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We give a new lower bound for the first gap λ2 − λ1 of the Dirichlet
eigenvalues of the Schrödinger operator on a bounded convex
domain Ω in Rn or Sn, in terms of the diameter of the domain
and the global convexity.

1. Introduction

We give a new estimate on the lower bound of the gap of the first two
Dirichlet eigenvalues of the Schrödinger operator on a bounded convex
domain Ω in Rn or Sn, in terms of the diameter of the domain and the
global convexity. Let λ1 and λ2 be the first two Dirichlet eigenvalues of the
Schrödinger operator −Δ + V to the eigenvalue problem

(1.1) −Δu + V u = λu in Ω, u = 0 on ∂ Ω,

where Δ is the Laplacian on Ω, V : Ω → R1 a non-negative convex smooth
function, Ω is bounded and convex domain in Rn or Sn, where ‘convex
domain’ means the second fundamental form of the boundary with respect
to the outward normal to the boundary is positive definite.

It is an interesting and important problem to find a lower bound for the
first gap λ2 − λ1 > 0. There has been a lot of work on this problem. See
[1, 4] for the references. For a general bounded convex domain in Rn, Singer
et al. [15] showed that

λ2 − λ1 ≥ π2

4d2 ,

where d is the diameter of the domain. Yu and Zhong [19] later removed the
factor 1/4. Lee and Wang [9] showed the above estimate remains true for
the Laplacian on a bounded convex domain in Sn. The author [11] proved
that global log-convexity holds if the domain in Rn or Sn is convex, and
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therefore one has the strict lower bound

λ2 − λ1 >
π2

d2 .

Smits [14] gave an alternative derivation of the above result.
There are two directions for the further study of the lower bound.
One direction is motivated statistical physics. van den Berg [5] conjec-

tured that the lower bound is 3π2/d2. See also Yau’s Problem Section in
[13, 16] and Ashbaugh [1]. The authors in [2, 4, 3, 8] proved the conjecture
in R2 for some special symmetric domains and for some special potential V .

The other direction of the study is motivated by geometry. See Yau’s
Perspectives on Geometric Analysis [18] for details. In [17], Yau gave an
interesting estimate

(1.2) λ2 − λ1 ≥ θ
π2

d2 + 2
(
cos π

√
θ
)2

α,

where θ is any constant with 0 ≤ θ ≤ 1/4, d is the diameter, and α > 0 is
the global log-convexity

(1.3) α = inf
x∈Ω

inf
τ∈TxΩ,|τ |=1

[
∇2 (− ln f)

]
(τ, τ) (x) ,

f is a positive first eigenfunction. By [6, 11], α > 0. Yau [17] gave an
interesting estimate on the lower bound of α in terms of the potential V .

The above (1.2) gives λ2 − λ1 ≥ π2/4d2 and λ2 − λ1 ≥ 2α and inter-
mediate results between the two.

Along Yau’s geometric direction and using Li–Yau [10] and Yu–Zhong
[19]’s approach, in this paper we improve (1.2) to the following:

(1.4) λ2 − λ1 ≥ π2

d2 + 0.62α.

If the domain and the potential have certain symmetry, then we have

(1.5) λ2 − λ1 ≥ π2

d2 + α.

We expect that the results can be contributed to the study of the bound
along the direction motivated by statistical physics as well.

Theorem 1.1. If Δ is the Laplacian in Rn or Sn and if λ1 and λ2 are the
first two Dirichlet eigenvalues of the Schrödinger operator −Δ + V with a
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non-negative convex potential V on a bounded convex domain Ω in Rn or
Sn, then (1.4) holds.

Theorem 1.2. If in addition to the conditions in Theorem 1.1, the domain
Ω has a certain symmetry that the minimum of the ratio of eigenfunctions
is the opposite of the maximum, then (1.5) holds.

Remark. The above result holds when Ω is in a manifold with non-negative
Ricci curvature and positive α.

We prove our results by using the maximum principle and test functions.
In the next section, we study exact solutions of some ordinary differential
equations and explore the properties of the function ξ constructed by the
author in [12], the Zhong–Yang function η and the ratio ξ/η, which are
essential to our construction of the required test functions. The functions ξ
and η and their properties also have other important applications. We then
use the exact solutions to construct the test functions in Section 3 and prove
our main results. The last section is for deriving some preliminary estimates
and the conditions for test functions and for proving some technical lemmas
needed in the proof of the Theorem 1.1.

2. Exact solutions of some ODEs

Lemma 2.1. Let

(2.1) ξ(t) =
cos2 t + 2t sin t cos t + t2 − (π2/4)

cos2 t
on

[
−π

2
,
π

2

]
.

Then the function ξ satisfies the following

1
2
ξ′′ cos2 t − ξ′ cos t sin t − ξ = 2 cos2 t in

(
−π

2
,
π

2

)
,(2.2)

ξ′ cos t − 2ξ sin t = 4t cos t in
(
−π

2
,
π

2

)
,(2.3)

∫ π/2

0
ξ(t) dt = −π

2
,(2.4)

1 − π2

4
= ξ(0) ≤ ξ(t) ≤ ξ

(
±π

2

)
= 0 on

[
−π

2
,
π

2

]
,

ξ′ is increasing on
[
−π

2
,
π

2

]
and ξ′

(
±π

2

)
= ±2π

3
,
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ξ′(t) < 0 on
(
−π

2
, 0

)
and ξ′(t) > 0 on

(
0,

π

2

)
,

ξ′′
(
±π

2

)
= 2, ξ′′(0) = 2

(
3 − π2

4

)
and ξ′′(t) > 0 on

[
−π

2
,
π

2

]
,

(
ξ′(t)

t

)′
> 0 on

(
0,

π

2

)
and 2

(
3 − π2

4

)
≤ ξ′(t)

t
≤ 4

3
on

[
−π

2
,
π

2

]
,

ξ′′′
(π

2

)
=

8π

15
, ξ′′′(t) < 0 on

(
−π

2
, 0

)
and ξ′′′(t) > 0 on

(
0,

π

2

)
.

