
communications in

analysis and geometry

Volume 16, Number 3, 495–537, 2008

Quasi-local mass functionals and generalized inverse
mean curvature flow

Jeffrey D. Streets

Let M be an asymptotically flat 3-manifold with non-negative
scalar curvature. In [H. Bray, A family of quasi-local mass func-
tionals with monotone flows, Proceedings of the International
Congress of Mathematical Physics, Lisbon, 2003.] Hubert Bray
defines a family of quasi-local mass functionals which are mono-
tone for surfaces smoothly satisfying a certain generalization of
inverse mean curvature flow in M . We show that a weak solution
in the sense of Huisken–Ilmanen [G. Huisken and T. Ilmanen, The
inverse mean curvature flow and the Riemannian Penrose inequal-
ity, J. Differen. Geom. 59, 2001, 353–437.] exists for a wide class
of flows including these with monotone quasi-local mass function-
als, and we show that the monotonicity holds for the weak flow as
well. As shown in [H. Bray, A family of quasi-local mass function-
als with monotone flows, Proceedings of the International Congress
of Mathematical Physics, Lisbon, 2003.], a Penrose-type inequality
for connected surfaces is an immediate corollary.

1. Introduction

In this paper we will consider a certain generalization of the inverse mean
curvature flow. Specifically, let (Mn, g) be a smooth Riemannian manifold,
and let x : N × [0, T ] → M be a smooth family of hypersurfaces satisfying

(1.1)
∂x

∂t
=

ν

f(H)

where H is the mean curvature of Nt at the point x, ν is the outward unit
normal, ∂x

∂t is the normal velocity field along the surface Nt and f is a func-
tion f : R → R. There are two specific geometric applications motivating
the study of flows of this type, both arising from general relativity. First,
restrict to the case where (M3, g) is an asymptotically flat, time symmetric
space-like slice of a spacetime with Rg ≥ 0, a consequence of the dominant
energy condition for the spacetime. In [4], Bray defines a one-parameter
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family of quasi-local mass functionals for Σ a smooth surface in (M3, g).
Specifically for any c ∈ [0,∞) we define

mc(Σ) =
√

A

16π

(
1 − 1

16π

∫
Σ

1
c2 F (cH)

)
− c(1.2)

where y = F (x) is the implicit solution to

x2 = y + y3/2.(1.3)

Bray showed that this mass functional is monotonic when smoothly flowing
the surface Σ in the outward normal direction with speed

ηc =
2c

f(cH)
(1.4)

where f = F ′. Bray further conjectured that this flow exists globally in a
weak sense defined by Huisken and Ilmanen in [8], and that the asymptotic
limit of (1.2) is the usual ADM mass. This would show mADM ≥ mF

c (Σ).
After taking the supremum over different choices of c we then conclude the
following theorem.

Theorem 1.1. Let (M, g) be a complete connected asymptotically flat 3-
manifold with non-negative scalar curvature. Say the boundary of M is a
connected, compact, outer minimizing surface Σ. Then

mADM ≥ mH(Σ) +
|Σ|1/2

(16π)3/2 ·
max

(
0,

∫
Σ H3 − (16π)3/2/|Σ|1/2

)2

6
∫
Σ H4 .(1.5)

A second geometric application comes from the study of negative point
mass singularities, which were introduced by Bray in [5] and explored further
in [9]. Bray takes a negative point mass Schwarzchild metric

ds2 =
(

1 +
m

2 |x|

)4

d�x2 −
(

1 − m
2|x|

1 + m
2|x|

)2

dt2(1.6)

where m < 0 is a starting point and proceeds to develop a theory of more
general negative point mass singularities. This analysis suggests that the
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quasi-local mass functional

−
(

1
16π

∫
Σ

H4/3dA

)3/2

could take the place of the Hawking mass for negative point mass singulari-
ties. As it turns out t

3 − 1
16π

∫
Σ H4/3 is monotonic under Equation (1.1) with

f(x) = x1/3. It is as yet unclear precisely what quasi-local mass functionals
are appropriate for the study of these singularities, but solutions to these
generalized flows may prove important. We take up this question in further
detail in [10].

We return for now to the case of a general function f in (1.1). In the
level set formulation of this flow the evolving surfaces will be given as the
level sets of a function u by:

Nt = ∂{x|u(x) < t}

where now u satisfies:

f

(
divM

∇u

|∇u|

)
= |∇u| .(1.7)

Example 1.2. If f(x) = x
1
α for α �= 1, then we have to solve the equation:

divM
∇u

|∇u| = |∇u|α .

In the case of R
n − {0} we see that the function

u(x) =
α(n − 1)

α − 1
|x|

α−1
α

is a solution corresponding to an expanding sphere.

Proposition 1.3. Equation (1.7) is elliptic for H ≥ 0 if and only if f ′(x) >
0 for x ≥ 0.

Proof. We must compute the linearization of Equation (1.7). So, let {us}
be a family of functions such that u0 = u and ∂

∂sus|s=0 = v. Then

∂

∂s

(
f

(
divM

∇us

|∇us|

)
− |∇us|

)
= f ′(H)

∂

∂s
divM

∇us

|∇us|
− ∂

∂s
|∇us|

= f ′(H) divM
∇v

|∇u| + l.o.t.

Thus as |∇u| is generally not zero, the result follows. �
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Thus we see our first condition on f which will be necessary for solutions
to generally exist. In the course of developing solutions to this generalized
flow, we will see more conditions that are required of f for (1.7) to have a
weak solution. The most important of these will be the behavior of f near
zero. Recall that under inverse mean curvature flow, an application of the
maximum principle shows that one has an a priori upper bound on H ([8];
1.4). This will be the case for solutions to (1.1); however, our main concern
is not when H is large, but rather when it approaches zero, causing the speed
to go to infinity. Our method for dealing with these singularities is entirely
inspired by the work of Huisken–Ilmanen [8], where an energy-minimization
principle is used to allow the surfaces to jump when this energy minimization
is not satisfied.

Let us now record some basic formulae that follow for a solution to (1.1).
First of all, for a family of hypersurfaces with outward normal speed v we
have the following general formulae:

∂

∂t
dμt = Hvdμt,

∂H

∂t
= Δ(−v) − |A|2 v − Rc(ν, ν)v.

Thus for a solution to (1.1) we have immediately:

∂

∂t
dμt =

H

f(H)
dμt(1.8)

and

∂H

∂t
= Δ

(
− 1

f(H)

)
− |A|2

f(H)
− Rc(ν, ν)

f(H)

=
f ′(H)ΔH

f(H)2
+

f ′′(H) |∇H|2

f(H)2
− 2

f ′(H)2 |∇H|2

f(H)3
− |A|2

f(H)
− Rc(ν, ν)

f(H)
.

(1.9)

We now give an outline of the rest of the paper. As we mentioned
before and is clear when reading the paper, we broadly adapt the work of
Huisken–Ilmanen [8]. In Section 2, we reformulate solutions to (1.1) using
an energy-minimization principle directly generalizing the one found in [8].
We also prove various general analytic properties of solutions to (1.1) and in
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the process identify various conditions on f which will be helpful in proving
existence and uniqueness. In Section 3, we define a very general condition
on f which guarantees existence and uniqueness of solutions to (1.1) with
precompact initial condition. In Section 4, we restrict to the case where
f is given by F ′ where F ′ is the solution to (1.3). We closely follow [8]
and generalize the monotonicity of the Hawking mass for weak solutions
to inverse mean curvature flow to give the monotonicity of (1.2) under the
generalized flow. Finally in Section 5, we prove asymptotic convergence
of the surface at infinity to a round sphere, which completes the proof of
Theorem 1.1.

2. Variational formulation

2.1. Weak solutions

Let f : R → R be strictly monotonically increasing. Generalizing the work
of Huisken–Ilmanen [8] to our setting, consider the following functional:

Ju(v) = JK
u (v) =

∫
K

|∇v| + vf−1(|∇u|)dx.(2.1)

Note that as we have assumed that f(x) is strictly monotonically increasing
for positive x, f−1 is well defined. The Euler–Lagrange equation of this
functional is

divM
∇v

|∇u| = f−1 |∇u|(2.2)

or equivalently

f

(
divM

∇v

|∇u|

)
= |∇u| .(2.3)

Definition 2.1. Let u be a locally Lipschitz function on the open set Ω.
Then u is a weak solution (subsolution, supersolution respectively) of (1.7) if

JK
u (u) ≤ JK

u (v)(2.4)

for every locally Lipschitz function v (v ≤ u, v ≥ u, respectively) such that
{v �= u} ⊂⊂ Ω, where the integration is performed over any compact set K
containing {u �= v}.
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2.2. Isoperimetric reformulation

In this subsection we again adapt [8] and reformulate the equation in terms of
a modified isoperimetric problem. Let F be a set of locally finite perimeter,
and let ∂∗F denote its boundary. Then given u locally Lipschitz and K ⊂
M define:

Ju(F ) = JK
u (F ) = |∂∗F ∩ K| −

∫
F∩K

f−1(|∇u|).(2.5)

This functional can be interpreted as area minimization plus bulk energy
term, which will be important in the sequel.

Definition 2.2. We say that E minimizes Ju in a set A (on the outside,
inside respectively) if

JK
u (E) ≤ JK

u (F )(2.6)

for every F such that FΔE ⊂⊂ A (with F ⊇ E, F ⊆ E respectively), and
any compact set containing FΔE.

Lemma 2.3. Let u be a locally Lipschitz function in the open set Ω. Then
u is a weak solution of (1.7) in Ω if and only if for each t, Et = {u < t}
minimizes Ju in Ω.

Proof. Let v be a locally Lipschitz function such that {v �= u} ⊂⊂ Ω and
K a compact set containing {v �= u}. Set Et = {u < t}, Ft = {v < t}. Since
v = u outside of K, we have FtΔEt ⊆ K for every t. So, pick a < b such
that a < u, v < b on k, and then by the co-area formula we have:

JK
u (v) =

∫
K

|∇v| + vf−1 |∇u|

=
∫ b

a

∫
Ft

dAdt −
∫

K

∫ b

a
χv<tf

−1(|∇u|)dtdV + b

∫
K

f−1(|∇u|)dV

=
∫ b

a
JK

u (Ft) + b

∫
K

f−1(|∇u|).

