Locally symmetric connections on complex surfaces and some equations of Monge-Ampère type

MARIA ROBASZEWSKA

We study locally symmetric connections induced by transversal bundles on non-degenerate complex surfaces. Each of such surfaces together with its transversal bundle can be described locally by a solution to some partial differential equation of Monge-Ampère type.

1. Introduction

Let M be an *n*-dimensional connected complex manifold and $f: M \to \mathbb{C}^{n+1}$ a holomorphic immersion. Let \mathcal{N} be a \mathcal{C}^{∞} transversal bundle, that is,

$$\mathcal{N} = \bigcup_{p \in M} \mathcal{N}_p,$$

where \mathcal{N}_p is a complex vector subspace of $\mathbf{C}^{n+1} \cong \mathbf{R}^{2n+2}$ such that $f_*(T_pM) \oplus \mathcal{N}_p = \mathbf{C}^{n+1}$. The \mathcal{C}^{∞} class means that for any $q \in M$ there exists a neighbourhood U of q such that $\mathcal{N}|_U$ is spanned over \mathbf{C} by a vector field ξ on \mathbf{C}^{n+1} defined along f:

$$M \supset U \ni p \mapsto \xi_p \in T_{f(p)} \mathbf{C}^{n+1} \cong \mathbf{C}^{n+1},$$

which is of class \mathcal{C}^{∞} and not necessarily holomorphic.

The connection ∇ , the **C**-bilinear symmetric affine fundamental form $h = h_1 + ih_2$, the affine shape operator S and the transversal connection form $\tau = \mu + i\nu$ which are induced on U by f and ξ are defined by the following Gauss and Weingarten formulae:

(1.1)
$$D_X f_* Y = f_* \nabla_X Y + h_1(X, Y) \xi + h_2(X, Y) J \xi$$

(1.2)
$$D_X \xi = -f_* S X + \mu(X) \xi + \nu(X) J \xi$$

(see, e.g., [4,5]). Here D denotes the standard connection on \mathbf{C}^{n+1} . The manifold M is regarded as a 2n-dimensional real manifold with the complex

structure J. To simplify notation, we use the same letter J for the complex structure in $\mathbf{C}^{n+1} \cong \mathbf{R}^{2n+2}$. The identification of \mathbf{C}^k with \mathbf{R}^{2k} is given by: $(z^1 + iz^2, \ldots, z^{2k-1} + iz^{2k}) \mapsto (z^1, z^2, \ldots, z^{2k-1}, z^{2k})$.

If we replace vector field ξ by $\tilde{\xi} = \varphi \xi + \vartheta J \xi + f_* Z$, then we obtain $\tilde{\nabla}$, \tilde{h} , \tilde{S} and $\tilde{\tau}$:

(1.3)
$$\widetilde{\nabla}_X Y = \nabla_X Y - \frac{1}{\varphi + i\vartheta} h(X, Y) Z$$

(1.4)
$$\widetilde{h} = \frac{1}{\varphi + i\vartheta} h,$$

(1.5)
$$\widetilde{S}X = (\varphi + i\vartheta)SX - \nabla_X Z + \widetilde{\tau}(X)Z,$$

(1.6)
$$\widetilde{\tau}(X) = \frac{X(\varphi) + iX(\vartheta)}{\varphi + i\vartheta} + \frac{1}{\varphi + i\vartheta}h(X, Z) + \tau(X).$$

Let ξ and $\tilde{\xi}$ be two local sections of \mathcal{N} . Then we have $\tilde{\xi} = (\varphi + i\vartheta) \xi$ and Z = 0, therefore $\tilde{\nabla}_X Y = \nabla_X Y$ for any \mathcal{C}^{∞} vector fields X, Y on U. It follows that ∇ depends on \mathcal{N} only and can be defined on the whole of M. Moreover, the complex rank of affine fundamental form h does not depend on the transversal bundle \mathcal{N} . We call it the type number of f. This type number is constant on a dense open subset M' of M [6]. The immersion is called non-degenerate, if h is non-degenerate ($\forall X \neq 0 \exists Y : h(X, Y) \neq 0$).

The induced connection ∇ , he affine fundamental form h, the shape operator S and the transversal connection form τ satisfy the following fundamental equations.

Gauss equation:

(1.7)
$$R(X,Y)Z = h(Y,Z)SX - h(X,Z)SY.$$

Codazzi equation for h:

(1.8)
$$(\nabla_X h)(Y,Z) + \tau(X) h(Y,Z) = (\nabla_Y h)(X,Z) + \tau(Y) h(X,Z).$$

Codazzi equation for S:

(1.9)
$$(\nabla_X S)(Y) - \tau(X) SY = (\nabla_Y S)(X) - \tau(Y) SX.$$

Ricci equation:

(1.10)
$$h(X, SY) - h(SX, Y) = 2 d\tau(X, Y).$$

If f is non-degenerate, there exists some canonical transversal bundle the *complex affine normal bundle* – which is the bundle of affine normal complex lines. According to the definition given by F. Dillen, L. Vrancken and L. Verstraelen in [1] (see also [2]), the affine normal complex line of Mat p is a complex line in $T_{f(p)}\mathbf{C}^{n+1}$ determined by the complex affine normal vector ξ_p . The complex affine normal vector field ξ is a local vector field on \mathbf{C}^{n+1} defined along f satisfying the following two conditions:

$$^{\mathbf{C}}H_{\xi} = 1$$
 and $\tau = 0$.

Here τ is a transversal connection form and

$$^{\mathbf{C}}H_{\xi} := \left|\det\left[h(X_k, X_l)\right]_{k, l=1}^n\right|^2,$$

where X_1, \ldots, X_n is a local complex basis of TM such that

$$\left| {}^{\mathbf{C}}_{\omega}(f_*X_1,\ldots,f_*X_n,\xi) \right| = 1.$$

The symbol $^{\mathbf{C}}\omega$ denotes the complex volume form on \mathbf{C}^{n+1} such that $^{\mathbf{C}}\omega(e_1,\ldots,e_{n+1})=1$ for the standard basis e_1,\ldots,e_{n+1} of \mathbf{C}^{n+1} . Actually, if for $k=1,\ldots,n+1$, $Y_k=\sum_{l=1}^{n+1}Y_k^le_l$, then $^{\mathbf{C}}\omega(Y_1,\ldots,Y_{n+1})=\det[Y_k^l]_{k,l=1}^{n+1}$.

If ξ and $\tilde{\xi}$ are complex affine normal vector fields defined on the same open domain U, then there exists a real number θ such that $\tilde{\xi} = e^{i\theta} \xi$ [1]. It follows that for any $p \in M$ the affine normal complex line at p is uniquely determined.

The aim of this paper is to give a local description of some of those immersions and transversal bundles for which the induced connection ∇ is locally symmetric. The local symmetry of ∇ is equivalent to the condition $\nabla R = 0$, where R is the curvature tensor of ∇ [3]. Here we consider the case of a non-degenerate immersion, dim_C M = 2 and we shall study connections of ranks 1 and 2. By the rank of locally symmetric connection we mean, following [8], the (complex) dimension of the subspace

(1.11)
$$\operatorname{im} R_x := \operatorname{span}_{\mathbf{R}} \{ R(X, Y)Z : X, Y, Z \in T_x M \}.$$

For any $x \in M$, (1.11) is a complex subspace of $T_x M$. If $\nabla R = 0$ and M is connected, then dim im R_x does not depend on x. We shall also use the

subspace

(1.12)
$$\ker R_x := \bigcap_{X,Y \in T_x M} \ker R(X,Y).$$

Let us denote by r the type number of f on M' and by π the projection of \mathbf{C}^{n+1} onto \mathbf{C}^{r+1} parallel to $\mathbf{C}^{n-r} \cong f_*(\ker h)$. The following theorem, which in particular gives the full classification of locally symmetric hypersurfaces with r > 2, has been proved by B. Opozda in [5].

Theorem 1.1. Let $f: M \to \mathbb{C}^{n+1}$ be a complex hypersurface endowed with a complex transversal vector bundle \mathcal{N} inducing a non-flat locally symmetric connection ∇ . Then around every point $x \in M'$ there is an open neighbourhood U of x of the form $N' \times N^0$, where N^0 endowed with ∇ restricted to N^0 is affine isomorphic by f to an open subset of \mathbb{C}^{n-r} and N' is immersed by f into \mathbb{C}^{r+1} as a non-degenerate hypersurface. If r > 1, then the bundle $\pi(\mathcal{N})|_U$ is holomorphic and induces a locally symmetric connection ∇' on U as well as on N'. If r > 2, then ∇' is flat or f(N') is an open part of a central quadric in \mathbb{C}^{r+1} . If r > 1 and ∇ is affine Kähler [i.e., R(JX, JY) = R(X, Y)for any X, Y], then ∇' is flat.

A local description of complex hypersurfaces with type number one endowed with transversal bundles inducing locally symmetric connections is given in [9].

In the present paper we associate with any locally symmetric complex surface some partial differential equation such that this surface is locally equivalent to the graph of a solution F to this equation and the transversal bundle is also determined by this solution. It is known that the real equation $F_{xx}F_{yy} - F_{xy}F_{xy} = \kappa(1 + F_x^2 + F_y^2)^2$ describes the Euclidean surfaces with constant Gauss curvature κ . Similar description we obtain for complex locally symmetric surfaces in the case of dim imR = 2, because in this case ∇ turns out to be metrizable in the sense that there exists non-degenerate, **C**-bilinear, symmetric g such that $\nabla g = 0$. The local symmetry implies that the complex sectional curvature of M is then constant. The connection ∇ is induced by the transversal bundle which is perpendicular to $f_*(TM)$ with respect to some **C**-bilinear metric G in **C**³. The surface (M, g) is isometrically immersed in (**C**³, G).

In the case of dim im R = 1 the equation has the form $F_{zz}F_{ww} - F_{zw}F_{zw} = \Phi(F_z)$ with some arbitrary holomorphic function Φ , which is also associated with the given surface. A local section of the transversal bundle may be expressed in terms of F_z and η , where η is a holomorphic function such that

 $\Phi = \frac{\eta}{\eta''}$. If \mathcal{N} is the complex affine normal bundle, then Φ is more strictly determined and the right-hand side of the equation has the form $(1 + F_z^2)^2$.

2. Locally symmetric connections of rank 1 on surfaces a class of examples

Let V be an open subset of C. Let $\eta: V \to \mathbb{C}$ be a holomorphic function such that $\forall \zeta \in V : \eta(\zeta) \neq 0$ and $\forall \zeta \in V : \eta''(\zeta) \neq 0$. Let the holomorphic function $F = F^1 + iF^2 : U \to \mathbb{C}$ of two variables $z = z^1 + iz^2, w = w^1 + iw^2$ satisfy the following partial differential equation:

(2.1)
$$F_{zz}F_{ww} - F_{zw}F_{zw} = \frac{\eta(F_z)}{\eta''(F_z)}.$$

Let e_1, e_2, e_3 be the standard basis of \mathbf{C}^3 . As a local basis of TM over \mathbf{C} we shall use the vector fields $\frac{\partial}{\partial z^1}$ and $\frac{\partial}{\partial w^1}$. For $\alpha, \beta \in \mathbf{R}$ we have $(\alpha + i\beta)\frac{\partial}{\partial z^1} = \alpha \frac{\partial}{\partial z^1} + \beta \frac{\partial}{\partial z^2}$ and likewise for the *w*-variables.

