Locally symmetric connections on complex surfaces and some equations of Monge-Ampère type

Maria Robaszewska

We study locally symmetric connections induced by transversal bundles on non-degenerate complex surfaces. Each of such surfaces together with its transversal bundle can be described locally by a solution to some partial differential equation of Monge-Ampère type.

1. Introduction

Let M be an *n*-dimensional connected complex manifold and $f : M \to \mathbb{C}^{n+1}$ a holomorphic immersion. Let $\mathcal N$ be a $\mathcal C^{\infty}$ transversal bundle, that is,

$$
\mathcal{N}=\bigcup_{p\in M}\mathcal{N}_p,
$$

where \mathcal{N}_p is a complex vector subspace of $\mathbb{C}^{n+1} \cong \mathbb{R}^{2n+2}$ such that $f_*(T_pM) \oplus \mathcal{N}_p = \mathbb{C}^{n+1}$. The \mathcal{C}^{∞} class means that for any $q \in M$ there exists a neighbourhood U of q such that $\mathcal{N}|_U$ is spanned over **C** by a vector field ξ on \mathbb{C}^{n+1} defined along f :

$$
M \supset U \ni p \mapsto \xi_p \in T_{f(p)} \mathbf{C}^{n+1} \cong \mathbf{C}^{n+1},
$$

which is of class \mathcal{C}^{∞} and not necessarily holomorphic.

The connection ∇, the **C**-bilinear symmetric affine fundamental form $h = h_1 + ih_2$, the affine shape operator S and the transversal connection form $\tau = \mu + i\nu$ which are induced on U by f and ξ are defined by the following Gauss and Weingarten formulae:

(1.1)
$$
D_X f_* Y = f_* \nabla_X Y + h_1(X, Y) \xi + h_2(X, Y) J \xi
$$

(1.2)
$$
D_X \xi = -f_* SX + \mu(X)\xi + \nu(X)J\xi
$$

(see, e.g., [4, 5]). Here D denotes the standard connection on \mathbb{C}^{n+1} . The manifold M is regarded as a 2n-dimensional real manifold with the complex

structure J. To simplify notation, we use the same letter J for the complex structure in $\mathbf{C}^{n+1} \cong \mathbf{R}^{2n+2}$. The identification of \mathbf{C}^k with \mathbf{R}^{2k} is given by: $(z¹ + iz²,..., z^{2k-1} + iz^{2k}) \mapsto (z¹, z²,..., z^{2k-1}, z^{2k}).$

If we replace vector field ξ by $\xi = \varphi \xi + \vartheta J \xi + f_* Z$, then we obtain ∇ , h, S and $\widetilde{\tau}$:

(1.3)
$$
\widetilde{\nabla}_X Y = \nabla_X Y - \frac{1}{\varphi + i\vartheta} h(X, Y) Z,
$$

(1.4)
$$
\widetilde{h} = \frac{1}{\varphi + i\vartheta} h,
$$

(1.5)
$$
\widetilde{S}X = (\varphi + i\vartheta)SX - \nabla_X Z + \widetilde{\tau}(X)Z,
$$

$$
Y(\varphi) + iY(\vartheta) = 1
$$

(1.6)
$$
\widetilde{\tau}(X) = \frac{X(\varphi) + iX(\vartheta)}{\varphi + i\vartheta} + \frac{1}{\varphi + i\vartheta} h(X, Z) + \tau(X).
$$

Let ξ and ξ be two local sections of N. Then we have $\xi = (\varphi + i\vartheta) \xi$ and $Z = 0$, therefore $\widetilde{\nabla}_X Y = \nabla_X Y$ for any \mathcal{C}^{∞} vector fields X, Y on U. It follows that ∇ depends on $\mathcal N$ only and can be defined on the whole of M . Moreover, the complex rank of affine fundamental form h does not depend on the transversal bundle N. We call it the type number of f. This type number is constant on a dense open subset M' of M [6]. The immersion is called non-degenerate, if h is non-degenerate $(\forall X \neq 0 \exists Y : h(X, Y) \neq 0)$.

The induced connection ∇ , he affine fundamental form h, the shape operator S and the transversal connection form τ satisfy the following fundamental equations.

Gauss equation:

$$
(1.7) \t R(X,Y)Z = h(Y,Z)SX - h(X,Z)SY.
$$

Codazzi equation for h:

(1.8)
$$
(\nabla_X h)(Y, Z) + \tau(X) h(Y, Z) = (\nabla_Y h)(X, Z) + \tau(Y) h(X, Z).
$$

Codazzi equation for S :

(1.9)
$$
(\nabla_X S)(Y) - \tau(X) SY = (\nabla_Y S)(X) - \tau(Y) SX.
$$

Ricci equation:

(1.10)
$$
h(X, SY) - h(SX, Y) = 2 d\tau(X, Y).
$$

If f is non-degenerate, there exists some canonical transversal bundle $$ the *complex affine normal bundle –* which is the bundle of affine normal complex lines. According to the definition given by F. Dillen, L. Vrancken and L. Verstraelen in $[1]$ (see also $[2]$), the affine normal complex line of M at p is a complex line in $T_{f(p)} \mathbb{C}^{n+1}$ determined by the complex affine normal vector ξ_p . The complex affine normal vector field ξ is a local vector field on \mathbb{C}^{n+1} defined along f satisfying the following two conditions:

$$
{}^{\mathbf{C}}H_{\xi}=1 \quad \text{and} \quad \tau=0.
$$

Here τ is a transversal connection form and

$$
\mathbf{C}_{H_{\xi}} := \left| \det \left[h(X_k, X_l) \right]_{k,l=1}^n \right|^2,
$$

where X_1, \ldots, X_n is a local complex basis of TM such that

$$
\left| \begin{matrix} \mathbf{C} \\ \omega(f_*X_1,\ldots,f_*X_n,\xi) \end{matrix} \right| = 1.
$$

The symbol C_{ω} denotes the complex volume form on C^{n+1} such that $\mathbf{C}_{\omega}(e_1,\ldots,e_{n+1}) = 1$ for the standard basis e_1,\ldots,e_{n+1} of \mathbf{C}^{n+1} . Actually, if $\text{for } k = 1, \ldots, n + 1, Y_k = \sum_{l=1}^{n+1} Y_k^l e_l, \text{ then }^{\mathbf{C}} \omega(Y_1, \ldots, Y_{n+1}) = \det \left[Y_k^l \right]_{k,l=1}^{n+1}.$

If ξ and ξ are complex affine normal vector fields defined on the same
in density U than there with a goal number θ and that $\widetilde{\zeta} = i\theta \in [1]$. It open domain U, then there exists a real number θ such that $\tilde{\xi} = e^{i\theta} \xi$ [1]. It follows that for any $p \in M$ the affine normal complex line at p is uniquely determined.

The aim of this paper is to give a local description of some of those immersions and transversal bundles for which the induced connection ∇ is locally symmetric. The local symmetry of ∇ is equivalent to the condition $\nabla R = 0$, where R is the curvature tensor of ∇ [3]. Here we consider the case of a non-degenerate immersion, $\dim_{\bf C} M = 2$ and we shall study connections of ranks 1 and 2. By the rank of locally symmetric connection we mean, following [8], the (complex) dimension of the subspace

(1.11)
$$
\text{im} R_x := \text{span}_{\mathbf{R}} \{ R(X, Y)Z : X, Y, Z \in T_x M \}.
$$

For any $x \in M$, (1.11) is a complex subspace of T_xM . If $\nabla R = 0$ and M is connected, then $\dim \mathrm{im} R_x$ does not depend on x. We shall also use the subspace

(1.12)
$$
\ker R_x := \bigcap_{X,Y \in T_x M} \ker R(X,Y).
$$

Let us denote by r the type number of f on M' and by π the projection of \mathbb{C}^{n+1} onto \mathbb{C}^{r+1} parallel to $\mathbb{C}^{n-r} \cong f_*(\ker h)$. The following theorem, which in particular gives the full classification of locally symmetric hypersurfaces with $r > 2$, has been proved by B. Opozda in [5].

Theorem 1.1. Let $f : M \to \mathbb{C}^{n+1}$ be a complex hypersurface endowed with a complex transversal vector bundle N inducing a non-flat locally symmetric connection ∇ . Then around every point $x \in M'$ there is an open neighbourhood U of x of the form $N' \times N^0$, where N^0 endowed with ∇ restricted to N^0 is affine isomorphic by f to an open subset of \mathbb{C}^{n-r} and N' is immersed by f into \mathbb{C}^{r+1} as a non-degenerate hypersurface. If $r > 1$, then the bundle $\pi(\mathcal{N})|_U$ is holomorphic and induces a locally symmetric connection ∇' on U as well as on N'. If $r > 2$, then ∇' is flat or $f(N')$ is an open part of a central quadric in \mathbb{C}^{r+1} . If $r > 1$ and ∇ is affine Kähler [i.e., $R(JX, JY) = R(X, Y)$ for any X, Y, then ∇' is flat.

A local description of complex hypersurfaces with type number one endowed with transversal bundles inducing locally symmetric connections is given in [9].

In the present paper we associate with any locally symmetric complex surface some partial differential equation such that this surface is locally equivalent to the graph of a solution F to this equation and the transversal bundle is also determined by this solution. It is known that the real equation $F_{xx}F_{yy} - F_{xy}F_{xy} = \kappa(1 + F_x^2 + F_y^2)^2$ describes the Euclidean surfaces with constant Gauss curvature κ . Similar description we obtain for complex locally symmetric surfaces in the case of dim $\text{im}R = 2$, because in this case ∇ turns out to be metrizable in the sense that there exists non-degenerate, **C**-bilinear, symmetric g such that $\nabla g = 0$. The local symmetry implies that the complex sectional curvature of M is then constant. The connection ∇ is induced by the transversal bundle which is perpendicular to $f_*(TM)$ with respect to some **C**-bilinear metric G in \mathbb{C}^3 . The surface (M, g) is isometrically immersed in (\mathbb{C}^3, G) .

In the case of dim im $R = 1$ the equation has the form $F_{zz}F_{ww} - F_{zw}F_{zw} =$ $\Phi(F_z)$ with some arbitrary holomorphic function Φ , which is also associated with the given surface. A local section of the transversal bundle may be expressed in terms of F_z and η , where η is a holomorphic function such that $\Phi = \frac{\eta}{\eta''}$. If N is the complex affine normal bundle, then Φ is more strictly determined and the right-hand side of the equation has the form $(1 + F_z^2)^2$.

2. Locally symmetric connections of rank 1 on surfaces a class of examples

Let V be an open subset of **C**. Let $\eta: V \to \mathbb{C}$ be a holomorphic function such that $\forall \zeta \in V : \eta(\zeta) \neq 0$ and $\forall \zeta \in V : \eta''(\zeta) \neq 0$. Let the holomorphic function $F = F^1 + iF^2 : U \to \mathbb{C}$ of two variables $z = z^1 + iz^2$, $w = w^1 + iw^2$ satisfy the following partial differential equation:

(2.1)
$$
F_{zz}F_{ww} - F_{zw}F_{zw} = \frac{\eta(F_z)}{\eta''(F_z)}.
$$

Let e_1, e_2, e_3 be the standard basis of \mathbb{C}^3 . As a local basis of TM over **C** we shall use the vector fields $\frac{\partial}{\partial z^1}$ and $\frac{\partial}{\partial w^1}$. For $\alpha, \beta \in \mathbf{R}$ we have $(\alpha +$ $i\beta\big)\frac{\partial}{\partial z^1} = \alpha \frac{\partial}{\partial z^1} + \beta \frac{\partial}{\partial z^2}$ and likewise for the w-variables.

