moreover a direct
computation using formula (4.1) shows that μ(p) = 0, thus p belongs
to a Lagrangian orbit.

16. K = Spin(11), ρ = spin rep. This case and the next one (to which we
refer) can be treated simultaneously since Spin(11) and Spin(12) have
the same orbits on P

31. This can be easily seen noting that Spin(11) ⊂
Spin(12) and computing the cohomogeneity of these actions. In the
case of Spin(11) the isotropy of the Lagrangian orbit is locally isomor-
phic to SU(5).

17. K = Spin(12), ρ = Λe The computation of the fundamental group of
the Lagrangian orbit is done by several steps.

Step 1. The representation ρ is of quaternionic type, so it preserves
a quaternionic structure J ∈ End(C32), such that J2 = −id. Denote
by λ the maximal weight of ρ and by T a fixed maximal torus of
K. Note first that the Weyl group WSpin(12) contains −1. Let w ∈
NSpin(12)(T ) induce −1 on t. Since w(λ) = −λ, w preserves also λ⊥,
therefore w ∈ NK(SU(6)) ⊂ NK(U(6)). On the other hand w cannot
lie in U(6) because otherwise w should belong to WSU(6) but −1 /∈
WSU(6). Hence w generates N(U(6)/U(6), and by [8, p. 24] we know
that NSO(12)(U(6))/U(6) � Z2.

Step 2. Take p ∈ P
31 with K · p Lagrangian and Ko

p locally isomor-
phic to SU(6). Since ρ is self dual, Remark 4.5 implies that p = u1 +
u−1 with u±1 ∈ V±λ and ‖u1‖ = ‖u−1‖. Now Kp ⊂ NSO(12)(SU(6)) ⊂
NSO(12)(U(6)), hence if k ∈ Kp then k ∈ wiU(6) = wiT 1 · SU(6) for
i = 0, 1, where T ′ is the center of U(6).

Step 3. Let v1 ∈ Vλ be fixed and take v2 = Jv1 ∈ V−λ. It is possible
to choose x ∈ U(1) such that p = v1 + xv2 and w · p ∈ C · p, and the
K-orbit through p is Lagrangian.

Step 4. Let T 1 ∈ U(6) be the center of U(6). We consider the homo-
morphism c : T 1 → U(1) such that, for every t ∈ T 1, t · v1 = c(t) · v1,
with c(t) �= 1. By easy computations we get that t · v2 = c(t)v2. Let
k ∈ Kp ⊂ wi · T 1 · SU(6) = T 1 · wiSU(6), since both w and SU(6) fix
[p], then k ∈ H · wi · SU(6) where H := {t ∈ T 1, t[p] = [p]}. Now t ·
p ∈ C · p if and only if c(t) = ±1 i.e., H = Ker (c2) ⊂ T 1 is cyclic.
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Step 5. Recall that w2 ∈ T , hence it commutes with H. In SO(12), w
can be taken as diag(B, B, . . . , B) where B = [ 0 1

1 0 ]; then w ∈ Spin(12),
taken in π−1(wSO(12)), is such that w2 ∈ π−1(e) � Z2 i.e., w4 = id.

Step 6. Now we determine H. If uJ , with u ∈ iR, is a generic
element of t1, and J := diag(A, A, . . . , A) where A =

[

0 1
−1 0

]

we have
H = {uJ | exp(uJ)v1 = ±v1}, and recalling that λ = 1

2(ω1 + ω2 + · · · +
ω6), where ωi are the fundamental weights, we get

H =
{

uJ |u =
π

3
i · k, k ∈ Z

}

.

Obviously H ∩ SU(6) = Z6 therefore [k] ∈ Kp/Ko
p is generated by [w]

and by α, where α is a non-trivial element of H/H ∩ SU(6) � Z2. Now
w2 ∈ H, thus [w]2 equals α or 1 and |Kp/Ko

p | ≤ 4. The claim follows
from the fact that the invariant has degree d = 4.

18. K = Spin(14), ρ = Λe Let p be such that K · p is the Lagrangian K-
orbit in P(V ). From [29, p. 133] we know that Go

p is GC
2 × GC

2 and
from the inclusion

G2 × G2 ⊂ SO(7) × SO(7) ⊂ SO(14),

which lifts to Spin(14) (G2 × G2 is simply connected), we get Ko
p =

G2 × G2. Now we claim that π1(Kp) = Kp/Ko
p is exactly Z8. Since in

this case the degree of the invariant is 8 (see [29, p. 133]) to prove this
fact it is sufficient to show that |NK(Ko

p)/Ko
p | is at most 8.

First we compute NSO(14)(Ko
p)/Ko

p . As an automorphism of G2 ×
G2 an element g of NSO(14)(Ko

p) can either preserve or interchange the
G2 factors. Since g2 has no outer automorphism and the centralizer of
G2 in O(7) is {±Id} we have that NSO(14)(Ko

p) is given by the following
four connected components:

{[

A 0
0 B

]

: A, B ∈ G2

}

∪
{[

−A 0
0 −B

]

: A, B ∈ G2

}

∪
{[

0 A
−B 0

]

: A, B ∈ G2

}

∪
{[

0 −A
B 0

]

: A, B ∈ G2

}

.
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Thus NSO(14)(Ko
p)/Ko

p
∼= Z4. Now note that the Lie group covering

map Spin(14) → SO(14) induces an epimorphism

NSpin(14)(Ko
p)

Ko
p

−→
NSO(14)(Ko

p)
Ko

p

,

whose kernel is Z2 and the claim follows.

19. K = E6, ρ = Λ1. As before let p be such that K · p is the Lagrangian
K-orbit in P(V ). From [29, p. 138] we know that Go

p is FC
4 but F4 ⊂ E6,

hence Ko
p = F4. Following the same argument as in (8), since F4

has only inner automorphisms, we get that NK(F4) is contained in
F4 · CK(F4). Now F4 acts on C

27 = C ⊕ C
26 irreducibly on the sec-

ond summand, hence CK(F4) acts on each summand as scalar mul-
tiplication. Therefore CK(F4) is contained in a 2-dimensional torus
and NK(F4)/F4 is abelian. Since in this case the invariant has degree
3, we have Kp = F4 · Z3. Note that Z3 is the center of E6 which acts
trivially on CP

26.

20. K = E7, ρ = Λ1. As before let p be such that K · p is the Lagrangian
K-orbit in P(V ). From [29, p. 140] we know that Go

p is EC
6 but E6 ⊂ E7,

hence Ko
p = E6. This representation is self-dual.

21. K = G2, ρ = Λ2. The orbits of G2 are the same of SO(7) (see case
(4.2)), therefore the Lagrangian orbit is

G2

SU(3) · Z2
=

SO(7)
SO(6) · Z2

= RP
6.

We have thus proved Theorem 1.3.
In the Table 1, the connected components of the isotropy subgroups Kp

of points p through which the K-orbit is Lagrangian are listed in the fifth
column.
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