Proposition 2.1. The transversal vector field

(2.2)
$$\xi = f_*(-T_0) + e_3$$

with

(2.3)
$$T_0 = \frac{\eta'(F_z)}{\eta(F_z)} \frac{\partial}{\partial z^1}$$

induces on the surface

(2.4)
$$f: U \ni (z, w) \mapsto (z, w, F(z, w)) \in \mathbf{C}^3$$

a real holomorphic, locally symmetric connection of rank 1.

Proof. A connection ∇ is real holomorphic if and only if its curvature tensor R satisfies the condition R(JX, Y) = JR(X, Y) for all X, Y [4]. From the Cauchy–Riemann equations for the holomorphic function $\eta'(F_z)/\eta(F_z)$ it follows easily that $\nabla_{JY}T_0 = J\nabla_Y T_0$ for any Y. Consequently $D_{JY}\xi = JD_Y\xi$ for any Y, which is equivalent to the condition that ξ is real holomorphic and S, τ are **C**-linear (see [4]). Therefore R(JX, Y)Z = JR(X, Y)Z for any X by the Gauss equation.

Using the Gauss and Weingarten formulae for the immersion (2.4), which we identify with $(z^1, z^2, w^1, w^2) \mapsto (z^1, z^2, w^1, w^2, F^1(z, w), F^2(z, w))$, and the transversal field (2.2), where e_3 when looked at as an element of \mathbf{R}^6 is equal to (0, 0, 0, 0, 1, 0), we easily obtain

$$h\left(\frac{\partial}{\partial z^{i}}, \frac{\partial}{\partial z^{j}}\right) = \frac{\partial^{2}F^{1}}{\partial z^{i}\partial z^{j}} + i\frac{\partial^{2}F^{2}}{\partial z^{i}\partial z^{j}},$$

$$(2.5) \qquad h\left(\frac{\partial}{\partial z^{i}}, \frac{\partial}{\partial w^{j}}\right) = \frac{\partial^{2}F^{1}}{\partial z^{i}\partial w^{j}} + i\frac{\partial^{2}F^{2}}{\partial z^{i}\partial w^{j}},$$

$$h\left(\frac{\partial}{\partial w^{i}}, \frac{\partial}{\partial w^{j}}\right) = \frac{\partial^{2}F^{1}}{\partial w^{i}\partial w^{j}} + i\frac{\partial^{2}F^{2}}{\partial w^{i}\partial w^{j}},$$

$$(2.6) \qquad \nabla_{X}\frac{\partial}{\partial z^{1}} = X(F_{z})T_{0}, \quad \nabla_{Y}\frac{\partial}{\partial w^{1}} = Y(F_{w})T_{0}.$$

$$(2.7) SX = \nabla_X T_0,$$

Here for a complex valued function $f = f_1 + if_2$ by X(f) we mean $X(f_1) + iX(f_2)$ and for a holomorphic function F we have

(2.9)
$$\frac{\partial F}{\partial z} = \frac{\partial F^1}{\partial z^1} + i\frac{\partial F^2}{\partial z^1}, \quad \frac{\partial F}{\partial w} = \frac{\partial F^1}{\partial w^1} + i\frac{\partial F^2}{\partial w^1}.$$

Using (2.3), (2.6) and (2.7), we obtain

(2.10)
$$SX = X(F_z) \; \frac{\eta''(F_z)}{\eta(F_z)} \; \frac{\partial}{\partial z^1}.$$

From (1.7), (2.1) and (2.5), it follows that

$$\begin{split} R\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)\frac{\partial}{\partial z^{1}} &= F_{wz}S\frac{\partial}{\partial z^{1}} - F_{zz}S\frac{\partial}{\partial w^{1}}\\ &= (F_{wz}F_{zz} - F_{zz}F_{wz})\frac{\eta''(F_{z})}{\eta(F_{z})}\frac{\partial}{\partial z^{1}} = 0,\\ R\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)\frac{\partial}{\partial w^{1}} &= F_{ww}S\frac{\partial}{\partial z^{1}} - F_{zw}S\frac{\partial}{\partial w^{1}}\\ &= (F_{ww}F_{zz} - F_{zw}F_{wz})\frac{\eta''(F_{z})}{\eta(F_{z})}\frac{\partial}{\partial z^{1}} = \frac{\partial}{\partial z^{1}}, \end{split}$$

and it is easy to check that $\nabla R = 0$.

442

3. The classification theorem

Here and subsequently, $\mathcal{A}^{\rightarrow}$ denotes the linear part of an affine map \mathcal{A} . The symbol dim stands for the complex dimension dim_C.

Theorem 3.1. Let M be a two-dimensional complex manifold and $f: M \to \mathbb{C}^3$ a non-degenerate holomorphic immersion. Assume that M is endowed with \mathcal{C}^{∞} transversal bundle \mathcal{N} inducing on M a non-flat locally symmetric connection ∇ . Let R be the curvature tensor of ∇ .

Then for any $m_0 \in M$ there exist a neighbourhood U of m_0 , a complex chart $\varphi : U \to \mathbb{C}^2$, an affine complex isomorphism \mathcal{A} of \mathbb{C}^3 and a holomorphic function F of two variables such that

(i) $\mathcal{A} \circ f \circ \varphi^{-1}(z, w) = (z, w, F(z, w)),$

(ii) $\xi = (\mathcal{A} \circ f)_*(-T_0) + e_3$, with some vector field T_0 on U, is a local section of $\mathcal{A} \to \mathcal{N}$.

Moreover, \mathcal{A} and φ may be chosen in such a way that F and T_0 satisfy the following conditions:

(iii) If dim im R = 1, then T_0 is described by (2.3) with some holomorphic function η of one variable and F satisfies the differential equation (2.1).

(iv) If dim im R = 1 and \mathcal{N} is the complex affine normal bundle, then

(3.1)
$$T_0 = \frac{F_z}{1 + F_z^2} \frac{\partial}{\partial z^1}$$

and F satisfies the differential equation

(3.2)
$$F_{zz}F_{ww} - F_{zw}F_{zw} = \left(1 + F_z^2\right)^2.$$

(v) If dim im R = 2, then \mathcal{N} is the complex affine normal bundle,

(3.3)
$$T_0 = \frac{F_z}{1 + F_z^2 + F_w^2} \frac{\partial}{\partial z^1} + \frac{F_w}{1 + F_z^2 + F_w^2} \frac{\partial}{\partial w^1}$$

and F satisfies the differential equation:

(3.4)
$$F_{zz}F_{ww} - F_{zw}F_{zw} = \left(1 + F_z^2 + F_w^2\right)^2.$$

Proof. Let $m_0 \in M$. Since the immersion f is locally a graph, we may choose a complex chart φ_1 on some neighbourhood U of m_0 and a complex

isomorphism \mathcal{A}_1 of \mathbf{C}^3 such that

(3.5)
$$\mathcal{A}_1 \circ f \circ \varphi_1^{-1}(z, w) = (z, w, F(z, w))$$

with a holomorphic function F of two variables z, w and such that

(3.6)
$$\mathcal{A}_1^{\rightarrow} \mathcal{N}_{m_0} = \mathbf{C} e_3.$$

We may assume that $\left(\frac{\partial}{\partial z^1}\right)_{m_0} \notin \ker R_{m_0}$ and $\left(\frac{\partial}{\partial w^1}\right)_{m_0} \notin \ker R_{m_0}$, for if not, we replace φ_1 by $\psi \circ \varphi_1$ and \mathcal{A}_1 by $\mathcal{A}_2 \circ \mathcal{A}_1$, where $\psi(z, w) = (\alpha z + \beta w, \gamma z + \delta w)$ and $\mathcal{A}_2(z, w, u) = (\alpha z + \beta w, \gamma z + \delta w, u)$ with some appropriate complex constants $\alpha, \beta, \gamma, \delta$. We can also assume, by decreasing U if necessary, that the condition $\frac{\partial}{\partial z^1} \notin \ker R$ and $\frac{\partial}{\partial w^1} \notin \ker R$ is satisfied on the whole of U. The pair $(\mathcal{A}_1 \circ f, \mathcal{A}_1^{\rightarrow} \mathcal{N})$ induces on M the same connection ∇ as the

The pair $(\mathcal{A}_1 \circ f, \mathcal{A}_1^{\rightarrow} \mathcal{N})$ induces on M the same connection ∇ as the pair (f, \mathcal{N}) and $\mathcal{A}_1 \circ f$ is also a non-degenerate immersion.

Let $\hat{\xi}: U \to \mathbb{C}^3$ be a local section of $\mathcal{A}_1^{\to} \mathcal{N}$. Since e_3 is transversal to $(\mathcal{A}_1 \circ f)_*(T_{m_0}M)$, on some neighbourhood U' of m_0 we have a decomposition $\hat{\xi} = (\mathcal{A}_1 \circ f)_*(-T_1) + \lambda e_3$ where λ is a complex valued function such that $\forall x \in U' : \lambda(x) \neq 0$. Dividing $\hat{\xi}$ by λ we obtain the section $\xi = -(\mathcal{A}_1 \circ f)_*(T_0) + e_3$ of $\mathcal{A}_1^{\to} \mathcal{N}$. From (3.6) it follows that $T_{0m_0} = 0$. From the Gauss and Weingarten formulae we obtain (2.5) to (2.8) for ∇ , h, S and τ induced by $(\mathcal{A}_1 \circ f, \xi)$.

Locally symmetric connection is semi-symmetric, which means that $R(X,Y) \cdot R = 0$ for any X, Y; here R(X,Y) acts on R as a derivation. Therefore for any $m \in U$ we can apply to h_m , S_m and R_m the following algebraic lemma [5].

Lemma O1 Let \mathcal{V} be a complex vector space, dim_C $\mathcal{V} > 1$, endowed with a C-bilinear symmetric non-degenerate form h. Let R be a tensor of type (1,3) on \mathcal{V} and S an **R**-linear endomorphism of \mathcal{V} satisfying the Gauss equation

$$R(X,Y)Z = h(Y,Z)SX - h(X,Z)SY.$$

If for every $X \in \mathcal{V}$, $R(X, JX) \cdot R = 0$, then S is complex [C-linear].

The following two lemmas are consequences of the C-linearity of S.

Lemma 3.2. If $\nabla R = 0$, then ∇ is a real holomorphic connection, that is, R(X, Y) is **C**-linear in X and Y.

Proof. The claimed **C**-linearity of R follows from the Gauss equation (1.7).

Lemma 3.3. ξ is a holomorphic section of $\mathcal{A}_1^{\rightarrow} \mathcal{N}$ and T_0 is a holomorphic vector field.

Proof. From (2.8) and from the **C**-bilinearity of h it follows that τ is **C**-linear. We have now

$$D_{JX}\xi = -(A_1 \circ f)_*(SJX) + \tau(JX)\xi$$

= -(A_1 \circ f)_*(JSX) + \tau(X)J\xi = J D_X \xi,

therefore ξ is holomorphic. From (2.7) we obtain $\nabla_{JX}T_0 = SJX = JSX = J\nabla_X T_0$ and the lemma follows.