Proposition 2.1. The transversal vector field

(2.2)
$$
\xi = f_*(-T_0) + e_3
$$

with

(2.3)
$$
T_0 = \frac{\eta'(F_z)}{\eta(F_z)} \frac{\partial}{\partial z^1}
$$

induces on the surface

(2.4)
$$
f: U \ni (z, w) \mapsto (z, w, F(z, w)) \in \mathbf{C}^3
$$

a real holomorphic, locally symmetric connection of rank 1.

Proof. A connection ∇ is real holomorphic if and only if its curvature tensor R satisfies the condition $R(JX, Y) = JR(X, Y)$ for all X, Y [4]. From the Cauchy–Riemann equations for the holomorphic function $\eta'(F_z)/\eta(F_z)$ it follows easily that $\nabla_{JY}T_0 = J\nabla_Y T_0$ for any Y. Consequently $D_{JY}\xi = JD_Y\xi$ for any Y, which is equivalent to the condition that ξ is real holomorphic and S, τ are **C**-linear (see [4]). Therefore $R(JX, Y)Z = JR(X, Y)Z$ for any X by the Gauss equation.

Using the Gauss and Weingarten formulae for the immersion (2.4), which we identify with $(z^1, z^2, w^1, w^2) \mapsto (z^1, z^2, w^1, w^2, F^1(z, w), F^2(z, w))$, and the transversal field (2.2), where e_3 when looked at as an element of \mathbb{R}^6 is equal to $(0, 0, 0, 0, 1, 0)$, we easily obtain

(2.5)
\n
$$
h\left(\frac{\partial}{\partial z^{i}}, \frac{\partial}{\partial z^{j}}\right) = \frac{\partial^{2} F^{1}}{\partial z^{i} \partial z^{j}} + i \frac{\partial^{2} F^{2}}{\partial z^{i} \partial z^{j}},
$$
\n
$$
h\left(\frac{\partial}{\partial z^{i}}, \frac{\partial}{\partial w^{j}}\right) = \frac{\partial^{2} F^{1}}{\partial z^{i} \partial w^{j}} + i \frac{\partial^{2} F^{2}}{\partial z^{i} \partial w^{j}},
$$
\n
$$
h\left(\frac{\partial}{\partial w^{i}}, \frac{\partial}{\partial w^{j}}\right) = \frac{\partial^{2} F^{1}}{\partial w^{i} \partial w^{j}} + i \frac{\partial^{2} F^{2}}{\partial w^{i} \partial w^{j}},
$$
\n(2.6)
\n
$$
\nabla_{X} \frac{\partial}{\partial z^{1}} = X(F_{z})T_{0}, \quad \nabla_{Y} \frac{\partial}{\partial w^{1}} = Y(F_{w})T_{0}.
$$

$$
(2.7) \t\t SX = \nabla_X T_0,
$$

$$
\tau(X) = -h(X, T_0).
$$

Here for a complex valued function $f = f_1 + if_2$ by $X(f)$ we mean $X(f_1)$ + $iX(f_2)$ and for a holomorphic function F we have

(2.9)
$$
\frac{\partial F}{\partial z} = \frac{\partial F^1}{\partial z^1} + i \frac{\partial F^2}{\partial z^1}, \quad \frac{\partial F}{\partial w} = \frac{\partial F^1}{\partial w^1} + i \frac{\partial F^2}{\partial w^1}.
$$

Using (2.3) , (2.6) and (2.7) , we obtain

(2.10)
$$
SX = X(F_z) \frac{\eta''(F_z)}{\eta(F_z)} \frac{\partial}{\partial z^1}.
$$

From (1.7) , (2.1) and (2.5) , it follows that

$$
R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) \frac{\partial}{\partial z^1} = F_{wz}S\frac{\partial}{\partial z^1} - F_{zz}S\frac{\partial}{\partial w^1}
$$

$$
= (F_{wz}F_{zz} - F_{zz}F_{wz})\frac{\eta''(F_z)}{\eta(F_z)}\frac{\partial}{\partial z^1} = 0,
$$

$$
R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right)\frac{\partial}{\partial w^1} = F_{ww}S\frac{\partial}{\partial z^1} - F_{zw}S\frac{\partial}{\partial w^1}
$$

$$
= (F_{ww}F_{zz} - F_{zw}F_{wz})\frac{\eta''(F_z)}{\eta(F_z)}\frac{\partial}{\partial z^1} = \frac{\partial}{\partial z^1},
$$

and it is easy to check that $\nabla R = 0$. \Box

3. The classification theorem

Here and subsequently, A^{\rightarrow} denotes the linear part of an affine map A. The symbol dim stands for the complex dimension dim \mathbf{c} .

Theorem 3.1. Let M be a two-dimensional complex manifold and $f: M \to \mathbb{C}^3$ a non-degenerate holomorphic immersion. Assume that M is endowed with \mathcal{C}^{∞} transversal bundle N inducing on M a non-flat locally symmetric connection ∇ . Let R be the curvature tensor of ∇ .

Then for any $m_0 \in M$ there exist a neighbourhood U of m_0 , a complex chart $\varphi: U \to \mathbb{C}^2$, an affine complex isomorphism A of \mathbb{C}^3 and a holomorphic function F of two variables such that

(i) $\mathcal{A} \circ f \circ \varphi^{-1}(z,w) = (z,w,F(z,w)),$

(ii) $\xi = (\mathcal{A} \circ f)_*(-T_0) + e_3$, with some vector field T_0 on U, is a local section of $A^{\rightarrow} \mathcal{N}$.

Moreover, A and φ may be chosen in such a way that F and T_0 satisfy the following conditions:

(iii) If dim im $R = 1$, then T_0 is described by (2.3) with some holomorphic function η of one variable and F satisfies the differential equation (2.1).

(iv) If dim im $R = 1$ and N is the complex affine normal bundle, then

(3.1)
$$
T_0 = \frac{F_z}{1 + F_z^2} \frac{\partial}{\partial z^1}
$$

and F satisfies the differential equation

(3.2)
$$
F_{zz}F_{ww} - F_{zw}F_{zw} = (1 + F_z^2)^2.
$$

(v) If dim im $R = 2$, then N is the complex affine normal bundle,

(3.3)
$$
T_0 = \frac{F_z}{1 + F_z^2 + F_w^2} \frac{\partial}{\partial z^1} + \frac{F_w}{1 + F_z^2 + F_w^2} \frac{\partial}{\partial w^1}
$$

and F satisfies the differential equation:

(3.4)
$$
F_{zz}F_{ww} - F_{zw}F_{zw} = (1 + F_z^2 + F_w^2)^2.
$$

Proof. Let $m_0 \in M$. Since the immersion f is locally a graph, we may choose a complex chart φ_1 on some neighbourhood U of m_0 and a complex isomorphism A_1 of \mathbb{C}^3 such that

(3.5)
$$
A_1 \circ f \circ \varphi_1^{-1}(z, w) = (z, w, F(z, w))
$$

with a holomorphic function F of two variables z, w and such that

(3.6) A[→] ¹ Nm⁰ = **C**e3.

We may assume that $\left(\frac{\partial}{\partial z^1}\right)_{m_0} \notin \ker R_{m_0}$ and $\left(\frac{\partial}{\partial w^1}\right)_{m_0} \notin \ker R_{m_0}$, for if not, we replace φ_1 by $\psi \circ \varphi_1$ and \mathcal{A}_1 by $\mathcal{A}_2 \circ \mathcal{A}_1$, where $\psi(z,w)=(\alpha z + \beta w, \gamma z +$ δw) and $\mathcal{A}_2(z,w,u)=(\alpha z + \beta w, \gamma z + \delta w, u)$ with some appropriate complex constants $\alpha, \beta, \gamma, \delta$. We can also assume, by decreasing U if necessary, that the condition $\frac{\partial}{\partial z^1} \notin \ker R$ and $\frac{\partial}{\partial w^1} \notin \ker R$ is satisfied on the whole of U.

The pair $(\mathcal{A}_1 \circ f, \mathcal{A}_1^{\rightarrow} \mathcal{N})$ induces on M the same connection ∇ as the pair (f, \mathcal{N}) and $\mathcal{A}_1 \circ f$ is also a non-degenerate immersion.

Let $\hat{\xi}: U \to \mathbf{C}^3$ be a local section of $\mathcal{A}^{\rightarrow}_1 \mathcal{N}$. Since e_3 is transversal to $(\mathcal{A}_1 \circ f)_*(T_{m_0}M)$, on some neighbourhood U' of m_0 we have a decomposition $\xi = (A_1 \circ f)_*(-T_1) + \lambda e_3$ where λ is a complex valued function
run that $\forall x \in U'$ $\lambda(x) \neq 0$. Distribute $\hat{\epsilon}$ has λ are above the society $\hat{\epsilon}$. such that $\forall x \in U' : \lambda(x) \neq 0$. Dividing $\hat{\xi}$ by λ we obtain the section $\xi =$ $-(\mathcal{A}_1 \circ f)_*(T_0) + e_3$ of $\mathcal{A}_1^{\rightarrow} \mathcal{N}$. From (3.6) it follows that $T_{0m_0} = 0$. From the Gauss and Weingarten formulae we obtain (2.5) to (2.8) for ∇ , h, S and τ induced by $(\mathcal{A}_1 \circ f, \xi)$.

Locally symmetric connection is semi-symmetric, which means that $R(X,Y) \cdot R = 0$ for any X, Y; here $R(X,Y)$ acts on R as a derivation. Therefore for any $m \in U$ we can apply to h_m , S_m and R_m the following algebraic lemma [5].

Lemma O1 Let V be a complex vector space, $\dim_{\mathbb{C}} V > 1$, endowed with a **C**-bilinear symmetric non-degenerate form h. Let R be a tensor of type $(1,3)$ on V and S an **R**-linear endomorphism of V satisfying the Gauss equation

$$
R(X,Y)Z = h(Y,Z)SX - h(X,Z)SY.
$$

If for every $X \in \mathcal{V}$, $R(X, JX) \cdot R = 0$, then S is complex $[\mathbf{C}\text{-linear}]$.

The following two lemmas are consequences of the **C**-linearity of S.

Lemma 3.2. If $\nabla R = 0$, then ∇ is a real holomorphic connection, that is, $R(X, Y)$ is **C**-linear in X and Y.

Proof. The claimed **C**-linearity of R follows from the Gauss equation (1.7). \Box

Lemma 3.3. ξ is a holomorphic section of $\mathcal{A}_1^{\rightarrow} \mathcal{N}$ and T_0 is a holomorphic vector field.

Proof. From (2.8) and from the **C**-bilinearity of h it follows that τ is **C**-linear. We have now

$$
D_{JX}\xi = -(A_1 \circ f)_*(SJX) + \tau(JX)\xi
$$

= -(A_1 \circ f)_*(JSX) + \tau(X)J\xi = J D_X\xi,

therefore ξ is holomorphic. From (2.7) we obtain $\nabla_{JX}T_0 = SJX = JSX$ $J\nabla_X T_0$ and the lemma follows.

Lemma 3.4. There exist a neighbourhood U' of m_0 and a holomorphic function $H = A + iB : U' \to \mathbf{C}$ such that $\tau = dA + idB$.