Proof. For convenience, let q(t) = ξ′(t), i.e.,

(2.5) q(t) = ξ′(t) =
2(2t cos t + t2 sin t + cos2 t sin t − (π2/4) sin t)

cos3 t
.

Equation (2.2) and the values ξ(±π/2) = 0, ξ(0) = 1 − π2/4 and ξ′(±π/2) =
±2π/3 can be verified directly from (2.1) and (2.5). The values of ξ′′ at 0
and ±π/2 can be computed via (2.2). By (2.3), (ξ(t) cos2 t)′ = 4t cos2 t.
Therefore ξ(t) cos2 t =

∫ t
π/2 4s cos2 s ds, and

∫ π/2

−π/2
ξ(t) dt = 2

∫ π/2

0
ξ(t) dt = −8

∫ π/2

0

(
1

cos2(t)

∫ π/2

t
s cos2 s ds

)

dt

= −8
∫ π/2

0

(∫ s

0

1
cos2(t)

dt

)
s cos2 s ds = −8

∫ π/2

0
s cos s sin s ds = −π.

It is easy to see that q and q′ satisfy the following equations

(2.6)
1
2
q′′ cos t − 2q′ sin t − 2q cos t = −4 sin t,

and

(2.7)
cos2 t

2(1 + cos2 t)
(q′)′′ − 2 cos t sin t

1 + cos2 t
(q′)′ − 2(q′) = − 4

1 + cos2 t
.

The last equation implies that q′ = ξ′′ cannot achieve its non-positive local
minimum at a point in (−π/2, π/2). On the other hand, ξ′′(±π/2) = 2, by
equation (2.2), ξ(±π/2) = 0 and ξ′(±π/2) = ±2π/3. Therefore ξ′′(t) > 0
on [−π/2, π/2] and ξ′ is increasing. Since ξ′(0) = 0, we have ξ′(t) < 0 on
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(−π/2, 0) and ξ′(t) > 0 on (0, π/2). Similarly, from the equation

cos2 t

2(1 + cos2 t)
(q′′)′′ − cos t sin t(3 + 2 cos2 t)

(1 + cos2 t)2
(q′′)′ − 2(5 cos2 t + cos4 t)

(1 + cos2 t)2
(q′′)

= − 8 cos t sin t

(1 + cos2 t)2

(2.8)

we obtain the results in the last line of the lemma.
Set h(t) = ξ′′(t)t − ξ′(t). Then h(0) = 0 and h′(t) = ξ′′′(t)t > 0 in (0, π/2).

Therefore (ξ′(t)/t)′ = h(t)/t2 > 0 in (0, π/2). Note that

ξ′(−t)
−t

=
ξ′(t)

t
,
ξ′(t)

t

∣
∣
∣
t=0

= ξ′′(0) = 2
(

3 − π2

4

)
and

ξ′(t)
t

∣
∣
∣
t=π/2

=
4
3
.

This completes the proof of the lemma. �

Lemma 2.2. Let

(2.9) η(t) =
(4/π)t + (4/π) cos t sin t − 2 sin t

cos2 t
on

[
−π

2
,
π

2

]
.

Then the function η satisfies the following

1
2
η′′ cos2 t − η′ cos t sin t − η = − sin t in

(
−π

2
,
π

2

)
,(2.10)

η′ cos t − 2η sin t =
8
π

cos t − 2 in
(
−π

2
,
π

2

)
,(2.11)

− 1 = η
(
−π

2

)
≤ η(t) ≤ η

(π

2

)
= 1 on

[
−π

2
,
π

2

]
,

0 < 2
(

4
π

− 1
)

= η′(0) ≤ η′(t) ≤ η′
(
±π

2

)
=

8
3π

on
[
−π

2
,
π

2

]
,

− 1
2

= η′′
(
−π

2

)
≤ η′′(t) ≤ η′′

(π

2

)
=

1
2

on
[
−π

2
,
π

2

]
,

η′′′(t) > 0 on
[
−π

2
,
π

2

]
and η′′′

(
±π

2

)
=

32
15π

.

Proof. Let p(t) = η′(t), i.e.,

(2.12) p(t) = η′(t) =
2((4/π) cos t + (4/π)t sin t − sin2 t − 1)

cos3 t
.

Equation (2.10), η(±π/2) = ±1, η′(0) = 2((4/π) − 1) and η′(±π/2) =
8/3π can be verified directly. We obtain η′′(±π/2) = ±1/2 from the above
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values and equation (2.10). By (2.10), p = η′, p′ = η′′ and p′′ = η′′′ satisfy
the following equations in (−π/2, π/2)

1
2
p′′ cos t − 2p′ sin t − 2p cos t = −1,(2.13)

cos2 t

2(1 + cos2 t)
p′′′ − 2 cos t sin t

1 + cos2 t
p′′ − 2p′ = − sin t

1 + cos2 t
,

and

cos2 t

2(1 + cos2 t)
(p′′)′′ − cos t sin t(3 + 2 cos2 t)

(1 + cos2 t)2
(p′′)′ − 2(5 cos2 t + cos4 t)

(1 + cos2 t)2
(p′′)

= −cos t(2 + sin t)
(1 + cos2 t)2

.