Lemma 3.4. There exist a neighbourhood U' of m_0 and a holomorphic function $H = A + iB : U' \rightarrow \mathbf{C}$ such that $\tau = dA + idB$.

Proof. We use here a part of another lemma from [5].

Lemma O2 Let \mathcal{V} be a complex vector space endowed with a **C**-bilinear symmetric non-degenerate form h. Let R be a tensor of type (1,3) on \mathcal{V} and S an **R**-linear endomorphism of \mathcal{V} satisfying the Gauss equation. If $\dim_{\mathbf{C}} \mathcal{V} > 2$, then $R \cdot R = 0$ if and only if $S = \lambda \operatorname{id}_{\mathcal{V}}$ for some $\lambda \in \mathbf{C}$. If $\dim_{\mathbf{C}} \mathcal{V} = 2$, then $R \cdot R = 0$ if and only if h(X, SY) = h(SY, X) for every $X, Y \in \mathcal{V}$.

From the Ricci equation (1.10) it follows that $d\tau = 0$, which implies $d\mu = 0$ and $d\nu = 0$ on U. Hence there exist a neighbourhood U' of m_0 and real functions A and B on U' such that $\mu = dA$ and $\nu = dB$. Since τ is **C**-linear (Equation (2.8)), A + iB is holomorphic.

We first consider the case dim im R = 1.

Lemma 3.5. dim ker R = 1.

Proof. We fix a point $x \in U$, where U is the domain of the chart φ . Let X_1, X_2 be a basis of $T_x M$ over C. Since SJ = JS, R is C-linear with respect to any variable. Therefore $Z \in \ker R_x$ if and only if $R(X_1, X_2)Z = 0$. Since the type number of the immersion is greater than 1, im $R_x = \operatorname{im}_{\mathbf{C}} S_x$ [5]. For the complex S we have $\operatorname{im}_{\mathbf{C}} S_x = \operatorname{im} S_x$. By assumption, dim im $R_x = 1$, therefore dim im $S_x = 1$. Hence SX_1 and SX_2 are linearly dependent over C. There exist complex numbers $\alpha, \beta, (\alpha, \beta) \neq (0, 0)$, such that $\alpha SX_1 + \beta SX_2 = 0$. From the non-degeneracy of h it follows that there exists a

solution γ , δ of the system of linear equations:

(3.7)
$$h(X_1, X_1)\gamma + h(X_1, X_2)\delta = -\beta,$$
$$h(X_2, X_1)\gamma + h(X_2, X_2)\delta = \alpha.$$

Of course $(\gamma, \delta) \neq (0, 0)$. Therefore $Z_0 := \gamma X_1 + \delta X_2$ is non-zero. Using (1.7) and the system (3.7) it is easy to check that $R(X_1, X_2)Z_0 = 0$. Since ∇ is non-flat, ker $R_x = \mathbb{C}Z_0$.

Lemma 3.6. Let Z_0 be a non-zero vector from ker R_x . Then for any $X, Y \in T_xM$, $R(R(X, Z_0)X, Z_0)Y = 0$.

Proof. Since ∇ is semi-symmetric, we have

$$0 = (R(X, Z_0) \cdot R)(X, Z_0)Y$$

= $R(X, Z_0)(R(X, Z_0)Y) - R(R(X, Z_0)X, Z_0)Y$
- $R(X, R(X, Z_0)Z_0)Y - R(X, Z_0)(R(X, Z_0)Y)$
= $-R(R(X, Z_0)X, Z_0)Y - R(X, R(X, Z_0)Z_0)Y$
= $-R(R(X, Z_0)X, Z_0)Y.$

Lemma 3.7. (a) If $R(W_1, W_2)Y = 0$ for any $Y \in T_xM$, then W_1 and W_2 are linearly dependent over \mathbf{C} .

- (b) There exists $X \in T_x M$ such that $R(X, Z_0) X \neq 0$.
- (c) $\operatorname{im} R_x = \ker R_x$.

Proof. (a) Suppose, contrary to our claim, that W_1 and W_2 are linearly independent over **C**. Then $T_x M$ is generated by W_1 and W_2 and $R(W_1, W_2)Y = 0$ implies $Y \in \ker R_x$. But this contradicts the assumption of (a), because $\ker R_x$ is a proper subset of $T_x M$.

(b) Suppose the assertion is false. Then $R(X, Z_0)X = 0$ and $R(X, Z_0)$ $Z_0 = 0$ for any $X \in T_x M$. Using (1.7) we obtain

(3.8)
$$h(Z_0, Z_0)SX - h(X, Z_0)SZ_0 = 0,$$

(3.9)
$$h(Z_0, X)SX - h(X, X)SZ_0 = 0.$$

Subtracting (3.9) multiplied by $h(X, Z_0)$ from (3.8) multiplied by h(X, X) yields

(3.10)
$$\begin{vmatrix} h(Z_0, Z_0) & h(Z_0, X) \\ h(X, Z_0) & h(X, X) \end{vmatrix} SX = 0.$$

It follows that if X and Z_0 are **C**-linearly independent, then SX = 0. We choose Z_1 such that Z_0, Z_1 is a **C**-basis of $T_x M$. By this, $SZ_1 = 0$ and $S(Z_0 + Z_1) = 0$. Consequently, $SZ_0 = 0$ and S = 0, which contradicts the fact that dim im $S = \dim \operatorname{im} R = 1$.

(c) According to (b) we may choose $X_0 \in T_x M$ such that $R(X_0, Z_0)X_0 \neq 0$. By Lemma 3.6 and (a), $R(X_0, Z_0)X_0$ and Z_0 are **C**-linearly dependent. Since $R(X_0, Z_0)X_0 \neq 0$, there exists $\lambda \in \mathbf{C}$ such that $Z_0 = \lambda R(X_0, Z_0)X_0$. Hence $Z_0 \in \operatorname{im} R_x$ and $\ker R_x = \mathbf{C}Z_0 \subset \operatorname{im} R_x$. By assumption, $\dim_{\mathbf{C}} \operatorname{im} R = 1$, and the lemma follows.

Lemma 3.8.

(3.11)
$$\nabla_X \left(R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) T_0 \right) = h(X, T_0) R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) T_0$$

Proof. From $\nabla R = 0$ it follows that

$$0 = (\nabla_X R) \left(\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0 \right)$$

= $\nabla_X \left(R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0 \right) - R \left(\nabla_X \frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0$
- $R \left(\frac{\partial}{\partial z^1}, \nabla_X \frac{\partial}{\partial w^1} \right) T_0 - R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) (\nabla_X T_0)$

The last term vanishes, because $\nabla_X T_0 = SX$ and $\operatorname{im} S = \operatorname{im} R = \ker R$ by Lemma 3.7 (c). From Lemma 3.3, it follows that there exist holomorphic functions ψ_1 and ψ_2 such that

(3.12)
$$T_0 = \psi_1 \frac{\partial}{\partial z^1} + \psi_2 \frac{\partial}{\partial w^1}.$$

By the **C**-bilinearity and anti-symmetry of $R(\cdot, \cdot)$, we have from (2.5), (2.6) and (3.12)

$$R\left(\nabla_{X}\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)T_{0}+R\left(\frac{\partial}{\partial z^{1}},\nabla_{X}\frac{\partial}{\partial w^{1}}\right)T_{0}$$

$$=h\left(X,\frac{\partial}{\partial z^{1}}\right)R\left(T_{0},\frac{\partial}{\partial w^{1}}\right)T_{0}+h\left(X,\frac{\partial}{\partial w^{1}}\right)R\left(\frac{\partial}{\partial z^{1}},T_{0}\right)T_{0}$$

$$=\left(\psi_{1}h\left(X,\frac{\partial}{\partial z^{1}}\right)+\psi_{2}h\left(X,\frac{\partial}{\partial w^{1}}\right)\right)R\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)T_{0}$$

$$=h\left(X,\psi_{1}\frac{\partial}{\partial z^{1}}+\psi_{2}\frac{\partial}{\partial w^{1}}\right)R\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)T_{0}=h(X,T_{0})R\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)T_{0}$$

Let U' and H be as in Lemma 3.4. We may assume that U' is connected. From now on we shall write U instead of U'.

Lemma 3.9. $\nabla_X \left(e^H R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0 \right) = 0 \text{ for any } X \in TM|_U.$

Proof. It suffices to use (2.8) and Lemma 3.8.

Lemma 3.10. If $(T_0)_{m_0} \in \ker R_{m_0}$, then $(T_0)_m \in \ker R_m$ for any $m \in U$.

Proof. Assume that the vector field W on U has the property $\nabla_X W = 0$ for any X. Any two points x and y of U we can connect with some curve γ . The coordinates of $W_{\gamma(t)}$ in the basis of $T_{\gamma(t)}M$ obtained from a basis of $T_x M$ by parallel displacement along γ do not depend on t. It follows that if $W_x = 0$ at some $x \in U$, then $W \equiv 0$ on U. Now let $W = e^H R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) T_0$. By assumption, $W_{m_0} = 0$, therefore $W \equiv 0$ and $R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) T_0 = e^{-H}W \equiv 0$.

Lemma 3.11. For any $m \in U$, $\psi_1(m) = 0$ if and only if $\psi_2(m) = 0$.

Proof. To obtain a contradiction, suppose for example that $\psi_1(m) = 0$ and $\psi_2(m) \neq 0$. Then $\frac{\partial}{\partial w^1}|_m = \frac{1}{\psi_2(m)}T_{0m}$, which contradicts the assumption that $\frac{\partial}{\partial w^1} \notin \ker R$.

Lemma 3.12. There exists an open dense subset U_2 of U such that $\psi_1 \neq 0$ everywhere on U_2 .

Proof. Suppose that $\psi_1 \equiv 0$ on some open, non-empty subset V of U. Then, by Lemma 3.11, $\psi_2 \equiv 0$ on V and consequently $T_0 \equiv 0$ on V. This contradicts the fact that dim imS = 1, because $\nabla_X T_0 = SX$.

Lemma 3.13. There exists a constant $C \neq 0$ such that $\psi_2 = C\psi_1$ on U.

Proof. Let U_3 be a connected, open, non-empty subset of U_2 and let $X \in TM|_{U_3}$. From the equality im $S = \operatorname{im} R = \ker R$ and from $T_0 \in \ker R$ it follows that $X(\psi_1)\frac{\partial}{\partial z^1} + X(\psi_2)\frac{\partial}{\partial w^1} \in \ker R$, because

$$X(\psi_1)\frac{\partial}{\partial z^1} + X(\psi_2)\frac{\partial}{\partial w^1} = \nabla_X T_0 - \psi_1 \nabla_X \frac{\partial}{\partial z^1} - \psi_2 \nabla_X \frac{\partial}{\partial w^1}$$
$$= SX - \psi_1 h\left(X, \frac{\partial}{\partial z^1}\right) T_0 - \psi_2 h\left(X, \frac{\partial}{\partial w^1}\right) T_0.$$

Since $T_0 \in \ker R$ and dim $\ker R = 1$, the tangent vectors $\psi_1 \frac{\partial}{\partial z^1} + \psi_2 \frac{\partial}{\partial w^1}$ and $X(\psi_1) \frac{\partial}{\partial z^1} + X(\psi_2) \frac{\partial}{\partial w^1}$ are linearly dependent over **C**. Consequently

(3.13)
$$X\left(\frac{\psi_2}{\psi_1}\right) = \frac{1}{(\psi_1)^2} \cdot \begin{vmatrix} \psi_1 & \psi_2 \\ X(\psi_1) & X(\psi_2) \end{vmatrix} = 0.$$

It follows that $X\left(\frac{\psi_2}{\psi_1}\right) = 0$ for any $m \in U_3$, for any $X \in T_m M$. Since U_3 is connected, there exists a constant C such that $\frac{\psi_2}{\psi_1} = C$ on U_3 . The constant $C \neq 0$, for if not, then $\psi_2 \equiv 0$. Now $\psi_2 - C\psi_1$ is a holomorphic function defined on the connected subset U of M and equal to zero on an open, non-empty set U_3 . From the identity principle for holomorphic functions it follows that $\psi_2 - C\psi_1 \equiv 0$ on U.