Proof. We use here a part of another lemma from [5].

Lemma O2 Let V be a complex vector space endowed with a **C**-bilinear symmetric non-degenerate form h. Let R be a tensor of type $(1,3)$ on V and S an **R**-linear endomorphism of V satisfying the Gauss equation. If $\dim_{\mathbf{C}} V > 2$, then $R \cdot R = 0$ if and only if $S = \lambda \mathrm{id}_V$ for some $\lambda \in \mathbf{C}$. If $\dim_{\mathbf{C}} V = 2$, then $R \cdot R = 0$ if and only if $h(X, SY) = h(SY, X)$ for every $X, Y \in \mathcal{V}$.

From the Ricci equation (1.10) it follows that $d\tau = 0$, which implies $d\mu = 0$ and $d\nu = 0$ on U. Hence there exist a neighbourhood U' of m_0 and real functions A and B on U' such that $\mu = dA$ and $\nu = dB$. Since τ is **C**-linear (Equation (2.8)), $A + iB$ is holomorphic.

We first consider the case dim im $R = 1$.

Lemma 3.5. dim ker $R = 1$.

Proof. We fix a point $x \in U$, where U is the domain of the chart φ . Let X_1, X_2 be a basis of T_xM over **C**. Since $SJ = JS, R$ is **C**-linear with respect to any variable. Therefore $Z \in \text{ker } R_x$ if and only if $R(X_1, X_2)Z = 0$. Since the type number of the immersion is greater than 1, im $R_x = \text{im}_\mathbf{C} S_x$ [5]. For the complex S we have $\text{im}_{\mathbf{C}} S_x = \text{im } S_x$. By assumption, dim $\text{im } R_x = 1$, therefore dim im $S_x = 1$. Hence SX_1 and SX_2 are linearly dependent over **C**. There exist complex numbers α , β , $(\alpha, \beta) \neq (0, 0)$, such that $\alpha S X_1 +$ $\beta S X_2 = 0$. From the non-degeneracy of h it follows that there exists a solution γ , δ of the system of linear equations:

(3.7)
$$
h(X_1, X_1)\gamma + h(X_1, X_2)\delta = -\beta,
$$

$$
h(X_2, X_1)\gamma + h(X_2, X_2)\delta = \alpha.
$$

Of course $(\gamma, \delta) \neq (0, 0)$. Therefore $Z_0 := \gamma X_1 + \delta X_2$ is non-zero. Using (1.7) and the system (3.7) it is easy to check that $R(X_1, X_2)Z_0 = 0$. Since ∇ is non-flat, ker $R_x = \mathbf{C}Z_0$.

Lemma 3.6. Let Z_0 be a non-zero vector from ker R_x . Then for any $X, Y \in$ T_xM , $R(R(X, Z_0)X, Z_0)Y = 0$.

Proof. Since ∇ is semi-symmetric, we have

$$
0 = (R(X, Z_0) \cdot R)(X, Z_0)Y
$$

= $R(X, Z_0)(R(X, Z_0)Y) - R(R(X, Z_0)X, Z_0)Y$
 $- R(X, R(X, Z_0)Z_0)Y - R(X, Z_0)(R(X, Z_0)Y)$
= $-R(R(X, Z_0)X, Z_0)Y - R(X, R(X, Z_0)Z_0)Y$
= $-R(R(X, Z_0)X, Z_0)Y.$

Lemma 3.7. (a) If $R(W_1, W_2)Y = 0$ for any $Y \in T_xM$, then W_1 and W_2 are linearly dependent over **C**.

- (b) There exists $X \in T_xM$ such that $R(X, Z_0)X \neq 0$.
- (c) im $R_x = \ker R_x$.

Proof. (a) Suppose, contrary to our claim, that W_1 and W_2 are linearly independent over **C**. Then T_xM is generated by W_1 and W_2 and $R(W_1, W_2)Y =$ 0 implies $Y \in \text{ker } R_x$. But this contradicts the assumption of (a), because ker R_x is a proper subset of T_xM .

(b) Suppose the assertion is false. Then $R(X, Z_0)X = 0$ and $R(X, Z_0)$ $Z_0 = 0$ for any $X \in T_xM$. Using (1.7) we obtain

(3.8)
$$
h(Z_0, Z_0)SX - h(X, Z_0)SZ_0 = 0,
$$

(3.9)
$$
h(Z_0, X)SX - h(X, X)SZ_0 = 0.
$$

Subtracting (3.9) multiplied by $h(X, Z_0)$ from (3.8) multiplied by $h(X, X)$ yields

(3.10)
$$
\begin{vmatrix} h(Z_0, Z_0) & h(Z_0, X) \ h(X, Z_0) & h(X, X) \end{vmatrix} S X = 0.
$$

It follows that if X and Z_0 are **C**-linearly independent, then $SX = 0$. We choose Z_1 such that Z_0, Z_1 is a **C**-basis of T_xM . By this, $SZ_1 = 0$ and $S(Z_0 + Z_1) = 0$. Consequently, $SZ_0 = 0$ and $S = 0$, which contradicts the fact that dim $\text{im} S = \text{dim} \text{im} R = 1$.

(c) According to (b) we may choose $X_0 \in T_xM$ such that $R(X_0, Z_0)X_0 \neq 0$. By Lemma 3.6 and (a), $R(X_0, Z_0)X_0$ and Z_0 are **C**-linearly dependent. Since $R(X_0, Z_0)X_0 \neq 0$, there exists $\lambda \in \mathbb{C}$ such that $Z_0 = \lambda R(X_0, Z_0)X_0$. Hence $Z_0 \in \text{im } R_x$ and ker $R_x = \mathbb{C}Z_0 \subset \text{im } R_x$. By assumption, dim_c im $R = 1$, and the lemma follows.

Lemma 3.8.

(3.11)
$$
\nabla_X \left(R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0 \right) = h(X, T_0) R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0.
$$

Proof. From $\nabla R = 0$ it follows that

$$
0 = (\nabla_X R) \left(\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0 \right)
$$

= $\nabla_X \left(R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0 \right) - R \left(\nabla_X \frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0$
- $R \left(\frac{\partial}{\partial z^1}, \nabla_X \frac{\partial}{\partial w^1} \right) T_0 - R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) (\nabla_X T_0).$

The last term vanishes, because $\nabla_X T_0 = SX$ and $\text{im} S = \text{im} R = \text{ker} R$ by Lemma 3.7 (c). From Lemma 3.3, it follows that there exist holomorphic functions ψ_1 and ψ_2 such that

(3.12)
$$
T_0 = \psi_1 \frac{\partial}{\partial z^1} + \psi_2 \frac{\partial}{\partial w^1}.
$$

By the **C**-bilinearity and anti-symmetry of $R(\cdot, \cdot)$, we have from (2.5) , (2.6) and (3.12)

$$
R\left(\nabla_{X}\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)T_{0} + R\left(\frac{\partial}{\partial z^{1}},\nabla_{X}\frac{\partial}{\partial w^{1}}\right)T_{0}
$$

\n
$$
= h\left(X,\frac{\partial}{\partial z^{1}}\right)R\left(T_{0},\frac{\partial}{\partial w^{1}}\right)T_{0} + h\left(X,\frac{\partial}{\partial w^{1}}\right)R\left(\frac{\partial}{\partial z^{1}},T_{0}\right)T_{0}
$$

\n
$$
= \left(\psi_{1}h\left(X,\frac{\partial}{\partial z^{1}}\right) + \psi_{2}h\left(X,\frac{\partial}{\partial w^{1}}\right)\right)R\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)T_{0}
$$

\n
$$
= h\left(X,\psi_{1}\frac{\partial}{\partial z^{1}} + \psi_{2}\frac{\partial}{\partial w^{1}}\right)R\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)T_{0} = h(X,T_{0})R\left(\frac{\partial}{\partial z^{1}},\frac{\partial}{\partial w^{1}}\right)T_{0}.
$$

Let U' and H be as in Lemma 3.4. We may assume that U' is connected. From now on we shall write U instead of U' .

Lemma 3.9. $\nabla_X \left(e^H R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0 \right) = 0$ for any $X \in TM|_U$.

Proof. It suffices to use (2.8) and Lemma 3.8.

Lemma 3.10. If $(T_0)_{m_0} \in \text{ker } R_{m_0}$, then $(T_0)_m \in \text{ker } R_m$ for any $m \in U$.

Proof. Assume that the vector field W on U has the property $\nabla_X W = 0$ for any X. Any two points x and y of U we can connect with some curve γ. The coordinates of $W_{\gamma(t)}$ in the basis of $T_{\gamma(t)}M$ obtained from a basis of T_xM by parallel displacement along γ do not depend on t. It follows that if $W_x = 0$ at some $x \in U$, then $W \equiv 0$ on U. Now let $W = e^H R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) T_0$. By assumption, $W_{m_0} = 0$, therefore $W \equiv 0$ and $R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right)T_0 = e^{-H}\widetilde{W} \equiv 0$. \Box

Lemma 3.11. For any $m \in U$, $\psi_1(m) = 0$ if and only if $\psi_2(m) = 0$.

Proof. To obtain a contradiction, suppose for example that $\psi_1(m) = 0$ and $\psi_2(m) \neq 0$. Then $\frac{\partial}{\partial w^1}|_m = \frac{1}{\psi_2(m)}T_{0m}$, which contradicts the assumption that $\frac{\partial}{\partial w^1}$ ∉ ker R. \Box

Lemma 3.12. There exists an open dense subset U_2 of U such that $\psi_1 \neq 0$ everywhere on U_2 .

Proof. Suppose that $\psi_1 \equiv 0$ on some open, non-empty subset V of U. Then, by Lemma 3.11, $\psi_2 \equiv 0$ on V and consequently $T_0 \equiv 0$ on V. This contradicts the fact that dim im $S = 1$, because $\nabla_X T_0 = SX$.

Lemma 3.13. There exists a constant $C \neq 0$ such that $\psi_2 = C\psi_1$ on U.

Proof. Let U_3 be a connected, open, non-empty subset of U_2 and let $X \in$ $TM|_{U_3}$. From the equality im $S = \text{im } R = \text{ker } R$ and from $T_0 \in \text{ker } R$ it follows that $X(\psi_1) \frac{\partial}{\partial z^1} + X(\psi_2) \frac{\partial}{\partial w^1} \in \text{ker } R$, because

$$
X(\psi_1)\frac{\partial}{\partial z^1} + X(\psi_2)\frac{\partial}{\partial w^1} = \nabla_X T_0 - \psi_1 \nabla_X \frac{\partial}{\partial z^1} - \psi_2 \nabla_X \frac{\partial}{\partial w^1}
$$

= $SX - \psi_1 h\left(X, \frac{\partial}{\partial z^1}\right) T_0 - \psi_2 h\left(X, \frac{\partial}{\partial w^1}\right) T_0.$

Since $T_0 \in \ker R$ and dim ker $R = 1$, the tangent vectors $\psi_1 \frac{\partial}{\partial z^1} + \psi_2 \frac{\partial}{\partial w^1}$ and $X(\psi_1) \frac{\partial}{\partial z_1} + X(\psi_2) \frac{\partial}{\partial w_1}$ are linearly dependent over **C**. Consequently

(3.13)
$$
X\left(\frac{\psi_2}{\psi_1}\right) = \frac{1}{(\psi_1)^2} \cdot \left| \begin{array}{cc} \psi_1 & \psi_2 \\ X(\psi_1) & X(\psi_2) \end{array} \right| = 0.
$$

It follows that $X\left(\frac{\psi_2}{\psi_1}\right) = 0$ for any $m \in U_3$, for any $X \in T_mM$. Since U_3 is connected, there exists a constant C such that $\frac{\psi_2}{\psi_1} = C$ on U_3 . The constant $C \neq 0$, for if not, then $\psi_2 \equiv 0$. Now $\psi_2 - C\psi_1$ is a holomorphic function defined on the connected subset U of M and equal to zero on an open, non-empty set U_3 . From the identity principle for holomorphic functions it follows that $\psi_2 - C\psi_1 \equiv 0$ on U.