Thus if each Et minimizes Ju in Ω, then it is clear that u will minimize Ju

in Ω. This proves one direction. As for the other direction parts 2 and 3
of Lemma 1.1 in [8] give a proof that works for minimizers of a functional
which is area minimization plus bulk energy term. �
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Lemma 2.4 (Smooth flow lemma). Let {Nt}a≤t<b be a smooth family of
surfaces of positive mean curvature solving (1.1) classically. Let u be a level
set function for Nt, and let Et := {u < t}. Then for a ≤ t < b, Et minimizes
Ju in Eb − Ea.

Proof. The exterior normal vector νu := ∇u
|∇u| is a smooth unit vector field on

Eb − Ea with div νu = f−1(Hnt
) > 0. Fix F a set of finite perimeter. Then

by applying the divergence theorem with calibration νu on the set F − Et

we see:

|∂Et| −
∫

Et

f−1(|∇u|) =
∫

∂Et

ν∂Et
· νu −

∫
Et

f−1(|∇u|)

=
∫

∂∗F
ν∂∗F · νu −

∫
F

f−1(|∇u|)

≤ |∂∗F | −
∫

F
f−1(|∇u|).

�

2.3. Initial value problem

We will typically want to start our flow from a given surface in M . Here we
define the weak flows starting at a particular initial condition.

Definition 2.5. We say that u is a weak solution of (1.7) with initial
condition E0 if

u ∈ C0,1
loc(M), E0 = {u < 0} and u satisfies (2.4) in M − E0.(2.7)

Definition 2.6. Let Et be a nested family of open sets in M , closed under
ascending union. Define u by Et = {u < t}. (Et)t>0 is a weak solution of
(2.6) with initial condition E0 if

u ∈ C0,1
loc(M) and Et minimizes Ju in M − E0 for each t > 0.(2.8)

The issue of the equation being satisfied at t = 0 is a delicate one. Like
the weak flow in [8], E0 must be a minimizing hull for this to hold.

2.4. Regularity

Let E contain an open set U and minimize the functional

|∂∗F | +
∫

F
φ
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with respect to F such that F ⊃ U, FΔE ⊂⊂ Ω. This is the situation for
our weak solutions, thus we may apply the following regularity theorem
([8]; Theorem 1.3).

Theorem 2.7 (Regularity theorem). Let n < 8.

1. If ∂U is C1 then ∂E is a C1 submanifold of Ω.

2. If ∂U is C1,α, 0 < α ≤ 1/2, then ∂E is a C1,α submanifold of Ω. The
C1,α estimates depend only on the distance to ∂Ω, ess sup |f | , C1,α

bounds for ∂U and C1 bounds (including positive lower bounds) for
the metric g.

3. If ∂U is C2 and f = 0, then ∂E is C1,1, and C∞ where it does not
contact the obstacle U .

Now let u be a solution of (2.4) with initial condition E0. Set

Et := {u < t}, E+
t := int{u ≤ t}, Nt := ∂Et, N+

t := ∂E+
t .

The regularity theorem shows that Nt and N+
t have locally uniform C1,α

estimates depending only on local Lipschitz bounds for u. Specifically, for
all t > 0,

Ns → Nt as s ↗ t, Ns → N+
t as s ↘ t(2.9)

locally in C1,β , 0 ≤ β < α. If ∂E0 is C1,α, this holds as s ↓ 0 also.

2.5. Minimizing hulls

Recall that E is a minimizing hull if E minimizes area on the outside, that
is, if

|∂∗E ∩ K| ≤ |∂∗F ∩ K|

for any F containing E, and any K containing F�E. E is a strictly min-
imizing hull if the equality holds only when F = E a.e. Finally recall that
for a given measurable set E, E′ is the strictly minimizing hull of E, defined
as the intersection of all strictly minimizing hulls that contain E. We will
need the following basic fact about minimizing hulls: if ∂E is C2, part 3 of
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Theorem 2.7, applies to E′ to show that the weak mean curvature satisfies

H∂E′ = 0 on∂E′\∂E

H∂E′ = H∂E ≥ 0 Hn−1 − a.e. on ∂E′ ∩ ∂E.
(2.10)

See [8] for more background on minimizing hulls. The following proposition
shows that the qualitative behavior of our generalized inverse mean cur-
vature flow is very similar to the usual inverse mean curvature flow when
f(0) = 0.

Proposition 2.8. Suppose that u satisfies (2.7) and that M has no compact
components, and suppose f(0) = 0. Then:

1. for t > 0, Et is a minimizing hull in M ;

2. for t ≥ 0, E+
t is a strictly minimizing hull in M ;

3. for t ≥ 0, E′
t = E+

t , provided E+
t is precompact;

4. for t > 0, |∂Et| =
∣∣∂E+

t

∣∣ provided that E+
t is precompact. This extends

to t = 0 precisely if E0 is a minimizing hull.

Proof. 1. First note that because we assume f is monotonically increasing,
the assumption f(0) = 0 implies that f(x) > 0 for x > 0. Using Equation
(2.8) we have:

|∂Et ∩ K| +
∫

F−Et

f−1(|∇u|) ≤ |∂∗F ∩ K|(2.11)

for t > 0, and any F containing Et. Note that we use the positivity assump-
tion on f to conclude that the second term shown is positive. This then
exactly says that Et is a minimizing hull for t > 0.

2. As before we have the following equation:

∣∣∂E+
t ∩ K

∣∣ +
∫

F−E+
t

f−1(|∇u|) ≤ |∂∗F ∩ K|(2.12)

for t ≥ 0 and appropriate F and K. This shows as before that E+
t is a

minimizing hull. To show that it is in fact strictly minimizing, pick F ⊃
E+

t with

|∂∗F ∩ K| =
∣∣∂E+

t ∩ K
∣∣ .

Then by (2.12) and our assumptions on f we have that ∇u = 0 a.e. on
F − E+

t ; thus, it is clear that F is a minimizing hull. By general properties
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of minimizing hulls we may assume that F is open. Then we have that u is
constant on each connected component of F − Ē+

t . Since F is a minimizing
hull, any component with closure disjoint from Ē+

t must have no perimeter,
and thus be both open and closed. Since M has no compact components
this is impossible. Thus u = t on F − E+

t so that F ⊂ E+
t and hence E+

t is
strictly minimizing.

3. By 2. we have E′
t ⊆ E+

t . If they are not equal and E+
t is precompact

then |∂E′
t| <

∣∣∂E+
t

∣∣ which contradicts (2.12).
4. If E+

t is precompact then Et is as well so we may use them as test
sets in (2.11) and (2.12) to conclude |∂Et| ≤

∣∣∂E+
t

∣∣ ≤ |∂Et| which proves
the condition for t > 0. These inequalities hold for t = 0 only if E0 itself
happens to be a minimizing hull. �

Lemma 2.9 (Growth lemma). Let (Et) solve (2.6) with initial condition
E0. Then for t > 0, as long as Et remains precompact, we have:

∂

∂t
|∂Et| =

∫
Et

f−1(|∇u|)
|∇u| .

Proof. By the minimizing property, we know that Ju(Et) is constant for all
time. So, using the co-area formula we see:

0 =
∂

∂t
J(Et) =

∂

∂t

(
|∂Et| −

∫
Et

f−1(|∇u|)
)

=
∂

∂t

(
|∂Et| −

∫ t

0

∫
∂Eτ

f−1(|∇u|)
|∇u| dAdτ

)

and the result follows. �

We will also need the following corollary specific to the choice of F given
by (1.3).

Corollary 2.10. Let (Et) solve (2.6) with initial condition E0, a minimiz-
ing hull where f = F ′ with F given by (1.3). Then |∂Et| ≥ et |∂E0|.

Proof. An argument similar to the previous lemma applies to
∣∣∂E+

t

∣∣ for t ≥
0. We note that for F given by (1.3) we have f−1(|∇u|)

|∇u| ≥ 1 so that ∂
∂t

∣∣∂E+
t

∣∣ ≥∣∣∂E+
t

∣∣. We note that f(0) = 0 so that if E0 is minimizing Proposition 2.8
(part 4) gives the result. �
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2.6. Compactness

Theorem 2.11. Let {ui} be a sequence of solutions to (2.4) on open sets
Ωi in M such that

ui → u, Ωi → Ω

locally uniformly, and for each K ⊂⊂ Ω,

sup
K

|∇ui| ≤ C(K)

for sufficiently large i. Also assume that

lim
x→0+

f ′(x) > 0.(2.13)

Then u is a solution of (2.4) on Ω.

Proof. We prove this theorem by a form of induction. Let v be a locally
Lipschitz function such that {v �= u} ⊂⊂ Ω. We want to show that Ju(u) ≤
Ju(v). Since the set {v �= u} is compact, and we are assuming a uniform
bound on the derivatives of the ui on compact sets, there exists s bounding
all of these derivatives on this set. By (2.13), we see that there exists
a constant Cf such that f−1(x) ≤ Cfx on [0, C(K)]. First assume that
v < u + 1

Cf
. Let φ ∈ C1

c (Ω) be a cutoff function such that φ = 1 on {v �= u}.
Then define

vi = φv + (1 − φ)ui.

Clearly vi is a valid comparison function for ui in the sense of definition
(2.1). Let U be a small neighborhood containing the support of φ. Then by
Equation (2.4), we have for sufficiently large i:

∫
U

|∇ui| + uif
−1(|∇ui|) ≤

∫
U

|∇vi| + vif
−1(|∇ui|)

=
∫

U
|φ∇v + (1 − φ)∇ui + ∇φ(v − ui)|

+ (φv + (1 − φ)ui)f−1(|∇ui|)

≤
∫

φ |∇v| + (1 − φ) |∇ui| + |∇φ(v − ui)|

+ (φv + (1 − φ)ui)f−1(|∇ui|).
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Thus, rearranging we get:
∫

U
φ

(
|∇ui| + (ui − v)f−1(|∇ui|)

)
≤

∫
U

φ |∇v| + |∇φ(v − ui)| .