Let $(\tilde{z}, \tilde{w}) = \varphi_3(z, w) := (z, -Cz + w)$ and $\mathcal{A}_3(z, w, u) = (z, -Cz + w, u)$. Then $\mathcal{A}_3 \circ \mathcal{A}_1 \circ f \circ (\varphi_3 \circ \varphi_1)^{-1}(\tilde{z}, \tilde{w}) = \mathcal{A}_3 \circ \mathcal{A}_1 \circ f \circ \varphi_1^{-1}(\tilde{z}, C\tilde{z} + \tilde{w}) = \mathcal{A}_3(\tilde{z}, C\tilde{z} + \tilde{w}) = \mathcal{A}_3(\tilde{z}, C\tilde{z} + \tilde{w})) = (\tilde{z}, \tilde{w}, F(\tilde{z}, C\tilde{z} + \tilde{w})) = (\tilde{z}, \tilde{w}, F(\tilde{z}, \tilde{w})),$

$$\mathcal{A}_3\xi = -(\mathcal{A}_3 \circ \mathcal{A}_1 \circ f)_*(T_0) + \mathcal{A}_3e_3 = -(\mathcal{A}_3 \circ \mathcal{A}_1 \circ f)_*(T_0) + e_3,$$

 $\frac{\partial}{\partial \tilde{z}^1} = \frac{\partial}{\partial z^1} + C \frac{\partial}{\partial w^1}$ and $\frac{\partial}{\partial \tilde{w}^1} = \frac{\partial}{\partial w^1}$. Using the new coordinates we can rewrite T_0 as

(3.14)
$$T_0 = \psi_1 \left(\frac{\partial}{\partial z^1} + C \frac{\partial}{\partial w^1} \right) = \psi_1 \frac{\partial}{\partial \tilde{z}^1} = \alpha(\tilde{z}, \tilde{w}) \frac{\partial}{\partial \tilde{z}^1}$$

where $\alpha = \psi_1 \circ \varphi_1^{-1} \circ \varphi_3^{-1}$. From now on we write z, w, F instead of $\tilde{z}, \tilde{w}, \tilde{F}$. Then the formulae (2.6) to (2.8) hold.

Lemma 3.14. There exist an open neighbourhood U' of m_0 and a holomorphic function g of one variable such that $\alpha(z, w) = g(F_z(z, w))$ on $\varphi_3 \circ \varphi_1(U')$.

Proof. An easy computation shows that

(3.15)
$$\nabla_X T_0 = X(\psi_1) \frac{\partial}{\partial z^1} + \psi_1^2 h\left(X, \frac{\partial}{\partial z^1}\right) \frac{\partial}{\partial z^1}$$

and

(3.16)
$$R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right)\frac{\partial}{\partial z^1} = \left(\frac{\partial^2 F}{\partial w \partial z}\frac{\partial \alpha}{\partial z} - \frac{\partial^2 F}{\partial z \partial z}\frac{\partial \alpha}{\partial w}\right)\frac{\partial}{\partial z^1}.$$

By Lemma 3.12 and by (3.14) $\alpha \neq 0$ on some dense open subset \widetilde{U} of $\varphi_3 \circ \varphi_1(U)$. For any $(z, w) \in \widetilde{U}$ we can write

$$(3.17) \quad \left(\frac{\partial^2 F}{\partial w \partial z} \frac{\partial \alpha}{\partial z} - \frac{\partial^2 F}{\partial z \partial z} \frac{\partial \alpha}{\partial w}\right) \frac{\partial}{\partial z^1} = R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) \left(\frac{1}{\alpha(z, w)} T_0\right) = 0.$$

Hence

(3.18)
$$\frac{\partial^2 F}{\partial w \partial z} \frac{\partial \alpha}{\partial z} - \frac{\partial^2 F}{\partial z \partial z} \frac{\partial \alpha}{\partial w} = 0$$

on \widetilde{U} and, by continuity, on $\varphi_3 \circ \varphi_1(U)$. Furthermore, $\frac{\partial^2 F}{\partial z \partial z} \neq 0$ or $\frac{\partial^2 F}{\partial w \partial z} \neq 0$ for any point $m \in M$, since otherwise $\frac{\partial}{\partial z^1} \in \ker h$ which contradicts the non-degeneracy of f. Therefore $\Psi := \frac{\partial F}{\partial z}$ satisfies the assumptions of the following lemma. Applying Lemma 3.15 to Ψ and $\Lambda := \alpha$ completes the proof of Lemma 3.14.

Lemma 3.15. Let V be an open subset of \mathbf{C}^2 . Let $\Psi : V \to \mathbf{C}$ be a holomorphic function of two variables such that for any $(z, w) \in V$, $\frac{\partial \Psi}{\partial z}(z, w) \neq 0$ or $\frac{\partial \Psi}{\partial w}(z, w) \neq 0$. Then $\Lambda : V \to \mathbf{C}$ satisfies the equation

(3.19)
$$\frac{\partial \Psi}{\partial z} \frac{\partial \Lambda}{\partial w} - \frac{\partial \Psi}{\partial w} \frac{\partial \Lambda}{\partial z} = 0$$

if and only if for any $(z_0, w_0) \in V$ there exist an open neighbourhood V' of (z_0, w_0) and a holomorphic function $g : \Psi(V') \to \mathbb{C}$ of one variable such that $\Lambda|_{V'} = g \circ \Psi|_{V'}$.

Proof. is similar to that of constant-rank mapping theorem. Let Λ satisfy (3.19). It follows that rank of the holomorphic mapping

$$V \ni (z, w) \mapsto \left(\Psi(z, w), \Lambda(z, w) \right) \in \mathbf{C}^2$$

is equal to 1 on V. Let $(z_0, w_0) \in V$. Without loss of generality we can assume that $\frac{\partial \Psi}{\partial z}(z_0, w_0) \neq 0$. Then there exists a neighbourhood V' of (z_0, w_0) such that $\Phi: V' \ni (z, w) \mapsto (\Psi(z, w), w) \in \Phi(V') \subset \mathbf{C}^2$ is biholomorphic. We may also assume that $\Phi(V')$ is a product of two open discs $D_1 \subset \mathbf{C}$ and $D_2 \subset \mathbf{C}$. Let $\tilde{g}(u, v) := \Lambda(\Phi^{-1}(u, v))$. Rank of the mapping

$$(\Psi, \Lambda) \circ \Phi^{-1} : \Phi(V') \ni (u, v) \mapsto (u, \tilde{g}(u, v)) \in \mathbf{C}^2$$

is also equal to 1, therefore $\frac{\partial \widetilde{g}}{\partial v}(u,v) = 0$ for any $(u,v) \in D_1 \times D_2$. Let $u \in D_1$. Since the function $D_2 \ni v \mapsto \widetilde{g}(u,v) \in \mathbf{C}$ is a constant one, we

may define $g(u) := \tilde{g}(u, v)$ with an arbitrary $v \in D_2$. We have then $(\Psi, \Lambda) \circ \Phi^{-1}(u, v) = (u, g(u))$. If we take $(u, v) = \Phi(z, w) = (\Psi(z, w), w)$, the assertion follows.

Conversely, let $\Lambda = g \circ \Psi$ on some open set V'. Applying the chain rule we obtain $\frac{\partial \Lambda}{\partial z}(z, w) = g'(\Psi(z, w)) \frac{\partial \Psi}{\partial z}(z, w)$ and $\frac{\partial \Lambda}{\partial w}(z, w) = g'(\Psi(z, w)) \frac{\partial \Psi}{\partial w}(z, w)$ (z, w). Multiplying the first equation by $\frac{\partial \Psi}{\partial w}(z, w)$, the second by $\frac{\partial \Psi}{\partial z}(z, w)$ and subtracting we obtain (3.19).

Let $(z_0, w_0) = \varphi_3 \circ \varphi_1(m_0)$. We can decrease the neighbourhood U' of m_0 so as to obtain a connected, simply connected open neighbourhood $F_z(U')$ of $\zeta_0 := F_z(z_0, w_0)$. The holomorphic function $\zeta \mapsto \int_{\gamma(\zeta_0, \zeta)} g(\sigma) d\sigma$, where $\gamma(\zeta_0, \zeta)$ denotes a path joining ζ_0 with ζ , is then well defined on $F_z(U')$. Let

(3.20)
$$\eta(\zeta) := e^{\int_{\gamma(\zeta_0,\zeta)} g(\sigma) d\sigma}.$$

We have then $g(\zeta) = \frac{\eta'(\zeta)}{\eta(\zeta)}$ and

(3.21)
$$SX = \nabla_X T_0 = \frac{\eta''(F_z)}{\eta(F_z)} X(F_z) \frac{\partial}{\partial z^1}$$

Since dim im S = 1, $\eta''(F_z) \neq 0$ everywhere on U'.

Lemma 3.16. F satisfies the differential equation

(3.22)
$$F_{zz}F_{ww} - F_{zw}F_{zw} = \kappa \frac{\eta(F_z)}{\eta''(F_z)}$$

where $\kappa \in \mathbf{C} \setminus \{0\}$.

Proof. Using the Gauss equation and (3.21) we obtain

$$(3.23) \quad R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right)\frac{\partial}{\partial w^1} = (F_{zz}F_{ww} - F_{zw}F_{wz})\frac{\eta''(F_z)}{\eta(F_z)}\frac{\partial}{\partial z^1} =:\Phi\frac{\partial}{\partial z^1}.$$

From $\nabla R = 0$ it follows that for any $X \in TM|_{U'}$

$$0 = (\nabla_X R) \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) \frac{\partial}{\partial w^1} = \nabla_X \left(\Phi \frac{\partial}{\partial z^1} \right) - R \left(\nabla_X \frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) \frac{\partial}{\partial w^1} - R \left(\frac{\partial}{\partial z^1}, \nabla_X \frac{\partial}{\partial w^1} \right) \frac{\partial}{\partial w^1} - R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) \left(\nabla_X \frac{\partial}{\partial w^1} \right).$$

The last two terms vanish, because $\frac{\partial}{\partial z^1}$ and $\nabla_X \frac{\partial}{\partial w^1}$ are linearly dependent and $\nabla_X \frac{\partial}{\partial w^1} = X(F_w)T_0$ with $T_0 \in \ker R$. Hence

$$0 = X(\Phi)\frac{\partial}{\partial z^1} + \Phi X(F_z)T_0 - X(F_z)R\left(T_0, \frac{\partial}{\partial w^1}\right)\frac{\partial}{\partial w^1} = X(\Phi)\frac{\partial}{\partial z^1}$$

Since U' is connected, $\Phi = \text{const} =: \kappa$. From $\eta'' \neq 0$ and from the nondegeneracy of f it follows that $\kappa \neq 0$.

