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Locally symmetric connections on complex surfaces
and some equations of Monge-Ampere type

MARIA ROBASZEWSKA

We study locally symmetric connections induced by transversal
bundles on non-degenerate complex surfaces. Each of such surfaces
together with its transversal bundle can be described locally by
a solution to some partial differential equation of Monge-Ampere
type.

1. Introduction

Let M be an n-dimensional connected complex manifold and f : M — C"t!
a holomorphic immersion. Let N be a C* transversal bundle, that is,

N=J N,

peEM

where A, is a complex vector subspace of C"! 2 R?"*2 guch that
fx (TpM) SN, = C"*1. The C™ class means that for any ¢ € M there exists
a neighbourhood U of ¢ such that N |U is spanned over C by a vector field
¢ on C"*! defined along f:

M D U3pws & € Ty, CMH = C™H,

which is of class C* and not necessarily holomorphic.

The connection V, the C-bilinear symmetric affine fundamental form
h = hi + tho, the affine shape operator S and the transversal connection
form 7 = p 4+ iv which are induced on U by f and & are defined by the
following Gauss and Weingarten formulae:

(1.1) Dx£.Y = f.VxY + hi(X,Y)E + ho(X, V) JE
Dx&=—f.5SX + pu(X)§ +v(X)JE

(see, e.g., [4,5]). Here D denotes the standard connection on C"*!. The
manifold M is regarded as a 2n-dimensional real manifold with the complex
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structure J. To simplify notation, we use the same letter J for the complex
structure in C"t! = R2"*2, The identification of C* with R?* is given by:
(21 4422, ., 221 1 i2?R) o (2 zf, o, 22k 2k, N
I we replace vector field § by § = ¢§ +9J¢ + fiZ, then we obtain V,
h, S and T:

~ 1
~ 1
1.4 =
(14) h ©+ i B,
(1.5) SX = (p+i0)SX —VxZ+7(X)Z,
- ~ X(p)+iX(0) 1
(1.6) F(X) = ey - P h(X,Z) +7(X).

Let & and gbe two local sections of A/. Then we have E: (go + iﬁ)f and
Z = 0, therefore €XY = VxY for any C* vector fields X, Y on U. It follows
that V depends on N only and can be defined on the whole of M. Moreover,
the complex rank of affine fundamental form A does not depend on the
transversal bundle N. We call it the type number of f. This type number
is constant on a dense open subset M’ of M [6]. The immersion is called
non-degenerate, if h is non-degenerate (VX #03Y : h(X,Y) # 0).

The induced connection V, he affine fundamental form h, the shape
operator S and the transversal connection form 7 satisfy the following fun-
damental equations.

Gauss equation:

(1.7) R(X,Y)Z = h(Y,Z)SX — h(X, Z)SY.
Codazzi equation for h:

(1.8)  (Vxh)(Y,2)+r(X)h(Y, Z) = (Vyh)(X, Z) + 7(Y) h(X, Z).
Codazzi equation for S:

(1.9) (VxS)(Y) = 7(X) SY = (VyS)(X) — 7(Y) SX.
Ricci equation:

(1.10) h(X,8Y) — h(SX,Y) = 2dr(X,Y).
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If f is non-degenerate, there exists some canonical transversal bundle —
the complex affine normal bundle — which is the bundle of affine normal
complex lines. According to the definition given by F. Dillen, L. Vrancken
and L. Verstraelen in [1] (see also [2]), the affine normal complex line of M
at p is a complex line in Tf(p)C"+1 determined by the complex affine normal
vector §p. The complex affine normal vector field { is a local vector field on
C"*t! defined along f satisfying the following two conditions:

Cngl and 7=0.

Here 7 is a transversal connection form and

2

i

CH€ = ‘det [h(Xka Xl)] Z,lil

where X1, ..., X, is a local complex basis of T'M such that

C
WX X8| = 1

The symbol €w denotes the complex volume form on C"*! such that

Cuw(et,...,eny1) = 1for the standard basis e1, . . ., e,+1 of C"F1. Actually, if
fork=1,...,n+1,Y = >0 Ve, then Cw(Yi, ..., Vo) = det[y,j]zj:ll.

If € and 5 are complex affine normal vector fields defined on the same
open domain U, then there exists a real number 6 such that & = e ¢ [1]. Tt
follows that for any p € M the affine normal complex line at p is uniquely
determined.