The coefficient of (p′′) in (2.14) is obviously negative in (−π/2, π/2), and
the right-hand side of (2.14) is also negative. So p′′ cannot achieve its non-
positive local minimum at a point in (−π/2, π/2). On the other hand,
p′′(π/2) = 32/15π > 0 (see the proof below), p′′(t) > 0 on [−π/2, π/2].
Therefore p′ is increasing and −1/2 = p′(−π/2) ≤ p′(t) ≤ p′(π/2) = 1/2.
Note that p′(0) = 0 (p′ is an odd function). So p′(t) > 0 on (0, π/2) and
p is increasing on [0, π/2 ]. Therefore, 2(4/π − 1) = p(0) ≤ p(t) = η′(t) ≤
p(π/2) = 8/3π on [0, π/2], and on [−π/2, π/2] since p is an even function.
We now show that p(π/2) = 8/3π, p′(π/2) = 1/2 and p′′(π/2) = 32/15π.
The first is from a direct computation by using (2.12). By (2.10),

1
2
p′

(π

2

)
=

1
2
η′′

(π

2

)
= lim

t→ π

2
−

η′(t) cos t sin t + η(t) − sin t

cos2 t

= −1
2

[
η′′

(π

2

)
− 1

]
.

So p′(π/2) = 1/2. Similarly, by (2.13),

1
2
p′′

(π

2

)
= lim

t→ π

2
−

2p′(t) sin t − 1
cos t

+ 2p
(π

2

)
= −2p′′

(π

2

)
+

16
3π

Thus p′′(π/2) = 32/15π. �

Lemma 2.3. The function r(t) = ξ′(t)/η′(t) is an increasing function on
[−π/2, π/2], i.e., r′(t) > 0, and |r(t)| ≤ π2/4 holds on [−π/2, π/2].
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Proof. Let p(t) = η′(t) as in (2.12) and q(t) = ξ′(t). Then r(t) = q(t)/p(t).
It is easy to verify that r(±π/2) = ±π2/4. By (2.13) and (2.6),

(
1
2

)
p(t)r′′ cos t + (p′(t) cos t − 2p(t) sin t)r′ − r = −4 sin t.

Differentiating the last equation, we obtain
[
1
2
p(t) cos t

]
(r′)′′ +

[
3
2
p′(t) cos t − 5

2
p(t) sin t

]
(r′)′

+ [p′′(t) cos t − 3p′(t) sin t − 2p(t) cos t − 1](r′) = −4 cos t.

Using (2.13), the above equation becomes
[
1
2
p(t) cos t

]
(r′)′′ +

[
3
2
p′(t) cos t − 5

2
p(t) sin t

]
(r′)′(2.14)

+ [p′(t) sin t + 2p(t) cos t − 3](r′) = −4 cos t.

The coefficient of (r′) in (2.14) is negative, for p′(t) sin t + 2p cos t − 3 <
1/2 + 16/3π − 3 < 0. This fact and the negativity of the right-hand side of
(2.14) in (−π/2, π/2) imply that r′ cannot achieve its non-positive minimum
on [−π/2, π/2] at a point in (−π/2, π/2). Now

lim
t→ π

2
−

r′(t) = lim
t→ π

2
−

s(t) cos2 t

((4/π) cos t + (4/π)t sin t − sin2 t − 1)2

= lim
t→ π

2
−

[s(t)/ cos4 t]
[((4/π) cos t + (4/π)t sin t − sin2 t − 1)/ cos3 t]2

= lim
t→ π

2
−

[s(t)/ cos4 t]
[(1/2)η′(t)]2

=
(4/3π − π/12)

(4/3π)2

> 0,

where

s(t) = − 4
π

t2 − t2 cos t +
12
π

cos2 t +
8
π

t sin t cos t

− cos t sin2 t +
(

π2

4
− 3

)
cos t − π + 4t sin t.

Therefore, r′(t) > 0 and r is an increasing function on [−π/2, π/2]. �
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3. Proof of the main result

Let f2 be the second eigenfunction and f a positive first eigenfunction of
problem (1.1). It is known that f2/f changes its signs in Ω (see [7]) and is
smooth up to the boundary ∂Ω (see [15]) and can be normalized so that

sup
Ω

f2

f
= 1, inf

Ω

f2

f
= −k, and 0 < k ≤ 1.

Let λ = λ2 − λ1,

(3.1) v =
f2/f − (1 − k)/2

(1 + k)/2
.

Then the function v satisfies the following

Δv = −λ(v + a) − 2∇v ∇(ln f) in Ω,(3.2)
∂v

∂N
= 0 on ∂Ω,(3.3)

sup
Ω

v = 1 and inf
Ω

v = −1,(3.4)

where N is the outward normal of ∂Ω, and

(3.5) a =
1 − k

1 + k

is the “midrange” of the ratio f2/f . Note that 0 ≤ a < 1.
We set in this paper, unless otherwise stated,

(3.6) λ = λ2 − λ1 and δ =
α

λ
.

and let

Z(t) = max
x∈Ω̄,t=sin−1(v(x)/b)

|∇v|2/(b2 − v2)
λ

.

for t ∈ [− sin−1(1/b), sin−1(1/b)].
We have the following estimates (3.7) and (3.8), Lemma 3.1 and

Corollaries 3.2 and 3.3.