Note that in the limit the last term in this equation goes to zero. This is
because eventually either v = u or ∇φ = 0 at every point. But now

v < u +
1

Cf

< u +
|∇ui|

f−1(|∇ui|)
.

Thus for large enough i we have 1 + (ui − v)f−1(|∇ui|)
|∇ui| is positive. Thus, by

lower semicontinuity we may pass to the limit to achieve:
∫

U
φ

(
|∇u| (1 + (u − v)f−1(|∇u|)

)
≤

∫
U

φ |∇v| .

This completes the first stage of the induction. Now we must prove that if u
satisfies (2.4) for all w ≤ u + ε then it does for each v ≤ u + 2ε. This follows
exactly as in Theorem 2.1 of [8], using the inequalities Ju(u) ≤ Ju(vi) where
v1 = min(v, u + k), v2 = max(v − k, u). �

2.7. Uniqueness

In this subsection we give uniqueness properties for solutions to (1.7). The-
orem 2.12 follows the proof of uniqueness given in [8], but does not cover all
the cases we need. Therefore, we resort to using the approximation scheme
we use in Section 3 to cover the remaining case.

Theorem 2.12. Assume that M has no compact components, and assume

0 < lim
x→0+

f ′(x) < ∞.(2.14)

1. If u and v solve (2.4) on an open set Ω in M , and {v > u} ⊂⊂ Ω,
then v ≤ u on Ω.

2. If (Et)t>0 and (Ft)t>0 solve (2.8) in a manifold M and the initial
conditions satisfy E0 ⊂ F0, then Et ⊂ Ft as long as Et is precompact
in M .



Generalized inverse mean curvature flow 507

3. In particular, for a given E0 there exists at most one solution (Et)t>0
of (2.8) such that each Et is precompact.

Proof. First we note that assumption (2.14) implies that the derivative of
f−1 is bounded below, so that on any compact set I ⊂ R≥0 there exists a
constant Cf such that:

|x − y| ≤ Cf

∣∣f−1(x) − f−1(y)
∣∣

for all x, y ∈ I. This is the property that we will use in the following proof.
(1) First we assume that u is a strict weak supersolution of (2.4), i.e.,

for any Lipschitz function w ≥ u with {w �= u} ⊂⊂ Ω we have:

∫
|∇u| + uf−1(|∇u|) + ε

∫
(w − u)f−1(|∇u|) ≤

∫
|∇w| + wf−1(|∇u|)

for some ε > 0. Use this formula with w = u + (v − u)+ to get:

∫
v>u

|∇u| + uf−1(|∇u|) + ε

∫
v>u

(v −u)f−1(|∇u|) ≤
∫

v>u
|∇v| + vf−1(|∇u|).

As we have assumed that v is a solution of (2.4), use the equation Jv(v) ≤
Jv(min{v, u}) to get:

∫
v>u

|∇v| + vf−1(|∇v|) ≤
∫

v>u
|∇u| + uf−1(|∇v|).(2.15)

Adding the previous two equations together gives:

∫
v>u

(v − u)(f−1(|∇v|) − f−1(|∇u|)) + ε

∫
v>u

(v − u)f−1(|∇u|) ≤ 0.(2.16)

Now we want to bound the term (v − u)f−1(|∇u|). Again we will use the
minimizing property of u. As before, use the equation Ju(u) ≤ Ju(u + (v −
s − u)+) where s ≥ 0 and then integrate over s to get:

∫ ∞

0

∫
v−s>u

|∇u| + uf−1(|∇u|)dxds

≤
∫ ∞

0

∫
v−s>u

|∇v| + (v − s)f−1(|∇u|)dxds.
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Switching the order of integration gives

∫
M

|∇u|
∫ ∞

−∞
χ{s>0}χ{v−u>s}

(
1 + (u − v + s)

f−1(|∇u|)
|∇u|

)
dsdx

≤
∫

M
|∇v|

∫ ∞

−∞
χ{s>0}χ{v−u>s}dsdx

which after integrating yields

∫
v>u

−(v − u)2

2
f−1(|∇u|) ≤

∫
v>u

(v − u)(|∇v| − |∇u|).

Putting this equation into (2.16) and applying our assumption on f we see
that

− 1
Cf

∫
v>u

(v − u)2

2
f−1(|∇u|) + ε

∫
v>u

(v − u)f−1(|∇u|) ≤ 0.(2.17)

Assuming v ≤ u + Cf ε; the previous inequality then implies that |∇u| = 0
a.e. on {v > u}; (2.15) then implies that |∇v| = 0 on {v > u}. We then
conclude that since M has no compact component, v ≤ u + Cf ε implies
v ≤ u. For general v we simply subtract a constant to contradict the one
shown. Now if u is a general weak supersolution we make the approximation
uε = u

(1−ε) by strict supersolutions and apply the one shown.
(2) Another property that our flow shares with usual inverse mean curva-

ture flow is that if u is a weak solution, so is ut = min(u, t) for every t ∈ R.
Using this, let W := Et − F̄0, a precompact open set. Since E0 ⊂ F0, we
have vt < u + δ near ∂W , thus {vt > u + δ} is compact in W , so condition
(1) implies that vt ≤ u + δ on W , hence vt ≤ u on W . Since u < t on W ,
v ≤ u on W , hence Et ⊂ Ft.

(3) is immediate from (2). �

So, for the case f(x) = xα, α < 1, a new proof is needed. We will use
the approximation scheme by smooth solutions used in the existence proof
in Section 3 to prove uniqueness in this case.

Corollary 2.13. Assume that M has no compact components, and assume

0 < lim
x→0+

f ′(x).(2.18)

Then all of the conclusions of Theorem 2.12 hold.
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Proof. Assumption (2.18) now implies that for every compact set I ⊂ R>0
there exists Cf such that for all x, y ∈ I, we have

|x − y| ≤ Cf

∣∣f−1(x) − f−1(y)
∣∣ .

So, for compact regions of smooth solutions u, v we have the existence of x0
such that |∇u| , |∇v| ≥ x0 > 0. Thus, we may repeat the earlier proof of (1)
to get line (2.17) using Cf , and hence we prove part (1) for smooth solutions.
The same approximation scheme by cylinders used in [8] will be used in our
proof of existence. In particular for any solution u over an open set Ω there
exists a sequence of approximate smooth solutions U ε = uε − εz where U ε

solves (1.7) smoothly on Ω × R and uε → u locally uniformly. So let vε

and uε be these smooth approximate solutions. It is clear that for ε small
we may further choose a small δ > 0 such that if we define uε

δ := uε

1−δ then
{vε > uε

δ} ⊂⊂ Ω, and δ → 0 as ε → 0. Thus, we may apply the earlier result
on smooth (super)solutions to conclude vε ≤ uε

δ. Letting ε → 0 gives part
(1). The other parts follow formally, as they did not rely on the behavior of
f near zero. �

3. Existence

In this Section, we will prove existence of solutions to the initial value prob-
lem (2.7) via elliptic regularization, the method employed in [8]. Recall that
u is proper if every {s ≤ u ≤ t} is compact. Set H+ = max(0, H∂E0). We
will go ahead and collect all of our previous assumptions on f , and make a
delicate assumption on the growth of f near 0:

Definition 3.1. A function f : R
+ → R satisfies condition A if:

1. f ∈ C1;

2. f ′(x) > 0 for all x > 0;

3. f(0) = 0;

4. there exists ε > 0, Cf > 0 and 0 < α ≤ 1 so that for every x ∈ [0, ε) we
have

1
Cf

xα ≤ f(x) ≤ Cfxα

1
Cf

xα−1 ≤ f ′(x) ≤ Cfxα−1;
(3.1)
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5. there exists Cf > 0 and 0 < α so that

1
Cf

< lim
x→∞

f(x)
xα

< Cf

1
Cf

< lim
x→∞

f ′(x)
xα−1 < Cf .

(3.2)

We have already seen the reasons for most of these different restrictions.
Condition (2) is necessary for ellipticity (Proposition 1.3) and condition
(3) gave us the nice behavior of minimizing hulls (Proposition 2.8). Note
that condition (4) in particular implies that limx→0+ f ′(x) > 0, a condition
that came up in the proofs of compactness and uniqueness. The growth
conditions (4) and (5) will be used to prove a decay estimate on the mean
curvature along the flow.

Theorem 3.2. Let M be a complete, connected Riemannian n-manifold
without boundary and suppose f satisfies condition A. Suppose there exists
a proper locally Lipschitz weak subsolution of (2.7) with a precompact initial
condition. Then for any non-empty precompact smooth open set E0 in M ,
there exists a proper locally Lipschitz solution u of (2.7) with initial condition
E0. Moreover, u satisfies:

|∇uε,τ (x)| ≤ sup
∂E0∩Br(x)

H+ +
C(n)

r
.(3.3)

So, let v be the given subsolution, and define FL = {v < L}. Without
loss of generality we may assume that E0 ⊂ F0. The region FL − Ē0 is
precompact. Now, we define the approximate equation (∗ε):

Eεuε = f

⎛
⎝div

⎛
⎝ ∇uε√

|∇uε|2 + ε2

⎞
⎠

⎞
⎠ −

√
|∇uε|2 + ε2 = 0 in ΩL,

uε = 0 on ∂E0,

uε = L − 2 on ∂FL.

3.1. Mean curvature estimate

In this Section, we prove a key interior estimate on the mean curvature for
solutions to (1.7). The proof is closely adapted from the corresponding mean
curvature estimate in [8].
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Definition 3.3. For x ∈ M , let σ(x) ∈ (0,∞] be the supremum of radii r
such that Br(x) ⊂⊂ M ,

Rc ≥ − 1
100nr2 in Br(x)

and there exists a C2 function p on Br(x) such that

p(x) = 0, p ≥ d2
x in Br(x)

and

|∇p| ≤ 3dx and ∇2p ≤ 3g on Br(x)

where dx denotes the distance to x.