The aim of this paper is to give a local description of some of those
immersions and transversal bundles for which the induced connection V is
locally symmetric. The local symmetry of V is equivalent to the condition
VR = 0, where R is the curvature tensor of V [3]. Here we consider the case
of a non-degenerate immersion, dimg M = 2 and we shall study connections
of ranks 1 and 2. By the rank of locally symmetric connection we mean,
following [8], the (complex) dimension of the subspace

(1.11) imR, :=spang{R(X,Y)Z : X,Y,Z € T, M}.

For any z € M, (1.11) is a complex subspace of T, M. If VR =0 and M
is connected, then dimimR, does not depend on x. We shall also use the
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subspace

(1.12) ker R, := (] ker R(X,Y).
X,YeT, M

Let us denote by r the type number of f on M’ and by 7 the projection of
C"*! onto C™*! parallel to C"" = f,(ker h). The following theorem, which
in particular gives the full classification of locally symmetric hypersurfaces
with r > 2, has been proved by B. Opozda in [5].

Theorem 1.1. Let f : M — C"*! be a complex hypersurface endowed with
a complex transversal vector bundle N inducing a non-flat locally symmetric
connection V. Then around every point x € M’ there is an open neighbour-
hood U of = of the form N’ x N°, where N° endowed with ¥V restricted to
NO is affine isomorphic by f to an open subset of C*™" and N’ is immersed
by f into C"t1 as a non-degenerate hypersurface. If r > 1, then the bundle
7(N)|u is holomorphic and induces a locally symmetric connection V' on U
as well as on N'. Ifr > 2, then V' is flat or f(N') is an open part of a central
quadric in C™ L. Ifr > 1 and V is affine Kdihler [i.e., R(JX,JY) = R(X,Y)
for any X,Y], then V' is flat.

A local description of complex hypersurfaces with type number one
endowed with transversal bundles inducing locally symmetric connections
is given in [9].

In the present paper we associate with any locally symmetric complex
surface some partial differential equation such that this surface is locally
equivalent to the graph of a solution F' to this equation and the transversal
bundle is also determined by this solution. It is known that the real equa-
tion FypFyy — FryFry = k(1 + F2 + Fy2)2 describes the Euclidean surfaces
with constant Gauss curvature . Similar description we obtain for complex
locally symmetric surfaces in the case of dimimR = 2, because in this case
V turns out to be metrizable in the sense that there exists non-degenerate,
C-bilinear, symmetric g such that Vg = 0. The local symmetry implies that
the complex sectional curvature of M is then constant. The connection V is
induced by the transversal bundle which is perpendicular to f.(T'M) with
respect to some C-bilinear metric G in C3. The surface (M, g) is isometri-
cally immersed in (C3,G).

In the case of dim imR = 1 the equation has the form F,, Fy, — FowFow =
®(F,) with some arbitrary holomorphic function ®, which is also associated
with the given surface. A local section of the transversal bundle may be
expressed in terms of F, and n, where 7 is a holomorphic function such that
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P = % If N is the complex affine normal bundle, then ® is more strictly
determined and the right-hand side of the equation has the form (1 + F 22)2.

2. Locally symmetric connections of rank 1 on surfaces —
a class of examples

Let V be an open subset of C. Let n:V — C be a holomorphic function
such that V¢ € V :n(¢) #0 and V( € V : ”"(¢) # 0. Let the holomorphic
function F' = F! +iF? : U — C of two variables z = 2! 4+ i2?, w = w! + jw?
satisfy the following partial differential equation:

F
(2'1) Fzszw - szsz = 7;3,((};2))
Let e1, es, e3 be the standard basis of C3. As a local basis of TM over

C we shall use the vector fields % and 831' For «, 8 € R we have (a+

zﬂ)% = a% + ﬁ% and likewise for the w-variables.

Proposition 2.1. The transversal vector field

(2.2) §= fu(~To) +e3
with

"(F,) O
(23) o= 7777((F>) a:1

induces on the surface
(2.4) f:U3 (z,w) = (z,w, F(z,w)) € C3
a real holomorphic, locally symmetric connection of rank 1.

Proof. A connection V is real holomorphic if and only if its curvature tensor
R satisfies the condition R(JX,Y) = JR(X,Y) for all X, Y [4]. From the
Cauchy—Riemann equations for the holomorphic function 7'(F;)/n(F;) it
follows easily that V ;v Ty = JVy 1y for any Y. Consequently D jy& = JDy€
for any Y, which is equivalent to the condition that & is real holomorphic
and S, T are C-linear (see [4]). Therefore R(JX,Y)Z = JR(X,Y)Z for any
X by the Gauss equation.