0 < δ ≤ 1
2 .(3.7)

Z(t) ≤ 1 + a, t ∈
[
− sin−1

(
1
b

)
, sin−1

(
1
b

)]
.(3.8)
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Lemma 3.1. If the function z : [− sin−1(1/b), sin−1(1/b)] �→ R1 satisfies
the following

(1) z(t) ≥ Z(t) t ∈ [− sin−1(1/b), sin−1(1/b)],

(2) there exists some x0 ∈ Ω̄ such that z(t0) = Z(t0)
at point t0 = sin−1(v(x0)/b),

(3) z(t0) > 0,

then we have the following

0 ≤ 1
2
z′′(t0) cos2 t0 − z′(t0) cos t0 sin t0 − z(t0) + 1 + c sin t0

(3.9)

− 2δ cos2 t0 − z′(t0)
4z(t0)

cos t0[z′(t0) cos t0 − 2z(t0) sin t0 + 2 sin t0 + 2c].

Corollary 3.2. If in addition to the above conditions (1)–(3) in Lemma 3.1,
z′(t0) ≥ 0 and 1 − c ≤ z(t0) ≤ 1 + a, then we have the following

0 ≤ 1
2
z′′(t0) cos2 t0 − z′(t0) cos t0 sin t0 − z(t0) + 1 + c sin t0 − 2δ cos2 t0.

Corollary 3.3. If a = 0, which is defined in (3.5), and if in addition to the
above conditions (1)–(3) in Lemma 3.1, z′(t0) sin t0 ≥ 0 and z(t0) ≤ 1, then
we have the following

0 ≤ 1
2
z′′(t0) cos2 t0 − z′(t0) cos t0 sin t0 − z(t0) + 1 − 2δ cos2 t0.

The proofs of the above lemma and its corollaries are similar to those
on [11]. For completeness we present the proofs in the last section. We now
show the following result.

Theorem 3.4. If a > 0 and μδ ≤ (4/π2)a for a constant μ ∈ (0, 1], then

λ2 − λ1 ≥ π2

d2 + μα

Proof. Let με = μ − ε > 0 for small positive constant ε. Take b > 1 close
to 1 such that μεδ < (4/π2)c. Let

(3.10) z(t) = 1 + cη(t) + μεδξ(t),
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where ξ and η are the functions defined by (2.1) and (2.9), respectively. Let
Ī = [− sin−1(1/b), sin−1(1/b)]. We claim that

(3.11) Z(t) ≤ z(t) for t ∈ Ī .

By Lemmas 2.1 and 2.2, we have

1
2
z′′ cos2 t − z′ cos t sin t − z = −1 − c sin t + 2μεδ cos2 t,(3.12)

z′(t) > 0(3.13)

0 < 1 − a

b
= z

(
−π

2

)
≤ z(t) ≤ z

(π

2

)
= 1 +

a

b
≤ 1 + a,(3.14)

where (3.13) is due to the following.

z′(t) = cη′(t) + μεδξ
′(t) = μεδη

′(t)
(

c

μεδ
+

ξ′(t)
η′(t)

)

≥ μεδη
′(t)

(
c

μεδ
− π2

4

)
> 0.

Let P ∈ R1 and t0 ∈ [− sin−1(1/b), sin−1(1/b)] such that

P = max
t∈Ī

(Z(t) − z(t)) = Z(t0) − z(t0).

Thus

(3.15) Z(t) ≤ z(t) + P for t ∈ Ī and Z(t0) = z(t0) + P.

Suppose that P > 0. Then z + P satisfies the inequality in Corollary 3.2 of
Lemma 3.1. Then

z(t0) + P = Z(t0)

≤ 1
2
(z + P )′′(t0) cos2 t0 − (z + P )′(t0) cos t0 sin t0 + 1

+ c sin t0 − 2δ cos2 t0

=
1
2
z′′(t0) cos2 t0 − z′(t0) cos t0 sin t0 + 1 + c sin t0 − 2δ cos2 t0

≤ 1
2
z′′(t0) cos2 t0 − z′(t0) cos t0 sin t0 + 1 + c sin t0 − 2μεδ cos2 t0

= z(t0).
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This contradicts the assumption P > 0. Thus P ≤ 0 and (3.11) must hold.
Now we have

|∇t|2 ≤ λz(t) for t ∈ Ī ,

that is

(3.16)
√

λ ≥ |∇t|
√

z(t)
.

Let q1 and q2 be two points in Ω̄ such that v(q1) = −1 and v(q2) = 1, and
let L be the minimum geodesic segment between q1 and q2. L lies on Ω̄
completely, since Ω̄ is convex. We integrate both sides of (3.16) along L and
change variable and let b → 1. Then

√
λd ≥

∫

L

|∇t|
√

z(t)
dl =

∫ π/2

−π/2

1
√

z(t)
dt

≥

(∫ π/2
−π/2 dt

)3/2

(
∫ π/2
−π/2 z(t) dt)1/2

≥

⎛

⎝ π3

∫ π/2
−π/2 z(t) dt

⎞

⎠

1/2

.(3.17)

Square the two sides. Then

λ ≥ π3

d2
∫ π/2
−π/2 z(t) dt

.

Now
∫ π/2

−π/2
z(t) dt =

∫ π/2

−π/2
[1 + aη(t) + μεδξ(t)] dt = (1 − μεδ)π,

where we used the facts that
∫ π/2
−π/2 η(t) dt = 0 since η is an even function,

and that
∫ π/2
−π/2 ξ(t) dt = −π (by (2.4) in Lemma 2.1). Therefore

λ ≥ π2

(1 − μεδ)d2 and λ ≥ π2

d2 + μεα.