Let β be a complex number such that $\beta^2 = \kappa$. Let $(\tilde{z}, \tilde{w}) = \varphi_4(z, w) = (z, \beta w), \mathcal{A}_4(z, w, u) = (z, \beta w, u), \varphi = \varphi_4 \circ \varphi_3 \circ \varphi_1$ and $\mathcal{A} = \mathcal{A}_4 \circ \mathcal{A}_3 \circ \mathcal{A}_1$. It is easy to check that $\mathcal{A} \circ f \circ \varphi^{-1}(z, w) = (z, w, \hat{F}(z, w))$ where $\hat{F}(z, w) = F(z, \frac{1}{\beta}w)$ satisfies the differential equation (2.1). Since at the corresponding points $\hat{F}_{\tilde{z}} = F_z$ and $\frac{\partial}{\partial \tilde{z}^1} = \frac{\partial}{\partial z^1}$, we have a local section of $\mathcal{A}^{\rightarrow}\mathcal{N}$ as claimed. Having $\mathcal{A}, \varphi, F, \eta$ and ξ which satisfy (i), (ii) and (iii) of Theorem 3.1,

Having $\mathcal{A}, \varphi, F, \eta$ and ξ which satisfy (i), (ii) and (iii) of Theorem 3.1, we consider now the particular case when \mathcal{N} is the complex affine normal bundle of the immersion f.

Lemma 3.17. $\eta^3 \cdot \eta'' = c$ with some $c \in \mathbf{C} \setminus \{0\}$.

Proof. The transversal field

(3.24)
$$\xi_{eq} = \eta(F_z)\,\xi = -(\mathcal{A}\circ f)_*\left(\eta'(F_z)\frac{\partial}{\partial z^1}\right) + \eta(F_z)e_3$$

is the equiaffine section of the bundle $\mathcal{A}^{\rightarrow}\mathcal{N}$, which is the complex affine normal bundle for $\mathcal{A} \circ f$. Therefore, there exists a complex number b such that $\hat{\xi} = b\xi_{eq}$ is the complex affine normal vector field for $\mathcal{A} \circ f$. Let $Z = \frac{1}{b\eta(F_z)} \frac{\partial}{\partial z^1}$, $W = \frac{\partial}{\partial w^1}$. We have then ${}^{\mathbf{C}}\omega\left((\mathcal{A} \circ f)_*(Z), (\mathcal{A} \circ f)_*(W), \hat{\xi}\right) = 1$. By the definition of the affine normal vector field,

(3.25)
$$\left| \det \begin{pmatrix} \widehat{h}(Z,Z) & \widehat{h}(Z,W) \\ \widehat{h}(W,Z) & \widehat{h}(W,W) \end{pmatrix} \right| = 1,$$

where $\hat{h} = \frac{1}{b\eta(F_z)} h$ is the affine fundamental form induced by $\hat{\xi}$. Using (2.5) we obtain

(3.26)
$$\left| \left(\frac{1}{b \eta(F_z)} \right)^4 \left(F_{zz} F_{ww} - F_{zw} F_{zw} \right) \right| = 1,$$

which together with (2.1) implies

(3.27)
$$\left| \left(\eta(\zeta) \right)^3 \cdot \eta''(\zeta) \right| = \left| \frac{1}{b} \right|^4 = \text{const}$$

for $\zeta \in F_z(U')$. According to the maximum principle, if for a holomorphic function $\mathcal{F} : \Omega \to \mathbf{C}$, where $\Omega \subset \mathbf{C}$ is an open and connected set, the function $|\mathcal{F}|$ has a local maximum at some point of Ω , then \mathcal{F} must be constant on Ω . From (3.27) it follows that $|\eta^3 \cdot \eta''|$ has a local maximum at any $\zeta \in F_z(U')$. Therefore $\eta^3 \cdot \eta'' = \text{const.}$

Lemma 3.18. $\eta(\zeta) = \sqrt{A\zeta^2 + B\zeta + C}$, where $A \in \mathbf{C} \setminus \{0\}$, $B, C \in \mathbf{C}$, $AC - \frac{B^2}{4} = c$ and $\sqrt{\cdot}$ is some holomorphic branch of the square root defined on some neighbourhood of the non-zero complex number $A\zeta_0^2 + B\zeta_0 + C$, $\zeta_0 = F_z(z_0, w_0)$.

Proof. From $T_{0m_0} = 0$ and (2.3) it follows that $\eta'(\zeta_0) = 0$. Let

(3.28)
$$E(\zeta) := \left(\eta'(\zeta)\right)^2 + \frac{c}{(\eta(\zeta))^2}$$

for $\zeta \in V$, where V is some sufficiently small, connected neighbourhood of ζ_0 . Using Lemma 3.17 we obtain $E'(\zeta) = \frac{2\eta'(\zeta)}{(\eta(\zeta))^3} \left((\eta(\zeta))^3 \cdot \eta''(\zeta) - c \right) = 0$, therefore $E(\zeta) = E(\zeta_0) = \frac{c}{(\eta(\zeta_0))^2}$ for $\zeta \in V$. It follows that

(3.29)
$$\left(\eta'(\zeta)\right)^2 = \frac{c}{(\eta(\zeta_0))^2} - \frac{c}{(\eta(\zeta))^2}$$

We consider now the function $\psi(\zeta) := (\eta(\zeta))^2$. Using (3.29) and Lemma 3.17 we obtain

$$\psi''(\zeta) = 2 (\eta'(\zeta))^2 + 2 \eta(\zeta) \cdot \eta''(\zeta) = \frac{2c}{(\eta(\zeta_0))^2} - \frac{2c}{(\eta(\zeta))^2} + 2 \eta(\zeta) \cdot \eta''(\zeta) = \frac{2c}{(\eta(\zeta_0))^2}.$$

It follows that

(3.30)
$$\psi(\zeta) = \frac{c}{(\eta(\zeta_0))^2} \zeta^2 + B\zeta + C.$$

Since $\eta'(\zeta_0) = 0$ implies $\psi'(\zeta_0) = 0$, we have $B = -\frac{2c}{(\eta(\zeta_0))^2}\zeta_0$. Computing $\psi(\zeta_0)$ we obtain $C = (\eta(\zeta_0))^2 + \frac{c\zeta_0^2}{(\eta(\zeta_0))^2}$ and

(3.31)
$$\psi(\zeta) = \frac{c}{(\eta(\zeta_0))^2} \left(\zeta - \zeta_0\right)^2 + (\eta(\zeta_0))^2.$$

Since $\eta(\zeta_0) \neq 0$, there exists a holomorphic branch $\sqrt{\cdot}$ of square root on some neighbourhood of $(\eta(\zeta_0))^2$. But η is also holomorphic, therefore we may conclude, replacing $\sqrt{\cdot}$ by $-\sqrt{\cdot}$ if necessary, that $\eta(\zeta) = \sqrt{\psi(\zeta)}$. \Box

Lemma 3.19. There exist an affine isomorphism \mathcal{A}_8 of \mathbb{C}^3 and a local diffeomorphism φ_8 , $(\tilde{z}, \tilde{w}) = \varphi_8(z, w)$ such that

$$\mathcal{A}_8 \circ \mathcal{A} \circ f \circ \varphi^{-1} \circ \varphi_8^{-1}(\widetilde{z}, \widetilde{w}) = (\widetilde{z}, \widetilde{w}, \widetilde{F}(\widetilde{z}, \widetilde{w})).$$

 \widetilde{F} satisfies the differential equation

(3.32)
$$\widetilde{F}_{\widetilde{z}\widetilde{z}}\widetilde{F}_{\widetilde{w}\widetilde{w}} - \widetilde{F}_{\widetilde{z}\widetilde{w}}\widetilde{F}_{\widetilde{z}\widetilde{w}} = \left(1 + \widetilde{F}_{\widetilde{z}}^{2}\right)^{2}$$

and $-\mathcal{A}_8 \circ \mathcal{A} \circ f_*(T_0) + e_3$ with

$$T_0 = \frac{\widetilde{F}_{\widetilde{z}}}{1 + \widetilde{F}_{\widetilde{z}}^{\ 2}} \frac{\partial}{\partial \widetilde{z}^1}$$

is a local section of $\mathcal{A}_8^{\rightarrow} \mathcal{A}^{\rightarrow} \mathcal{N}$.

Proof. For η as in Lemma 3.18 we have

$$\frac{\eta(\zeta)}{\eta''(\zeta)} = \frac{1}{c} (\eta(\zeta))^4 = \frac{AC - (B^2/4)}{A^2} \left[\left(\frac{A}{\sqrt{AC - (B^2/4)}} \zeta + \frac{(B/2)}{\sqrt{AC - (B^2/4)}} \right)^2 + 1 \right]^2.$$

Let $\varphi_8(z, w) = \left(\frac{\sqrt{AC - (B^2/4)}}{A}z, w\right), \mathcal{A}_8(z, w, u) = \left(\frac{\sqrt{AC - (B^2/4)}}{A}z, w, u + \frac{B}{2A}z\right)$ and

$$\widetilde{F}(\widetilde{z},\widetilde{w}) = F\left(\frac{A}{\sqrt{AC - (B^2/4)}}\widetilde{z},\widetilde{w}\right) + \frac{(B/2)}{\sqrt{AC - (B^2/4)}}\widetilde{z}.$$

It is easy to check that at the corresponding points

(3.33)
$$\frac{A}{\sqrt{AC - (B^2/4)}} F_z + \frac{(B/2)}{\sqrt{AC - (B^2/4)}} = \widetilde{F}_{\overline{z}}$$

and

$$(3.34) F_{zz}F_{ww} - F_{zw}F_{zw} = \frac{AC - (B^2/4)}{A^2} \left(\widetilde{F}_{\widetilde{z}\widetilde{z}}\,\widetilde{F}_{\widetilde{w}\widetilde{w}} - \widetilde{F}_{\widetilde{z}\widetilde{w}}\,\widetilde{F}_{\widetilde{z}\widetilde{w}}\right),$$

therefore \widetilde{F} satisfies Equation (3.32). Since $\mathcal{A}_8 e_3 = e_3$, we do not have to change T_0 but it should be described in the new coordinates. We have at the corresponding points

(3.35)
$$\frac{\eta'(F_z)}{\eta(F_z)} = \frac{AF_z + (B/2)}{\frac{1}{A} (AF_z + (B/2))^2 + C - (B^2/4A)} \\ = \frac{\widetilde{F}_{\widetilde{z}} \sqrt{AC - (B^2/4)}}{\frac{AC - (B^2/4)}{A} (\widetilde{F}_{\widetilde{z}}^2 + 1)} = \frac{A}{\sqrt{AC - (B^2/4)}} \frac{\widetilde{F}_{\widetilde{z}}}{\widetilde{F}_{\widetilde{z}}^2 + 1}, \\ \frac{\partial}{\partial z^1} = \frac{\sqrt{AC - (B^2/4)}}{A} \frac{\partial}{\partial \widetilde{z}^1}$$

and the lemma follows.