Let $(\tilde{z}, \tilde{w}) = \varphi_3(z, w) := (z, -Cz + w)$ and $\mathcal{A}_3(z, w, u) = (z, -Cz + w, u)$. Then $\mathcal{A}_3 \circ \mathcal{A}_1 \circ f \circ (\varphi_3 \circ \varphi_1)^{-1}(\widetilde{z}, \widetilde{w}) = \mathcal{A}_3 \circ \mathcal{A}_1 \circ f \circ \varphi_1^{-1}(\widetilde{z}, C\widetilde{z}+\widetilde{w}) = \mathcal{A}_3(\widetilde{z}, C\widetilde{z}+\widetilde{w}) = (\widetilde{z}, \widetilde{w}, F(\widetilde{z}, C\widetilde{z}+\widetilde{w})) = (\widetilde{z}, \widetilde{w}, F(\widetilde{z}, \widetilde{w}))$ $C\widetilde{z}+\widetilde{w}, F(\widetilde{z},C\widetilde{z}+\widetilde{w}))=(\widetilde{z},\widetilde{w},F(\widetilde{z},C\widetilde{z}+\widetilde{w}))=(\widetilde{z},\widetilde{w},\widetilde{F}(\widetilde{z},\widetilde{w})),$

$$
\mathcal{A}_3\xi=-(\mathcal{A}_3\circ\mathcal{A}_1\circ f)_*(T_0)+\mathcal{A}_3e_3=-(\mathcal{A}_3\circ\mathcal{A}_1\circ f)_*(T_0)+e_3,
$$

∂ ∂z
To $\frac{\partial}{\partial \tau} = \frac{\partial}{\partial z^1} + C \frac{\partial}{\partial w^1}$ and $\frac{\partial}{\partial \widetilde{w}}$ $\frac{\partial}{\partial \bar{u}} = \frac{\partial}{\partial w^1}$. Using the new coordinates we can rewrite T_0 as

(3.14)
$$
T_0 = \psi_1 \left(\frac{\partial}{\partial z^1} + C \frac{\partial}{\partial w^1} \right) = \psi_1 \frac{\partial}{\partial \tilde{z}^1} = \alpha(\tilde{z}, \tilde{w}) \frac{\partial}{\partial \tilde{z}^1}
$$

where $\alpha = \psi_1 \circ \varphi_1^{-1} \circ \varphi_3^{-1}$. From now on we write z, w, F instead of $\widetilde{z}, \widetilde{w}, \widetilde{F}$.
Then the formulae (2.6) to (2.8) hold Then the formulae (2.6) to (2.8) hold. \Box

Lemma 3.14. There exist an open neighbourhood U' of m_0 and a holomorphic function g of one variable such that $\alpha(z,w) = g(F_z(z,w))$ on $\varphi_3 \circ$ $\varphi_1(U')$.

Proof. An easy computation shows that

(3.15)
$$
\nabla_X T_0 = X(\psi_1) \frac{\partial}{\partial z^1} + \psi_1^2 h\left(X, \frac{\partial}{\partial z^1}\right) \frac{\partial}{\partial z^1}
$$

and

(3.16)
$$
R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) \frac{\partial}{\partial z^1} = \left(\frac{\partial^2 F}{\partial w \partial z} \frac{\partial \alpha}{\partial z} - \frac{\partial^2 F}{\partial z \partial z} \frac{\partial \alpha}{\partial w}\right) \frac{\partial}{\partial z^1}.
$$

By Lemma 3.12 and by (3.14) $\alpha \neq 0$ on some dense open subset \widetilde{U} of $\varphi_3 \circ$ $\varphi_1(U)$. For any $(z,w) \in \widetilde{U}$ we can write

$$
(3.17)\quad \left(\frac{\partial^2 F}{\partial w \partial z}\frac{\partial \alpha}{\partial z} - \frac{\partial^2 F}{\partial z \partial z}\frac{\partial \alpha}{\partial w}\right)\frac{\partial}{\partial z^1} = R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right)\left(\frac{1}{\alpha(z, w)}T_0\right) = 0.
$$

Hence

(3.18)
$$
\frac{\partial^2 F}{\partial w \partial z} \frac{\partial \alpha}{\partial z} - \frac{\partial^2 F}{\partial z \partial z} \frac{\partial \alpha}{\partial w} = 0
$$

on \tilde{U} and, by continuity, on $\varphi_3 \circ \varphi_1(U)$. Furthermore, $\frac{\partial^2 F}{\partial z \partial z} \neq 0$ or $\frac{\partial^2 F}{\partial w \partial z} \neq 0$ 0 for any point $m \in M$, since otherwise $\frac{\partial}{\partial z^1} \in \text{ker } h$ which contradicts the non-degeneracy of f. Therefore $\Psi := \frac{\partial F}{\partial z}$ satisfies the assumptions of the following lemma. Applying Lemma 3.15 to Ψ and $\Lambda := \alpha$ completes the proof of Lemma 3.14. \Box

Lemma 3.15. Let V be an open subset of \mathbb{C}^2 . Let $\Psi : V \to \mathbb{C}$ be a holomorphic function of two variables such that for any $(z, w) \in V$, $\frac{\partial \Psi}{\partial z}(z, w) \neq 0$ or $\frac{\partial \Psi}{\partial w}(z, w) \neq 0$. Then $\Lambda : V \to \mathbf{C}$ satisfies the equation

(3.19)
$$
\frac{\partial \Psi}{\partial z} \frac{\partial \Lambda}{\partial w} - \frac{\partial \Psi}{\partial w} \frac{\partial \Lambda}{\partial z} = 0
$$

if and only if for any $(z_0, w_0) \in V$ there exist an open neighbourhood V' of (z_0, w_0) and a holomorphic function $g: \Psi(V') \to \mathbf{C}$ of one variable such that $\Lambda\big|_{V'}=g\circ\Psi\big|_{V'}$.

Proof. is similar to that of constant-rank mapping theorem. Let Λ satisfy (3.19). It follows that rank of the holomorphic mapping

$$
V \ni (z, w) \mapsto (\Psi(z, w), \Lambda(z, w)) \in \mathbf{C}^2
$$

is equal to 1 on V. Let $(z_0, w_0) \in V$. Without loss of generality we can assume that $\frac{\partial \Psi}{\partial z}(z_0, w_0) \neq 0$. Then there exists a neighbourhood V' of (z_0, w_0) such that $\Phi: V \to (z,w) \mapsto (\Psi(z,w), w) \in \Phi(V') \subset \mathbb{C}^2$ is biholomorphic. We may also assume that $\Phi(V')$ is a product of two open discs $D_1 \subset \mathbb{C}$ and $D_2 \subset \mathbf{C}$. Let $\widetilde{g}(u, v) := \Lambda(\Phi^{-1}(u, v))$. Rank of the mapping

$$
(\Psi, \Lambda) \circ \Phi^{-1} : \Phi(V') \ni (u, v) \mapsto (u, \widetilde{g}(u, v)) \in \mathbf{C}^2
$$

is also equal to 1, therefore $\frac{\partial \tilde{g}}{\partial v}(u, v) = 0$ for any $(u, v) \in D_1 \times D_2$. Let $u \in D_1$. Since the function $D_2 \ni v \mapsto \tilde{g}(u, v) \in \mathbb{C}$ is a constant one, we

may define $g(u) := \tilde{g}(u, v)$ with an arbitrary $v \in D_2$. We have then (Ψ, Λ) $\Phi^{-1}(u, v) = (u, g(u))$. If we take $(u, v) = \Phi(z, w) = (\Psi(z, w), w)$, the assertion follows.

Conversely, let $\Lambda = g \circ \Psi$ on some open set V'. Applying the chain rule we obtain $\frac{\partial \Lambda}{\partial z}(z,w) = g'(\Psi(z,w)) \frac{\partial \Psi}{\partial z}(z,w)$ and $\frac{\partial \Lambda}{\partial w}(z,w) = g'(\Psi(z,w)) \frac{\partial \Psi}{\partial w}$ (z, w) . Multiplying the first equation by $\frac{\partial \Psi}{\partial w}(z, w)$, the second by $\frac{\partial \Psi}{\partial z}(z, w)$ and subtracting we obtain (3.19) .

Let $(z_0, w_0) = \varphi_3 \circ \varphi_1(m_0)$. We can decrease the neighbourhood U' of $m₀$ so as to obtain a connected, simply connected open neighbourhood $F_z(U')$ of $\zeta_0 := F_z(z_0, w_0)$. The holomorphic function $\zeta \mapsto \int_{\gamma(\zeta_0,\zeta)} g(\sigma) d\sigma$, where $\gamma(\zeta_0, \zeta)$ denotes a path joining ζ_0 with ζ , is then well defined on $F_z(U')$. Let

(3.20)
$$
\eta(\zeta) := e^{\int_{\gamma(\zeta_0,\zeta)} g(\sigma) d\sigma}.
$$

We have then $g(\zeta) = \frac{\eta'(\zeta)}{\eta(\zeta)}$ and

(3.21)
$$
SX = \nabla_X T_0 = \frac{\eta''(F_z)}{\eta(F_z)} X(F_z) \frac{\partial}{\partial z^1}.
$$

Since dim im $S = 1$, $\eta''(F_z) \neq 0$ everywhere on U'.

Lemma 3.16. F satisfies the differential equation

(3.22)
$$
F_{zz}F_{ww} - F_{zw}F_{zw} = \kappa \frac{\eta(F_z)}{\eta''(F_z)}
$$

where $\kappa \in \mathbb{C} \setminus \{0\}.$

Proof. Using the Gauss equation and (3.21) we obtain

$$
(3.23) \t R\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right)\frac{\partial}{\partial w^1} = (F_{zz}F_{ww} - F_{zw}F_{wz})\frac{\eta''(F_z)}{\eta(F_z)}\frac{\partial}{\partial z^1} =: \Phi\frac{\partial}{\partial z^1}.
$$

From $\nabla R = 0$ it follows that for any $X \in TM|_{U'}$

$$
0 = (\nabla_X R) \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) \frac{\partial}{\partial w^1} = \nabla_X \left(\Phi \frac{\partial}{\partial z^1} \right) - R \left(\nabla_X \frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) \frac{\partial}{\partial w^1} - R \left(\frac{\partial}{\partial z^1}, \nabla_X \frac{\partial}{\partial w^1} \right) \frac{\partial}{\partial w^1} - R \left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1} \right) \left(\nabla_X \frac{\partial}{\partial w^1} \right).
$$

The last two terms vanish, because $\frac{\partial}{\partial z_1}$ and $\nabla_X \frac{\partial}{\partial w_1}$ are linearly dependent and $\nabla_X \frac{\partial}{\partial w^1} = X(F_w)T_0$ with $T_0 \in \ker R$. Hence

$$
0 = X(\Phi)\frac{\partial}{\partial z^1} + \Phi X(F_z)T_0 - X(F_z)R\left(T_0, \frac{\partial}{\partial w^1}\right)\frac{\partial}{\partial w^1} = X(\Phi)\frac{\partial}{\partial z^1}.
$$

Since U' is connected, $\Phi = \text{const} =:\kappa$. From $\eta'' \neq 0$ and from the nondegeneracy of f it follows that $\kappa \neq 0$.