Using the Gauss and Weingarten formulae for the immersion (2.4), which
we identify with (2!, 22 w! w?) — (21, 22, w!, w?, Fl(z,w), F?(z,w)), and
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the transversal field (2.2), where e3 when looked at as an element of RS
is equal to (0,0,0,0,1,0), we easily obtain

b o 0 _82F1+,82F2
J 021027 Zaziazf"

o 0 O*F! O*F?
2. h . =
(2:5) (373“ 8w3> 920w | 0zigwi’
0 0 9*F1! _0%F?
h - - = . -+ = 3
ow*’ dwI ow*ows ow'ow’
0 0
(2.7) SX =VxTy,

7(X) = —h(X,Tp).

Here for a complex valued function f = f; +ifs by X(f) we mean X (f1) +
iX (f2) and for a holomorphic function F' we have

OF OF' O0F* OF 9F' QF?

(2.9) 52 =0 T dw — owl T lawl

Using (2.3), (2.6) and (2.7), we obtain

_ n'(F;) 0
(2.10) SX = X(F) 5 5o

From (1.7), (2.1) and (2.5), it follows that

R(@ 6)8 FSa—Fzzsa

021 owl ) 921~ TV 921 dw!
n'(F,) 0
= szFzz_Fzszz a1 Y
( ) n(F,) 0z1 0
0 0 0 0 0
[ 148 11 5 71 :Fww _sz a1
R <8z1’ 6w1> Ow! 5621 S8w1
7]//(sz) i o

:(Fwazz_szsz) = 3 1

and it is easy to check that VR = 0. g
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3. The classification theorem

Here and subsequently, A~ denotes the linear part of an affine map A. The
symbol dim stands for the complex dimension dimc.

Theorem 3.1. Let M be a two-dimensional compler manifold and
f:M — C3 a non-degenerate holomorphic immersion. Assume that M is
endowed with C*> transversal bundle N inducing on M a non-flat locally
symmetric connection V. Let R be the curvature tensor of V.

Then for any mg € M there exist a neighbourhood U of mg, a complex
chart ¢ : U — C2, an affine complex isomorphism A of C* and a holomor-
phic function F' of two variables such that

(i) Ao fop(zw) = (2w, F(z,w)),

(ii) &€ = (Ao f)«(—Tb) + e3, with some vector field Ty on U, is a local
section of A7N.

Moreover, A and ¢ may be chosen in such a way that F and Ty satisfy
the following conditions:

(iii) If dimimR = 1, then T is described by (2.3) with some holomorphic
function 1 of one variable and F satisfies the differential equation (2.1).

(iv) If dimimR = 1 and N is the complex affine normal bundle, then

F, 0

3.1 Ty= ——— —
(3.1) 0 1+ F.2 021

and F satisfies the differential equation
2
(3.2) FoFyw — FowFow = (1+ F.2)".

(v) If dimimR = 2, then N is the complex affine normal bundle,

(3:3) 0 1+ F2+F,2 02! 1+ F.2+F,? ow!

and I satisfies the differential equation:
(3.4) FooFypw — FowFow = (1 + F2 4+ F,2)%.

Proof. Let mg € M. Since the immersion f is locally a graph, we may
choose a complex chart ¢; on some neighbourhood U of mg and a complex
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isomorphism A; of C? such that

(3.5) Ajofoprl(z,w) = (z,w, F(z,w))

with a holomorphic function F' of two variables z,w and such that
(3.6) AT Ni, = Ces.

We may assume that (%)mo ¢ ker R,,, and (%)mo ¢ ker R,,,, for if not,
we replace ¢1 by ¢ o ¢1 and Ay by Ay o Ay, where ¥ (z,w) = (az + fw, vz +
dw) and As(z, w,u) = (az + fw, vz + dw, u) with some appropriate complex
constants «, 3,7,0. We can also assume, by decreasing U if necessary, that
the condition % ¢ ker R and 831 ¢ ker R is satisfied on the whole of U.

The pair (A; o f, A{’N) induces on M the same connection V as the
pair (f, ') and A; o f is also a non-degenerate immersion.