We now turn to the case dim im R = 2. The shape operator S is then invertible. We first show that there exists a **C**-bilinear, complex valued nondegenerate symmetric holomorphic tensor field g such that $\nabla g = 0$. Let

(3.36)
$$g(X,Y) := e^{2H} h(S^{-1}X,Y),$$

where H is a holomorphic function as in Lemma 3.4 and h, S, τ are induced by the pair $(\mathcal{A}_1 \circ f, \xi)$, or, equivalently, by $(f, (\mathcal{A}_1^{\rightarrow})^{-1}\xi)$ on some neighbourhood of m_0 . Since H is defined up to a constant, we may assume that $H_{m_0} =$ 0. Since S is **C**-linear and h **C**-bilinear, g is **C**-bilinear. It is non-degenerate because h is non-degenerate and S_x is an isomorphism at any x. According to Lemma O2, $h(S^{-1}X,Y) = h(S^{-1}X,SS^{-1}Y) = h(SS^{-1}X,S^{-1}Y) =$ $h(X,S^{-1}Y) = h(S^{-1}Y,X)$, therefore g is symmetric.

455

We fix now some basis Z, W of $T_x M$ and define $\alpha : T_x M \to T_x M$ and $L : T_x M \times T_x M \to \mathbf{C}$:

(3.37)
$$\alpha(Y) := h(W, Y)Z - h(Z, Y)W,$$

(3.38)
$$L(Y,U) := \det \begin{pmatrix} h(Z,Y) & h(Z,U) \\ h(W,Y) & h(W,U) \end{pmatrix}$$

Lemma 3.20. (i) α is a **C**-linear isomorphism.

(ii) L is C-bilinear and anti-symmetric.
(iii) L(Z, W) ≠ 0.
(iv) α ∘ α = -L(Z, W) id_{TxM}.
(v) h(Y, α(U)) = -h(U, α(Y)) for any Y, U ∈ T_xM.
(vi) L(α(Y), U) = L(Z, W) h(Y, U) for any Y, U ∈ T_xM.

Proof. (i) and (ii) are obvious, (iii) follows from the non-degeneracy of h. To prove (iv) we need only to compute $\alpha \circ \alpha(Z)$ and $\alpha \circ \alpha(W)$. An easy computation shows that $h(Y, \alpha(U)) + h(U, \alpha(Y)) = 0$. For (vi), it suffices to take as (Y, U) the pairs of basis vectors, to use the definition of α and only the anti-symmetry of L.

In the following lemmas we will need the assumption that $\nabla R = 0$.

Lemma 3.21. For any X, U

$$L(Z,W) (\nabla_X S) U = (\nabla_X h) (W, \alpha(U)) SZ - (\nabla_X h) (Z, \alpha(U)) SW.$$

Proof. From the Gauss equation (1.7) it follows that

$$(\nabla_X R) (Z, W)Y = (\nabla_X h) (W, Y) SZ - (\nabla_X h) (Z, Y) SW + h(W, Y) (\nabla_X S) Z - h(Z, Y) (\nabla_X S) W.$$

If $\nabla R = 0$, then

$$- (\nabla_X h) (W, Y) SZ + (\nabla_X h) (Z, Y) SW$$

= $h(W, Y) (\nabla_X S) Z - h(Z, Y) (\nabla_X S) W = (\nabla_X S) (\alpha(Y)).$

We take now $Y = \alpha(U)$ and use Lemma 3.20(iv).

Lemma 3.22. For any X, U, Y

$$(\nabla_X h) \left(U, \alpha(Y) \right) - \left(\nabla_X h \right) \left(Y, \alpha(U) \right) = h(X, T_0) \left[L(U, Y) + h(U, \alpha(Y)) \right].$$

Proof. Since both sides are **C**-bilinear and anti-symmetric with respect to Y, U (see Lemma 3.20(ii) and (v)), it suffices to prove the formula for U = Z and Y = W. If we apply Lemma 3.21 to X = Z, U = W, next to X = W, U = Z and subtract the formulae, then we obtain

$$L(Z, W) \Big[(\nabla_Z S) W - (\nabla_W S) Z \Big]$$

= $\Big[(\nabla_Z h) (W, \alpha(W)) - (\nabla_W h) (W, \alpha(Z)) \Big] SZ$
- $\Big[(\nabla_Z h) (Z, \alpha(W)) - (\nabla_W h) (Z, \alpha(Z)) \Big] SW.$

From the Codazzi equation (1.9) and (2.8) it follows that

$$(\nabla_Z S) W - (\nabla_W S) Z = h(W, T_0) SZ - h(Z, T_0) SW.$$

Since S is invertible, SZ and SW are linearly independent over \mathbf{C} , therefore

$$L(Z, W)h(W, T_0) = (\nabla_Z h) (W, \alpha(W)) - (\nabla_W h) (W, \alpha(Z)),$$

$$L(Z, W)h(Z, T_0) = (\nabla_Z h) (Z, \alpha(W)) - (\nabla_W h) (Z, \alpha(Z)).$$

Using the Codazzi equation (1.8), (2.8) and Lemma 3.20(v), we obtain

$$\begin{aligned} (\nabla_Z h) \left(W, \alpha(W) \right) &= \left(\nabla_W h \right) \left(Z, \alpha(W) \right) - h(W, T_0) h(Z, \alpha(W)), \\ \left(\nabla_W h \right) \left(Z, \alpha(Z) \right) &= \left(\nabla_Z h \right) \left(W, \alpha(Z) \right) + h(Z, T_0) h(Z, \alpha(W)). \end{aligned}$$

It follows that

$$(\nabla_W h) \left(Z, \alpha(W) \right) - \left(\nabla_W h \right) \left(W, \alpha(Z) \right) = h(W, T_0) \left[L(Z, W) + h(Z, \alpha(W)) \right],$$

$$(\nabla_Z h) \left(Z, \alpha(W) \right) - \left(\nabla_Z h \right) \left(W, \alpha(Z) \right) = h(Z, T_0) \left[L(Z, W) + h(Z, \alpha(W)) \right].$$

Since the **C**-linear mappings

$$X \mapsto (\nabla_X h) \left(Z, \alpha(W) \right) - (\nabla_X h) \left(W, \alpha(Z) \right)$$

and

$$X \mapsto h(X, T_0) \left[L(Z, W) + h(Z, \alpha(W)) \right]$$

have the same values on the basis vectors Z, W, they are equal and the lemma follows.

Lemma 3.23.

$$(\nabla_X h)\left(\alpha(U), \alpha(Y)\right) = L(Z, W) \Big[-\left(\nabla_X h\right)(U, Y) + 2h(X, T_0)h(U, Y)\Big].$$

Proof. We apply Lemma 3.22 to $\alpha(U)$ and Y, then we use Lemma 3.20(iv), (v) and (vi).

Lemma 3.24.

$$L(Z,W)h\Big((\nabla_X S)U,Y\Big) = -(\nabla_X h)\Big(\alpha(SY),\alpha(U)\Big).$$

Proof. Using Lemmas 3.21 and O2 we obtain

$$\begin{split} L(Z,W) h\Big((\nabla_X S) U, Y \Big) \\ &= (\nabla_X h) \left(W, \alpha(U) \right) h(SZ, Y) - (\nabla_X h) \left(Z, \alpha(U) \right) h(SW, Y) \\ &= (\nabla_X h) \left(W, \alpha(U) \right) h(Z, SY) - (\nabla_X h) \left(Z, \alpha(U) \right) h(W, SY) \\ &= (\nabla_X h) \left(h(Z, SY) W - h(W, SY) Z, \alpha(U) \right) \\ &= - \left(\nabla_X h \right) \left(\alpha(SY), \alpha(U) \right). \end{split}$$

Lemma 3.25.

$$h\Big((\nabla_X S) U, Y\Big) = (\nabla_X h) (SY, U) - 2h(X, T_0) h(SY, U).$$

Proof. From Lemmas 3.23 and 3.24 we have

$$L(Z,W)h\Big((\nabla_X S)U,Y\Big) = L(Z,W)\Big[(\nabla_X h)(SY,U) - 2h(X,T_0)h(SY,U)\Big].$$

Since $L(Z,W) \neq 0$, the lemma follows.

Since $L(Z, W) \neq 0$, the lemma follows.

Lemma 3.26. $\nabla g = 0$.

Proof. It suffices to check that $(\nabla_X g)(SU, SY) = 0$ for any X, U, Y. We have

$$\begin{aligned} \left(\nabla_X g\right) \left(SU, SY\right) \\ &= X\left(g(SU, SY)\right) - g\left(\nabla_X(SU), SY\right) - g\left(SU, \nabla_X(SY)\right) \\ &= X\left(e^{2H} h(U, SY)\right) - e^{2H} h(\nabla_X(SU), Y) - e^{2H} h(U, \nabla_X(SY)) \end{aligned}$$

$$\begin{split} &= 2 \, dH(X) \, e^{2H} h(U, SY) + e^{2H} \left(\nabla_X h \right) (U, SY) + e^{2H} h(\nabla_X U, SY) \\ &+ e^{2H} h(U, \nabla_X (SY)) - e^{2H} h(\nabla_X (SU), Y) - e^{2H} h(U, \nabla_X (SY)) \\ &= -2h(X, T_0) \, e^{2H} \, h(U, SY) + e^{2H} \left(\nabla_X h \right) (U, SY) \\ &+ e^{2H} h(S \left(\nabla_X U \right), Y) - e^{2H} h(\nabla_X (SU), Y) \\ &= e^{2H} \left[-2h(X, T_0) \, h(U, SY) + \left(\nabla_X h \right) (U, SY) - h \left(\left(\nabla_X S \right) U, Y \right) \right] \end{split}$$

which is equal to zero by symmetry of h and $\nabla_X h$ and by Lemma 3.25.

Let $x \in U$ and let for $X, Y \in T_x M$

$$G_x\Big((\mathcal{A}_1 \circ f)_* X, (\mathcal{A}_1 \circ f)_* Y\Big) := g(X, Y),$$

$$G_x\Big((\mathcal{A}_1 \circ f)_* X, \xi_x\Big) := 0, \quad G_x(\xi_x, \xi_x) := e^{2H}.$$

Lemma 3.27. DG = 0.

Proof. From $\nabla g = 0$ it follows easily that $(D_X G)((\mathcal{A}_1 \circ f)_* Y, (\mathcal{A}_1 \circ f)_* U) = 0$ for any X, Y, U. By definition of $g, g(SX, Y) - e^{2H} h(X, Y) = 0$, which implies $(D_X G)((\mathcal{A}_1 \circ f)_* Y, \xi) = 0$. Finally, $(D_X G)(\xi, \xi) = 0$ because $dH = \tau$.

In that way we have defined a symmetric, **C**-bilinear mapping $G : \mathbf{C}^3 \times \mathbf{C}^3 \to \mathbf{C}$. It is easy to check that G is non-degenerate.