Letting ε → 0, we obtain

λ ≥ π2

(1 − μδ)d2 and λ ≥ π2

d2 + μα.

�
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Theorem 3.5. If the “midrange” a = 0, then

(3.18) λ2 − λ1 ≥ π2

d2 + α.

Proof. Let

y(t) = 1 + δξ.

By Lemma 2.1, for −π/2 < t < π/2, we have

1
2
y′′ cos2 t − y′ cos t sin t − y = −1 + 2δ cos2 t,(3.19)

y′(t) sin t ≥ 0,(3.20)

and

(3.21) y
(
±π

2

)
= 1 and 0 < y(t) < 1.

We need only show that Z(t) ≤ y(t) on [−π/2, π/2]. If it is not true, then
there is a t0 and a number P > 0 such that P = Z(t0) − y(t0) = max Z(t) −
y(t). Note that y(t) + P ≥ 1 − (1/2)(π2/4 − 1) + P > 0. So y + P satisfies
the inequality in Corollary 3.3 in Lemma 3.1. Therefore

y(t0) + P = Z(t0)

≤ 1
2
(y + P )′′(t0) cos2 t0 − (y + P )′(t0) cos t0 sin t0 + 1 − 2δ cos2 t0

=
1
2
y′′(t0) cos2 t0 − y′(t0) cos t0 sin t0 + 1 − 2δ cos2 t0

= y(t0).

This contradicts the assumption P > 0. The rest of the proof is similar to
that of Theorem 3.4, just noticing that δ ≤ 1/2 < 4/(π2 − 4). �

Proof of Theorem 1.2. Since a = 0 in such case, we may directly apply
Theorem 3.5. �

Proof of Theorem 1.1. Since 0 ≤ a < 1, either a = 0 or 0 < a < 1.
If a = 0, then we apply Theorem 3.5 to obtain the bound with μ = 1,

λ ≥ π2

d2 + α.

If 0 < a < 1, then there are several cases altogether.
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• (I): a ≥ (π2/4)δ.

• (II): a < (π2/4)δ.
– (II-a): a ≥ 0.765.
– (II-b): 0 < a < 0.765.

∗ (II-b-1): a ≥ 1.53δ.
∗ (II-b-2): a < 1.53δ.

For Case (I): 0 < a < 1 and a ≥ (π2/4)δ, we apply Theorem 3.5 for
μ = 1 to get the following lower bound

π2

d2 + α

For Case (II-a): 0.765 ≤ a < (π2/4)δ, we apply Theorem 3.4 with μ =
(4/π2)(a/δ) since ((4/π2)(a/δ))δ ≤ (4/π2)a and 0 < (4/π2)(a/δ) < 1. Then

λ ≥ π2

d2 +
4
π2

a

δ
α =

π2

d2 +
4a

π2 λ.

Thus

λ ≥ 1
1 − (4a/π2)

π2

d2 .

On the other hand we have bound (3.7),

λ ≥ 2α.

The above two estimates give

λ ≥ π2

d2 +
4a

π2 2α ≥ π2

d2 +
8(0.765)

π2 α >
π2

d2 +
31
50

α.

The theorem is proved in this case.
For Case (II-b-1): 0 < a < 0.765, a < (π2/4)δ and a ≥ 1.53δ, we apply

Theorem 3.4 with μ = (4/π2)(a/δ) since ((4/π2)(a/δ))δ ≤ (4/π2)a and 0 <
(4/π2)(a/δ) < 1. Then

λ ≥ π2

d2 +
4
π2

a

δ
α ≥ π2

d2 +
4
π2

153
100

α >
π2

d2 +
31
50

α,

which is what we want to prove.
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For the remaining Case (II-b-2): 0 < a < 0.765, a < (π2/4)δ and
a < 1.53δ, we define a function z by

z(t) = 1 + cη(t) + (δ − σc2)ξ(t) on
[
− sin−1 1

b
, sin−1

]
,

where

(3.22) σ =
τ

(
[3/2 − π2/8 − (π2/32 − 1/6)(153/100)]200/153

− (8/3π−π/4)2
[−1+(12−π2)(100/153)]

)
c

and

(3.23) τ =
2

3π2

(
4

3(4 − π)
+

3(4 − π)
4

− 2
)

.

Let Ī = [− sin−1(1/b), sin−1(1/b)]. We now show that

(3.24) Z(t) ≤ z(t) on Ī .

If (3.24) is not true, then there exist a constant P > 0 and t0 such that

Pc2 =
Z(t0) − z(t0)

−ξ(t0)
= max

t∈[− sin−1(1/b),sin−1(1/b)]

Z(t) − z(t)
−ξ(t)

.

Let w(t) = z(t) − Pc2ξ(t) = 1 + cη(t) + mξ(t), where m = δ − σc2 − Pc2.
Then

Z(t) ≤ w(t) on Ī and Z(t0) = w(t0).

By Lemma 4.1, w(t0) > 0. So w satisfies (3.9) in Lemma 3.1,

0 ≤ −2(σ + P )c2 cos2 t0 − w′(t0)
4w(t0)

cos t0

(
8c

π
cos t + 4mt cos t

)
.

