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Locally symmetric connections on complex surfaces
and some equations of Monge-Ampère type

Maria Robaszewska

We study locally symmetric connections induced by transversal
bundles on non-degenerate complex surfaces. Each of such surfaces
together with its transversal bundle can be described locally by
a solution to some partial differential equation of Monge-Ampère
type.

1. Introduction

Let M be an n-dimensional connected complex manifold and f : M → Cn+1

a holomorphic immersion. Let N be a C∞ transversal bundle, that is,

N =
⋃

p∈M

Np,

where Np is a complex vector subspace of Cn+1 ∼= R2n+2 such that
f∗

(
TpM

)
⊕ Np = Cn+1. The C∞ class means that for any q ∈ M there exists

a neighbourhood U of q such that N
∣∣
U

is spanned over C by a vector field
ξ on Cn+1 defined along f :

M ⊃ U � p �→ ξp ∈ Tf(p)C
n+1 ∼= Cn+1,

which is of class C∞ and not necessarily holomorphic.
The connection ∇, the C-bilinear symmetric affine fundamental form

h = h1 + ih2, the affine shape operator S and the transversal connection
form τ = μ + iν which are induced on U by f and ξ are defined by the
following Gauss and Weingarten formulae:

DXf∗Y = f∗∇XY + h1(X, Y )ξ + h2(X, Y )Jξ(1.1)
DXξ = −f∗SX + μ(X)ξ + ν(X)Jξ(1.2)

(see, e.g., [4, 5]). Here D denotes the standard connection on Cn+1. The
manifold M is regarded as a 2n-dimensional real manifold with the complex
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structure J . To simplify notation, we use the same letter J for the complex
structure in Cn+1 ∼= R2n+2. The identification of Ck with R2k is given by:
(z1 + iz2, . . . , z2k−1 + iz2k) �→ (z1, z2, . . . , z2k−1, z2k).

If we replace vector field ξ by ξ̃ = ϕξ + ϑJξ + f∗Z, then we obtain ∇̃,
h̃, S̃ and τ̃ :

∇̃XY = ∇XY − 1
ϕ + iϑ

h(X, Y )Z,(1.3)

h̃ =
1

ϕ + iϑ
h,(1.4)

S̃X = (ϕ + iϑ)SX − ∇XZ + τ̃(X)Z,(1.5)

τ̃(X) =
X(ϕ) + iX(ϑ)

ϕ + iϑ
+

1
ϕ + iϑ

h(X, Z) + τ(X).(1.6)

Let ξ and ξ̃ be two local sections of N . Then we have ξ̃ =
(
ϕ + iϑ

)
ξ and

Z = 0, therefore ∇̃XY = ∇XY for any C∞ vector fields X, Y on U . It follows
that ∇ depends on N only and can be defined on the whole of M . Moreover,
the complex rank of affine fundamental form h does not depend on the
transversal bundle N . We call it the type number of f . This type number
is constant on a dense open subset M ′ of M [6]. The immersion is called
non-degenerate, if h is non-degenerate (∀X �= 0 ∃ Y : h(X, Y ) �= 0).

The induced connection ∇, he affine fundamental form h, the shape
operator S and the transversal connection form τ satisfy the following fun-
damental equations.

Gauss equation:

(1.7) R(X, Y )Z = h(Y, Z)SX − h(X, Z)SY.

Codazzi equation for h:

(1.8) (∇Xh)(Y, Z) + τ(X) h(Y, Z) = (∇Y h)(X, Z) + τ(Y ) h(X, Z).

Codazzi equation for S:

(1.9) (∇XS)(Y ) − τ(X) SY = (∇Y S)(X) − τ(Y ) SX.

Ricci equation:

h(X, SY ) − h(SX, Y ) = 2 dτ(X, Y ).(1.10)
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If f is non-degenerate, there exists some canonical transversal bundle —
the complex affine normal bundle – which is the bundle of affine normal
complex lines. According to the definition given by F. Dillen, L. Vrancken
and L. Verstraelen in [1] (see also [2]), the affine normal complex line of M
at p is a complex line in Tf(p)Cn+1 determined by the complex affine normal
vector ξp. The complex affine normal vector field ξ is a local vector field on
Cn+1 defined along f satisfying the following two conditions:

CHξ = 1 and τ = 0.

Here τ is a transversal connection form and

CHξ :=
∣∣∣det

[
h(Xk, Xl)

]n

k,l=1

∣∣∣
2
,

where X1, . . . , Xn is a local complex basis of TM such that

∣∣∣
C

ω(f∗X1, . . . , f∗Xn, ξ)
∣∣∣ = 1.

The symbol Cω denotes the complex volume form on Cn+1 such that
Cω(e1, . . . , en+1) = 1 for the standard basis e1, . . . , en+1 of Cn+1. Actually, if
for k = 1, . . . , n + 1, Yk =

∑n+1
l=1 Y l

kel, then Cω(Y1, . . . , Yn+1) = det
[
Y l

k

]n+1
k,l=1.

If ξ and ξ̃ are complex affine normal vector fields defined on the same
open domain U , then there exists a real number θ such that ξ̃ = eiθ ξ [1]. It
follows that for any p ∈ M the affine normal complex line at p is uniquely
determined.

The aim of this paper is to give a local description of some of those
immersions and transversal bundles for which the induced connection ∇ is
locally symmetric. The local symmetry of ∇ is equivalent to the condition
∇R = 0, where R is the curvature tensor of ∇ [3]. Here we consider the case
of a non-degenerate immersion, dimC M = 2 and we shall study connections
of ranks 1 and 2. By the rank of locally symmetric connection we mean,
following [8], the (complex) dimension of the subspace

(1.11) imRx := spanR{R(X, Y )Z : X, Y, Z ∈ TxM}.

For any x ∈ M , (1.11) is a complex subspace of TxM . If ∇R = 0 and M
is connected, then dim imRx does not depend on x. We shall also use the



440 Maria Robaszewska

subspace

(1.12) kerRx :=
⋂

X,Y ∈TxM

ker R(X, Y ).

Let us denote by r the type number of f on M ′ and by π the projection of
Cn+1 onto Cr+1 parallel to Cn−r ∼= f∗(ker h). The following theorem, which
in particular gives the full classification of locally symmetric hypersurfaces
with r > 2, has been proved by B. Opozda in [5].

Theorem 1.1. Let f : M → Cn+1 be a complex hypersurface endowed with
a complex transversal vector bundle N inducing a non-flat locally symmetric
connection ∇. Then around every point x ∈ M ′ there is an open neighbour-
hood U of x of the form N ′ × N0, where N0 endowed with ∇ restricted to
N0 is affine isomorphic by f to an open subset of Cn−r and N ′ is immersed
by f into Cr+1 as a non-degenerate hypersurface. If r > 1, then the bundle
π(N )|U is holomorphic and induces a locally symmetric connection ∇′ on U
as well as on N ′. If r > 2, then ∇′ is flat or f(N ′) is an open part of a central
quadric in Cr+1. If r > 1 and ∇ is affine Kähler [i.e., R(JX, JY ) = R(X, Y )
for any X, Y ], then ∇′ is flat.

A local description of complex hypersurfaces with type number one
endowed with transversal bundles inducing locally symmetric connections
is given in [9].

In the present paper we associate with any locally symmetric complex
surface some partial differential equation such that this surface is locally
equivalent to the graph of a solution F to this equation and the transversal
bundle is also determined by this solution. It is known that the real equa-
tion FxxFyy − FxyFxy = κ(1 + Fx

2 + Fy
2)2 describes the Euclidean surfaces

with constant Gauss curvature κ. Similar description we obtain for complex
locally symmetric surfaces in the case of dim imR = 2, because in this case
∇ turns out to be metrizable in the sense that there exists non-degenerate,
C-bilinear, symmetric g such that ∇g = 0. The local symmetry implies that
the complex sectional curvature of M is then constant. The connection ∇ is
induced by the transversal bundle which is perpendicular to f∗(TM) with
respect to some C-bilinear metric G in C3. The surface (M, g) is isometri-
cally immersed in (C3, G).

In the case of dim imR = 1 the equation has the form FzzFww −FzwFzw =
Φ(Fz) with some arbitrary holomorphic function Φ, which is also associated
with the given surface. A local section of the transversal bundle may be
expressed in terms of Fz and η, where η is a holomorphic function such that
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Φ = η
η′′ . If N is the complex affine normal bundle, then Φ is more strictly

determined and the right-hand side of the equation has the form
(
1 + Fz

2)2.