Proposition 3.4 (Interior estimate of H). Let (Nt)0≤s≤t smoothly solve
(1.7) in M , where f satisfies condition A and where Nt may have boundary.
Then for each x ∈ Nt and each r < σ(x) we have

H(x, t) ≤ max
(

Hr,
C(n, f, ε0)

r

)
(3.4)

where Hr is the maximum of H on the parabolic boundary of the intersection
of the flow with Br(x), 0 ≤ s ≤ t.

Proof. Fix x and 0 < r < σ(x) where σ(x) is as before. Let ψ = 1
H and then

we have the following evolution equation which follows from (1.9):

∂ψ

∂t
≥ f ′(H)

f(H)2
Δψ +

ψ2 |A|2

f(H)
+

ψ2 Rc(ν, ν)
f(H)

≥ f ′(H)
f(H)2

Δψ +
1

(n − 1)f(H)
− ψ2

100nr2f(H)

=
f ′( 1

ψ )

f( 1
ψ )2

Δψ +
1

(n − 1)f( 1
ψ )

− ψ2

100nr2f( 1
ψ )

.

(3.5)

We will attempt to find a subsolution φ of (3.5) that vanishes on ∂Br. Now,
assuming that φ ≤ r, clearly it suffices that:

∂φ

∂t
≤

f ′( 1
φ)

f( 1
φ)2

Δφ +
1

2nf( 1
φ)

.(3.6)
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We now state some formulae for the ambient derivatives of φ:

∂φ

∂t
=

1
f( 1

ψ )
ν · ∇φ, Δφ = trNt

(∇2φ) − 1
ψ

ν · ∇φ

where Δ is the intrinsic Laplacian on Nt and ∇2 refers to the global covariant
derivative on M . Assuming that φ < ψ initially we can replace ψ by φ in
the previous equations as far as producing a subsolution is concerned. Then
plugging these equations into (3.6) gives us the following sufficient condition
for a function φ to be a subsolution of (3.5):

0 ≤
f ′( 1

φ)

f( 1
φ)2

trNt
∇2φ −

(
1

f( 1
φ)

+
f ′( 1

φ)

f( 1
φ)2φ

)
ν · ∇φ +

1
2nf( 1

φ)
.

Fix ε > 0, Cf > 0 and α from A.4. We will define:

φ(y) :=
A

r
(r2 − p(y))+

where A is to be determined. Then φ = 0 on ∂Br, and φ ≤ r provided A ≤ 1.
We will divide our region into the two cases φ ≤ 1

ε and φ > 1
ε . First assume

φ > 1
ε . Then we have

f ′
(

1
φ

)
≤ 2c2φ

−α+1, f

(
1
φ

)2

≥
(
2c1φ

−α
)2

,
f ′( 1

φ)

f( 1
φ)2

≤ c2φ
α+1

4c2
1

.

Also, note that |∇φ| = A
r |∇p| ≤ 3A. Let C(f) denote different constants

depending only on the constants c1 and c2. Then 1
f( 1

φ
) |∇φ| ≤ 3C(ε)Aφα and

similarly
f ′( 1

φ
)

f( 1
φ
)2φ |∇φ| ≤ C(ε)Aφα. We also have φα+1 trNt

(∇2φ) ≤ φαnA2

using φ ≤ r. Thus we see that φ is a subsolution if c(n)C(f)A ≤ 1
2n . Clearly

there exists A ≤ 1 satisfying this inequality.
Now we must deal with the other region φ ≤ 1

ε . Using conditions A.5
and A.1 it is clear that there exists a new 0 < α ≤ 1 such that:

f ′
(

1
φ

)
≤ c4φ

1−α, f

(
1
φ

)2

≥
(
c3φ

−α
)2

,
f ′( 1

φ)

f( 1
φ)2

≤ aφ1+α



Generalized inverse mean curvature flow 513

where a is determined by c4, c3. Thus our condition for φ to be a subsolution
on this region becomes

0 ≤ aφ1+α trNt
(∇2φ) − aφαν · ∇φ +

φα

2c4n
.

Dividing out by φα we see that this is equivalent to:

1
2c4n

≥ aφ
∣∣trNt

(∇2φ)
∣∣ + a |∇φ| .

Using argument similar to the previous paragraph it is clear that this inequal-
ity can be achieved by a small choice of A depending only on f and n. A
straightforward application of the maximum principle as in [8] using this
subsolution φ proves the result. �

3.2. Approximate solutions

We will now proceed to approximate equation (∗ε) by the following family
of equations (∗ε,τ ).

Eεuε,τ = f

⎛
⎝div

⎛
⎝ ∇uε,τ√

|∇uε,τ |2 + ε2

⎞
⎠

⎞
⎠ −

√
|∇uε,τ |2 + ε2 = 0 in ΩL,

uε,τ = 0 on ∂E0,

uε,τ = τ on ∂FL.

for 0 ≤ τ ≤ L − 2. The idea of course is that we will build our solution to
(∗ε) up from the zero solution.

Lemma 3.5 (Estimates on uε,τ). Suppose the subsolution v provided in
Theorem 3.2 is smooth, with ∇v �= 0. Then for every L > 0 there is an
ε(L) > 0 such that for 0 < ε ≤ ε(L) and 0 ≤ τ ≤ L − 2, a smooth solution of
(∗ε,τ ) satisfies:

uε,τ ≥ −ε on Ω̄L, uε,τ ≥ v + τ − L on F̄L − F0,(3.7)
|∇uε,τ | ≤ f(H+) + ε on ∂E0, |∇uε,τ | ≤ C(L),(3.8)

|∇uε,τ (x)| ≤ max
∂ΩL∩Br(x)

f−1
(√

|∇u|2 + ε2

)
+

C(n)
rα(0) ,(3.9)

|uε,τ |C2,α(ΩL) ≤ C(ε, L).(3.10)
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Proof. (i) The first step is to define a subsolution that bridges the gap from
E0 to where v starts. Define G0 = E0 and Gs := {x|d(x, E0) < s}. Pick sL

such that GsL
⊃ FL. This is possible because M is connected, E0 is non-

empty and E0 and the initial condition for V are precompact. Let Σ be
the cut locus of E0 in M . Then on M − E0 − Σ the distance function is
smooth and each point is connected to E0 by a unique length-minimizing
geodesic γ. In a neighborhood of such a geodesic, the level sets ∂Gs foliate.
Differentiating along such a geodesic gives:

∂H

∂s
= − |A|2 − Rc(ν, ν) ≤ C1(L) on ∂Gs − Σ, 0 ≤ s ≤ sL.

Thus

H∂Gs
≤ max

∂E0

H+ + C1s ≤ C2(L) on ∂Gs − Σ, 0 ≤ s ≤ sL.

We will do some computations now for a prospective subsolution

w1(x) := φ(s) = φ (d(x, G)) x ∈ ḠsL
− E0.

We want to find a w such that Eεw ≥ 0. This is equivalent to the folowing
quantity being non-negative:

P (φ) =
√

(φ′)2 + ε2

⎛
⎝div

⎛
⎝ ∇w1√

|∇w1|2 + ε2

⎞
⎠
⎞
⎠ −

√
(φ′)2 + ε2f−1(

√
(φ′)2 + ε2)

=
(

gij − (φ′)2νiνj

(φ′)2 + ε2

)
∇2

ijw1 −
√

(φ′)2 + ε2f−1(
√

(φ′)2 + ε2)

≥ C2φ
′ +

ε2φ′′

(φ′)2 + ε2 −
√

(φ′)2 + ε2f−1(
√

(φ′)2 + ε2).

It is clear by condition A.4 that there exists a constant Cf such that on
[0, 1], f−1(x) ≤ Cfx. Consider the function

φ(s) :=
ε

A
(−1 + e−As).

Note in particular that for ε ≤ ε(A, L) := e−AsL we have ε2 ≤ |φ′| ≤ ε. Thus
φ′ is small and we can use our constant Cf above to get that P (φ) ≥ 0
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provided
(
Cf [(φ′)2 + ε2] − C2φ

′) (
(φ′)2 + ε2) ≤ ε2φ′′.

Now if we impose A = A(L) := 4 + 2C2 and that ε ≤
√

1
Cf

then

(
Cf [(φ′)2 + ε2] − C2φ

′) (
(φ′)2 + ε2) ≤ 2ε2 (

2Cf ε2 + C2
∣∣φ′∣∣)

≤ 2ε2 (
2 + C2

∣∣φ′∣∣)
≤ ε2φ′′.

Thus for these choices of ε and A it is clear that φ is a viscosity subsolution
of Eε on all of GsL

− Ē0. Thus as u ≥ w1 on the boundary we can apply
the maximum principle for viscosity solutions to obtain:

u ≥ w1 ≥ −ε in Ω̄L,(3.11)
∂u

∂ν
≥ −ε on ∂E0.(3.12)

(ii) Now we consider the function:

w2 :=
L − 1

L
v + τ − (L − 1).

As we have just rescaled and translated our subsolution v, it is clear that
E0w2 > 0 on F̄L − F0. This domain is compact (since ∇v �= 0) so for all
sufficiently small ε we have Eεw2 > 0. Note that since 0 ≤ τ ≤ L − 2 we
have:

u ≥ −ε ≥ −1 ≥ w2 on ∂F0,
u = τ = w2 on ∂FL.

Thus, by the maximum principle

u ≥ w2 ≥ v + τ − L on F̄L − F0,(3.13)
∂u

∂ν
≥ −C(L) on ∂FL.(3.14)

Clearly we also have that a constant is a supersolution of (∗ε,τ ) so that again
by the maximum principle:

u ≤ τ in Ω̄L,(3.15)
∂u

∂ν
≤ 0 on ∂FL.(3.16)



516 Jeffrey D. Streets

(iii) Now we want to construct a supersolution along ∂E0. Choose a function
w3 such that:

f(H+) <
∂w3

∂ν
≤ f(H+) + ε.

Clearly then Ew3 < 0 on ∂E0 and thus for small enough δ > 0, Ew3 < 0 on
U := {0 ≤ w3 ≤ δ}. We can now reparameterize w3 as follows:

w4 :=
w3

1 − w3/δ
.