We used (2.2), (2.3), (2.10) and (2.11) to obtain the above inequality. Thus
(3.25)

σ + P ≤ − w′(t0)
2c2w(t0)

(
2c

π
+ mt

)
= − η′(t0)

πw(t0)

(
1 +

mξ′(t0)
cη′(t0)

) (
1 +

πm

2c
t0

)
.
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The right-hand side is not positive for t0 ≥ 0, by Lemmas 2.1 and 2.2. Thus
t0 < 0, and

−
(

1 +
mξ′(t0)
cη′(t0)

) (
1 +

πm

2c
t0

)
=

2ξ′(t0)
πt0η′(t0)

(
πt0η

′(t0)
2ξ′(t0)

+
πm

2c
t0

)

×
(
−1 − πm

2c
t0

)

≤ 1
4

2ξ′(t0)
πt0η′(t0)

(
πt0η

′(t0)
2ξ′(t0)

− 1
)2

=
1
4

(
2ξ′(t0)

πt0η′(t0)
+

(
2ξ′(t0)

πt0η′(t0)

)−1

− 2

)

.

By Lemmas 2.1 and 2.2, we have 2(3 − π2/4) ≤ ξ′(t)/t ≤ 4/3 and
2(4/π − 1) ≤ η′(t) ≤ 8/3π. So

3(12 − π2)
8

≤ 2ξ′(t0)
πt0η′(t0)

≤ 4
3(4 − π)

.

Note that the function f(t) = t + 1/t − 2 achieves it maximum on [A, B] not
containing 0 at an endpoint. Therefore

∣
∣
∣
∣−

(
1 +

mξ′(t0)
cη′(t0)

) (
1 +

πm

2c
t0

)∣
∣
∣
∣ ≤ 1

4

(
4

3(4 − π)
+

3(4 − π)
4

− 2
)

.

Now (3.25) becomes

(3.26) σ + P ≤ τ

w(t0)
,

where τ is the number in (3.23). On the other hand, by Lemma 4.1,

z(t0) ≥
([

3
2

− π2

8
−

(
π2

32
− 1

6

)
153
100

]
200
153

− (8/3π − π/4)2

[−1 + (12 − π2)(100/153)]

)
c

(3.27)

=
τ

σ
> 0.

Since −Pξ(t0) ≥ 0, we have w(t0) ≥ z(t0). This fact, (3.26) and (3.27) imply
that for P > 0

σ + P < σ,

which is impossible.
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Therefore we have the estimate (3.24). Now we proceed as in the proof
of Theorem 3.4. We obtain the following

λd2 ≥ π3

π[1 − (δ − σc2)]
.

Since δ − σc2 > 0.625δ by Lemma 4.1, we have

λ ≥ 1
[1 − (δ − σc2)]

π2

d2 ≥ 1
[1 − 0.625δ]

π2

d2

and

λ ≥ π2

d2 + 0.625α >
π2

d2 +
31
50

α.

�

4. Technical lemmas and estimates

Lemma 4.1. If a < 1.53δ and 0 < a < 0.765 then

z(t) = 1 + cη(t) + δξ(t)

≥
([

3
2

− π2

8
−

(
π2

32
− 1

6

)
153
100

]
200
153

− (8/3π − π/4)2

[−1 + (12 − π2)(100/153)]

)
c

> 0,

for t ∈ [−π/2, π/2] and

δ − σc2 ≈ 0.625162283437δ > 0.625δ,

where c = a/b and b > 1 is any constant and σ is the constant in (3.22).

Proof. By Lemmas 1.3–1.5, the function z on [−π/2, π/2] has a unique crit-
ical point t1 ∈ (−π/2, 0) if 0 < a < (π2/4)δ and z is decreasing on [−π/2, t1]
and increasing on [t1, π/2]. Therefore

min
[−π/2,π/2]

z = min
[−π/2,0]

z = z(t1).

So we need only consider the restricted function z|[−π/2,0] for the minimum.
Now first consider the Taylor expansion of ξ at 0 for t ∈ [−π/2, 0].

By Lemma 2.1, ξ(0) = −π2/4 + 1, ξ′(0) = 0 and ξ′′(0) = 2(3 − π2/4) and
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ξ′′′(t) < 0 on (−π/2, 0). Thus

ξ(t) ≥ −
(

π2

4
− 1

)
+

(
3 − π2

4

)
t2.

Similarly, using the data η(−π/2) = −1, η′(−π/2) = 8/3π and η′′′(t) > 0 on
(−π/2, 0) (actually on [−π/2, π/2]), and the Taylor expansion of η at −π/2,
we have for t ∈ [−π/2, 0],

η(t) ≥ −
(

π2

16
− 1

3

)
+

(
8
3π

− π

4

)
t − 1

4
t2.

Therefore on [−π/2, 0],

z(t) = 1 + cη(t) + δξ(t)

≥ 1 −
(

π2

16
− 1

3

)
c −

(
π2

4
− 1

)
δ +

(
8
3π

− π

4

)
ct

+
[
−1

4
c +

(
3 − π2

4

)
δ

]
t2

Let ν = 1.53 and a0 = 0.765. That a ≤ νδ implies c = a/b < νδ, where
b > 1 is a constant. Using conditions (3.7) δ ≤ (n − 1)/2n < 1/2 and a ≤ a0,
we obtain

1 −
(

π2

16
− 1

3

)
c −

(
π2

4
− 1

)
δ ≥ 1 −

(
π2

16
− 1

3

)
νδ −

(
π2

4
− 1

)
δ

≥ 3
2

− π2

8
−

(
π2

32
− 1

6

)
ν

>

(
3
2

− π2

8
−

(
π2

32
− 1

6

)
ν

)
1
a0

c

and

1 + cη(t) + δξ(t)