2. Locally symmetric connections of rank 1 on surfaces —
a class of examples

Let V be an open subset of C. Let η : V → C be a holomorphic function
such that ∀ζ ∈ V : η(ζ) �= 0 and ∀ζ ∈ V : η′′(ζ) �= 0. Let the holomorphic
function F = F 1 + iF 2 : U → C of two variables z = z1 + iz2, w = w1 + iw2

satisfy the following partial differential equation:

(2.1) FzzFww − FzwFzw =
η(Fz)
η′′(Fz)

.

Let e1, e2, e3 be the standard basis of C3. As a local basis of TM over
C we shall use the vector fields ∂

∂z1 and ∂
∂w1 . For α, β ∈ R we have (α +

iβ) ∂
∂z1 = α ∂

∂z1 + β ∂
∂z2 and likewise for the w-variables.

Proposition 2.1. The transversal vector field

(2.2) ξ = f∗(−T0) + e3

with

(2.3) T0 =
η′(Fz)
η(Fz)

∂

∂z1

induces on the surface

(2.4) f : U � (z, w) �→ (z, w, F (z, w)) ∈ C3

a real holomorphic, locally symmetric connection of rank 1.

Proof. A connection ∇ is real holomorphic if and only if its curvature tensor
R satisfies the condition R(JX, Y ) = JR(X, Y ) for all X, Y [4]. From the
Cauchy–Riemann equations for the holomorphic function η′(Fz)/η(Fz) it
follows easily that ∇JY T0 = J∇Y T0 for any Y . Consequently DJY ξ = JDY ξ
for any Y , which is equivalent to the condition that ξ is real holomorphic
and S, τ are C-linear (see [4]). Therefore R(JX, Y )Z = JR(X, Y )Z for any
X by the Gauss equation.

Using the Gauss and Weingarten formulae for the immersion (2.4), which
we identify with (z1, z2, w1, w2) �→ (z1, z2, w1, w2, F 1(z, w), F 2(z, w)), and
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the transversal field (2.2), where e3 when looked at as an element of R6

is equal to (0, 0, 0, 0, 1, 0), we easily obtain

h

(
∂

∂zi
,

∂

∂zj

)
=

∂2F 1

∂zi∂zj
+ i

∂2F 2

∂zi∂zj
,

h

(
∂

∂zi
,

∂

∂wj

)
=

∂2F 1

∂zi∂wj
+ i

∂2F 2

∂zi∂wj
,(2.5)

h

(
∂

∂wi
,

∂

∂wj

)
=

∂2F 1

∂wi∂wj
+ i

∂2F 2

∂wi∂wj
,

∇X
∂

∂z1 = X(Fz)T0, ∇Y
∂

∂w1 = Y (Fw)T0.(2.6)

SX = ∇XT0,(2.7)
τ(X) = −h(X, T0).(2.8)

Here for a complex valued function f = f1 + if2 by X(f) we mean X(f1) +
iX(f2) and for a holomorphic function F we have

(2.9)
∂F

∂z
=

∂F 1

∂z1 + i
∂F 2

∂z1 ,
∂F

∂w
=

∂F 1

∂w1 + i
∂F 2

∂w1 .

Using (2.3), (2.6) and (2.7), we obtain

(2.10) SX = X(Fz)
η′′(Fz)
η(Fz)

∂

∂z1 .

From (1.7), (2.1) and (2.5), it follows that

R

(
∂

∂z1 ,
∂

∂w1

)
∂

∂z1 = FwzS
∂

∂z1 − FzzS
∂

∂w1

= (FwzFzz − FzzFwz)
η′′(Fz)
η(Fz)

∂

∂z1 = 0,

R

(
∂

∂z1 ,
∂

∂w1

)
∂

∂w1 = FwwS
∂

∂z1 − FzwS
∂

∂w1

= (FwwFzz − FzwFwz)
η′′(Fz)
η(Fz)

∂

∂z1 =
∂

∂z1 ,

and it is easy to check that ∇R = 0. �
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3. The classification theorem

Here and subsequently, A→ denotes the linear part of an affine map A. The
symbol dim stands for the complex dimension dimC.

Theorem 3.1. Let M be a two-dimensional complex manifold and
f : M →C3 a non-degenerate holomorphic immersion. Assume that M is
endowed with C∞ transversal bundle N inducing on M a non-flat locally
symmetric connection ∇. Let R be the curvature tensor of ∇.

Then for any m0 ∈ M there exist a neighbourhood U of m0, a complex
chart ϕ : U → C2, an affine complex isomorphism A of C3 and a holomor-
phic function F of two variables such that

(i) A ◦ f ◦ ϕ−1(z, w) = (z, w, F (z, w)),
(ii) ξ = (A ◦ f)∗(−T0) + e3, with some vector field T0 on U , is a local

section of A→N .
Moreover, A and ϕ may be chosen in such a way that F and T0 satisfy

the following conditions:
(iii) If dim imR = 1, then T0 is described by (2.3) with some holomorphic

function η of one variable and F satisfies the differential equation (2.1).
(iv) If dim imR = 1 and N is the complex affine normal bundle, then

(3.1) T0 =
Fz

1 + Fz
2

∂

∂z1

and F satisfies the differential equation

(3.2) FzzFww − FzwFzw =
(
1 + Fz

2)2
.

(v) If dim imR = 2, then N is the complex affine normal bundle,

(3.3) T0 =
Fz

1 + Fz
2 + Fw

2
∂

∂z1 +
Fw

1 + Fz
2 + Fw

2
∂

∂w1

and F satisfies the differential equation:

(3.4) FzzFww − FzwFzw =
(
1 + Fz

2 + Fw
2)2

.

Proof. Let m0 ∈ M . Since the immersion f is locally a graph, we may
choose a complex chart ϕ1 on some neighbourhood U of m0 and a complex
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isomorphism A1 of C3 such that

(3.5) A1 ◦ f ◦ ϕ−1
1 (z, w) = (z, w, F (z, w))

with a holomorphic function F of two variables z, w and such that

(3.6) A→
1 Nm0 = Ce3.

We may assume that
(

∂
∂z1

)
m0

/∈ ker Rm0 and
(

∂
∂w1

)
m0

/∈ ker Rm0 , for if not,
we replace ϕ1 by ψ ◦ ϕ1 and A1 by A2 ◦ A1, where ψ(z, w) = (αz + βw, γz +
δw) and A2(z, w, u) = (αz + βw, γz + δw, u) with some appropriate complex
constants α, β, γ, δ. We can also assume, by decreasing U if necessary, that
the condition ∂

∂z1 /∈ ker R and ∂
∂w1 /∈ ker R is satisfied on the whole of U .

The pair (A1 ◦ f,A→
1 N ) induces on M the same connection ∇ as the

pair (f,N ) and A1 ◦ f is also a non-degenerate immersion.
Let ξ̂ : U → C3 be a local section of A→

1 N . Since e3 is transversal
to (A1 ◦ f)∗(Tm0M), on some neighbourhood U ′ of m0 we have a decom-
position ξ̂ = (A1 ◦ f)∗(−T1) + λe3 where λ is a complex valued function
such that ∀x ∈ U ′ : λ(x) �= 0. Dividing ξ̂ by λ we obtain the section ξ =
−(A1 ◦ f)∗(T0) + e3 of A→

1 N . From (3.6) it follows that T0m0
= 0. From

the Gauss and Weingarten formulae we obtain (2.5) to (2.8) for ∇, h, S and
τ induced by (A1 ◦ f, ξ).

Locally symmetric connection is semi-symmetric, which means that
R(X, Y ) · R = 0 for any X, Y ; here R(X, Y ) acts on R as a derivation.
Therefore for any m ∈ U we can apply to hm, Sm and Rm the following
algebraic lemma [5].

Lemma O1 Let V be a complex vector space, dimC V > 1, endowed with a
C-bilinear symmetric non-degenerate form h. Let R be a tensor of type (1, 3)
on V and S an R-linear endomorphism of V satisfying the Gauss equation

R(X, Y )Z = h(Y, Z)SX − h(X, Z)SY.

If for every X ∈ V, R(X, JX) · R = 0, then S is complex [C-linear ].
The following two lemmas are consequences of the C-linearity of S.

Lemma 3.2. If ∇R = 0, then ∇ is a real holomorphic connection, that is,
R(X, Y ) is C-linear in X and Y .

Proof. The claimed C-linearity of R follows from the Gauss equation (1.7).
�
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Lemma 3.3. ξ is a holomorphic section of A→
1 N and T0 is a holomorphic

vector field.