Let β be a complex number such that $\beta^2 = \kappa$. Let $(\tilde{z}, \tilde{w}) = \varphi_4(z, w) =$ $(z,\beta w), \mathcal{A}_4(z,w,u)=(z,\beta w,u), \varphi=\varphi_4\circ\varphi_3\circ\varphi_1$ and $\mathcal{A}=\mathcal{A}_4\circ\mathcal{A}_3\circ\mathcal{A}_1$. It is easy to check that $\mathcal{A} \circ f \circ \varphi^{-1}(z,w) = (z,w,\widehat{F}(z,w))$ where $\widehat{F}(z,w)$ $F(z, \frac{1}{\beta}w)$ satisfies the differential equation (2.1). Since at the corresponding points $\widehat{F}_{\widetilde{z}} = F_z$ and $\frac{\partial}{\partial \widetilde{z}}$ ∂z
n $\sigma_{\overline{1}} = \frac{\partial}{\partial z^1}$, we have a local section of $\mathcal{A} \rightarrow \mathcal{N}$ as claimed.

Having A, φ, F, η and ξ which satisfy (i), (ii) and (iii) of Theorem 3.1, we consider now the particular case when $\mathcal N$ is the complex affine normal bundle of the immersion f .

Lemma 3.17. $\eta^3 \cdot \eta'' = c$ with some $c \in \mathbb{C} \setminus \{0\}.$

Proof. The transversal field

(3.24)
$$
\xi_{eq} = \eta(F_z) \xi = -(\mathcal{A} \circ f)_* \left(\eta'(F_z) \frac{\partial}{\partial z^1} \right) + \eta(F_z) e_3
$$

is the equiaffine section of the bundle $\mathcal{A}^{\rightarrow} \mathcal{N}$, which is the complex affine normal bundle for $A \circ f$. Therefore, there exists a complex number b such that $\xi = b\xi_{eq}$ is the complex affine normal vector field for $A \circ f$. Let $Z =$ 1 $b\eta(F_z)$ $\frac{\partial}{\partial z^1}$, $W = \frac{\partial}{\partial w^1}$. We have then $\mathcal{C}(\mathcal{A} \circ f)_*(Z), (\mathcal{A} \circ f)_*(W), \widehat{\xi}$ $= 1.$ By the definition of the affine normal vector field,

(3.25)
$$
\left| \det \begin{pmatrix} \widehat{h}(Z, Z) & \widehat{h}(Z, W) \\ \widehat{h}(W, Z) & \widehat{h}(W, W) \end{pmatrix} \right| = 1,
$$

where $\hat{h} = \frac{1}{b\eta(F_z)} h$ is the affine fundamental form induced by $\hat{\xi}$. Using (2.5) we obtain

(3.26)
$$
\left| \left(\frac{1}{b \eta(F_z)} \right)^4 \left(F_{zz} F_{ww} - F_{zw} F_{zw} \right) \right| = 1,
$$

which together with (2.1) implies

(3.27)
$$
\left| \left(\eta(\zeta) \right)^3 \cdot \eta''(\zeta) \right| = \left| \frac{1}{b} \right|^4 = \text{const}
$$

for $\zeta \in F_z(U')$. According to the maximum principle, if for a holomorphic function $\mathcal{F}: \Omega \to \mathbf{C}$, where $\Omega \subset \mathbf{C}$ is an open and connected set, the function $|\mathcal{F}|$ has a local maximum at some point of Ω , then \mathcal{F} must be constant on Ω . From (3.27) it follows that $|\eta^3 \cdot \eta''|$ has a local maximum at any $\zeta \in F_z(U')$. Therefore $\eta^3 \cdot \eta'' = \text{const.}$

Lemma 3.18. $\eta(\zeta) = \sqrt{A\zeta^2 + B\zeta + C}$, where $A \in \mathbf{C} \setminus \{0\}$, $B, C \in \mathbf{C}$, **Definite 3.16.** $\eta(s) = \sqrt{A}s + B\sqrt{C}$, where $A \in \mathbb{C} \setminus \{0\}$, $B, C \in \mathbb{C}$, $AC - \frac{B^2}{4} = c$ and \sqrt{c} is some holomorphic branch of the square root defined on some neighbourhood of the non-zero complex number $A\zeta_0^2 + B\zeta_0 + C$, $\zeta_0 = F_z(z_0, w_0).$

Proof. From $T_{0m_0} = 0$ and (2.3) it follows that $\eta'(\zeta_0) = 0$. Let

(3.28)
$$
E(\zeta) := (\eta'(\zeta))^2 + \frac{c}{(\eta(\zeta))^2}
$$

for $\zeta \in V$, where V is some sufficiently small, connected neighbourhood of ζ_0 . Using Lemma 3.17 we obtain $E'(\zeta) = \frac{2\eta'(\zeta)}{(\eta(\zeta))^3}$ $\frac{2\eta'(\zeta)}{(\eta(\zeta))^3} \left((\eta(\zeta))^3 \cdot \eta''(\zeta) - c \right) = 0,$ therefore $E(\zeta) = E(\zeta_0) = \frac{c}{(\eta(\zeta_0))^2}$ for $\zeta \in V$. It follows that

(3.29)
$$
(\eta'(\zeta))^2 = \frac{c}{(\eta(\zeta_0))^2} - \frac{c}{(\eta(\zeta))^2}.
$$

We consider now the function $\psi(\zeta) := (\eta(\zeta))^2$. Using (3.29) and Lemma 3.17 we obtain

$$
\psi''(\zeta) = 2 \left(\eta'(\zeta) \right)^2 + 2 \eta(\zeta) \cdot \eta''(\zeta)
$$

=
$$
\frac{2c}{\left(\eta(\zeta_0) \right)^2} - \frac{2c}{\left(\eta(\zeta) \right)^2} + 2 \eta(\zeta) \cdot \eta''(\zeta) = \frac{2c}{\left(\eta(\zeta_0) \right)^2}.
$$

It follows that

(3.30)
$$
\psi(\zeta) = \frac{c}{(\eta(\zeta_0))^2} \zeta^2 + B\zeta + C.
$$

Since $\eta'(\zeta_0) = 0$ implies $\psi'(\zeta_0) = 0$, we have $B = -\frac{2c}{(\eta(\zeta_0))^2} \zeta_0$. Computing $\psi(\zeta_0)$ we obtain $C = (\eta(\zeta_0))^2 + \frac{c\zeta_0^2}{(\eta(\zeta_0))^2}$ and

(3.31)
$$
\psi(\zeta) = \frac{c}{(\eta(\zeta_0))^2} (\zeta - \zeta_0)^2 + (\eta(\zeta_0))^2.
$$

Since $\eta(\zeta_0) \neq 0$, there exists a holomorphic branch $\sqrt{\cdot}$ of square root on some neighbourhood of $(\eta(\zeta_0))^2$. But η is also holomorphic, therefore we may conclude, replacing $\sqrt{\cdot}$ by $-\sqrt{\cdot}$ if necessary, that $\eta(\zeta) = \sqrt{\psi(\zeta)}$. \Box

Lemma 3.19. There exist an affine isomorphism A_8 of \mathbb{C}^3 and a local diffeomorphism φ_8 , $(\tilde{z}, \tilde{w}) = \varphi_8(z, w)$ such that

$$
\mathcal{A}_8 \circ \mathcal{A} \circ f \circ \varphi^{-1} \circ \varphi_8^{-1}(\widetilde{z}, \widetilde{w}) = (\widetilde{z}, \widetilde{w}, \widetilde{F}(\widetilde{z}, \widetilde{w})).
$$

 \widetilde{F} satisfies the differential equation

(3.32)
$$
\widetilde{F}_{\widetilde{z}\widetilde{z}}\widetilde{F}_{\widetilde{w}\widetilde{w}} - \widetilde{F}_{\widetilde{z}\widetilde{w}}\widetilde{F}_{\widetilde{z}\widetilde{w}} = \left(1 + \widetilde{F}_z^2\right)^2
$$

and $-A_8 \circ A \circ f_*(T_0) + e_3$ with

$$
T_0 = \frac{\widetilde{F}_{\widetilde{z}}}{1 + \widetilde{F}_{\widetilde{z}}} \frac{\partial}{\partial \widetilde{z}^1}
$$

is a local section of $A_8^{\rightarrow} A^{\rightarrow} \mathcal{N}$.

Proof. For η as in Lemma 3.18 we have

$$
\frac{\eta(\zeta)}{\eta''(\zeta)} = \frac{1}{c} (\eta(\zeta))^4 = \frac{AC - (B^2/4)}{A^2}
$$

$$
\left[\left(\frac{A}{\sqrt{AC - (B^2/4)}} \zeta + \frac{(B/2)}{\sqrt{AC - (B^2/4)}} \right)^2 + 1 \right]^2.
$$

$$
e(z, w) = \left(\frac{\sqrt{AC - (B^2/4)}}{\sqrt{AC - (B^2/4)}} z, w \right) A e(z, w, w) = \left(\frac{\sqrt{AC - (B^2/4)}}{\sqrt{AC - (B^2/4)}} z, w, w + \frac{B}{\sqrt{AC}} \right).
$$

Let $\varphi_8(z,w) = \left(\frac{\sqrt{AC - (B^2/4)}}{A}z,w\right), \mathcal{A}_8(z,w,u) = \left(\frac{\sqrt{AC - (B^2/4)}}{A}z,w,u + \frac{B}{2A}z\right)$ and

$$
\widetilde{F}(\widetilde{z},\widetilde{w}) = F\left(\frac{A}{\sqrt{AC - (B^2/4)}}\widetilde{z},\widetilde{w}\right) + \frac{(B/2)}{\sqrt{AC - (B^2/4)}}\widetilde{z}.
$$

It is easy to check that at the corresponding points

(3.33)
$$
\frac{A}{\sqrt{AC - (B^2/4)}} F_z + \frac{(B/2)}{\sqrt{AC - (B^2/4)}} = \widetilde{F}_{\widetilde{z}}
$$

and

(3.34)
$$
F_{zz}F_{ww} - F_{zw}F_{zw} = \frac{AC - (B^2/4)}{A^2} \left(\tilde{F}_{\tilde{z}\tilde{z}} \tilde{F}_{\tilde{w}\tilde{w}} - \tilde{F}_{\tilde{z}\tilde{w}} \tilde{F}_{\tilde{z}\tilde{w}} \right),
$$

therefore \widetilde{F} satisfies Equation (3.32). Since $\mathcal{A}_8 e_3 = e_3$, we do not have to change T_0 but it should be described in the new coordinates. We have at the corresponding points

$$
\frac{\eta'(F_z)}{\eta(F_z)} = \frac{AF_z + (B/2)}{\frac{1}{A}(AF_z + (B/2))^2 + C - (B^2/4A)}
$$

$$
= \frac{\widetilde{F}_z \sqrt{AC - (B^2/4)}}{\frac{AC - (B^2/4)}{A} \left(\widetilde{F}_z^2 + 1\right)} = \frac{A}{\sqrt{AC - (B^2/4)}} \frac{\widetilde{F}_z}{\widetilde{F}_z^2 + 1},
$$
(3.35)
$$
\frac{\partial}{\partial z^1} = \frac{\sqrt{AC - (B^2/4)}}{A} \frac{\partial}{\partial \widetilde{z}^1}
$$

and the lemma follows.