≥
(

3
2

− π2

8
−

(
π2

32
− 1

6

)
ν

)
1
a0

c +
(

8
3π

− π

4

)
ct

+
[
−1

4
c +

(
3 − π2

4

)
1
ν

c

]
t2
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=
([

3
2

− π2

8
−

(
π2

32
− 1

6

)
ν

]
1
a0

+
(

8
3π

− π

4

)
t

+
[
−1

4
+

(
3 − π2

4

)
1
ν

]
t2

)
c

≥
([

3
2

− π2

8
−

(
π2

32
− 1

6

)
ν

]
1
a0

− (8/3π − π/4)2

4[−1/4 + (3 − π2/4)(1/ν)]

)
c

≥
([

3
2

− π2

8
−

(
π2

32
− 1

6

)
ν

]
1
a0

− (8/3π − π/4)2

[−1 + (12 − π2)(1/ν)]

)
c

> 0.5433 > 0.

Let τ be the constant in (3.23). Then

σc2 =
τc

(
[3/2 − π2/8 − (π2/32 − 1/6)ν](1/a0) − (8/3π−π/4)2

[−1+(12−π2)(1/ν)]

) ,

≤ τνδ
(
[3/2 − π2/8 − (π2/32 − 1/6)ν](1/a0) − (8/3π−π/4)2

[−1+(12−π2)(1/ν)]

)

≈ 0.374837516563δ

and
δ − σc2 > 0.625δ. �

Proof of the estimate (3.7). We estimate the maximum of the function

(4.1) P (x) = |∇v|2 + Av2,

where v is the function in (3.1), and where A ≥ 0 is a constant.
Let A = 0 in (4.1). Function P must achieve its maximum at some point

x0 ∈ Ω̄. Suppose that x0 ∈ ∂Ω. Choose an orthornormal frame {e1, . . . , en}
about x0 such that en is a outward normal to ∂Ω. By (3.3), vn = ∂v/∂N = 0.
Thus at x0

vin = eienv − (∇ei
en)v

= −(∇ei
en)v

= −
n−1∑

j=1

hijvj
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and

Pn = 2
n∑

j=1

vjvjn + 2Avvn =
n−1∑

j=1

vjvjn

= −2
n−1∑

i,j=1

hijvivj

≤ 0 by the convexity of ∂Ω.

On the other hand, that P attains the maximum at the boundary point x0
implies that

Pn ≥ 0.

Thus at x0, −2
∑n−1

i,j=1 hijvivj = Pn = 0. By the convexity, v1 = · · · = vn−1 =
0 and ∇v = 0 at x0. Therefore v is a constant. This is impossible, so x0 ∈ Ω.
∇v(x0) �= 0 (otherwise v is a constant). At x0,

∇P (x0) = 0 and ΔP (x0) ≤ 0.

Take a local frame so that

v1(x0) = ∇v(x0) and vi(x0) = 0, i ≥ 2.

Thus at t0 we have
0 = 1

2∇Pi = vjvji + Avvi,

(4.2) v11 = −Av and v1i = 0 i ≥ 2,

and

0 ≥ 1
2
ΔP (x0)

= vjivji + vjvjii + Avivi + Avvii

= v2
ji + v1(Δv)1 + Rjivjvi + A|∇v|2 + AvΔv

≥ v2
11 + v1(Δv)1 + A|∇v|2 + AvΔv

= (−Av)2 − λ|∇v|2 − 2v1(∇v∇ ln f)1 + A|∇v|2 − λAv(v + a)
− 2Av∇v∇ ln f

= −(λ − A)|∇v|2 − Av2(λ − A) − aλAv − 2v2
1(ln f)11

− 2v1(ln f)1(v11 + Av),
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where we have used (3.6) and (4.2). Therefore at x0,

(4.3) 0 ≥ −(λ − 2α − A)|∇v|2 − A(λ − A)v2 − aλAv.

Using the fact that A = 0 in the above inequality, we get (3.7). �

Proof of the estimate (3.8). We first prove the following

(4.4)
|∇v|2

b2 − v2 ≤ λ(1 + a),

where b > 1 is an arbitrary constant.
Let A = λ(1 + a) + ε in (4.1) for small ε > 0. The function P achieves

its maximum at some x0 ∈ Ω̄. If ∇v(x0) �= 0 and x0 ∈ Ω, then (4.3) holds
at x0 with A = λ(1 + a) + ε. Thus

|∇v(x0)|2 + λ(1 + a)v(x0)2 ≤ aλv

aλ + ε
[λ(1 + a) + ε] ≤ [λ(1 + a) + ε].

This estimate holds if x0 ∈ Ω̄ with ∇v(x0) = 0. If x0 ∈ ∂Ω, then the convex-
ity of Ω and previous argument in the proof of (3.7) imply that the above
estimate holds. So we have the estimate (4.4). By the definition of Z, we
have (3.8). �

Proof of Lemma 3.1. Define

J(x) =

{
|∇v|2

b2 − v2 − λz

}

cos2 t,

where t = sin−1(v(x)/b). Then

J(x) ≤ 0 for x ∈ Ω̄ and J(x0) = 0.

If ∇v(x0) = 0 then

0 = J(x0) = −λz cos2 t.

This contradicts condition (1.3) in the theorem. Therefore

∇v(x0) �= 0.

If x0 ∈ ∂Ω, then by an argument in the proof of (3.7), the convexity of
Ω and that J(x0) is the maximum would imply that ∇v(x0) = 0. Thus
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x0 ∈ Ω = Ω̄\∂Ω. The Maximum Principle implies that

(4.5) ∇J(x0) = 0 and ΔJ(x0) ≤ 0.