Proof. From (2.8) and from the C-bilinearity of h it follows that τ is
C-linear. We have now

DJXξ = −(A1 ◦ f)∗(SJX) + τ(JX)ξ
= −(A1 ◦ f)∗(JSX) + τ(X)Jξ = J DXξ,

therefore ξ is holomorphic. From (2.7) we obtain ∇JXT0 = SJX = JSX =
J∇XT0 and the lemma follows. �

Lemma 3.4. There exist a neighbourhood U ′ of m0 and a holomorphic
function H = A + iB : U ′ → C such that τ = dA + idB.

Proof. We use here a part of another lemma from [5].

Lemma O2 Let V be a complex vector space endowed with a C-bilinear
symmetric non-degenerate form h. Let R be a tensor of type (1, 3) on V
and S an R-linear endomorphism of V satisfying the Gauss equation. If
dimC V > 2, then R · R = 0 if and only if S = λ idV for some λ ∈ C. If
dimC V = 2, then R · R = 0 if and only if h(X, SY ) = h(SY, X) for every
X, Y ∈ V.

From the Ricci equation (1.10) it follows that dτ = 0, which implies
dμ = 0 and dν = 0 on U . Hence there exist a neighbourhood U ′ of m0 and
real functions A and B on U ′ such that μ = dA and ν = dB. Since τ is
C-linear (Equation (2.8)), A + iB is holomorphic. �

We first consider the case dim im R = 1.

Lemma 3.5. dim ker R = 1.

Proof. We fix a point x ∈ U , where U is the domain of the chart ϕ. Let
X1, X2 be a basis of TxM over C. Since SJ = JS, R is C-linear with respect
to any variable. Therefore Z ∈ ker Rx if and only if R(X1, X2)Z = 0. Since
the type number of the immersion is greater than 1, imRx = imC Sx [5].
For the complex S we have imC Sx = im Sx. By assumption, dim imRx = 1,
therefore dim im Sx = 1. Hence SX1 and SX2 are linearly dependent over
C. There exist complex numbers α, β, (α, β) �= (0, 0), such that αSX1 +
βSX2 = 0. From the non-degeneracy of h it follows that there exists a
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solution γ, δ of the system of linear equations:

h(X1, X1)γ + h(X1, X2)δ = −β,

h(X2, X1)γ + h(X2, X2)δ = α.(3.7)

Of course (γ, δ) �= (0, 0). Therefore Z0 := γX1 + δX2 is non-zero. Using
(1.7) and the system (3.7) it is easy to check that R(X1, X2)Z0 = 0. Since
∇ is non-flat, kerRx = CZ0. �

Lemma 3.6. Let Z0 be a non-zero vector from ker Rx. Then for any X, Y ∈
TxM , R(R(X, Z0)X, Z0)Y = 0.

Proof. Since ∇ is semi-symmetric, we have

0 = (R(X, Z0) · R)(X, Z0)Y

= R(X, Z0)(R(X, Z0)Y ) − R(R(X, Z0)X, Z0)Y

− R(X, R(X, Z0)Z0)Y − R(X, Z0)(R(X, Z0)Y )

= −R(R(X, Z0)X, Z0)Y − R(X, R(X, Z0)Z0)Y

= −R(R(X, Z0)X, Z0)Y. �

Lemma 3.7. (a) If R(W1, W2)Y = 0 for any Y ∈ TxM , then W1 and W2
are linearly dependent over C.

(b) There exists X ∈ TxM such that R(X, Z0)X �= 0.
(c) im Rx = ker Rx.

Proof. (a) Suppose, contrary to our claim, that W1 and W2 are linearly inde-
pendent over C. Then TxM is generated by W1 and W2 and R(W1, W2)Y =
0 implies Y ∈ ker Rx. But this contradicts the assumption of (a), because
ker Rx is a proper subset of TxM .

(b) Suppose the assertion is false. Then R(X, Z0)X = 0 and R(X, Z0)
Z0 = 0 for any X ∈ TxM . Using (1.7) we obtain

h(Z0, Z0)SX − h(X, Z0)SZ0 = 0,(3.8)
h(Z0, X)SX − h(X, X)SZ0 = 0.(3.9)

Subtracting (3.9) multiplied by h(X, Z0) from (3.8) multiplied by h(X, X)
yields

(3.10)
∣∣∣∣

h(Z0, Z0) h(Z0, X)
h(X, Z0) h(X, X)

∣∣∣∣ SX = 0.
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It follows that if X and Z0 are C-linearly independent, then SX = 0. We
choose Z1 such that Z0, Z1 is a C-basis of TxM . By this, SZ1 = 0 and
S(Z0 + Z1) = 0. Consequently, SZ0 = 0 and S = 0, which contradicts the
fact that dim imS = dim imR = 1.

(c) According to (b) we may choose X0 ∈ TxM such that
R(X0, Z0)X0 �= 0. By Lemma 3.6 and (a), R(X0, Z0)X0 and Z0 are
C-linearly dependent. Since R(X0, Z0)X0 �= 0, there exists λ ∈ C such that
Z0 = λR(X0, Z0)X0. Hence Z0 ∈ im Rx and kerRx = CZ0 ⊂ im Rx. By
assumption, dimC imR = 1, and the lemma follows. �

Lemma 3.8.

(3.11) ∇X

(
R

(
∂

∂z1 ,
∂

∂w1

)
T0

)
= h(X, T0) R

(
∂

∂z1 ,
∂

∂w1

)
T0.

Proof. From ∇R = 0 it follows that

0 = (∇XR)
((

∂

∂z1 ,
∂

∂w1

)
T0

)

= ∇X

(
R

(
∂

∂z1 ,
∂

∂w1

)
T0

)
− R

(
∇X

∂

∂z1 ,
∂

∂w1

)
T0

− R

(
∂

∂z1 ,∇X
∂

∂w1

)
T0 − R

(
∂

∂z1 ,
∂

∂w1

)
(∇XT0) .

The last term vanishes, because ∇XT0 = SX and imS = imR = ker R by
Lemma 3.7 (c). From Lemma 3.3, it follows that there exist holomorphic
functions ψ1 and ψ2 such that

(3.12) T0 = ψ1
∂

∂z1 + ψ2
∂

∂w1 .

By the C-bilinearity and anti-symmetry of R(·, ·), we have from (2.5), (2.6)
and (3.12)

R

(
∇X

∂

∂z1 ,
∂

∂w1

)
T0 + R

(
∂

∂z1 ,∇X
∂

∂w1

)
T0

= h

(
X,

∂

∂z1

)
R

(
T0,

∂

∂w1

)
T0 + h

(
X,

∂

∂w1

)
R

(
∂

∂z1 , T0

)
T0

=
(

ψ1h

(
X,

∂

∂z1

)
+ ψ2h

(
X,

∂

∂w1

))
R

(
∂

∂z1 ,
∂

∂w1

)
T0

= h

(
X, ψ1

∂

∂z1 + ψ2
∂

∂w1

)
R

(
∂

∂z1 ,
∂

∂w1

)
T0 = h(X, T0)R

(
∂

∂z1 ,
∂

∂w1

)
T0.

�
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Let U ′ and H be as in Lemma 3.4. We may assume that U ′ is connected.
From now on we shall write U instead of U ′.

Lemma 3.9. ∇X

(
eH R

(
∂

∂z1 ,
∂

∂w1

)
T0

)
= 0 for any X ∈ TM |U .

Proof. It suffices to use (2.8) and Lemma 3.8. �

Lemma 3.10. If (T0)m0 ∈ ker Rm0, then (T0)m ∈ ker Rm for any m ∈ U .

Proof. Assume that the vector field W on U has the property ∇XW = 0
for any X. Any two points x and y of U we can connect with some curve
γ. The coordinates of Wγ(t) in the basis of Tγ(t)M obtained from a basis of
TxM by parallel displacement along γ do not depend on t. It follows that if
Wx = 0 at some x ∈ U , then W ≡ 0 on U . Now let W = eH R

(
∂

∂z1 ,
∂

∂w1

)
T0.

By assumption, Wm0 = 0, therefore W ≡ 0 and R
(

∂
∂z1 ,

∂
∂w1

)
T0 = e−HW ≡ 0.

�

Lemma 3.11. For any m ∈ U , ψ1(m) = 0 if and only if ψ2(m) = 0.