We have ∇w4 = ∇w3
(1−w3/δ)2 thus Ew4 < 0, and w4 → ∞ on ∂U − ∂E0. It is

clear that for sufficiently small ε (and hence small δ), we will have Eεw4 < 0
on V := {0 ≤ w4 ≤ L}. Now by (3.15) we have u ≤ τ ≤ L − 2 so that u ≤ w4
on ∂V . Thus, by the maximum principle u ≤ w4 on V so that:

∂u

∂ν
≤ ∂w4

∂ν
=

∂w3

∂ν
≤ f(H+) + ε on ∂E0.(3.17)

It is clear now that putting together Equations (3.11) through (3.17) we
have proved Equations (3.7) and (3.8).

(iv) Now let N ε,τ
t denote the level set {U = t} of the function U(x, z) :=

uε,τ (x) − εz,−∞ < t < ∞. Equation (∗ε,τ ) says

HNε,τ
t

= f−1
(√

|∇u|2 + ε2.

)

So in particular we have a smooth solution to (1.7) on ΩL × R. Let B̃ :=
Bn+1

r (x, z) be an (n + 1)-dimensional ball in M × R. Since the parabolic
boundary of N ε,τ

t just translates of ΩL and |∇u| is independent of z, we
apply (3.4) to get

f−1
(√

|∇u|2 + ε2

)
≤ sup

t
max

∂Nε,τ
t ∩ ˜B

f−1
(√

|∇u|2 + ε2

)
+

C(n)
r

≤ max
∂ΩL∩Br(x)

f−1
(√

|∇u|2 + ε2

)
+

C(n)
r

.

This is (3.9). Equations (3.7) and (3.9) allow us to apply the Schauder
estimates [7] to conclude (3.10). �

Lemma 3.6. Under the hypotheses of Lemma 3.5, a smooth solution of
(∗ε) exists.



Generalized inverse mean curvature flow 517

Proof. (i) We will use the continuity method applied to (∗ε,τ ) for 0 ≤ τ ≤
L − 2. Let us set u = εw and then (∗ε,τ ) becomes:

F ε(w) := div

⎛
⎝ ∇w√

|∇w|2 + 1

⎞
⎠ − f−1

(
ε

√
|∇w|2 + 1

)
= 0

with w = 0 on ∂ΩL. Now

F : C2,α
0 (Ω̄L) × R → Cα(Ω̄L)

defined by F (w, ε) := F ε(w) is C1 (recall f ∈ C1), and has the solution
F (0, 0) = F 0(0) = 0. Now the linearization of F 0 at w = 0 is given by

DF 0
|0 = Δ : C2,α

0 (Ω̄L) → Cα(Ω̄L).

Since this map is an isomorphism there is a solution of F ε(w) = 0 for small
ε > 0, hence a solution of (∗ε,τ ) with τ = 0. Note that this calculation again
used condition A.4, making (f−1)′(0) < ∞. (ii) Now we fix ε and vary τ .
Let I denote the set of τ such that (∗ε,τ ) has a solution. I contains 0 by
step (i). Also, using the estimates in Lemma 3.5, and the Arzela–Ascoli
Theorem, I ∩ [0, L − 2] is closed. Now we must show that I is open. Let π
denote the boundary map u → u|∂ΩL

. Now define

Gτ (u) := (Eε(u), π(u) − τχ∂FL
) .

Then (∗ε,τ ) is equivalent to Gτ (u) = (0, 0). Again, the map

F : C2,α(Ω̄L) × R → Cα(Ω̄L) × C2,α(∂ΩL)

defined by F (u, τ) := Gτ (u) is C1. The linearization of Gτ at a solution u
is given by:

DGτ
|u =

(DEε
|u

π

)
: C2,α(Ω̄L) → Cα(Ω̄L) × C2,α(∂ΩL).

Now

Eε(u) =
(
∇iA

i(∇u)
)

+ f−1(B(∇u))

where A and B are independent of u, so that:

DEε
|u(v) =

(
∇iA

i
pj

(∇u)∇jv
)

+ (f−1)′(B(∇u))Bpj
(∇u)∇jv.
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This equation is linear elliptic; hence, by the existence and uniqueness theory
DGτ

|u is an isomorphism. Thus, by the implicit function theorem I is open
and L − 2 ∈ I, and so the result follows. �

Now we proceed to prove the main existence theorem.

Proof of Theorem 3.2. (i) First of all we will assume that v is smooth with
non-vanishing gradient. By Lemma 3.6, we have a smooth solution uε =
uε,L−2 of (∗ε) on ΩL, where ε → 0 as L → ∞. Using Lemma 3.5, we have that

|∇uε| ≤ max
∂ΩL∩Br(x)

f−1
(√

|∇u|2 + ε2

)
+

C(n)
rα(0)

≤ max
∂E0∩Br(x)

H+ + 2ε +
C(n)
rα(0)

on every compact subset of M − E0 with L large enough which allows us
to ignore the derivative of u on ∂FL. Thus we may apply the Arzela–
Ascoli theorem to conclude the existence of sequences Li → ∞, εi → 0 and
a subsequence ui and a locally Lipschitz function u such that ui → u locally
uniformly on M − E0, and u satisfies Equation (3.3). Again using Lemma
3.5 we have that

u ≥ 0 in M − E0 , u → ∞ as x → ∞.

Now note that exactly as in [8] we have that uε solves (∗ε) if and only if
U ε = uε − εz solves (1.7) on M × R. So define Ui(x, z) = ui(x) − εiz and
U(x, z) = u(x). Then clearly Ui → U locally uniformly on (M − E0) × R

with local Lipschitz bounds. The level sets of Ui smoothly solve (1.1) so that
using Lemma 2.4 Ui satisfies the variational formulation. Then we may apply
our compactness theorem to get that U satisfies (2.4) on (M − Ē0) × R.
It remains to check that u in fact satisfies (2.4) on M − Ē0. Let v be
a locally Lipschitz function with {v �= u} ⊂⊂ M − Ē0 and fix a compact
subset K ⊃ {v �= u}. Define a cutoff function φ(z) with |φz| ≤ 1, φ = 1 on
[0, S] and φ = 0 on R − (−1, S + 1). Then putting V (x, z) := φ(z)v(x) into
the equation JU (U) ≤ JU (V ) we get

∫
K×[−1,S+1]

|∇u| + uf−1(|∇u|)dxdz

≤
∫

K×[−1,S+1]
φ |∇v| + v |φz| + φvf−1(|∇u|)dxdz.
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and then dividing by S and passing S → ∞ gives the result. Now extend
E0 to be negative on all of E0 so that E0 = {u < 0}. This completes the
proof in the case of v smooth with ∇v �= 0. (ii) To finish the proof, we first
note that there is a smooth subsolution on any complete Riemannian cone
of the form

gL = Cs2g∂UL
⊕ ds2

where U is a precompact open set in M given by β log s for some β > 0
if α(0) = 1 and by βs(α(0)−1)/α(0) if α(0) < 1. We now sketch the argu-
ment of existence in Theorem 3.1 (1.390) of [8] where the metric is modified
at infinity so as to have a smooth subsolution. Fix L > 0 and choose an
open set FL ⊂⊂ UL ⊂⊂ M . Modify the metric on UL so that near ∂UL,
gL is isometric to a Riemannian cone as before. By step 1 we have solu-
tions with respect to these modified metrics. Letting L → ∞ and using our
compactness and uniqueness theorems gives the result with the appropriate
gradient bound. �

4. Geroch-type monotonicity

In this section, we will examine extending the result of Geroch monotonic-
ity for the generalized Hawking mass functionals given by (1.2) to the weak
setting. We choose F as defined by (1.3), let f = F ′, and note that in this
case α(0) = 1. For more details on F and monotonicity under the smooth
flow see [4]. Our proof follows the proof of monotonicity of the Hawking
mass for weak solutions to IMCF found in [8], but will require a few more
ingredients, for instance Proposition 4.2. The proof consists of examin-
ing the approximation scheme we used to show existence and showing that
we can bound the appropriate geometric quantities to send the monotonic-
ity calculation to the limit as ε → 0. First of all we have a connectedness
lemma and a technical proposition which are independent of this particular
choice of f .

Lemma 4.1 (Connectedness lemma). 1. A solution u of (2.4) has
no strict local maxima or minima.

2. Suppose M is connected and simply connected with no boundary and
a single asymptotically flat end, and {Et} is a solution with initial
condition E0. If ∂E0 is connected, then Nt remains connected as long
as it stays compact.
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Proof. (1) Say u has a strict local maximum. Then there is a connected
precompact component E of {u > t} for some t. Define v by v = u on
Ω − E and v = t on E. Then (2.4) yields

∫
E

|∇u| + uf−1(|∇u|) ≤
∫

E
tf−1(|∇u|)

from which it immediately follows that u ≤ t on E, a contradiction. In the
case of a minima, we first of all know that |∇u| ≤ CE on E. As we have
seen before, there then exists a constant Cf such that f−1(|∇u|) ≤ Cf |∇u|.
Now we may choose t in this construction so that in fact u > t − 1

Cf
on E.

The equation shown now again gives a contradiction.
(2) We give a sketch of the proof of Theorem 4.2, part (2) in [8] which

applies directly to this situation. Fix t > 0 and let Nt = {u = t}. One can
show that W = {u < t} is connected if ∂E0 is connected. Also X = {u > t}
is connected. If Nt has two components, then one can construct a loop that
starts at ∂E0, crosses Nt via one component and returns via the other. This
loop cannot be contracted, a contradiction to M being simply connected. �

Proposition 4.2. Fix p > 1. Say F : R → R is a real valued function such
that for all x ∈ R there exists 1 ≤ α ≤ p such that F (x) = xα. Then for any
measurable function g ∈ Lp(Ω) on a finite measure space Ω, we have

∫
Ω

F (g) ≤ CF ‖g‖p
Lp(Ω) .(4.1)

Proof. We may approximate g in Lp by monotonically increasing step func-
tions {gn}. Using Holder’s inequality we see that for step functions

∫
Ω

F (gn) =
m∑

i=1

∫
Ei

gn(x)αi

≤
m∑

i=1

vol(Ω)1− αi
p

∫
Ei

gp
n

≤ CF ‖gn‖p
Lp(Ω) .