Let £:U — C? be a local section of AT’N. Since e3 is transversal
to (A1 o f)«(Tim, M), on some neighbourhood U’ of mg we have a decom-
position € = (Ay o f)«(=T1) + Aeg where A is a complex valued function
such that Vo € U’ : A\(x) # 0. Dividing £ by A we obtain the section £ =
—(Ay o f)«(Tp) + e3 of A7N. From (3.6) it follows that Tp,,, = 0. From
the Gauss and Weingarten formulae we obtain (2.5) to (2.8) for V, h, S and
7 induced by (A; o f, ).

Locally symmetric connection is semi-symmetric, which means that
R(X,Y)-R=0 for any X, Y; here R(X,Y) acts on R as a derivation.
Therefore for any m € U we can apply to hp,, Sp, and R, the following
algebraic lemma [5].

Lemma O1 Let V be a complex vector space, dimg V > 1, endowed with a
C-bilinear symmetric non-degenerate form h. Let R be a tensor of type (1,3)
onV and S an R-linear endomorphism of V satisfying the Gauss equation

R(X,Y)Z = h(Y, Z)SX — h(X, Z)SY.

If for every X € V, R(X,JX)- R =0, then S is complex [C-linear].
The following two lemmas are consequences of the C-linearity of S.

Lemma 3.2. If VR =0, then V is a real holomorphic connection, that is,
R(X,Y) is C-linear in X and Y.

Proof. The claimed C-linearity of R follows from the Gauss equation (1.7).
O
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Lemma 3.3. ¢ is a holomorphic section of AT’ N and Tp is a holomorphic
vector field.

Proof. From (2.8) and from the C-bilinearity of h it follows that 7 is
C-linear. We have now

DL]Xf = —(Al o f)*(SJX) + T(JX)&
= —(A10 f):(JSX) + 7(X)JE = J Dx¢,

therefore ¢ is holomorphic. From (2.7) we obtain V ;xTp = SJX = JSX =
JV xTy and the lemma follows. O

Lemma 3.4. There exist a neighbourhood U’ of mqy and a holomorphic
function H = A+ 1B : U — C such that T = dA + idB.

Proof. We use here a part of another lemma from [5].

Lemma O2 Let V be a complex vector space endowed with a C-bilinear
symmetric non-degenerate form h. Let R be a tensor of type (1,3) on V
and S an R-linear endomorphism of V satisfying the Gauss equation. If
dimgV > 2, then R- R=0 if and only if S = \idy for some A € C. If
dimcV =2, then R- R=0 if and only if h(X,SY) = h(SY,X) for every
X, YeV.

From the Ricci equation (1.10) it follows that dr = 0, which implies
du =0 and dv = 0 on U. Hence there exist a neighbourhood U’ of mg and
real functions A and B on U’ such that y = dA and v =dB. Since 7 is
C-linear (Equation (2.8)), A + iB is holomorphic. O

We first consider the case dimim R = 1.
Lemma 3.5. dimker R = 1.

Proof. We fix a point x € U, where U is the domain of the chart ¢. Let
X1, X5 be a basis of T, M over C. Since SJ = JS, R is C-linear with respect
to any variable. Therefore Z € ker R, if and only if R(X;, X2)Z = 0. Since
the type number of the immersion is greater than 1, im R, = im¢ S, [5].
For the complex S we have im¢ S; = im S,. By assumption, dimim R, = 1,
therefore dimim S, = 1. Hence SX; and SX5 are linearly dependent over
C. There exist complex numbers «, 3, (a,3) # (0,0), such that aSX; +
B8SXs =0. From the non-degeneracy of h it follows that there exists a
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solution =, ¢ of the system of linear equations:

h(X1, X1)y + h(X1, X2)0 = -0,
(37) h(XQ, Xl)’)/ + h(XQ, X2)5 =

Of course (v,9) # (0,0). Therefore Zy := vX; + d X5 is non-zero. Using
(1.7) and the system (3.7) it is easy to check that R(X;, X2)Zy = 0. Since
V is non-flat, ker R, = CZj. O

Lemma 3.6. Let Zy be a non-zero vector from ker Ry. Then for any X,Y €
T,.M, R(R(X, Zp)X,Zy)Y =0.

Proof. Since V is semi-symmetric, we have

0= (R(X, Z) - R)(X, Z0)Y
) =

= R(X, Zo)(R(X, Z0)Y) — R(R(X, Z0) X, Zo)Y

— R(X, R(X, Z0)Z0)Y — R(X, Zy)(R(X, Z)Y')
= —R(R(X, Z0)X, Z0)Y — R(X,R(X, Z0) Z)Y
= —R(R(X, Z0)X, Zy)Y. O

Lemma 3.7. (a) If R(W1,W2)Y =0 for any Y € T, M, then W1 and Wy
are linearly dependent over C.