Proof. To obtain a contradiction, suppose for example that ψ1(m) = 0 and
ψ2(m) �= 0. Then ∂

∂w1 |m = 1
ψ2(m)T0m, which contradicts the assumption that

∂
∂w1 /∈ ker R. �

Lemma 3.12. There exists an open dense subset U2 of U such that ψ1 �= 0
everywhere on U2.

Proof. Suppose that ψ1 ≡ 0 on some open, non-empty subset V of U . Then,
by Lemma 3.11, ψ2 ≡ 0 on V and consequently T0 ≡ 0 on V . This contra-
dicts the fact that dim imS = 1, because ∇XT0 = SX. �

Lemma 3.13. There exists a constant C �= 0 such that ψ2 = Cψ1 on U .

Proof. Let U3 be a connected, open, non-empty subset of U2 and let X ∈
TM |U3 . From the equality imS = im R = ker R and from T0 ∈ ker R it fol-
lows that X(ψ1) ∂

∂z1 + X(ψ2) ∂
∂w1 ∈ ker R, because

X(ψ1)
∂

∂z1 + X(ψ2)
∂

∂w1 = ∇XT0 − ψ1∇X
∂

∂z1 − ψ2∇X
∂

∂w1

= SX − ψ1h

(
X,

∂

∂z1

)
T0 − ψ2h

(
X,

∂

∂w1

)
T0.
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Since T0 ∈ ker R and dim kerR = 1, the tangent vectors ψ1
∂

∂z1 + ψ2
∂

∂w1 and
X(ψ1) ∂

∂z1 + X(ψ2) ∂
∂w1 are linearly dependent over C. Consequently

(3.13) X

(
ψ2

ψ1

)
=

1
(ψ1)2

·
∣∣∣∣

ψ1 ψ2
X(ψ1) X(ψ2)

∣∣∣∣ = 0.

It follows that X
(

ψ2

ψ1

)
= 0 for any m ∈ U3, for any X ∈ TmM . Since U3 is

connected, there exists a constant C such that ψ2

ψ1
= C on U3. The constant

C �= 0, for if not, then ψ2 ≡ 0. Now ψ2 − Cψ1 is a holomorphic function
defined on the connected subset U of M and equal to zero on an open,
non-empty set U3. From the identity principle for holomorphic functions it
follows that ψ2 − Cψ1 ≡ 0 on U .

Let (z̃, w̃) = ϕ3(z, w) := (z,−Cz + w) and A3(z, w, u) = (z,−Cz + w, u).
Then A3 ◦ A1 ◦ f ◦ (ϕ3 ◦ ϕ1)−1(z̃, w̃) = A3 ◦ A1 ◦ f ◦ ϕ−1

1 (z̃, Cz̃ + w̃) = A3(z̃,

Cz̃ + w̃, F (z̃, Cz̃ + w̃)) = (z̃, w̃, F (z̃, Cz̃ + w̃)) = (z̃, w̃, F̃ (z̃, w̃)),

A3ξ = −(A3 ◦ A1 ◦ f)∗(T0) + A3e3 = −(A3 ◦ A1 ◦ f)∗(T0) + e3,

∂
∂z̃1 = ∂

∂z1 + C ∂
∂w1 and ∂

∂w̃1 = ∂
∂w1 . Using the new coordinates we can rewrite

T0 as

(3.14) T0 = ψ1

(
∂

∂z1 + C
∂

∂w1

)
= ψ1

∂

∂z̃1 = α(z̃, w̃)
∂

∂z̃1

where α = ψ1 ◦ ϕ−1
1 ◦ ϕ−1

3 . From now on we write z, w, F instead of z̃,w̃, F̃ .
Then the formulae (2.6) to (2.8) hold. �

Lemma 3.14. There exist an open neighbourhood U ′ of m0 and a holo-
morphic function g of one variable such that α(z, w) = g

(
Fz(z, w)

)
on ϕ3 ◦

ϕ1(U ′).

Proof. An easy computation shows that

(3.15) ∇XT0 = X(ψ1)
∂

∂z1 + ψ2
1 h

(
X,

∂

∂z1

)
∂

∂z1

and

(3.16) R

(
∂

∂z1 ,
∂

∂w1

)
∂

∂z1 =
(

∂2F

∂w∂z

∂α

∂z
− ∂2F

∂z∂z

∂α

∂w

)
∂

∂z1 .
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By Lemma 3.12 and by (3.14) α �= 0 on some dense open subset Ũ of ϕ3 ◦
ϕ1(U). For any (z, w) ∈ Ũ we can write

(3.17)
(

∂2F

∂w∂z

∂α

∂z
− ∂2F

∂z∂z

∂α

∂w

)
∂

∂z1 = R

(
∂

∂z1 ,
∂

∂w1

) (
1

α(z, w)
T0

)
= 0.

Hence

(3.18)
∂2F

∂w∂z

∂α

∂z
− ∂2F

∂z∂z

∂α

∂w
= 0

on Ũ and, by continuity, on ϕ3 ◦ ϕ1(U). Furthermore, ∂2F
∂z∂z �= 0 or ∂2F

∂w∂z �=
0 for any point m ∈ M , since otherwise ∂

∂z1 ∈ ker h which contradicts the
non-degeneracy of f . Therefore Ψ := ∂F

∂z satisfies the assumptions of the
following lemma. Applying Lemma 3.15 to Ψ and Λ := α completes the
proof of Lemma 3.14. �

Lemma 3.15. Let V be an open subset of C2. Let Ψ : V → C be a holo-
morphic function of two variables such that for any (z, w) ∈ V , ∂Ψ

∂z (z, w) �= 0
or ∂Ψ

∂w (z, w) �= 0. Then Λ : V → C satisfies the equation

(3.19)
∂Ψ
∂z

∂Λ
∂w

− ∂Ψ
∂w

∂Λ
∂z

= 0

if and only if for any (z0, w0) ∈ V there exist an open neighbourhood V ′ of
(z0, w0) and a holomorphic function g : Ψ(V ′) → C of one variable such that
Λ

∣∣
V ′= g ◦ Ψ

∣∣
V ′.

Proof. is similar to that of constant-rank mapping theorem. Let Λ satisfy
(3.19). It follows that rank of the holomorphic mapping

V � (z, w) �→
(
Ψ(z, w), Λ(z, w)

)
∈ C2

is equal to 1 on V . Let (z0, w0) ∈ V . Without loss of generality we can
assume that ∂Ψ

∂z (z0, w0) �= 0. Then there exists a neighbourhood V ′ of (z0, w0)
such that Φ :V ′ � (z, w) �→ (Ψ(z, w), w) ∈ Φ(V ′) ⊂ C2 is biholomorphic. We
may also assume that Φ(V ′) is a product of two open discs D1 ⊂ C and
D2 ⊂ C. Let g̃(u, v) := Λ(Φ−1(u, v)). Rank of the mapping

(Ψ, Λ) ◦ Φ−1 : Φ(V ′) � (u, v) �→
(
u, g̃(u, v)

)
∈ C2

is also equal to 1, therefore ∂g̃
∂v (u, v) = 0 for any (u, v) ∈ D1 × D2. Let

u ∈ D1. Since the function D2 � v �→ g̃(u, v) ∈ C is a constant one, we
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may define g(u) := g̃(u, v) with an arbitrary v ∈ D2. We have then (Ψ, Λ) ◦
Φ−1(u, v) = (u, g(u)). If we take (u, v) = Φ(z, w) = (Ψ(z, w), w), the asser-
tion follows.

Conversely, let Λ = g ◦ Ψ on some open set V ′. Applying the chain rule
we obtain ∂Λ

∂z (z, w) = g′(Ψ(z, w))∂Ψ
∂z (z, w) and ∂Λ

∂w (z, w) = g′(Ψ(z, w))∂Ψ
∂w

(z, w). Multiplying the first equation by ∂Ψ
∂w (z, w), the second by ∂Ψ

∂z (z, w)
and subtracting we obtain (3.19). �

Let (z0, w0) = ϕ3 ◦ ϕ1(m0). We can decrease the neighbourhood U ′ of
m0 so as to obtain a connected, simply connected open neighbourhood
Fz(U ′) of ζ0 := Fz(z0, w0). The holomorphic function ζ �→

∫
γ(ζ0,ζ) g(σ)dσ,

where γ(ζ0, ζ) denotes a path joining ζ0 with ζ, is then well defined on
Fz(U ′). Let

(3.20) η(ζ) := e
∫

γ(ζ0,ζ) g(σ)dσ.