Now, applying Fatou’s Lemma we get that
∫

F (g) ≤ lim infn→∞
∫

F (gn) ≤
CF limn→∞ ‖gn‖p

Lp(Ω) = CF ‖g‖p
Lp(Ω). �

We now show the monotonicity under the weak flow. Assume that
N0 is smooth and M has a smooth subsolution at infinity. Both of these
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assumptions will later be removed by an approximation scheme. Let N ε
t :=

{z = uε/ε − t/ε} where uε := uε,L−2 is an approximator defined on ΩL as in
the proof of Theorem 3.2. We choose a cutoff function φ ∈ C2

c (R) such that
φ ≥ 0, spt φ ⊂ [1, 5], and

∫
φ(z)dz = 1. Fix T > 0 and L ≥ T + 7, ε ≤ 1, so

that ∂N ε
t is disjoint from M × spt φ for 0 ≤ t ≤ T . Then the boundary term

disappears in the calculation that follows.

∂

∂t

∫
Nε

t

φ(z)F (H)

=
∫

Nε
t

φf(H)
∂H

∂t
+ 2F (H)∇φ · ν

f(H)
+ 2φ

HF (H)
f(H)

=
∫

Nε
t

φf(H)

(
−Δ

(
2

f(H)

)
− 2

|A|2

f(H)
− 2

Rc(ν, ν)
f(H)

)

+ 2
F (H)
f(H)

∇φ · ν + 2φ
HF (H)
f(H)

=
∫

Nε
t

φ

(
−2

|Df(H)|2

f(H)2
− 2 |A|2 − 2 Rc(ν, ν) + 2

HF (H)
f(H)

)

− 2Dφ · Df(H)
f(H)

+ 2
F (H)
f(H)

∇φ · ν.

(4.2)

And we may write this in integrated form as
∫

Nε
r

φF (H) =
∫

Nε
s

φF (H)

+
∫ s

r

∫
Nε

t

2φ

(
|Df(H)|2

f(H)2
+ |A|2 + Rc(ν, ν) − HF (H)

f(H)

)

+ 2Dφ · Df(H)
f(H)

− 2
F (H)
f(H)

∇φ · ν.(4.3)

Estimates: Let us now estimate each of these different terms. Specif-
ically we will want to fix T and get estimates that depend on T and are
independent of ε. By the second part of (3.7) we see that the growth of uε is
determined solely by the subsolution v, so that there exists a constant R(T )
such that

N ε
t ∩ (M × spt(φ)) ⊂ K(T ) := (BR(T ) − E0) × [1, 5], 0 ≤ t ≤ T.(4.4)
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Since Eε
t is a minimizing hull, using the definition applied to the perturbation

Eε
t ∪ K(T ) gives the inequality

|N ε
t ∩ (M × spt φ)| ≤ |∂K(T )| = C(T ).(4.5)

Using (3.3) and (3.4) and the fact that our domain is compact we conclude

|H| ≤ C(T ) on N ε
t ∩ (M × spt φ).(4.6)

Given such a bound and the fact that f is monotonically increasing with
α(0) = 1 we have that

Cf (T )H ≤ f(H) ≤ C ′
f (T )H on 0 ≤ t ≤ T.(4.7)

Thus in particular having bounded the area of integration and the integrand
by constants depending only on T , we get∫

Nε
t

φ
HF (H)
f(H)

+ φF (H) +
F (H)
f(H)

∇φ · ν ≤ C(T ).(4.8)

Now, using the Cauchy–Schwartz inequality and the arithmetic–geometric
mean, we see that

2Dφ · Df(H)
f(H)

≤ |Dφ|2

φ
+ φ

|Df(H)|2

f(H)2

≤ C + φ
|Df(H)|2

f(H)2

where the last equation follows since φ is C2 with compact support. Using
the previous equation and (4.6), (4.7) and (4.8) we see that

∂

∂t

∫
Nε

t

φF (H) ≤
∫

Nε
t

−φ

(
|Df(H)|2

f(H)2
+ 2 |A|2

)
+ C(T ), 0 ≤ t ≤ T.(4.9)

But now using these inequalities we see that
∫
Nε

t
φF (H) is uniformly bounded

along 0 ≤ t ≤ T so that the time derivative must also be bounded almost
everywhere. Thus if we restrict to a φ such that φ = 1 on [2, 4] then

∫ T

0

∫
Nε

t ∩(M×[2,4])

|Df(H)|2

f(H)2
+ |Df(H)|2 + |A|2 ≤ C(T ).(4.10)

Now fix any sequence ε → 0. Note that the functions
∫
Nε

t

|Df(H)|2
f(H)2 + . . . ,

defined on [0, T ] are now uniformly bounded in L1, so that Fatou’s lemma
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implies that the lim inf of these functions is also in L1, and thus bounded
almost everywhere. Hence

lim inf
i→∞

∫
N

εi
t ∩(M×[2,4])

|Df(H)|2

f(H)2
+ |Df(H)|2 + |A|2 < ∞, a.e. t ≥ 0.

(4.11)

Convergence: Note that we have subsequences εi → 0, Li → ∞, N i
t =

N εi

t such that

N i
t −→ Ñt = Nt × R locally in C1, a.e. t ≥ 0.(4.12)

We will want to pass the integrated equation (4.3) to the limit. First of
all, let us record here the following general convergence result. If N i is a
sequence of C1 hypersurfaces such that N i → N locally in C1 and

sup
i

ess sup
N i

|HNi
| < ∞

then the limit HN exists weakly as a locally L1 function, with a weak con-
vergence

∫
N i

HN iνN i · X −→
∫

N
HNνN · X, X ∈ C0

c (TM)(4.13)

and lower semicontinuity:

ess sup
N

|HN | ≤ lim inf
i→∞

ess sup
N i

|HNi
|(4.14)

∫
N

φ |HN |2 ≤ lim inf
i→∞

∫
N i

φ |HN i |2 .(4.15)

It is clear that composing the almost everywhere C0 functions HN i with
any C∞ function w will give a weak definition of w(H). Now, let us
first examine the

∫
N i

t
φF (H) term. Using (4.9) we have that the function∫

N i
t
φF (H) − C(T )t is monotonically decreasing. Thus we may choose a

diagonal subsequence such that

lim
i→∞

∫
N i

t

φF (H) exists, a.e. t ≥ 0.(4.16)

Now pick a t such that (4.11) and (4.12) hold. Given the local C1 conver-
gence, it is a general fact that follows from the implicit function theorem
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that the converging surfaces N i
t can be written simultaneously as graphs of

C1 functions wi over a fixed smooth surface W . Thus, we will project all
quantities down to this surface for comparison. So, consider as part of Equa-
tion (4.11) the bound on |Df(H)|2. Given that H is bounded uniformly in i
on the domain, it is clear that this then gives us an H2

1 bound on H. Thus,
applying Rellich’s Theorem, Equation (4.13) and Theorem 3.43 of [2], we
conclude that there exists a subsequence such that:

HN i
t

−→ HNt
in L2(W ∩ (M × [2, 4])

HN i
t

−→ HNt
a.e.

Now, using Proposition 4.2 we see that

∫
N i

t

φF (H) −→
∫

Nt

φF (H), a.e. t ≥ 0.(4.17)

Now using (4.8) and the dominated convergence theorem we conclude:

∫ s

r

∫
N i

t

φF (H) −→
∫ s

r

∫
Nt

φF (H)(4.18)

for any 0 ≤ r < s. Note that this same argument will work to prove con-
vergence of the term HF (H)

f(H) , as for α(0) = 1 this term appears as H2, and

we have shown L2 convergence. Now let us consider the term F (H)
f(H) ∇φ · ν.

Using our uniform bound on H and the area of integration, we clearly have

∫
N i

t

F (H)
f(H)

|∇φ · ν| ≤ C(T ) sup
N i

t

|∇φ · ν| −→ 0, a.e. t ≥ 0.

Note that again we have used the fact that for almost all t, N i
t converges

locally in C1 to the vertical cylinder Ñt, where ν is perpendicular to ∇φ.
Using (4.8) and the dominated convergence theorem, we then get that

∫ s

r

∫
N i

t

F (H)
f(H)

|∇φ · ν| −→ 0.(4.19)

Now we address the term
∫
N i

t

|Df(H)|2
f(H)2 . We note that the properties of f and

the argument of Lemma 5.1 of [8] show that f(H) > 0 Hn−1-a.e. on Nt, so
that the integral makes sense for almost all t.
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Lemma 4.3 (Lower semicontinuity lemma). For each 0 ≤ r < s,
∫ s

r

∫
˜Nt

φ
|Df(H)|2

f(H)2
≤ lim inf

i→∞

∫ s

r

∫
N i

t

φ
|Df(H)|2

f(H)2
.

Proof. By (4.11), for a.e. t ≥ 0 there is a subsequence ij such that

sup
j

∫
N

ij
t ∩(M×[2,4])

|Df(H)|2

f(H)2
< ∞.(4.20)

Now let N̂ be a connected component of Ñ ∩ (M × [2, 4]) and let N̂ j be
a connected component of N

ij

t ∩ (M × [2, 4]) converging locally in C1 to
N̂ . Let aj be the median of log f(H) on N̂j . By (4.20) and the Rellich
compactness theorem, after passing to a further subsequence, there exists
a ∈ [−∞,∞), f ∈ L2(N̂) such that aj → a and

log f(HN̂j ) − aj −→ f in L2(W ) and a.e. on W

where we have written the surfaces N̂ j and N̂ as C1 graphs over a common
surface W for large enough j. The case a = −∞ is ruled out for a.e. t ≥ 0
by the positivity of H. If a > −∞, then

log f(HN̂j ) − aj −→ log f(HN̂ ) − a in L2(W ).