J(x) can be rewritten as

J(x) =
1
b2 |∇v|2 − λz cos2 t.

Thus (4.5) is equivalent to

(4.6)
2
b2

∑

i

vivij

∣
∣
∣
x0

= λ cos t[z′ cos t − 2z sin t]tj
∣
∣
∣
x0

and

0 ≥ 2
b2

∑

i,j

v2
ij +

2
b2

∑

i,j

vivijj − λ(z′′|∇t|2 + z′Δt) cos2 t(4.7)

+ 4λz′ cos t sin t|∇t|2 − λzΔ cos2 t
∣
∣
∣
x0

.

Choose a normal coordinate around x0 such that v1(x0) �= 0 and vi(x0) = 0
for i ≥ 2. Then (4.6) implies

(4.8) v11

∣
∣
∣
x0

=
λb

2
(z′ cos t − 2z sin t)

∣
∣
∣
x0

and v1i

∣
∣
∣
x0

= 0 for i ≥ 2.

Now we have

|∇v|2
∣
∣
∣
x0

= λb2z cos2 t
∣
∣
∣
x0

,

|∇t|2
∣
∣
∣
x0

=
|∇v|2

b2 − v2 = λz
∣
∣
∣
x0

,

Δv

b

∣
∣
∣
x0

= Δ sin t = cos tΔt − sin t|∇t|2
∣
∣
∣
x0

,

Δt
∣
∣
∣
x0

=
1

cos t

(
sin t|∇t|2 +

Δv

b

)

=
1

cos t

[
λz sin t − λ

b
(v + a) − 2

b
v1(ln f)1

] ∣
∣
∣
∣
x0

,
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and

Δ cos2 t
∣
∣
∣
x0

= Δ
(

1 − v2

b2

)
= − 2

b2 |∇v|2 − 2
b2 vΔv

= −2λz cos2 t +
2
b2 λv(v + a) +

4
b2 vv1(ln f)1

∣
∣
∣
x0

.

Therefore,

2
b2

∑

i,j

v2
ij

∣
∣
∣
x0

≥ 2
b2 v2

11

=
λ2

2
(z′)2 cos2 t − 2λ2zz′ cos t sin t + 2λ2z2 sin2 t

∣
∣
∣
x0

,

2
b2

∑

i,j

vivijj

∣
∣
∣
x0

=
2
b2 (∇v ∇(Δv) + R(∇v,∇v))

≥ 2
b2 ∇v ∇(Δv)

= −2λ2z cos2 t − 4
b2 v1v11(ln f)1 − 4

b2 v2
1(ln f)11

∣
∣
∣
x0

,

− λ(z′′|∇t|2 + z′Δt) cos2 t
∣
∣
∣
x0

= −λ2zz′′ cos2 t − λ2zz′ cos t sin t +
1
b
λ2z′(v + a) cos t

+
2
b
λz′v1(ln f)1 cos t

∣
∣
∣
x0

,

and

4λz′ cos t sin t|∇t|2 − λzΔ cos2 t
∣
∣
∣
x0

= 4λ2zz′ cos t sin t + 2λ2z2 cos2 t − 2
b
λ2z sin t (v + a)

− 4
b
λz sin t v1(ln f)1

∣
∣
∣
x0

.

Putting these results into (4.7) we obtain

0 ≥ −λ2zz′′ cos2 t +
λ2

2
(z′)2 cos2 t + λ2z′ cos t (z sin t + c + sin t)(4.9)

+ 2λ2z2 − 2λ2z − 2λ2cz sin t − 4λz cos2 t(ln f)11

− 4
b2

[
v11 − λb

2
(z′ cos t − 2z sin t)

]
v1(ln f)1

∣
∣
∣
x0

.
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The last term in (4.9) is 0 due to (4.8). Now

(4.10) z(t0) > 0,

by condition (1.3) in the theorem, and

(4.11) −(ln f)11

λ
≥ δ,

by the definition of δ. Dividing two sides of (4.9) by 2λ2z
∣
∣
∣
x0

and taking

(4.11) into account, we have

0 ≥ −1
2
z′′(t0) cos2 t0 +

1
2
z′(t0) cos t0

(
sin t0 +

c + sin t0
z(t0)

)
+ z(t0)

− 1 − c sin t0 + 2δ cos2 t0 +
1

4z(t0)
(z′(t0))2 cos2 t0.

Therefore,

0 ≥ −1
2
z′′(t0) cos2 t0 + z′(t0) cos t0 sin t0 + z(t0) − 1 − c sin t0 + 2δ cos2 t0

+
z′(t0)
4z(t0)

cos t0[z′(t0) cos t0 − 2z(t0) sin t0 + 2 sin t0 + 2c].

�

Proof of Corollary 3.2. By condition (1.2) in the theorem, (3.8), | sin t0| =
|v(t0)/b| ≤ 1/b and 1 − c ≤ z(t0) ≤ 1 + a. Thus for t0 ≥ 0,

−z(t0) sin t0 + sin t0 + c ≥ − sin t0 − a sin t0 + sin t0 + c

≥ a

(
1
b

− sin t0

)
≥ 0,

and for t0 < 0,

−z(t0) sin t0 + sin t0 + c ≥ − sin t0 + c sin t0 + sin t0 + c ≥ c(1 + sin t0) ≥ 0.

In any case the last term in (3.9) is non-negative. �

Proof of Corollary 3.3. The last term in (3.9) is non-negative. �
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