We have then g(ζ) = η ′(ζ)
η(ζ) and

(3.21) SX = ∇XT0 =
η′′(Fz)
η(Fz)

X(Fz)
∂

∂z1 .

Since dim im S = 1, η′′(Fz) �= 0 everywhere on U ′.

Lemma 3.16. F satisfies the differential equation

(3.22) FzzFww − FzwFzw = κ
η(Fz)
η′′(Fz)

where κ ∈ C \ {0}.

Proof. Using the Gauss equation and (3.21) we obtain

(3.23) R

(
∂

∂z1 ,
∂

∂w1

)
∂

∂w1 = (FzzFww − FzwFwz)
η′′(Fz)
η(Fz)

∂

∂z1 =: Φ
∂

∂z1 .

From ∇R = 0 it follows that for any X ∈ TM |U ′

0 = (∇XR)
(

∂

∂z1 ,
∂

∂w1

)
∂

∂w1 = ∇X

(
Φ

∂

∂z1

)
− R

(
∇X

∂

∂z1 ,
∂

∂w1

)
∂

∂w1

− R

(
∂

∂z1 ,∇X
∂

∂w1

)
∂

∂w1 − R

(
∂

∂z1 ,
∂

∂w1

) (
∇X

∂

∂w1

)
.
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The last two terms vanish, because ∂
∂z1 and ∇X

∂
∂w1 are linearly dependent

and ∇X
∂

∂w1 = X(Fw)T0 with T0 ∈ ker R. Hence

0 = X(Φ)
∂

∂z1 + ΦX(Fz)T0 − X(Fz)R
(

T0,
∂

∂w1

)
∂

∂w1 = X(Φ)
∂

∂z1 .

Since U ′ is connected, Φ = const =: κ. From η′′ �= 0 and from the non-
degeneracy of f it follows that κ �= 0. �

Let β be a complex number such that β2 = κ. Let (z̃, w̃) = ϕ4(z, w) =
(z, βw), A4(z, w, u) = (z, βw, u), ϕ = ϕ4 ◦ ϕ3 ◦ ϕ1 and A = A4 ◦ A3 ◦ A1. It
is easy to check that A ◦ f ◦ ϕ−1(z, w) = (z, w, F̂ (z, w)) where F̂ (z, w) =
F (z, 1

β w) satisfies the differential equation (2.1). Since at the corresponding
points F̂z̃ = Fz and ∂

∂z̃1 = ∂
∂z1 , we have a local section of A→N as claimed.

Having A, ϕ, F , η and ξ which satisfy (i), (ii) and (iii) of Theorem 3.1,
we consider now the particular case when N is the complex affine normal
bundle of the immersion f .

Lemma 3.17. η3 · η′′ = c with some c ∈ C \ {0}.

Proof. The transversal field

(3.24) ξeq = η(Fz) ξ = −(A ◦ f)∗

(
η′(Fz)

∂

∂z1

)
+ η(Fz)e3

is the equiaffine section of the bundle A→N , which is the complex affine
normal bundle for A ◦ f . Therefore, there exists a complex number b such
that ξ̂ = bξeq is the complex affine normal vector field for A ◦ f . Let Z =

1
bη(Fz)

∂
∂z1 , W = ∂

∂w1 . We have then
C
ω

(
(A ◦ f)∗(Z), (A ◦ f)∗(W ), ξ̂

)
= 1.

By the definition of the affine normal vector field,

(3.25)

∣∣∣∣∣det

(
ĥ(Z, Z) ĥ(Z, W )
ĥ(W, Z) ĥ(W, W )

)∣∣∣∣∣ = 1,

where ĥ = 1
bη(Fz) h is the affine fundamental form induced by ξ̂. Using (2.5)

we obtain

(3.26)

∣∣∣∣∣

(
1

b η(Fz)

)4

(FzzFww − FzwFzw)

∣∣∣∣∣ = 1,
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which together with (2.1) implies

(3.27)
∣∣∣(η(ζ))3 · η ′′(ζ)

∣∣∣ =
∣∣∣∣
1
b

∣∣∣∣
4

= const

for ζ ∈ Fz(U ′). According to the maximum principle, if for a holomorphic
function F : Ω → C, where Ω ⊂ C is an open and connected set, the function
|F| has a local maximum at some point of Ω, then F must be constant on Ω.
From (3.27) it follows that |η3 · η ′′| has a local maximum at any ζ ∈ Fz(U ′).
Therefore η3 · η ′′ = const. �

Lemma 3.18. η(ζ) =
√

Aζ2 + Bζ + C, where A ∈ C \ {0}, B, C ∈ C,
AC − B2

4 = c and
√

· is some holomorphic branch of the square root defined
on some neighbourhood of the non-zero complex number Aζ2

0 + Bζ0 + C,
ζ0 = Fz(z0, w0).

Proof. From T0m0
= 0 and (2.3) it follows that η ′(ζ0) = 0. Let

(3.28) E(ζ) :=
(
η′(ζ)

)2 +
c

(η(ζ))2

for ζ ∈ V , where V is some sufficiently small, connected neighbourhood of
ζ0. Using Lemma 3.17 we obtain E′(ζ) = 2η′(ζ)

(η(ζ))3

(
(η(ζ))3 · η′′(ζ) − c

)
= 0,

therefore E(ζ) = E(ζ0) = c
(η(ζ0))2

for ζ ∈ V . It follows that

(3.29)
(
η′(ζ)

)2 =
c

(η(ζ0))2
− c

(η(ζ))2
.

We consider now the function ψ(ζ) := (η(ζ))2. Using (3.29) and Lemma 3.17
we obtain

ψ′′(ζ) = 2
(
η′(ζ)

)2 + 2 η(ζ) · η ′′(ζ)

=
2c

(η(ζ0))
2 − 2c

(η(ζ))2
+ 2 η(ζ) · η′′(ζ) =

2c

(η(ζ0))2
.

It follows that

(3.30) ψ(ζ) =
c

(η(ζ0))2
ζ2 + Bζ + C.
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Since η′(ζ0) = 0 implies ψ′(ζ0) = 0, we have B = − 2c
(η(ζ0))2

ζ0. Computing

ψ(ζ0) we obtain C = (η(ζ0))
2 + cζ2

0
(η(ζ0))2

and

(3.31) ψ(ζ) =
c

(η(ζ0))
2 (ζ − ζ0)

2 + (η(ζ0))
2 .

Since η(ζ0) �= 0, there exists a holomorphic branch
√

· of square root on
some neighbourhood of (η(ζ0))2. But η is also holomorphic, therefore we
may conclude, replacing

√
· by −

√
· if necessary, that η(ζ) =

√
ψ(ζ). �

Lemma 3.19. There exist an affine isomorphism A8 of C3 and a local
diffeomorphism ϕ8, (z̃, w̃) = ϕ8(z, w) such that

A8 ◦ A ◦ f ◦ ϕ−1 ◦ ϕ−1
8 (z̃, w̃) = (z̃, w̃, F̃ (z̃, w̃)).

F̃ satisfies the differential equation

(3.32) F̃z̃z̃F̃w̃w̃ − F̃z̃w̃F̃z̃w̃ =
(
1 + F̃ 2

z̃

)2

and −A8 ◦ A ◦ f∗(T0) + e3 with

T0 =
F̃z̃

1 + F̃ 2
z̃

∂

∂z̃1

is a local section of A→
8 A→N .

Proof. For η as in Lemma 3.18 we have

η(ζ)
η ′′(ζ)

=
1
c

(η(ζ))4 =
AC − (B2/4)

A2
⎡

⎣
(

A√
AC − (B2/4)

ζ +
(B/2)√

AC − (B2/4)

)2

+ 1

⎤

⎦
2

.