Weak convergence in H2
1 then follows; thus, by the usual lower semicontinu-

ity we get the result for a.e. t ≥ 0, and hence the desired result by Fatou’s
lemma. �
For the term Dφ · Df(H)

f(H) we note that one can show that this term converges

weakly to zero as in Lemma 5.3 of [8] by writing
∫
N i

t
Dφ · Df(H)

f(H) as a time
derivative, this time using:

gi(t) :=
∫

N i
t

−εiφ(z)
∂

∂z
· Df(H)

f(H)
dμN i

t
(x, z)

=
∫

N i
t

−εiφ(z − t/εi)
∂

∂z
· Df(H)

f(H)
dμN

εi
0

(x, z).

This proves the lemma. �

Lemma 4.4. For each 0 ≤ r < s,∫ s

r

∫
N i

t

Dφ · Df(H)
f(H)

−→ 0.
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As for the convergence of the term |A|2, we will need to define the second
fundamental form of a surface in H2

2 ∩ C1. We refer the reader to page 402
of [8] for a complete discussion, and here merely state that a weak definition
exists, and given N i → N locally in C1 with

sup
i

∫
N i

|AN i |2 < ∞,

then AN exists in L2(N) with weak L2 convergence and lower semicontinuity

∫
N

|AN |2 ≤ lim inf
i→∞

∫
N i

|AN i |2 .(4.21)

If we further assume that
∫
N |A|2 < ∞ then we may approximate strongly in

C1 and H2
2 by smooth surfaces N i. These facts are used to prove Lemma 5.4

of [8].

Lemma 4.5 (Weak Gauss–Bonnet formula). Suppose N is a compact
C1 surface in a 3-manifold, satisfying

∫
N |A|2 < ∞. Then

∫
N

K12 + λ1λ2 = 2πχ(N)

where K12 denotes the sectional curvature in the ambient manifold evaluated
on Tx(N) and λi are the eigenvalues of A.

Lemma 4.6. Let Nt be the limiting surfaces defined above. Then

∫
Nt

|A|2 ≤ C(T ), 0 ≤ t ≤ T.

Proof. By (4.11) and (4.21), we have

∫
Nt

|A|2 ≤ ∞ for a.e. t ≥ 0.

Since the surfaces Nt are connected and compact with locally uniform C1

estimates we have bounds on χ(Nt), |Nt| and supNt
|K12| on 0 ≤ t ≤ T .
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Lemma 4.5 gives
∫

Nt

λ1λ2 ≤ C(T ) for a.e. t ∈ [0, T ].

Since H = λ1 + λ2 is also bounded we get the required bound for almost
all t. By choosing a sequence of times for which the result holds and applying
(4.21) we get the result for all times. �
We will also need Lemma 5.6 of [8].

Lemma 4.7. Suppose E is precompact, E′ = E, and ∂E is C1,1. Then
either ∂E is a smooth minimal surface, or ∂E can be approximated in C1

from the inside by smooth sets of the form ∂Eτ with H > 0, E′
τ = Eτ and

sup
τ

sup
∂Eτ

|A| < ∞,

∫
∂Eτ

H2 −→
∫

∂E
H2 as τ −→ 0.(4.22)

We are now in a position to prove the following proposition. The proof
will consist of passing to limits and using all of the previous lemmas to
conclude convergence.

Proposition 4.8 (Energy growth formula). Let M be a 3-manifold, E0
a precompact open set with C1 boundary satisfying

∫
∂E0

|A|2 < ∞(4.23)

and (Et)t>0 a family of open sets solving (2.4) with initial condition E0.
Then for each 0 ≤ r < s,

∫
Nr

F (H) ≥
∫

Ns

F (H)

+
∫ s

r

∫
Nt

(
2
|Df(H)|2

f(H)2
+ |A|2 + Rc(ν, ν) − HF (H)

f(H)

)

=
∫

Ns

F (H) +
∫ s

r
−4πχ(Nt)

+
∫ s

r

∫
Nt

(
2
|Df(H)|2

f(H)2
+

1
2
(λ1 − λ2)2 + R +

1
2
F (H)

)
.

(4.24)

Proof. Some of the arguments used here are identical to those in Theorem
5.7 of [8]; so, we sketch them and refer the reader for more details.
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(1) First of all we assume that ∂E0 is smooth and M has a smooth
subsolution at infinity. Combining together Lemmas 4.3, 4.4, (4.21), (4.18)
and (4.19) we can pass (4.3) to the limit as an inequality, with the limiting
cylinders Ñt replacing N ε

t for a.e. 0 < r < s. Using the fact that Ñt is a
cylinder for a.e. t, every quantity Q(x, z) = Q(x) breaks up as

∫
˜Nt

φQdμ
˜Nt

=
∫ 4

2
φdz

∫
Nt

QdμNt
=

∫
Nt

QdμNt
,

thus we obtain the first inequality in (4.24). To establish the second inequal-
ity we note that, using the Gauss equation to rewrite Rc(ν, ν) and the ele-
mentary formula |A|2 = 1

2H2 + 1
2(λ1 − λ2)2 we see:

2 |A|2 + 2 Rc(ν, ν) − 2
HF (H)
f(H)

= H2 + (λ1 − λ2)2 + R − 2K + H2 − |A|2 − 2
HF (H)
f(H)

= R − 2K +
1
2
(λ1 − λ2)2 +

3
2
H2 − 2

HF (H)
f(h)

= R − 2K +
1
2
(λ1 − λ2)2 − F (H)

where in the last line we have used the defining differential equation for F .
Applying Lemmas 4.5 and 4.6 the result follows.

(2) Now we must show that (4.24) holds at r = 0. From Theorem 2.7
(part (3)) and (2.10), we know that ∂E′

0 is C1,1 with H ≥ 0 and

∫
∂E′

0

F (H) ≤
∫

∂E0

F (H).

Thus it suffices to show (4.24) for E′
0. We will break into two cases. First

say that H > 0 somewhere on ∂E′
0. Then by Lemma 4.7 there exists a

family of smooth surfaces of the form ∂Eτ approximating ∂E0 in C1, with
H > 0 and E′

τ = Eτ . By Theorem 3.2, there is a proper solution (Eτ
t )t>0

with initial condition Eτ
0 = Eτ . By the smooth existence lemma, we have a

smooth flow for short time, thus (4.24) holds for (Eτ
t )t≥0 at r = 0, and we

just need to pass to the limit now. By Theorem 2.12 (part (3)), (4.22) and
(3.4) it is clear that we have C1 convergence of the different level sets in τ
as τ → 0. Note that the arguments given lemma to show convergence of the
different terms in (4.24) not involving derivatives of the cutoff function hold
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for general sequences of exact solutions in a 3-manifold. Finally by (4.22),
∫

∂Eτ

H2 −→
∫

∂E′
0

H2,

thus by Proposition 4.2
∫

∂Eτ

F (H) −→
∫

∂E′
0

F (H).

This finishes the proof of (4.24) at r = 0 in the case where H > 0 somewhere.
Now suppose that ∂E′

0 is a smooth minimal surface. We make an argu-
ment very similar to the previous one where instead of approximating the
surface by approximators with positive mean curvature, we approximate the
ambient metric by one in which ∂E0 has positive mean curvature.

(3) Similarly, when ∂E0 is C1 satisfying (4.23) we may approximate it by
smooth surfaces Si ⊂ M − E0 with L2 convergence of the mean curvature by
the remark following (4.21). By Theorem 2.12 (part (2)), we have uniform
convergence of the solution functions ui → u. Now, Theorem 2.7 implies
that we in fact have C1 convergence ∂Ei

t → Nt for almost all times. By step
(2), (4.24) holds for the approximators and our same arguments allow us to
pass to limits assuming M has a smooth subsolution at infinity.

(4) Now we need to remove the assumption of the smooth subsolution at
infinity. We do the same conic modification near the asymptotic edge used
in the proof of Theorem 3.2 to show the result at r = 0 under the general
hypotheses. By Lemma 4.6, we can apply the result at any r ≥ 0 to show
(4.24) for all times. �

Now we recall the result of Corollary 2.10, which is the last step needed
to prove the monotonicity.

Proposition 4.9 (Generalized Geroch monotonicity). Let M be a
complete 3-manifold, E0 a precompact open set with C1 boundary satisfying
(4.23) and (Et)t>0 a solution of (2.4) with initial condition E0. If E0 is a
minimizing hull then

mF
c (Ns) ≥ mF

c (Nr) +
1

(16π)3/2

∫ s

r
|Nt|1/2 [

16π − 8πχ(Nt)

+
∫

Nt

2 |D log f(H)|2 + (λ1 − λ2)2 + Rdμt

]
dt

(4.25)

for 0 ≤ r < s provided Es is precompact.
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5. Asymptotic regime

In this section, we show that Nt becomes C1,α close to a coordinate sphere
as t → ∞ by using a blowdown argument and the characterization of solu-
tions to IMCF with compact level sets on R

n − {0} proved in [8]. We then
show that mADM ≥ limt→∞ mF

c (Nt) by using an asymptotic expansion of
mF

c . This will complete the proof of Theorem 1.1. As it turns out that
the −

∫
Σ cH3 in the asymptotic expansion will cancel with the constant c

and all of the higher order terms will go to zero, making the analysis from
this point in the proof is identical to the case of usual IMCF.

Now let Ω be the asymptotically flat end of M embedded in R
n. Let g

be the metric of M pulled back to Ω with connection ∇, and let δ be the
Euclidean metric with connection ∇̄. We will write Br(x) for metric balls
with respect to g, and Dr(x) for metric balls with respect to δ. Let u be a
solution of (2.4) in Ω, and set Et := {u < t} ⊂ Ω.

Fix λ > 0 and define blown-down objects

Ωλ := λ · Ω, gλ(x) := λ2g(x/λ), uλ(x) := u(x/λ), Eλ
t := λ · Et.