We now turn to the case dim im $R = 2$. The shape operator S is then invertible. We first show that there exists a **C**-bilinear, complex valued nondegenerate symmetric holomorphic tensor field g such that $\nabla g = 0$. Let

(3.36)
$$
g(X,Y) := e^{2H} h(S^{-1}X,Y),
$$

where H is a holomorphic function as in Lemma 3.4 and h, S, τ are induced by the pair $(\mathcal{A}_1 \circ f, \xi)$, or, equivalently, by $(f, (\mathcal{A}_1^{\rightarrow})^{-1}\xi)$ on some neighbourhood of m_0 . Since H is defined up to a constant, we may assume that $H_{m_0} =$ 0. Since S is **C**-linear and h **C**-bilinear, g is **C**-bilinear. It is non-degenerate because h is non-degenerate and S_x is an isomorphism at any x. According to Lemma O2, $h(S^{-1}X,Y) = h(S^{-1}X,SS^{-1}Y) = h(SS^{-1}X,S^{-1}Y) =$ $h(X, S^{-1}Y) = h(S^{-1}Y, X)$, therefore g is symmetric.

We fix now some basis Z, W of T_xM and define $\alpha: T_xM \to T_xM$ and $L: T_xM \times T_xM \to \mathbf{C}$:

$$
(3.37) \qquad \alpha(Y) := h(W, Y)Z - h(Z, Y)W,
$$

(3.38)
$$
L(Y,U) := \det \begin{pmatrix} h(Z,Y) & h(Z,U) \\ h(W,Y) & h(W,U) \end{pmatrix}.
$$

Lemma 3.20. (i) α is a **C**-linear isomorphism.

- (ii) L is **C**-bilinear and anti-symmetric.
- (iii) $L(Z, W) \neq 0$.
- (iv) $\alpha \circ \alpha = -L(Z,W) \operatorname{id}_{T_xM}.$
- (v) $h(Y, \alpha(U)) = -h(U, \alpha(Y))$ for any $Y, U \in T_xM$.
- (vi) $L(\alpha(Y), U) = L(Z, W) h(Y, U)$ for any $Y, U \in T_xM$.

Proof. (i) and (ii) are obvious, (iii) follows from the non-degeneracy of h . To prove (iv) we need only to compute $\alpha \circ \alpha(Z)$ and $\alpha \circ \alpha(W)$. An easy computation shows that $h(Y, \alpha(U)) + h(U, \alpha(Y)) = 0$. For (vi), it suffices to take as (Y, U) the pairs of basis vectors, to use the definition of α and only the anti-symmetry of L .

In the following lemmas we will need the assumption that $\nabla R = 0$.

Lemma 3.21. For any X, U

$$
L(Z, W) \left(\nabla_X S \right) U = \left(\nabla_X h \right) \left(W, \alpha(U) \right) SZ - \left(\nabla_X h \right) \left(Z, \alpha(U) \right) SW.
$$

Proof. From the Gauss equation (1.7) it follows that

(3.39)
$$
(\nabla_X R)(Z, W)Y = (\nabla_X h)(W, Y) SZ - (\nabla_X h)(Z, Y) SW + h(W, Y) (\nabla_X S) Z - h(Z, Y) (\nabla_X S) W.
$$

If $\nabla R = 0$, then

$$
-(\nabla_X h)(W,Y) SZ + (\nabla_X h)(Z,Y) SW
$$

= $h(W,Y) (\nabla_X S) Z - h(Z,Y) (\nabla_X S) W = (\nabla_X S) (\alpha(Y)).$

We take now $Y = \alpha(U)$ and use Lemma 3.20(iv).

Lemma 3.22. For any X, U, Y

$$
\left(\nabla_X h\right)(U,\alpha(Y)) - \left(\nabla_X h\right)(Y,\alpha(U)) = h(X,T_0)\left[L(U,Y) + h(U,\alpha(Y))\right].
$$

Proof. Since both sides are **C**-bilinear and anti-symmetric with respect to Y, U (see Lemma 3.20(ii) and (v)), it suffices to prove the formula for $U = Z$ and $Y = W$. If we apply Lemma 3.21 to $X = Z$, $U = W$, next to $X = W$, $U = Z$ and subtract the formulae, then we obtain

$$
L(Z, W) \Big[(\nabla_Z S) W - (\nabla_W S) Z \Big]
$$

=
$$
\Big[(\nabla_Z h) (W, \alpha(W)) - (\nabla_W h) (W, \alpha(Z)) \Big] SZ
$$

-
$$
\Big[(\nabla_Z h) (Z, \alpha(W)) - (\nabla_W h) (Z, \alpha(Z)) \Big] SW.
$$

From the Codazzi equation (1.9) and (2.8) it follows that

$$
(\nabla_Z S) W - (\nabla_W S) Z = h(W, T_0) SZ - h(Z, T_0) SW.
$$

Since S is invertible, SZ and SW are linearly independent over **C**, therefore

$$
L(Z, W)h(W, T_0) = (\nabla_Z h) (W, \alpha(W)) - (\nabla_W h) (W, \alpha(Z)),
$$

$$
L(Z, W)h(Z, T_0) = (\nabla_Z h) (Z, \alpha(W)) - (\nabla_W h) (Z, \alpha(Z)).
$$

Using the Codazzi equation (1.8) , (2.8) and Lemma $3.20(v)$, we obtain

$$
(\nabla_Z h)(W, \alpha(W)) = (\nabla_W h)(Z, \alpha(W)) - h(W, T_0) h(Z, \alpha(W)),
$$

$$
(\nabla_W h)(Z, \alpha(Z)) = (\nabla_Z h)(W, \alpha(Z)) + h(Z, T_0) h(Z, \alpha(W)).
$$

It follows that

$$
\left(\nabla_{W}h\right)(Z,\alpha(W)) - \left(\nabla_{W}h\right)(W,\alpha(Z)) = h(W,T_0)\left[L(Z,W) + h(Z,\alpha(W))\right],
$$

$$
\left(\nabla_{Z}h\right)(Z,\alpha(W)) - \left(\nabla_{Z}h\right)(W,\alpha(Z)) = h(Z,T_0)\left[L(Z,W) + h(Z,\alpha(W))\right].
$$

Since the **C**-linear mappings

$$
X \mapsto (\nabla_X h) (Z, \alpha(W)) - (\nabla_X h) (W, \alpha(Z))
$$

and

$$
X \mapsto h(X, T_0) \left[L(Z, W) + h(Z, \alpha(W)) \right]
$$

have the same values on the basis vectors Z, W , they are equal and the lemma follows. \Box

Lemma 3.23.

$$
(\nabla_X h) (\alpha(U), \alpha(Y)) = L(Z, W) \Big[- (\nabla_X h) (U, Y) + 2h(X, T_0) h(U, Y) \Big].
$$

Proof. We apply Lemma 3.22 to $\alpha(U)$ and Y, then we use Lemma 3.20(iv), (v) and (vi). \Box

Lemma 3.24.

$$
L(Z, W) h((\nabla_X S) U, Y) = -(\nabla_X h) (\alpha(SY), \alpha(U)).
$$

Proof. Using Lemmas 3.21 and O2 we obtain

$$
L(Z, W) h ((\nabla_X S) U, Y)
$$

= (\nabla_X h) (W, \alpha(U)) h(SZ, Y) - (\nabla_X h) (Z, \alpha(U)) h(SW, Y)
= (\nabla_X h) (W, \alpha(U)) h(Z, SY) - (\nabla_X h) (Z, \alpha(U)) h(W, SY)
= (\nabla_X h) (h(Z, SY) W - h(W, SY) Z, \alpha(U))
= - (\nabla_X h) (\alpha(SY), \alpha(U)).

Lemma 3.25.

$$
h((\nabla_X S) U, Y) = (\nabla_X h) (SY, U) - 2h(X, T_0) h(SY, U).
$$

Proof. From Lemmas 3.23 and 3.24 we have

$$
L(Z, W)h((\nabla_X S) U, Y) = L(Z, W) [(\nabla_X h) (SY, U) - 2h(X, T_0)h(SY, U)].
$$

Since $L(Z, W) \neq 0$, the lemma follows.

Since $L(Z, W) \neq 0$, the lemma follows.

Lemma 3.26. $\nabla g = 0$.

Proof. It suffices to check that $(\nabla_X g)(SU, SY) = 0$ for any X, U, Y . We have

$$
(\nabla_X g) (SU, SY)
$$

= $X(g(SU, SY)) - g(\nabla_X (SU), SY) - g(SU, \nabla_X (SY))$
= $X(e^{2H} h(U, SY)) - e^{2H} h(\nabla_X (SU), Y) - e^{2H} h(U, \nabla_X (SY))$

$$
= 2 dH(X) e^{2H} h(U, SY) + e^{2H} (\nabla_X h) (U, SY) + e^{2H} h (\nabla_X U, SY)
$$

+ $e^{2H} h(U, \nabla_X (SY)) - e^{2H} h (\nabla_X (SU), Y) - e^{2H} h (U, \nabla_X (SY))$
= $-2h(X, T_0) e^{2H} h(U, SY) + e^{2H} (\nabla_X h) (U, SY)$
+ $e^{2H} h(S (\nabla_X U), Y) - e^{2H} h (\nabla_X (SU), Y)$
= $e^{2H} \left[-2h(X, T_0) h(U, SY) + (\nabla_X h) (U, SY) - h ((\nabla_X S) U, Y) \right]$

which is equal to zero by symmetry of h and $\nabla_X h$ and by Lemma 3.25.

Let $x \in U$ and let for $X, Y \in T_xM$

$$
G_x((\mathcal{A}_1 \circ f)_*X, (\mathcal{A}_1 \circ f)_*Y) := g(X, Y),
$$

\n
$$
G_x((\mathcal{A}_1 \circ f)_*X, \xi_x) := 0, \quad G_x(\xi_x, \xi_x) := e^{2H}.
$$

Lemma 3.27. $DG = 0$.

Proof. From $\nabla g = 0$ it follows easily that $(D_XG)((\mathcal{A}_1 \circ f)_*Y, (\mathcal{A}_1 \circ f)_*U) = 0$ for any X, Y, U. By definition of g, $g(SX, Y) - e^{2H}h(X, Y) = 0$, which implies $(D_XG)((A_1 \circ f)_*Y, \xi) = 0$. Finally, $(D_XG)(\xi, \xi) = 0$ because $dH = \tau$. \Box

In that way we have defined a symmetric, **C**-bilinear mapping $G : \mathbb{C}^3 \times$ $C^3 \rightarrow C$. It is easy to check that G is non-degenerate.