Let ϕ8(z, w) =
(√

AC−(B2/4)
A z, w

)
, A8(z, w, u) =

(√
AC−(B2/4)

A z, w, u + B
2Az

)

and

F̃ (z̃, w̃) = F

(
A√

AC − (B2/4)
z̃, w̃

)
+

(B/2)√
AC − (B2/4)

z̃.
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It is easy to check that at the corresponding points

(3.33)
A√

AC − (B2/4)
Fz +

(B/2)√
AC − (B2/4)

= F̃z̃

and

(3.34) FzzFww − FzwFzw =
AC − (B2/4)

A2

(
F̃z̃z̃ F̃w̃w̃ − F̃z̃w̃ F̃z̃w̃

)
,

therefore F̃ satisfies Equation (3.32). Since A8 e3 = e3, we do not have to
change T0 but it should be described in the new coordinates. We have at
the corresponding points

η′(Fz)
η(Fz)

=
AFz + (B/2)

1
A (AFz + (B/2))2 + C − (B2/4A)

=
F̃z̃

√
AC − (B2/4)

AC−(B2/4)
A

(
F̃ 2

z̃ + 1
) =

A√
AC − (B2/4)

F̃z̃

F̃ 2
z̃ + 1

,

∂

∂z1 =

√
AC − (B2/4)

A

∂

∂z̃1(3.35)

and the lemma follows. �

We now turn to the case dim im R = 2. The shape operator S is then
invertible. We first show that there exists a C-bilinear, complex valued non-
degenerate symmetric holomorphic tensor field g such that ∇g = 0. Let

(3.36) g(X, Y ) := e2H h(S−1X, Y ),

where H is a holomorphic function as in Lemma 3.4 and h, S, τ are induced
by the pair (A1 ◦ f, ξ), or, equivalently, by (f, (A→

1 )−1ξ) on some neighbour-
hood of m0. Since H is defined up to a constant, we may assume that Hm0 =
0. Since S is C-linear and h C-bilinear, g is C-bilinear. It is non-degenerate
because h is non-degenerate and Sx is an isomorphism at any x. Accord-
ing to Lemma O2, h(S−1X, Y ) = h(S−1X, SS−1Y ) = h(SS−1X, S−1Y ) =
h(X, S−1Y ) = h(S−1Y, X), therefore g is symmetric.
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We fix now some basis Z, W of TxM and define α : TxM → TxM and
L : TxM × TxM → C:

α(Y ) := h(W, Y )Z − h(Z, Y )W,(3.37)

L(Y, U) := det
(

h(Z, Y ) h(Z, U)
h(W, Y ) h(W, U)

)
.(3.38)

Lemma 3.20. (i) α is a C-linear isomorphism.

(ii) L is C-bilinear and anti-symmetric.

(iii) L(Z, W ) �= 0.

(iv) α ◦ α = −L(Z, W ) idTxM .

(v) h(Y, α(U)) = −h(U, α(Y )) for any Y, U ∈ TxM .

(vi) L(α(Y ), U) = L(Z, W ) h(Y, U) for any Y, U ∈ TxM .

Proof. (i) and (ii) are obvious, (iii) follows from the non-degeneracy of h.
To prove (iv) we need only to compute α ◦ α(Z) and α ◦ α(W ). An easy
computation shows that h(Y, α(U)) + h(U, α(Y )) = 0. For (vi), it suffices to
take as (Y, U) the pairs of basis vectors, to use the definition of α and only
the anti-symmetry of L. �

In the following lemmas we will need the assumption that ∇R = 0.

Lemma 3.21. For any X, U

L(Z, W ) (∇XS) U = (∇Xh) (W, α(U)) SZ − (∇Xh) (Z, α(U)) SW.

Proof. From the Gauss equation (1.7) it follows that

(∇XR) (Z, W )Y = (∇Xh) (W, Y ) SZ − (∇Xh) (Z, Y ) SW

+ h(W, Y ) (∇XS) Z − h(Z, Y ) (∇XS) W.(3.39)

If ∇R = 0, then

− (∇Xh) (W, Y ) SZ + (∇Xh) (Z, Y ) SW

= h(W, Y ) (∇XS) Z − h(Z, Y ) (∇XS) W = (∇XS) (α(Y )) .

We take now Y = α(U) and use Lemma 3.20(iv). �
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Lemma 3.22. For any X, U, Y

(∇Xh) (U, α(Y )) − (∇Xh) (Y, α(U)) = h(X, T0)
[
L(U, Y ) + h(U, α(Y ))

]
.

Proof. Since both sides are C-bilinear and anti-symmetric with respect to
Y, U (see Lemma 3.20(ii) and (v)), it suffices to prove the formula for U = Z
and Y = W . If we apply Lemma 3.21 to X = Z, U = W , next to X = W ,
U = Z and subtract the formulae, then we obtain

L(Z, W )
[
(∇ZS) W − (∇W S) Z

]

=
[
(∇Zh) (W, α(W )) − (∇W h) (W, α(Z))

]
SZ

−
[
(∇Zh) (Z, α(W )) − (∇W h) (Z, α(Z))

]
SW.

From the Codazzi equation (1.9) and (2.8) it follows that

(∇ZS) W − (∇W S) Z = h(W, T0) SZ − h(Z, T0)SW.

Since S is invertible, SZ and SW are linearly independent over C, therefore

L(Z, W )h(W, T0) = (∇Zh) (W, α(W )) − (∇W h) (W, α(Z)),
L(Z, W )h(Z, T0) = (∇Zh) (Z, α(W )) − (∇W h) (Z, α(Z)).

Using the Codazzi equation (1.8), (2.8) and Lemma 3.20(v), we obtain

(∇Zh) (W, α(W )) = (∇W h) (Z, α(W )) − h(W, T0) h(Z, α(W )),
(∇W h) (Z, α(Z)) = (∇Zh) (W, α(Z)) + h(Z, T0) h(Z, α(W )).

It follows that

(∇W h) (Z, α(W )) − (∇W h) (W, α(Z)) = h(W, T0)
[
L(Z, W ) + h(Z, α(W ))

]
,

(∇Zh) (Z, α(W )) − (∇Zh) (W, α(Z)) = h(Z, T0)
[
L(Z, W ) + h(Z, α(W ))

]
.

Since the C-linear mappings

X �→ (∇Xh) (Z, α(W )) − (∇Xh) (W, α(Z))

and
X �→ h(X, T0)

[
L(Z, W ) + h(Z, α(W ))

]

have the same values on the basis vectors Z, W , they are equal and the
lemma follows. �
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Lemma 3.23.

(∇Xh) (α(U), α(Y )) = L(Z, W )
[
− (∇Xh) (U, Y ) + 2h(X, T0)h(U, Y )

]
.

Proof. We apply Lemma 3.22 to α(U) and Y , then we use Lemma 3.20(iv),
(v) and (vi). �

Lemma 3.24.

L(Z, W ) h
(
(∇XS) U, Y

)
= − (∇Xh)

(
α(SY ), α(U)

)
.

Proof. Using Lemmas 3.21 and O2 we obtain

L(Z, W ) h
(
(∇XS) U, Y

)

= (∇Xh) (W, α(U)) h(SZ, Y ) − (∇Xh) (Z, α(U)) h(SW, Y )
= (∇Xh) (W, α(U)) h(Z, SY ) − (∇Xh) (Z, α(U)) h(W, SY )

= (∇Xh)
(
h(Z, SY )W − h(W, SY )Z, α(U)

)

= − (∇Xh)
(
α(SY ), α(U)

)
. �

Lemma 3.25.

h
(
(∇XS) U, Y

)
= (∇Xh) (SY, U) − 2h(X, T0) h(SY, U).

Proof. From Lemmas 3.23 and 3.24 we have

L(Z, W )h
(
(∇XS) U, Y

)
= L(Z, W )

[
(∇Xh) (SY, U) − 2h(X, T0)h(SY, U)

]
.

Since L(Z, W ) �= 0, the lemma follows. �

Lemma 3.26. ∇g = 0.

Proof. It suffices to check that (∇Xg) (SU, SY ) = 0 for any X, U, Y . We
have

(∇Xg) (SU, SY )

= X
(
g(SU, SY )

)
− g

(
∇X(SU), SY

)
− g

(
SU,∇X(SY )

)

= X
(
e2H h(U, SY )

)
− e2H h(∇X(SU), Y ) − e2H h(U,∇X(SY ))
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= 2 dH(X) e2Hh(U, SY ) + e2H (∇Xh) (U, SY ) + e2Hh(∇XU, SY )

+ e2Hh(U,∇X(SY )) − e2Hh(∇X(SU), Y ) − e2Hh(U,∇X(SY ))

= −2h(X, T0) e2H h(U, SY ) + e2H (∇Xh) (U, SY )

+ e2Hh(S (∇XU) , Y ) − e2Hh(∇X(SU), Y )

= e2H
[
−2h(X, T0) h(U, SY ) + (∇Xh) (U, SY ) − h

(
(∇XS) U, Y

)]

which is equal to zero by symmetry of h and ∇Xh and by Lemma 3.25.
Let x ∈ U and let for X, Y ∈ TxM

Gx

(
(A1 ◦ f)∗X, (A1 ◦ f)∗Y

)
:= g(X, Y ),

Gx

(
(A1 ◦ f)∗X, ξx

)
:= 0, Gx(ξx, ξx) := e2H .