Note now that for our generalized flow, the blowndown objects do not satisfy
(2.4) because of the non-homogeneity of F . However, the gradient estimate
together with the fact that our flow approaches the usual IMCF as ∇u →
0 will show that in fact the blowndown limit exists and that the limit is
the expanding sphere solution for IMCF. In fact, the blowndown functions
satisfy

λC1
F

(
|∇u|2

)
≤ divM

∇u

|∇u| − |∇u| ≤ λC2
F

(
|∇u|2

)
.(5.1)

Lemma 5.1 (Blowdown lemma). Suppose the flat metric on Ω satisfies

|g − δ| = o(1),
∣∣∇̄g

∣∣ = o

(
1
|x|

)
(5.2)

as |x| → ∞. Let u be a solution of (2.4) on Ω such that {u = t} is compact
for sufficiently large t. Then for some constants cλ → ∞,

uλ − cλ −→ (n − 1) log |x| .

Proof. We begin with the eccentricity estimates. Fix t0 such that {u = t}
is compact for all t ≥ t0. By our assumption of asymptotic flatness there is
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R0 > 0 such that

σ(x) ≥ c |x| , dist(x, ∂Et0) ≥ c |x| .

Also by the gradient estimate in the existence theorem we have

|∇u(x)| ≤ C

|x| , for all |x| ≥ R0.(5.3)

Let Θ(N) denote the eccentricity of N . Recall the definition of Θ(N): if
[r(N), R(N)] is the smallest interval such that N ⊂ DR\Dr, we let Θ(N) =
R(N)/r(N). Using (5.2) and the fact that f ′(0) > 0 we see that there exists
A > 0 and t1 such that (DeAt)t1≤t<∞ is a subsolution of (2.4). Using this
surface for comparison we see that

R(Nt+θ) ≤ eAθR(Nt), t ≥ t1, θ ≥ 0.(5.4)

Now we already know r = r(Nt) ≥ R0. Now u = t somewhere on ∂Dr, thus
by (5.3), there is C2 such that u > t − C2 everywhere on ∂Dr. Thus, Nt−C2 ∩
∂Dr = φ. By Lemma 4.1, Nt−C2 cannot have any components outside of Dr,
thus R(Nt−C2) ≤ r. Combining this with (5.4) gives

R(Nt) ≤ eAC2RNt−C2
≤ eAC2r(Nt).(5.5)

We must now show that a limit solution exists. Let λi → 0. Note that the
estimates (5.3), (5.4) and (5.5) are scale-invariant, and thus hold for Nλi

t

on the complement of a subset shrinking to {0} as i → ∞. Using these
estimates and Theorem 2.7 we can modify the proof of Theorem 2.11 to
show that there exists a subsequence (λij

) and numbers cj → ∞ and a limit
function v such that uλij − cj → v locally uniformly in R

n\{0} with local
C1 convergence of the level sets. It is clear now using (5.1) that v satisfies
the usual IMCF equation. Equation (5.3) shows that v is not constant,
making some level set non-empty. The bounded eccentricity combined with
the fact that all large enough level sets are compact shows that in fact the
level sets of v are all compact. Thus, applying Proposition 7.2 of [8] the
result follows. �

We now recall the definition of ADM mass. The proof of part 1 is found
in [1], of part (2) is found in [3] and [6].

Lemma 5.2 (ADM lemma). Suppose R ≥ 0 on M , and the asymptotic
region Ω is embedded as the complement of a compact set in R

3 equipped with
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the flat metric δ. Let U be a precompact open set with smooth boundary, ν
the outward unit normal of U with respect to g, and dμ the surface measure
of ∂U with respect to g.

1. If δ satisfies

cδ ≤ g ≤ Cδ in Ω,

∫
Ω

∣∣∇̄g
∣∣2 < ∞

then the limit

mADM(g, δ) := lim
U→M

1
16π

∫
∂U

gij
(
∇̄jgik − ∇̄kgij

)
νkdμ

exists and is finite if and only if
∫
M R < ∞. Here χU → χM locally

uniformly.

2. If δ satisfies

|g − δ| ≤ C |x|−1/2−α ,
∣∣∇̄g

∣∣ ≤ C |x|−3/2−α , x ∈ Ω

for some α > 0, then mADM is a geometric invariant of g, independent
of the choice of δ.

Lemma 5.3 (Asymptotic comparison lemma). Assume that M is
asymptotically flat, and let (Et)t≥t0 be a family of precompact subsets weakly
solving (2.4) in M . Then

lim
t→∞

mF
c (Nt) ≤ mADM(M).

Proof. Define r = r(t) by |Nt| = 4πr2. Then
∣∣∣N1/r

t

∣∣∣
g1/r

= 4π. Thus Lemma

5.1 implies that

N
1/r(t)
t −→ ∂D1 in C1 as t −→ ∞.(5.6)

Let h be the restriction of g to the surface Nt and let ε be the restriction
of the flat metric to it. Let η denote the exterior unit normal, ω the unit
dual normal, A the second fundamental form and H the mean curvature,
all with respect to g. The quantities η̄ and others are the corresponding
quantities with respect to the flat metric. Now, let p = g − δ. We restrict
to the region where |p| ≤ 1

10 on Nt. We record some basic estimates for
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geometric quantities in an asymptotically flat manifold. First of all

Γk
ij =

1
2
gkl(∇ipjl + ∇jpil − ∇lpij) ± C |p| |∇p|

∇p = ∇̄p ± C |p| |∇p| .
(5.7)

Also the following estimates are derived in page 418 of [8]:

∣∣H − H̄
∣∣ ≤ C |p| |A| + C |∇p| ,

∣∣H2 − H̄2∣∣ ≤ C |p| |A|2

+ C |∇p| + C |∇p| |A|

H̄2(dμ − dμ̄) =
(

1
2
H2hijpij ± C |p|2 |A|2 ± C |∇p|2

)
dμ.

Note also that we know

∫
N

H̄2dμ̄ ≥ 16π,

thus we have

∫
Nt

F (H)dμ =
∫

Nt

H2dμ −
∫

Nt

cH3dμ +
∫

Nt

O(H4)dμ

≥
∫

Nt

H̄2dμ̄ + H̄2(dμ − dμ̄) + 2H(H − H̄) − (H − H̄)2dμ

−
∫

Nt

cH3dμ +
∫

Nt

O(H4)dμ(5.8)

≥ 16π −
∫

Nt

cH3 +
∫

Nt

O(H4) +
∫

Nt

1
2
H2hijpij

− 2Hhikpklh
ljAij + H2νiνjpij − 2Hhijνl∇ipjl

+ Hhijνl∇lpij − C |p|2 |A|2 − C |∇p|2 .

Now we will show that mF (Nt) remains bounded. Recall that we have the
following estimate

|H| = f−1 (|∇u|) ≤ C

|x| ≤ C

r
on Nt(5.9)
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for a.e. sufficiently large t. Using this with our growth formula,

∫ s+1

s

∫
Nt

|A|2 =
∫ s+1

s

∫
Nt

1
2
(λ1 − λ2)2 +

1
2
H2

≤
∫

Ns

F (H) +
∫ s+1

s
4πχ(Nt) +

∫ s+1

s

1
2
H2

≤ 4πCF + 8π + 4πC.

Thus, we may select a subsequence ti → ∞ such that

sup
i

∫
Nti

|A|2 < ∞.

Note also by (5.9) that
∫

Nt

O(H3) =
C

r
.

Together with (5.8), we then have
∫

Nti

F (H) ≥ 16π − C

r
.

Thus by the definition and monotonicity of mF (Nt), we have

sup
t

mF (Nt) < ∞.

Now, using the monotonicity formula, we see that

∫ ∞

t0

ecF t

∫
Nt

(λ1 − λ2)2 +
|Df(H)|2

f(H)2
< ∞.

Thus, there exists a subsequence tj → ∞ such that

∫
Nj

(λ1 − λ2)2 +
|Df(H)|2

f(H)2
−→ 0.

Given our conditions on F and the bound H ≤ C/r it is clear that this
implies an H2

1 bound on H. Considering the rescaled surfaces N
1/rj

j as
graphs over the disc for large enough j, it is clear that we can apply Rellich
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compactness to conclude

H
N

1/rj
j

−→ H∂D1 = 2 in L2(∂D1).

This then implies that

HNj
=

2
r

+ fj on Nj ,(5.10)

where
∫
Nj

f2
j → 0. Also, we have

∫
Nj

∣∣∣∣A − H

2
h

∣∣∣∣
2

=
1
2

∫
−Nj(λ1 − λ2)2 −→ 0,

thus

ANj
=

h

r
+ gj on Nj ,(5.11)

where
∫

g2
j → 0. Thus

sup
j

∫
Nj

|A|2 < ∞.

Finally, we note by Lemma 5.1 that in fact H = 2
r + O( 1

r2 ) so that

rl

∫
Nt

cH3 = 32πc +
C

r
.

We now can estimate

32πmc(Nl) = rl

(
16π −

∫
Nl

F (H)
)

− 32πc

= rl

(
16π −

∫
Nt

H2dμ +
∫

Nt

cH3dμ +
∫

Nt

O(H4)dμ

)
− 32πc

= rl

(
16π −

∫
Nt

H2dμ

)
+

C

r

≤ C

rl
+ rl

∫
Nl

−1
2
H2hijpij + 2Hhikpklh

ljAij

− H2νiνjpij + 2Hhijνl∇ipjl − Hhijνl∇lpij

≤ C

rl
+ ηl +

∫
Nl

− 2
rl

hijpij +
4
rl

hijpij − 4
rl

νiνjpij

+ 4hijνl∇ipjl − 2hijνl∇lpij
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where ηl is an error term that goes to zero in the limit because of the
condition of asymptotic flatness (5.2). We can integrate by parts to see that

∫
Nl

hijνl∇ipjl =
∫

Nl

Hνjνlpjl − hijpjkh
klAli

=
∫

Nl

2
rl

νjνlpjl − hijpij + η′
l

where η′
l goes to zero in the limit by (5.2). Using this in the previous equation

gives

32πmc(Nl) ≤ C

rl
+ ηl + 2η′

l +
∫

Nl

2hijνl∇ipjl − 2hijνl∇lpij .

By (5.7), this quantity approaches the ADM mass. Applying the mono-
tonicity formula, we have

sup
t≥0

mc(Nt) ≤ mADM(M).
�
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