Remark 3.28. By the formula (3.36) we have defined the metric tensor g only locally. Let \tilde{h} , \tilde{S} and $\tilde{\tau}$ be induced by $\tilde{A}_1 \circ f$ and a local section g only locally. Let h, S and $\tilde{\tau}$ be induced by $\mathcal{A}_1 \circ f$ and a local section $\tilde{\xi} = (\tilde{\mathcal{A}}_1 \circ f)_*(-\tilde{T}_0) + e_3$ of $\tilde{\mathcal{A}}_1^{\rightarrow} \mathcal{N}$. Since $(\mathcal{A}_1^{\rightarrow})^{-1} \xi$ and $(\tilde{\mathcal{A}}_1^{\rightarrow})^{-1} \tilde{\xi}$ are local belo holomorphic sections of $\mathcal N$, there exists a holomorphic function ϕ such that $(\tilde{\mathcal{A}}_1^{\rightarrow})^{-1}\tilde{\xi} = \phi(\mathcal{A}_1^{\rightarrow})^{-1}\xi$ on some neighbourhood U of m_0 . From (1.4), (1.5) and (1.6) we obtain $\widetilde{h} = \frac{1}{\phi} h$, $\widetilde{S} = \phi S$ and $d \widetilde{H} = dH + d \log \phi$, where \log is some holomorphic branch of logarithm in the neighbourhood of m_0 . If U is connected, then we have $\widetilde{H} = H + \log \phi + C$, $C \in \mathbb{C}$, and $\widetilde{g} = e^{2C} g$.

Remark 3.29. In [7], B. Opozda has shown that the Ricci tensor Ric of a locally symmetric torsion-free connection of rank 2 on a 2-dimensional real manifold is symmetric and non-degenerate, hence ∇ is the Levi–Civita connection for the metric tensor $g := \text{Ric}$. Following this, we could in the complex case instead of Ric consider, defined in [5], the complex Ricci tensor $\text{ric}(X,Y) = \frac{1}{2} \Big[\text{Ric}(X,Y) - i \text{Ric}(X,JY) \Big]$ which for a holomorphic connection ∇ is equal to $\text{tr}_{\mathbf{C}}\{V \mapsto R(V,X)Y\}$. In the case of induced connection

we obtain $\text{ric}(X, Y) = h(X, Y) \text{ tr}_{\mathbf{C}}S - h(SX, Y)$, where h, S are induced by f and some local section of N. The right-hand side does not depend on the particular section, but on f and $\mathcal N$ only. From Lemma O2 it follows that it is symmetric. Let $X \in T_m M$ and let $\text{ric}(X, Y) = 0$ for any $Y \in T_m M$. Then $h(\text{tr}_{\mathbf{C}} S X - S X, Y) = 0$ for any $Y \in T_m M$ and from the non-degeneracy of h it follows that $SX = \text{tr}_{\mathbf{C}} S X$, which for 2-dimensional vector space $T_m M$ and invertible S implies $X = 0$. Therefore ric is non-degenerate. From $\nabla R = 0$ and $\nabla J = 0$ it follows that $\nabla \text{ric} = 0$. In this way we can on the whole of M define a **C**-bilinear metric tensor $\hat{g} :=$ ric such that $\nabla \hat{g} = 0$. According to the complex version of the Cartan–Norden theorem, there exists a **C**-bilinear, non-degenerate symmetric $\hat{G} : \mathbf{C}^3 \times \mathbf{C}^3 \to \mathbf{C}$ such that for $X, Y \in TM$,

$$
\widehat{G}((\mathcal{A}_1 \circ f)_*(X), (\mathcal{A}_1 \circ f)_*(Y)) = \widehat{g}(X, Y) \quad \text{and} \quad \widehat{G}((\mathcal{A}_1 \circ f)_*(X), \xi) = 0
$$

for any local section of $\mathcal{A}_1^{\rightarrow}\mathcal{N}$. These conditions together with the nondegeneracy of \hat{g} are sufficient to prove the following Lemma 3.30, but in Lemma 3.31 we need not only the formula $\hat{q}(SX,Y) = C_1e^{2H}h(X,Y)$, which may occur in the proof of the Cartan–Norden theorem, or which we may derive using (3.40), but also there should be $C_1 = 1$, because we use (3.36). To this aim we should locally modify \hat{g} .

From $H_{m_0} = 0$ and $T_{m_0} = 0$ it follows that $G(e_3, e_3) = G(\xi_{m_0}, \xi_{m_0}) =$ $e^{2H_{m_0}} = 1$. There exists a complex linear isomorphism \mathcal{A}_5 of \mathbb{C}^3 such that $\mathcal{A}_5e_1, \mathcal{A}_5e_2, \mathcal{A}_5e_3$ is a G-orthonormal basis of \mathbb{C}^3 and $\mathcal{A}_5e_3 = e_3$. Let $\mathcal{A}_6 :=$ \mathcal{A}_5^{-1} . We have $\mathcal{A}_6e_3 = \mathcal{A}_6\mathcal{A}_5e_3 = e_3$. For the given \mathcal{A}_5 and \mathcal{A}_6 it is easy to find φ_6 and \widehat{F} such that

(3.41)
$$
\mathcal{A}_6 \circ \mathcal{A}_1 \circ f \circ \varphi_1^{-1} \circ \varphi_6^{-1}(z,w) = (z,w,\widehat{F}(z,w)).
$$

From $A_6e_3 = e_3$ it follows that $A_6\xi = -(\mathcal{A}_6 \circ \mathcal{A}_1 \circ f)_*(T_0) + e_3$. We can look at ∇ , h, S, τ as at objects induced by $(\mathcal{A}_6 \circ \mathcal{A}_1 \circ f, \mathcal{A}_6 \xi)$. The new function \tilde{F} from now on we shall denote by F .

Lemma 3.30.

$$
T_0 = \frac{F_z}{1 + F_z^2 + F_w^2} \frac{\partial}{\partial z^1} + \frac{F_w}{1 + F_z^2 + F_w^2} \frac{\partial}{\partial w^1}.
$$

Proof. From (3.41) we obtain $(\mathcal{A}_6 \circ \mathcal{A}_1 \circ f)_* \left(\frac{\partial}{\partial z^1}\right) = e_1 + F_z e_3, (\mathcal{A}_6 \circ \mathcal{A}_1 \circ f)_*$ $\left(\frac{\partial}{\partial w^1}\right) = e_2 + F_w e_3$, and consequently $\left(\mathcal{A}_1 \circ f\right)_* \left(\frac{\partial}{\partial z^1}\right) = \mathcal{A}_5 e_1 + F_z \mathcal{A}_5 e_3$,

$$
(A_1 \circ f)_* \left(\frac{\partial}{\partial w^1}\right) = A_5 e_2 + F_w A_5 e_3. \text{ Hence}
$$

\n
$$
g\left(T_0, \frac{\partial}{\partial z^1}\right) = G\left(\xi + (A_1 \circ f)_*(T_0), (A_1 \circ f)_*\left(\frac{\partial}{\partial z^1}\right)\right)
$$

\n
$$
(3.42)
$$

\n
$$
= G(A_5 e_3, A_5 e_1 + F_z A_5 e_3) = F_z,
$$

\n
$$
g\left(T_0, \frac{\partial}{\partial w^1}\right) = G\left(\xi + (A_1 \circ f)_*(T_0), (A_1 \circ f)_*\left(\frac{\partial}{\partial w^1}\right)\right)
$$

\n
$$
(3.43)
$$

\n
$$
= G(A_5 e_3, A_5 e_2 + F_w A_5 e_3) = F_w,
$$

\n
$$
g\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial z^1}\right) = G\left((A_1 \circ f)_*\left(\frac{\partial}{\partial z^1}\right), (A_1 \circ f)_*\left(\frac{\partial}{\partial z^1}\right)\right)
$$

\n
$$
(3.44)
$$

\n
$$
= G(A_5 e_1 + F_z A_5 e_3, A_5 e_1 + F_z A_5 e_3) = 1 + F_z^2,
$$

\n
$$
g\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) = G\left((A_1 \circ f)_*\left(\frac{\partial}{\partial z^1}\right), (A_1 \circ f)_*\left(\frac{\partial}{\partial w^1}\right)\right)
$$

\n
$$
(3.45)
$$

\n
$$
= G(A_5 e_1 + F_z A_5 e_3, A_5 e_2 + F_w A_5 e_3) = F_z F_w,
$$

\n
$$
g\left(\frac{\partial}{\partial w^1}, \frac{\partial}{\partial w^1}\right) = G\left((A_1 \circ f)_*\left(\frac{\partial}{\partial w^1}\right), (A_1 \circ f)_*\left(\frac{\partial}{\partial w^1}\right)\right)
$$

\n
$$
(3.46)
$$

Let $T_0 = a \frac{\partial}{\partial z^1} + b \frac{\partial}{\partial w^1}$. From (3.42) to (3.46) we obtain the following system of linear equations:

$$
(1 + F_z2) a + F_z F_w b = F_z,
$$

F_z F_w a + (1 + F_w²) b = F_w.

It remains to find the solution a, b and the lemma follows. We use here the fact that q is non-degenerate, which implies

$$
g\left(\frac{\partial}{\partial z^1},\frac{\partial}{\partial z^1}\right)g\left(\frac{\partial}{\partial w^1},\frac{\partial}{\partial w^1}\right)-g\left(\frac{\partial}{\partial z^1},\frac{\partial}{\partial w^1}\right)g\left(\frac{\partial}{\partial z^1},\frac{\partial}{\partial w^1}\right)\neq 0.
$$

Let Z, W be a basis of T_xM . For **C**-bilinear g and a holomorphic connection ∇ such that $\nabla g = 0$

$$
\kappa := \frac{g(R(Z,W)W,Z)}{g(Z,Z)g(W,W)-g(Z,W)g(W,Z)}
$$

is a complex valued analogue of the sectional curvature of 2-dimensional real manifold. It is easy to check that κ does not depend on the choice of the basis and depends on x only. \square **Lemma 3.31.** If dim_C $M = 2$, $\nabla R = 0$, g is a **C**-bilinear metric tensor on $U \subset M$ such that $\nabla g = 0$ and U is connected, then $\kappa = \text{const.}$

Proof. We take a local basis E, F such that $q(E,E) = q(F,F) = 1$ and $g(E, F) = 0$. Since $\nabla g = 0$, there exists a complex valued 1-form ω such that $\nabla_X E = \omega(X) F$ and $\nabla_X F = -\omega(X) E$. As $\nabla g = 0$ and $\nabla R = 0$ we have

$$
X(\kappa) = X(g(R(E, F)F, E))
$$

= $g(R(\nabla_X E, F)F + R(E, \nabla_X F)F + R(E, F)\nabla_X F, E)$
+ $g(R(E, F)F, \nabla_X E) = 0$

because $R(X, Y) = -R(Y, X)$ and $g(R(K, L)M, N) = -g(R(K, L)N, M)$. \Box

Lemma 3.32. F satisfies the differential equation

$$
F_{zz}F_{ww} - F_{zw}F_{zw} = \kappa (1 + {F_z}^2 + {F_w}^2)^2.
$$

Proof. Let $H := -\frac{1}{2} \log(1 + F_z^2 + F_w^2)$, where log is a holomorphic branch of logarithm, defined in the neighbourhood of 1. Then

$$
dH(X) = -\frac{F_z X(F_z) + F_w X(F_w)}{1 + F_z^2 + F_w^2} = -\frac{F_z h(X, \partial/\partial z^1) + F_w h(X, \partial/\partial w^1)}{1 + F_z^2 + F_w^2} = -h(X, T_0) = \tau(X).
$$

Since $T_{0m_0} = 0$, from Lemma 3.30 we obtain $F_z(z_0, w_0) = 0$ and $F_w(z_0, w_0)$ w_0) = 0, where $(z_0, w_0) = \varphi_6 \circ \varphi_1(m_0)$. Therefore $H_{m_0} = 0$. It follows that we may use H to define g . From $(1.7), (2.5)$ and (3.36) , we obtain

(3.47)
$$
g\left(R\left(\frac{\partial}{\partial z^1},\frac{\partial}{\partial w^1}\right)\frac{\partial}{\partial w^1},\frac{\partial}{\partial z^1}\right) = e^{2H}\left(F_{zz}F_{ww} - F_{zw}F_{zw}\right).
$$

By (3.44) to (3.46) we have

$$
g\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial z^1}\right) g\left(\frac{\partial}{\partial w^1}, \frac{\partial}{\partial w^1}\right) - g\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right) g\left(\frac{\partial}{\partial z^1}, \frac{\partial}{\partial w^1}\right)
$$

= 1 + F_z² + F_w².