�

Lemma 3.27. DG = 0.

Proof. From ∇g = 0 it follows easily that (DXG)((A1 ◦ f)∗Y, (A1 ◦ f)∗U) = 0
for any X, Y, U . By definition of g, g(SX, Y ) − e2H h(X, Y ) = 0, which
implies (DXG)((A1 ◦ f)∗Y, ξ) = 0. Finally, (DXG)(ξ, ξ) = 0 because dH = τ .

�
In that way we have defined a symmetric, C-bilinear mapping G : C3 ×

C3 → C. It is easy to check that G is non-degenerate.

Remark 3.28. By the formula (3.36) we have defined the metric tensor
g only locally. Let h̃, S̃ and τ̃ be induced by Ã1 ◦ f and a local section
ξ̃ = (Ã1 ◦ f)∗(−T̃0) + e3 of Ã→

1 N . Since (A→
1 )−1ξ and (Ã→

1 )−1ξ̃ are local
holomorphic sections of N , there exists a holomorphic function φ such that
(Ã→

1 )−1ξ̃ = φ (A→
1 )−1ξ on some neighbourhood U of m0. From (1.4), (1.5)

and (1.6) we obtain h̃ = 1
φ h, S̃ = φS and d H̃ = d H + d log φ, where log is

some holomorphic branch of logarithm in the neighbourhood of m0. If U is
connected, then we have H̃ = H + log φ + C, C ∈ C, and g̃ = e2C g.

Remark 3.29. In [7], B. Opozda has shown that the Ricci tensor Ric of
a locally symmetric torsion-free connection of rank 2 on a 2-dimensional
real manifold is symmetric and non-degenerate, hence ∇ is the Levi–Civita
connection for the metric tensor g := Ric. Following this, we could in the
complex case instead of Ric consider, defined in [5], the complex Ricci tensor
ric(X, Y ) = 1

2

[
Ric(X, Y ) − iRic(X, JY )

]
which for a holomorphic connec-

tion ∇ is equal to trC{V �→ R(V, X)Y }. In the case of induced connection
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we obtain ric(X, Y ) = h(X, Y ) trCS − h(SX, Y ), where h, S are induced by
f and some local section of N . The right-hand side does not depend on the
particular section, but on f and N only. From Lemma O2 it follows that it
is symmetric. Let X ∈ TmM and let ric(X, Y ) = 0 for any Y ∈ TmM . Then
h(trCS X − SX, Y ) = 0 for any Y ∈ TmM and from the non-degeneracy of h
it follows that SX = trCS X, which for 2-dimensional vector space TmM and
invertible S implies X = 0. Therefore ric is non-degenerate. From ∇R = 0
and ∇J = 0 it follows that ∇ric = 0. In this way we can on the whole of M
define a C-bilinear metric tensor ĝ := ric such that ∇ĝ = 0. According to the
complex version of the Cartan–Norden theorem, there exists a C-bilinear,
non-degenerate symmetric Ĝ : C3 × C3 → C such that for X, Y ∈ TM ,

Ĝ((A1 ◦ f)∗(X), (A1 ◦ f)∗(Y )) = ĝ(X, Y ) and Ĝ((A1 ◦ f)∗(X), ξ) = 0
(3.40)

for any local section of A→
1 N . These conditions together with the non-

degeneracy of ĝ are sufficient to prove the following Lemma 3.30, but in
Lemma 3.31 we need not only the formula ĝ(SX, Y ) = C1e

2Hh(X, Y ), which
may occur in the proof of the Cartan–Norden theorem, or which we may
derive using (3.40), but also there should be C1 = 1, because we use (3.36).
To this aim we should locally modify ĝ.

From Hm0 = 0 and Tm0 = 0 it follows that G(e3, e3) = G(ξm0 , ξm0) =
e2Hm0 = 1. There exists a complex linear isomorphism A5 of C3 such that
A5e1,A5e2,A5e3 is a G-orthonormal basis of C3 and A5e3 = e3. Let A6 :=
A−1

5 . We have A6e3 = A6A5e3 = e3. For the given A5 and A6 it is easy to
find ϕ6 and F̂ such that

(3.41) A6 ◦ A1 ◦ f ◦ ϕ−1
1 ◦ ϕ−1

6 (z, w) = (z, w, F̂ (z, w)).

From A6e3 = e3 it follows that A6ξ = −(A6 ◦ A1 ◦ f)∗(T0) + e3. We can look
at ∇, h, S, τ as at objects induced by (A6 ◦ A1 ◦ f,A6ξ). The new function
F̂ from now on we shall denote by F .

Lemma 3.30.

T0 =
Fz

1 + Fz
2 + Fw

2
∂

∂z1 +
Fw

1 + Fz
2 + Fw

2
∂

∂w1 .

Proof. From (3.41) we obtain (A6 ◦ A1 ◦ f)∗
(

∂
∂z1

)
= e1 + Fz e3, (A6 ◦ A1 ◦ f)∗(

∂
∂w1

)
= e2 + Fw e3, and consequently (A1 ◦ f)∗

(
∂

∂z1

)
= A5 e1 + Fz A5 e3,
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(A1 ◦ f)∗
(

∂
∂w1

)
= A5 e2 + Fw A5 e3. Hence

g

(
T0,

∂

∂z1

)
= G

(
ξ + (A1 ◦ f)∗(T0), (A1 ◦ f)∗

(
∂

∂z1

))

= G(A5e3,A5e1 + FzA5e3) = Fz,(3.42)

g

(
T0,

∂

∂w1

)
= G

(
ξ + (A1 ◦ f)∗(T0), (A1 ◦ f)∗

(
∂

∂w1

))

= G(A5e3,A5e2 + FwA5e3) = Fw,(3.43)

g

(
∂

∂z1 ,
∂

∂z1

)
= G

(
(A1 ◦ f)∗

(
∂

∂z1

)
, (A1 ◦ f)∗

(
∂

∂z1

))

= G(A5e1 + FzA5e3,A5e1 + FzA5e3) = 1 + Fz
2,(3.44)

g

(
∂

∂z1 ,
∂

∂w1

)
= G

(
(A1 ◦ f)∗

(
∂

∂z1

)
, (A1 ◦ f)∗

(
∂

∂w1

))

= G(A5e1 + FzA5e3,A5e2 + FwA5e3) = Fz Fw,(3.45)

g

(
∂

∂w1 ,
∂

∂w1

)
= G

(
(A1 ◦ f)∗

(
∂

∂w1

)
, (A1 ◦ f)∗

(
∂

∂w1

))

= G(A5e2 + FwA5e3,A5e2 + FwA5e3) = 1 + Fw
2.(3.46)

Let T0 = a ∂
∂z1 + b ∂

∂w1 . From (3.42) to (3.46) we obtain the following system
of linear equations:

(1 + Fz
2) a + Fz Fw b = Fz,

Fz Fw a + (1 + Fw
2) b = Fw.

It remains to find the solution a, b and the lemma follows. We use here the
fact that g is non-degenerate, which implies

g

(
∂

∂z1 ,
∂

∂z1

)
g

(
∂

∂w1 ,
∂

∂w1

)
− g

(
∂

∂z1 ,
∂

∂w1

)
g

(
∂

∂z1 ,
∂

∂w1

)
�= 0.

Let Z, W be a basis of TxM . For C-bilinear g and a holomorphic con-
nection ∇ such that ∇g = 0

κ :=
g(R(Z, W )W, Z)

g(Z, Z)g(W, W ) − g(Z, W )g(W, Z)

is a complex valued analogue of the sectional curvature of 2-dimensional real
manifold. It is easy to check that κ does not depend on the choice of the
basis and depends on x only. �
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Lemma 3.31. If dimC M = 2, ∇R = 0, g is a C-bilinear metric tensor on
U ⊂ M such that ∇g = 0 and U is connected, then κ = const.

Proof. We take a local basis E, F such that g(E, E) = g(F, F ) = 1 and
g(E, F ) = 0. Since ∇g = 0, there exists a complex valued 1-form ω such that
∇XE = ω(X) F and ∇XF = −ω(X) E. As ∇g = 0 and ∇R = 0 we have

X(κ) = X(g(R(E, F )F, E))
= g(R(∇XE, F )F + R(E, ∇XF )F + R(E, F )∇XF, E)

+ g(R(E, F )F,∇XE) = 0

because R(X, Y ) = −R(Y, X) and g(R(K, L)M, N) = −g(R(K, L)N, M). �

Lemma 3.32. F satisfies the differential equation

FzzFww − FzwFzw = κ(1 + Fz
2 + Fw

2)2.