Remark 3.28. By the formula (3.36) we have defined the metric tensor g only locally. Let \tilde{h} , \tilde{S} and $\tilde{\tau}$ be induced by $\tilde{\mathcal{A}}_1 \circ f$ and a local section $\tilde{\xi} = (\tilde{\mathcal{A}}_1 \circ f)_*(-\tilde{T}_0) + e_3$ of $\tilde{\mathcal{A}}_1^{\rightarrow} \mathcal{N}$. Since $(\mathcal{A}_1^{\rightarrow})^{-1}\xi$ and $(\tilde{\mathcal{A}}_1^{\rightarrow})^{-1}\tilde{\xi}$ are local holomorphic sections of \mathcal{N} , there exists a holomorphic function ϕ such that $(\tilde{\mathcal{A}}_1^{\rightarrow})^{-1}\tilde{\xi} = \phi (\mathcal{A}_1^{\rightarrow})^{-1}\xi$ on some neighbourhood U of m_0 . From (1.4), (1.5) and (1.6) we obtain $\tilde{h} = \frac{1}{\phi} h$, $\tilde{S} = \phi S$ and $d\tilde{H} = dH + d \log \phi$, where log is some holomorphic branch of logarithm in the neighbourhood of m_0 . If U is connected, then we have $\tilde{H} = H + \log \phi + C$, $C \in \mathbf{C}$, and $\tilde{g} = e^{2C} g$.

Remark 3.29. In [7], B. Opozda has shown that the Ricci tensor Ric of a locally symmetric torsion-free connection of rank 2 on a 2-dimensional real manifold is symmetric and non-degenerate, hence ∇ is the Levi–Civita connection for the metric tensor g := Ric. Following this, we could in the complex case instead of Ric consider, defined in [5], the complex Ricci tensor $\operatorname{ric}(X,Y) = \frac{1}{2} \left[\operatorname{Ric}(X,Y) - i \operatorname{Ric}(X,JY) \right]$ which for a holomorphic connection ∇ is equal to $\operatorname{tr}_{\mathbf{C}} \{V \mapsto R(V,X)Y\}$. In the case of induced connection we obtain $\operatorname{ric}(X,Y) = h(X,Y)\operatorname{tr}_{\mathbf{C}}S - h(SX,Y)$, where h, S are induced by f and some local section of \mathcal{N} . The right-hand side does not depend on the particular section, but on f and \mathcal{N} only. From Lemma O2 it follows that it is symmetric. Let $X \in T_m M$ and let $\operatorname{ric}(X,Y) = 0$ for any $Y \in T_m M$. Then $h(\operatorname{tr}_{\mathbf{C}}SX - SX,Y) = 0$ for any $Y \in T_m M$ and from the non-degeneracy of h it follows that $SX = \operatorname{tr}_{\mathbf{C}}SX$, which for 2-dimensional vector space $T_m M$ and invertible S implies X = 0. Therefore ric is non-degenerate. From $\nabla R = 0$ and $\nabla J = 0$ it follows that $\nabla \operatorname{ric} = 0$. In this way we can on the whole of M define a \mathbf{C} -bilinear metric tensor $\hat{g} := \operatorname{ric}$ such that $\nabla \hat{g} = 0$. According to the complex version of the Cartan–Norden theorem, there exists a \mathbf{C} -bilinear, non-degenerate symmetric $\hat{G}: \mathbf{C}^3 \times \mathbf{C}^3 \to \mathbf{C}$ such that for $X, Y \in TM$,

$$(3.40)$$

$$\widehat{G}((\mathcal{A}_1 \circ f)_*(X), (\mathcal{A}_1 \circ f)_*(Y)) = \widehat{g}(X, Y) \quad \text{and} \quad \widehat{G}((\mathcal{A}_1 \circ f)_*(X), \xi) = 0$$

for any local section of $\mathcal{A}_1^{\rightarrow} \mathcal{N}$. These conditions together with the nondegeneracy of \hat{g} are sufficient to prove the following Lemma 3.30, but in Lemma 3.31 we need not only the formula $\hat{g}(SX,Y) = C_1 e^{2H} h(X,Y)$, which may occur in the proof of the Cartan–Norden theorem, or which we may derive using (3.40), but also there should be $C_1 = 1$, because we use (3.36). To this aim we should locally modify \hat{g} .

From $H_{m_0} = 0$ and $T_{m_0} = 0$ it follows that $G(e_3, e_3) = G(\xi_{m_0}, \xi_{m_0}) = e^{2H_{m_0}} = 1$. There exists a complex linear isomorphism \mathcal{A}_5 of \mathbf{C}^3 such that $\mathcal{A}_5e_1, \mathcal{A}_5e_2, \mathcal{A}_5e_3$ is a *G*-orthonormal basis of \mathbf{C}^3 and $\mathcal{A}_5e_3 = e_3$. Let $\mathcal{A}_6 := \mathcal{A}_5^{-1}$. We have $\mathcal{A}_6e_3 = \mathcal{A}_6\mathcal{A}_5e_3 = e_3$. For the given \mathcal{A}_5 and \mathcal{A}_6 it is easy to find φ_6 and \widehat{F} such that

(3.41)
$$\mathcal{A}_6 \circ \mathcal{A}_1 \circ f \circ \varphi_1^{-1} \circ \varphi_6^{-1}(z, w) = (z, w, \widehat{F}(z, w)).$$

From $\mathcal{A}_6 e_3 = e_3$ it follows that $\mathcal{A}_6 \xi = -(\mathcal{A}_6 \circ \mathcal{A}_1 \circ f)_*(T_0) + e_3$. We can look at ∇ , h, S, τ as at objects induced by $(\mathcal{A}_6 \circ \mathcal{A}_1 \circ f, \mathcal{A}_6 \xi)$. The new function \widehat{F} from now on we shall denote by F.

Lemma 3.30.

$$T_{0} = \frac{F_{z}}{1 + F_{z}^{2} + F_{w}^{2}} \frac{\partial}{\partial z^{1}} + \frac{F_{w}}{1 + F_{z}^{2} + F_{w}^{2}} \frac{\partial}{\partial w^{1}}$$

Proof. From (3.41) we obtain $(\mathcal{A}_6 \circ \mathcal{A}_1 \circ f)_* \left(\frac{\partial}{\partial z^1}\right) = e_1 + F_z e_3, (\mathcal{A}_6 \circ \mathcal{A}_1 \circ f)_* \left(\frac{\partial}{\partial w^1}\right) = e_2 + F_w e_3, \text{ and consequently } (\mathcal{A}_1 \circ f)_* \left(\frac{\partial}{\partial z^1}\right) = \mathcal{A}_5 e_1 + F_z \mathcal{A}_5 e_3,$

$$(\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial w^{1}}\right) = \mathcal{A}_{5} e_{2} + F_{w} \mathcal{A}_{5} e_{3}. \text{ Hence}$$

$$g\left(T_{0}, \frac{\partial}{\partial z^{1}}\right) = G\left(\xi + (\mathcal{A}_{1} \circ f)_{*}(T_{0}), (\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial z^{1}}\right)\right)$$

$$(3.42) = G(\mathcal{A}_{5}e_{3}, \mathcal{A}_{5}e_{1} + F_{z}\mathcal{A}_{5}e_{3}) = F_{z},$$

$$g\left(T_{0}, \frac{\partial}{\partial w^{1}}\right) = G\left(\xi + (\mathcal{A}_{1} \circ f)_{*}(T_{0}), (\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial w^{1}}\right)\right)$$

$$(3.43) = G(\mathcal{A}_{5}e_{3}, \mathcal{A}_{5}e_{2} + F_{w}\mathcal{A}_{5}e_{3}) = F_{w},$$

$$g\left(\frac{\partial}{\partial z^{1}}, \frac{\partial}{\partial z^{1}}\right) = G\left((\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial z^{1}}\right), (\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial z^{1}}\right)\right)$$

$$(3.44) = G(\mathcal{A}_{5}e_{1} + F_{z}\mathcal{A}_{5}e_{3}, \mathcal{A}_{5}e_{1} + F_{z}\mathcal{A}_{5}e_{3}) = 1 + F_{z}^{2},$$

$$g\left(\frac{\partial}{\partial z^{1}}, \frac{\partial}{\partial w^{1}}\right) = G\left((\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial z^{1}}\right), (\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial w^{1}}\right)\right)$$

$$(3.45) = G(\mathcal{A}_{5}e_{1} + F_{z}\mathcal{A}_{5}e_{3}, \mathcal{A}_{5}e_{2} + F_{w}\mathcal{A}_{5}e_{3}) = F_{z}F_{w},$$

$$g\left(\frac{\partial}{\partial w^{1}}, \frac{\partial}{\partial w^{1}}\right) = G\left((\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial w^{1}}\right), (\mathcal{A}_{1} \circ f)_{*} \left(\frac{\partial}{\partial w^{1}}\right)\right)$$

$$(3.46) = G(\mathcal{A}_{5}e_{2} + F_{w}\mathcal{A}_{5}e_{3}, \mathcal{A}_{5}e_{2} + F_{w}\mathcal{A}_{5}e_{3}) = 1 + F_{w}^{2}.$$

Let $T_0 = a \frac{\partial}{\partial z^1} + b \frac{\partial}{\partial w^1}$. From (3.42) to (3.46) we obtain the following system of linear equations:

$$(1 + F_z^2) a + F_z F_w b = F_z,F_z F_w a + (1 + F_w^2) b = F_w.$$

It remains to find the solution a, b and the lemma follows. We use here the fact that g is non-degenerate, which implies

$$g\left(\frac{\partial}{\partial z^1},\frac{\partial}{\partial z^1}\right) g\left(\frac{\partial}{\partial w^1},\frac{\partial}{\partial w^1}\right) - g\left(\frac{\partial}{\partial z^1},\frac{\partial}{\partial w^1}\right) g\left(\frac{\partial}{\partial z^1},\frac{\partial}{\partial w^1}\right) \neq 0.$$

Let Z, W be a basis of $T_x M$. For **C**-bilinear g and a holomorphic connection ∇ such that $\nabla g = 0$

$$\kappa := \frac{g(R(Z,W)W,Z)}{g(Z,Z)g(W,W) - g(Z,W)g(W,Z)}$$

is a complex valued analogue of the sectional curvature of 2-dimensional real manifold. It is easy to check that κ does not depend on the choice of the basis and depends on x only.

Lemma 3.31. If dim_C M = 2, $\nabla R = 0$, g is a C-bilinear metric tensor on $U \subset M$ such that $\nabla g = 0$ and U is connected, then $\kappa = \text{const.}$

Proof. We take a local basis E, F such that g(E, E) = g(F, F) = 1 and g(E, F) = 0. Since $\nabla g = 0$, there exists a complex valued 1-form ω such that $\nabla_X E = \omega(X) F$ and $\nabla_X F = -\omega(X) E$. As $\nabla g = 0$ and $\nabla R = 0$ we have

$$X(\kappa) = X(g(R(E, F)F, E))$$

= $g(R(\nabla_X E, F)F + R(E, \nabla_X F)F + R(E, F)\nabla_X F, E)$
+ $g(R(E, F)F, \nabla_X E) = 0$

because R(X,Y) = -R(Y,X) and g(R(K,L)M,N) = -g(R(K,L)N,M). \Box

Lemma 3.32. F satisfies the differential equation

$$F_{zz}F_{ww} - F_{zw}F_{zw} = \kappa (1 + F_z^2 + F_w^2)^2.$$

Proof. Let $H := -\frac{1}{2} \log(1 + F_z^2 + F_w^2)$, where log is a holomorphic branch of logarithm, defined in the neighbourhood of 1. Then

$$dH(X) = -\frac{F_z X(F_z) + F_w X(F_w)}{1 + F_z^2 + F_w^2} = -\frac{F_z h \left(X, \partial/\partial z^1\right) + F_w h \left(X, \partial/\partial w^1\right)}{1 + F_z^2 + F_w^2}$$

= -h(X, T_0) = \tau(X).