It follows that $e^{2H} (F_{zz}F_{ww} - F_{zw}F_{zw}) = \kappa (1 + F_z^2 + F_w^2)$, hence

$$
F_{zz}F_{ww} - F_{zw}F_{zw} = \kappa e^{-2H} (1 + F_z^2 + F_w^2) = \kappa (1 + F_z^2 + F_w^2)^2.
$$

To prove Lemma 3.32 one can also directly compute SX as $\nabla_X T_0$, then using the Gauss equation compute R and using (3.44) – (3.46) express κ by the derivatives of F .

Let β be a complex number such that $\beta^2 = \kappa$. Let $\mathcal{A}_7(z,w,u) :=$ $(\beta z, \beta w, \beta u), \varphi_7(z, w) := (\beta z, \beta w), \mathcal{A} := \mathcal{A}_7 \circ \mathcal{A}_6 \circ \mathcal{A}_1 \text{ and } \varphi = \varphi_7 \circ \varphi_6 \circ \varphi_1.$ It is easy to check that $\mathcal{A} \circ f \circ \varphi^{-1}(\widetilde{z}, \widetilde{w}) = (\widetilde{z}, \widetilde{w}, \beta F\left(\frac{1}{\beta}\widetilde{z}, \frac{1}{\beta}\widetilde{w}\right)).$ As a $\text{local section of } \mathcal{A}^{\rightarrow}\mathcal{N} \text{ we take } \frac{1}{\beta}\mathcal{A}_7 \circ \mathcal{A}_6 \xi = -(\mathcal{A} \circ f)_*\left(\frac{1}{\beta}T_0\right) + e_3 =: -(\mathcal{A} \circ \mathcal{A}_7 \circ \mathcal{A}_7 \circ \mathcal{A}_7 \circ \mathcal{A}_8 \xi = -(\mathcal{A} \circ \mathcal{A}_7 \circ \mathcal{A}_8 \xi)$ $f_*(\widetilde{T}_0) + e_3$. Let $\widetilde{F}(\widetilde{z}, \widetilde{w}) := \beta F\left(\frac{1}{\beta}\widetilde{z}, \frac{1}{\beta}\widetilde{w}\right)$, then \widetilde{F} satisfies the differential equation equation

 $\widetilde{F}_{\widetilde{z}\widetilde{z}}\widetilde{F}_{\widetilde{w}\widetilde{w}}-\widetilde{F}_{\widetilde{z}\widetilde{w}}\widetilde{F}_{\widetilde{z}\widetilde{w}}=(1+\widetilde{F}_{\widetilde{z}}{}^2+\widetilde{F}_{\widetilde{w}}{}^2)^2.$ \widetilde{z} + Γ \widetilde{w}

From $\widetilde{F}_{\widetilde{z}}(\widetilde{z},\widetilde{w}) = F_z\left(\frac{1}{\beta}\widetilde{z},\frac{1}{\beta}\widetilde{w}\right)$ and $\widetilde{F}_{\widetilde{w}}(\widetilde{z},\widetilde{w}) = F_w\left(\frac{1}{\beta}\widetilde{z},\frac{1}{\beta}\widetilde{w}\right)$ it follows that $F_{\tilde{z}}(\varphi(m)) = F_z(\varphi_6 \circ \varphi_1(m))$ and $F_{\tilde{w}}(\varphi(m)) = F_w(\varphi_6 \circ \varphi_1(m))$, therefore

$$
\widetilde{T}_0 = \frac{F_z}{1 + F_z^2 + F_w^2} \frac{1}{\beta} \frac{\partial}{\partial z^1} + \frac{F_w}{1 + F_z^2 + F_w^2} \frac{1}{\beta} \frac{\partial}{\partial w^1} \n= \frac{\widetilde{F}_{\widetilde{z}}}{1 + \widetilde{F}_{\widetilde{z}}^2 + \widetilde{F}_{\widetilde{w}}^2} \frac{\partial}{\partial \widetilde{z}^1} + \frac{\widetilde{F}_{\widetilde{w}}}{1 + \widetilde{F}_{\widetilde{z}}^2 + \widetilde{F}_{\widetilde{w}}^2} \frac{\partial}{\partial \widetilde{w}^1}.
$$

It is easy to check that the equiaffine section of $\mathcal{A}^{\rightarrow}\mathcal{N}$

$$
\xi_{\text{eq}} = -\mathcal{A} \circ f_* \left(\frac{F_z}{\sqrt{F_z^2 + F_w^2 + 1}} \frac{\partial}{\partial z^1} + \frac{F_w}{\sqrt{F_z^2 + F_w^2 + 1}} \frac{\partial}{\partial w^1} \right) + \sqrt{F_z^2 + F_w^2 + 1} \, e_5
$$

is the complex affine normal vector field.

4. Examples

1. Let $4AC - B^2 = 1$, $F(z, w) = Az^2 + Bzw + Cw^2 + Kz + Lw$, $\eta(\zeta) =$ e^{ζ} . We have then

$$
F_{zz}F_{ww} - F_{zw}F_{zw} = 1,
$$

\n
$$
T_0 = \frac{\partial}{\partial z^1}, \quad \xi = (-1, 0, -2Az - Bw - K + 1).
$$

Note that at no point m_0 , $T_{0m_0} = 0$, but in Proposition 2.1 we do not need such point. The equiaffine section of AN is

$$
\xi_{\text{eq}} = \eta(F_z)\xi = (-e^{2Az + Bw + K}, 0, e^{2Az + Bw + K}(-2Az - Bw - K + 1)).
$$

464 Maria Robaszewska

2. Let $4AC - B^2 = -1$, $F(z, w) = Az^2 + Bzw + Cw^2 + Kz + Lw$, $\eta(\zeta) = \sin \zeta$. Then

$$
F_{zz}F_{ww} - F_{zw}F_{zw} = -1,
$$

\n
$$
T_0 = \cot(2Az + Bw + K)\frac{\partial}{\partial z^1},
$$

\n
$$
\xi = (-\cot(2Az + Bw + K), 0, -(2Az + Bw + K)\cot(2Az + Bw + K) + 1),
$$

\n
$$
\xi_{\text{eq}} = (-\cos(2Az + Bw + K), 0,
$$

\n
$$
-(2Az + Bw + K)\cos(2Az + Bw + K) + \sin(2Az + Bw + K)).
$$

3. Let
$$
F(z, w) = z^2 e^{iw}
$$
, $\eta(\zeta) = \frac{1}{2} \zeta^2$. Then $F_{zz} F_{ww} - F_{zw} F_{zw} = \frac{1}{2} F_z^2$,

$$
T_0 = \frac{1}{z} e^{-iw} \frac{\partial}{\partial z^1}, \ \xi = \left(-\frac{1}{z} e^{-iw}, 0, -1\right), \ \xi_{\text{eq}} = \left(-2z e^{iw}, 0, -2z^2 e^{2iw}\right).
$$

- 4. Warped helicoid. An example of locally symmetric complex surface with ∇ induced by the complex affine normal vector field is a warped helicoid (see [2]). Under a suitable parametrization it can be described by a solution F of the differential equation $F_{zz}F_{ww} - F_{zw}F_{zw} = (1 +$ F_z^2 ² which we obtain, taking in (2.1) $\eta(\zeta) = \sqrt{\zeta^2 + 1}$. In this case the solution is $F(z, w) = (z - f_1(iw)) \tan(iw) + f_2(iw)$, where f_1 and f_2 are holomorphic functions of one variable. The surface $(z,w) \rightarrow$ $(z, w, F(z, w))$ is a warped helicoid, because $z_1 := z, z_2 := F(z, w)$, $z_3 := iw$ satisfy the equation $(z_1 - f_1(z_3)) \sin z_3 = (z_2 - f_2(z_3))$ $\cos z_3$, and $(z, w, F(z, w)) = \mathcal{B}(z_1, z_2, z_3)$ where $\mathcal{B} :=$ $\sqrt{2}$ $\sqrt{2}$ 10 0 0 0 $-i$ 01 0 \setminus [⎠] is an equiaffine transformation. We obtain $T_0 = \sin(iw)\cos(iw)\frac{\partial}{\partial z^1}$, $\xi =$ $(-\sin(iw)\cos(iw), 0, \cos^2(iw))$ and $\xi_{\text{eq}} = (-\sin(iw), 0, \cos(iw))$.
- 5. As an example of locally symmetric complex surface of rank 2 let us As an example of locally symmetric complex surface of
take $F(z, w) = \sqrt{1 - z^2 - w^2}$. Then $T_0 = -$ √ $1 - z^2 - w^2$ take $r(z, w) = \sqrt{1 - z^2 - w^2}$. Then $T_0 = -\sqrt{1 - z^2 - w^2}$
 $(z \frac{\partial}{\partial z^1} + w \frac{\partial}{\partial w^1}), \xi = \sqrt{1 - z^2 - w^2} (z, w, \sqrt{1 - z^2 - w^2})$ and $\xi_{\text{eq}} = (z, w, \sqrt{1 - z^2 - w^2}) = (z, w, F(z, w))$.

Acknowledgement

This research was supported by KBN grant no. 1P03A 03426.

References

- [1] F. Dillen, L. Vrancken and L. Verstraelen, Complex affine differential geometry, Preprint, Reihe Mathematik, Fachbereich 3 T.U. Berlin, No. 153 (1986).
- [2] F. Dillen, Locally symmetric complex affine surfaces, J. Geom. **33** (1988), 27–38.
- [3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, John Wiley and Sons, New York, 1963.
- [4] K. Nomizu and T. Sasaki, Affine differential geometry, Cambridge University Press, 1994.
- [5] B. Opozda, On some properties of the curvature and Ricci tensors in complex affine geometry, Geom. Dedicata **55** (1995), 141–163.
- [6] B. Opozda, Equivalence theorems for complex affine hypersurfaces, Result. Math. **27** (1995), 316–327.
- [7] B. Opozda, Some relations between Riemannian and affine geometry, Geom. Dedicata **47** (1993), 225–236.
- [8] B. Opozda, Locally symmetric connections on surfaces, Result. Math. **20** (1991), 725–743.
- [9] M. Robaszewska, Locally symmetric connections on complex hypersurfaces with type number 1, Geom. Dedicata **114** (2005), 13–47.

Instytut Matematyki, Akademia Pedagogiczna, UL. PODCHORĄŻYCH 2, 30-084 KRAKÓW, Poland. E-mail address: robaszew@ap.krakow.pl

Received June 20, 2007