Proof. Let H := −1
2 log(1 + Fz

2 + Fw
2), where log is a holomorphic branch

of logarithm, defined in the neighbourhood of 1. Then

dH(X) = − FzX(Fz) + FwX(Fw)
1 + Fz

2 + Fw
2 = −

Fzh
(
X, ∂/∂z1

)
+ Fwh

(
X, ∂/∂w1

)

1 + Fz
2 + Fw

2

= −h(X, T0) = τ(X).

Since T0m0
= 0, from Lemma 3.30 we obtain Fz(z0, w0) = 0 and Fw(z0,

w0) = 0, where (z0, w0) = ϕ6 ◦ ϕ1(m0). Therefore Hm0 = 0. It follows that
we may use H to define g. From (1.7), (2.5) and (3.36), we obtain

(3.47) g

(
R

(
∂

∂z1 ,
∂

∂w1

)
∂

∂w1 ,
∂

∂z1

)
= e2H (FzzFww − FzwFzw).

By (3.44) to (3.46) we have

g

(
∂

∂z1 ,
∂

∂z1

)
g

(
∂

∂w1 ,
∂

∂w1

)
− g

(
∂

∂z1 ,
∂

∂w1

)
g

(
∂

∂z1 ,
∂

∂w1

)

= 1 + Fz
2 + Fw

2.

It follows that e2H (FzzFww − FzwFzw) = κ(1 + Fz
2 + Fw

2), hence

FzzFww − FzwFzw = κe−2H (1 + Fz
2 + Fw

2) = κ(1 + Fz
2 + Fw

2)2.
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To prove Lemma 3.32 one can also directly compute SX as ∇XT0, then
using the Gauss equation compute R and using (3.44)–(3.46) express κ by
the derivatives of F . �

Let β be a complex number such that β2 = κ. Let A7(z, w, u) :=
(βz, βw, βu), ϕ7(z, w) := (βz, βw), A := A7 ◦ A6 ◦ A1 and ϕ = ϕ7 ◦ ϕ6 ◦ ϕ1.
It is easy to check that A ◦ f ◦ ϕ−1(z̃, w̃) =

(
z̃, w̃, βF

(
1
β z̃, 1

β w̃
))

. As a

local section of A→N we take 1
β A7 ◦ A6ξ = −(A ◦ f)∗

(
1
β T0

)
+ e3 =: −(A ◦

f)∗(T̃0) + e3. Let F̃ (z̃, w̃) := βF
(

1
β z̃, 1

β w̃
)
, then F̃ satisfies the differential

equation
F̃z̃z̃F̃w̃w̃ − F̃z̃w̃F̃z̃w̃ = (1 + F̃ 2

z̃ + F̃ 2
w̃ )2.

From F̃z̃(z̃, w̃) = Fz

(
1
β z̃, 1

β w̃
)

and F̃w̃(z̃, w̃) = Fw

(
1
β z̃, 1

β w̃
)

it follows that

F̃z̃(ϕ(m)) = Fz(ϕ6 ◦ ϕ1(m)) and F̃w̃(ϕ(m)) = Fw(ϕ6 ◦ ϕ1(m)), therefore

T̃0 =
Fz

1 + Fz
2 + Fw

2
1
β

∂

∂z1 +
Fw

1 + Fz
2 + Fw

2
1
β

∂

∂w1

=
F̃z̃

1 + F̃ 2
z̃ + F̃ 2

w̃

∂

∂z̃1 +
F̃w̃

1 + F̃ 2
z̃ + F̃ 2

w̃

∂

∂w̃1 .

It is easy to check that the equiaffine section of A→N

ξeq = −A ◦ f∗

(
Fz√

Fz
2 + Fw

2 + 1

∂

∂z1 +
Fw√

Fz
2 + Fw

2 + 1

∂

∂w1

)

+
√

Fz
2 + Fw

2 + 1 e5

is the complex affine normal vector field.

4. Examples

1. Let 4AC − B2 = 1, F (z, w) = Az2 + Bzw + Cw2 + Kz + Lw, η(ζ) =
eζ . We have then

FzzFww − FzwFzw = 1,

T0 =
∂

∂z1 , ξ = (−1, 0,−2Az − Bw − K + 1).

Note that at no point m0, T0m0
= 0, but in Proposition 2.1 we do not

need such point. The equiaffine section of AN is

ξeq = η(Fz)ξ = (−e2Az+Bw+K , 0, e2Az+Bw+K(−2Az − Bw − K + 1)).
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2. Let 4AC − B2 = −1, F (z, w) = Az2 + Bzw + Cw2 + Kz + Lw,
η(ζ) = sin ζ. Then

FzzFww − FzwFzw = −1,

T0 = cot(2Az + Bw + K)
∂

∂z1 ,

ξ = (− cot(2Az + Bw + K), 0,−(2Az + Bw + K) cot(2Az + Bw + K) + 1),
ξeq = (− cos(2Az + Bw + K), 0,

−(2Az + Bw + K) cos(2Az + Bw + K) + sin(2Az + Bw + K)).

3. Let F (z, w) = z2 eiw, η(ζ) = 1
2 ζ2. Then FzzFww − FzwFzw = 1

2Fz
2,

T0 =
1
z

e−iw ∂

∂z1 , ξ =
(

−1
z

e−iw, 0,−1
)

, ξeq =
(
−2z eiw, 0,−2z2 e2iw

)
.

4. Warped helicoid. An example of locally symmetric complex surface
with ∇ induced by the complex affine normal vector field is a warped
helicoid (see [2]). Under a suitable parametrization it can be described
by a solution F of the differential equation FzzFww − FzwFzw = (1 +
Fz

2)2 which we obtain, taking in (2.1) η(ζ) =
√

ζ2 + 1. In this case
the solution is F (z, w) =

(
z − f1(iw)

)
tan(iw) + f2(iw), where f1 and

f2 are holomorphic functions of one variable. The surface (z, w) →
(z, w, F (z, w)) is a warped helicoid, because z1 := z, z2 := F (z, w),
z3 := iw satisfy the equation

(
z1 − f1(z3)

)
sin z3 =

(
z2 − f2(z3)

)

cos z3, and (z, w, F (z, w)) = B(z1, z2, z3) where B :=

⎛

⎝
1 0 0
0 0 −i
0 1 0

⎞

⎠ is

an equiaffine transformation. We obtain T0 = sin(iw) cos(iw) ∂
∂z1 , ξ =

(− sin(iw) cos(iw), 0, cos2(iw)) and ξeq = (− sin(iw), 0, cos(iw)).

5. As an example of locally symmetric complex surface of rank 2 let us
take F (z, w) =

√
1 − z2 − w2. Then T0 = −

√
1 − z2 − w2

(
z ∂

∂z1 + w ∂
∂w1

)
, ξ =

√
1 − z2 − w2(z, w,

√
1 − z2 − w2) and ξeq =

(z, w,
√

1 − z2 − w2) = (z, w, F (z, w)).

Acknowledgement

This research was supported by KBN grant no. 1P03A 03426.



Locally symmetric connections on complex surfaces 465

References

[1] F. Dillen, L. Vrancken and L. Verstraelen, Complex affine differential
geometry, Preprint, Reihe Mathematik, Fachbereich 3 T.U. Berlin, No.
153 (1986).

[2] F. Dillen, Locally symmetric complex affine surfaces, J. Geom. 33
(1988), 27–38.

[3] S. Kobayashi and K. Nomizu, Foundations of differential geometry,
vol. I, John Wiley and Sons, New York, 1963.

[4] K. Nomizu and T. Sasaki, Affine differential geometry, Cambridge
University Press, 1994.

[5] B. Opozda, On some properties of the curvature and Ricci tensors in
complex affine geometry, Geom. Dedicata 55 (1995), 141–163.

[6] B. Opozda, Equivalence theorems for complex affine hypersurfaces,
Result. Math. 27 (1995), 316–327.

[7] B. Opozda, Some relations between Riemannian and affine geometry,
Geom. Dedicata 47 (1993), 225–236.

[8] B. Opozda, Locally symmetric connections on surfaces, Result. Math.
20 (1991), 725–743.

[9] M. Robaszewska, Locally symmetric connections on complex hypersur-
faces with type number 1, Geom. Dedicata 114 (2005), 13–47.

Instytut Matematyki,

Akademia Pedagogiczna,

ul. Podchora̧żych 2,
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