Since $T_{0m_0} = 0$, from Lemma 3.30 we obtain $F_z(z_0, w_0) = 0$ and $F_w(z_0, w_0) = 0$, where $(z_0, w_0) = \varphi_6 \circ \varphi_1(m_0)$. Therefore $H_{m_0} = 0$. It follows that we may use H to define g. From (1.7), (2.5) and (3.36), we obtain

(3.47)
$$g\left(R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right)\frac{\partial}{\partial w^1}, \frac{\partial}{\partial z^1}\right) = e^{2H}\left(F_{zz}F_{ww} - F_{zw}F_{zw}\right).$$

By (3.44) to (3.46) we have

$$g\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial z^{1}}\right)g\left(\frac{\partial}{\partial w^{1}},\frac{\partial}{\partial w^{1}}\right) - g\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)g\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)$$
$$= 1 + F_{z}^{2} + F_{w}^{2}.$$

It follows that $e^{2H} \left(F_{zz} F_{ww} - F_{zw} F_{zw} \right) = \kappa (1 + F_z^2 + F_w^2)$, hence

$$F_{zz}F_{ww} - F_{zw}F_{zw} = \kappa e^{-2H} \left(1 + F_z^2 + F_w^2\right) = \kappa \left(1 + F_z^2 + F_w^2\right)^2.$$

To prove Lemma 3.32 one can also directly compute SX as $\nabla_X T_0$, then using the Gauss equation compute R and using (3.44)–(3.46) express κ by the derivatives of F.

Let β be a complex number such that $\beta^2 = \kappa$. Let $\mathcal{A}_7(z, w, u) := (\beta z, \beta w, \beta u), \varphi_7(z, w) := (\beta z, \beta w), \mathcal{A} := \mathcal{A}_7 \circ \mathcal{A}_6 \circ \mathcal{A}_1$ and $\varphi = \varphi_7 \circ \varphi_6 \circ \varphi_1$. It is easy to check that $\mathcal{A} \circ f \circ \varphi^{-1}(\widetilde{z}, \widetilde{w}) = (\widetilde{z}, \widetilde{w}, \beta F\left(\frac{1}{\beta}\widetilde{z}, \frac{1}{\beta}\widetilde{w}\right))$. As a local section of $\mathcal{A}^{\rightarrow}\mathcal{N}$ we take $\frac{1}{\beta}\mathcal{A}_7 \circ \mathcal{A}_6\xi = -(\mathcal{A} \circ f)_*\left(\frac{1}{\beta}T_0\right) + e_3 =: -(\mathcal{A} \circ f)_*(\widetilde{T}_0) + e_3$. Let $\widetilde{F}(\widetilde{z}, \widetilde{w}) := \beta F\left(\frac{1}{\beta}\widetilde{z}, \frac{1}{\beta}\widetilde{w}\right)$, then \widetilde{F} satisfies the differential equation

 $\widetilde{F}_{\widetilde{z}\widetilde{z}}\widetilde{F}_{\widetilde{w}\widetilde{w}} - \widetilde{F}_{\widetilde{z}\widetilde{w}}\widetilde{F}_{\widetilde{z}\widetilde{w}} = (1 + \widetilde{F}_{\widetilde{z}}^{2} + \widetilde{F}_{\widetilde{w}}^{2})^{2}.$

From $\widetilde{F}_{\widetilde{z}}(\widetilde{z},\widetilde{w}) = F_z\left(\frac{1}{\beta}\widetilde{z},\frac{1}{\beta}\widetilde{w}\right)$ and $\widetilde{F}_{\widetilde{w}}(\widetilde{z},\widetilde{w}) = F_w\left(\frac{1}{\beta}\widetilde{z},\frac{1}{\beta}\widetilde{w}\right)$ it follows that $\widetilde{F}_{\widetilde{z}}(\varphi(m)) = F_z(\varphi_6 \circ \varphi_1(m))$ and $\widetilde{F}_{\widetilde{w}}(\varphi(m)) = F_w(\varphi_6 \circ \varphi_1(m))$, therefore

$$\begin{split} \widetilde{T}_0 &= \frac{F_z}{1 + F_z{}^2 + F_w{}^2} \frac{1}{\beta} \frac{\partial}{\partial z^1} + \frac{F_w}{1 + F_z{}^2 + F_w{}^2} \frac{1}{\beta} \frac{\partial}{\partial w^1} \\ &= \frac{\widetilde{F}_{\widetilde{z}}}{1 + \widetilde{F}_{\widetilde{z}}{}^2 + \widetilde{F}_{\widetilde{w}}{}^2} \frac{\partial}{\partial \widetilde{z}^1} + \frac{\widetilde{F}_{\widetilde{w}}}{1 + \widetilde{F}_{\widetilde{z}}{}^2 + \widetilde{F}_{\widetilde{w}}{}^2} \frac{\partial}{\partial \widetilde{w}^1}. \end{split}$$

It is easy to check that the equiaffine section of $\mathcal{A}^{\rightarrow}\mathcal{N}$

$$\xi_{\text{eq}} = -\mathcal{A} \circ f_* \left(\frac{F_z}{\sqrt{F_z^2 + F_w^2 + 1}} \frac{\partial}{\partial z^1} + \frac{F_w}{\sqrt{F_z^2 + F_w^2 + 1}} \frac{\partial}{\partial w^1} \right) + \sqrt{F_z^2 + F_w^2 + 1} e_5$$

is the complex affine normal vector field.

4. Examples

1. Let $4AC-B^2=1,\ F(z,w)=Az^2+Bzw+Cw^2+Kz+Lw,\ \eta(\zeta)=e^{\zeta}.$ We have then

$$F_{zz}F_{ww} - F_{zw}F_{zw} = 1,$$

$$T_0 = \frac{\partial}{\partial z^1}, \quad \xi = (-1, 0, -2Az - Bw - K + 1).$$

Note that at no point m_0 , $T_{0m_0} = 0$, but in Proposition 2.1 we do not need such point. The equiaffine section of \mathcal{AN} is

$$\xi_{\text{eq}} = \eta(F_z)\xi = (-e^{2Az + Bw + K}, 0, e^{2Az + Bw + K}(-2Az - Bw - K + 1)).$$

Maria Robaszewska

2. Let $4AC - B^2 = -1$, $F(z, w) = Az^2 + Bzw + Cw^2 + Kz + Lw$, $\eta(\zeta) = \sin \zeta$. Then

$$F_{zz}F_{ww} - F_{zw}F_{zw} = -1,$$

$$T_0 = \cot(2Az + Bw + K)\frac{\partial}{\partial z^1},$$

$$\xi = (-\cot(2Az + Bw + K), 0, -(2Az + Bw + K)\cot(2Az + Bw + K) + 1),$$

$$\xi_{eq} = (-\cos(2Az + Bw + K), 0,$$

$$-(2Az + Bw + K)\cos(2Az + Bw + K) + \sin(2Az + Bw + K)).$$

3. Let
$$F(z,w) = z^2 e^{iw}$$
, $\eta(\zeta) = \frac{1}{2} \zeta^2$. Then $F_{zz}F_{ww} - F_{zw}F_{zw} = \frac{1}{2}F_z^2$.

$$T_0 = \frac{1}{z} e^{-iw} \frac{\partial}{\partial z^1}, \ \xi = \left(-\frac{1}{z} e^{-iw}, 0, -1\right), \ \xi_{eq} = \left(-2z e^{iw}, 0, -2z^2 e^{2iw}\right).$$

- 4. Warped helicoid. An example of locally symmetric complex surface with ∇ induced by the complex affine normal vector field is a warped helicoid (see [2]). Under a suitable parametrization it can be described by a solution F of the differential equation $F_{zz}F_{ww} - F_{zw}F_{zw} = (1 + F_z^2)^2$ which we obtain, taking in (2.1) $\eta(\zeta) = \sqrt{\zeta^2 + 1}$. In this case the solution is $F(z,w) = (z - f_1(iw)) \tan(iw) + f_2(iw)$, where f_1 and f_2 are holomorphic functions of one variable. The surface $(z,w) \rightarrow$ (z,w,F(z,w)) is a warped helicoid, because $z_1 := z$, $z_2 := F(z,w)$, $z_3 := iw$ satisfy the equation $(z_1 - f_1(z_3)) \sin z_3 = (z_2 - f_2(z_3))$ $\cos z_3$, and $(z,w,F(z,w)) = \mathcal{B}(z_1,z_2,z_3)$ where $\mathcal{B} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -i \\ 0 & 1 & 0 \end{pmatrix}$ is an equiaffine transformation. We obtain $T_0 = \sin(iw) \cos(iw) \frac{\partial}{\partial z^1}$, $\xi =$ $(-\sin(iw) \cos(iw), 0, \cos^2(iw))$ and $\xi_{eq} = (-\sin(iw), 0, \cos(iw))$.
- 5. As an example of locally symmetric complex surface of rank 2 let us take $F(z,w) = \sqrt{1-z^2-w^2}$. Then $T_0 = -\sqrt{1-z^2-w^2}$ $\left(z\frac{\partial}{\partial z^1} + w\frac{\partial}{\partial w^1}\right), \quad \xi = \sqrt{1-z^2-w^2}(z,w,\sqrt{1-z^2-w^2})$ and $\xi_{eq} = (z,w,\sqrt{1-z^2-w^2}) = (z,w,F(z,w)).$

Acknowledgement

This research was supported by KBN grant no. 1P03A 03426.

References

- F. Dillen, L. Vrancken and L. Verstraelen, *Complex affine differential geometry*, Preprint, Reihe Mathematik, Fachbereich 3 T.U. Berlin, No. 153 (1986).
- [2] F. Dillen, Locally symmetric complex affine surfaces, J. Geom. 33 (1988), 27–38.
- [3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, John Wiley and Sons, New York, 1963.
- [4] K. Nomizu and T. Sasaki, Affine differential geometry, Cambridge University Press, 1994.
- [5] B. Opozda, On some properties of the curvature and Ricci tensors in complex affine geometry, Geom. Dedicata 55 (1995), 141–163.
- [6] B. Opozda, Equivalence theorems for complex affine hypersurfaces, Result. Math. 27 (1995), 316–327.
- B. Opozda, Some relations between Riemannian and affine geometry, Geom. Dedicata 47 (1993), 225–236.
- [8] B. Opozda, Locally symmetric connections on surfaces, Result. Math. 20 (1991), 725–743.
- [9] M. Robaszewska, Locally symmetric connections on complex hypersurfaces with type number 1, Geom. Dedicata 114 (2005), 13–47.

INSTYTUT MATEMATYKI, AKADEMIA PEDAGOGICZNA, UL. PODCHORĄŻYCH 2, 30-084 KRAKÓW, POLAND. *E-mail address*: robaszew@ap.krakow.pl

RECEIVED JUNE 20, 2007