(b) There exists X € TpyM such that R(X, Zy)X # 0.

(c) im R, = ker R,

Proof. (a) Suppose, contrary to our claim, that W; and Ws are linearly inde-
pendent over C. Then T, M is generated by W7 and Wy and R(W;, Ws)Y =
0 implies Y € ker R,. But this contradicts the assumption of (a), because
ker R, is a proper subset of T, M.

(b) Suppose the assertion is false. Then R(X, Zy)X =0 and R(X, Z)
Zy =0 for any X € T, M. Using (1.7) we obtain

(3.8) W Zo, Z0)SX — h(X, Zo)SZy = 0,
(3.9) h(Zo, X)SX — h(X,X)SZy = 0.

Subtracting (3.9) multiplied by h(X, Zp) from (3.8) multiplied by h(X, X)
yields

h(Zo, Zo) h(Zo, X)

WX, Z) h(x,x) | X0

(3.10)
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It follows that if X and Zy are C-linearly independent, then SX = 0. We
choose Z; such that Zy, Z; is a C-basis of T, M. By this, 77 =0 and
S(Zo+ Z1) = 0. Consequently, SZy =0 and S = 0, which contradicts the
fact that dimimS = dimimR = 1.

(¢) According to (b) we may choose Xgyé€T,M such that
R(Xo,Zp)Xo#0. By Lemma 3.6 and (a), R(Xy,Zp)Xo and Z; are
C-linearly dependent. Since R(Xy, Zy)Xo # 0, there exists A € C such that
Zy = AR(Xo, Zp)Xo. Hence Zy € im R, and ker R, = CZy C im R,. By
assumption, dimc imR = 1, and the lemma follows. ]

Lemma 3.8.

o 0 o 0
(3.11) Vx <R <8z1’6wl) To) —h(X>T0)R<821:aw1> To.

Proof. From VR = 0 it follows that

0 0
0= (VXR) (<8Zl’ 8’(/)1) TO)
g 0 o 0
=Vx (R (azl’ awl) TO) — A (anzl’ 8w1> To

0 8 o 0

The last term vanishes, because VxTy = SX and imS = imR = ker R by
Lemma 3.7 (c¢). From Lemma 3.3, it follows that there exist holomorphic
functions 11 and 9 such that

(3.12) wl [+t a

By the C-bilinearity and anti-symmetry of R(-, -), we have from (2.5), (2.6)
and (3.12)

g 0 0 0
R<VX8217811)1>T0+R<821,VX8 )TO
0 0 0 0
:h(X, 821>R<TO,8 >T0+h<X, 811}1>R<8217T0> TO
0 0 g 0
= (o (x50 ) + 00 (3.5 ) ) 2 (52 )

0 0 0 0 0 0
=h (X’wlazl +w28w1> R (8?:1’ aw1> To=hX,To)R <aZ1’ 8wl> To.
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Let U’ and H be as in Lemma 3.4. We may assume that U’ is connected.
From now on we shall write U instead of U’.

Lemma 3.9. Vx (eHR (%, 831) To) =0 forany X e TM|y.
Proof. Tt suffices to use (2.8) and Lemma 3.8. O
Lemma 3.10. If (To)m, € ker Ry, then (Tp)m € ker Ry, for any m € U.

Proof. Assume that the vector field W on U has the property VxW =0
for any X. Any two points x and y of U we can connect with some curve
7. The coordinates of W, ;) in the basis of T;)M obtained from a basis of
T, M by parallel displacement along v do not depend on t. It follows that if
W, =0 at some x € U, then W =0 on U. Now let W:eHR(%,%)TO.
By assumption, W,,,, = 0, therefore W =0 and R (%, %) To=e HW =0.

O

Lemma 3.11. For any m € U, 11(m) = 0 if and only if 12(m) = 0.

Proof. To obtain a contradiction, suppose for example that ¢ (m) = 0 and
2(m) # 0. Then %\m = WTO’”’ which contradicts the assumption that
% ¢ ker R. O

Lemma 3.12. There exists an open dense subset Us of U such that 11 # 0
everywhere on Us.

Proof. Suppose that 11 = 0 on some open, non-empty subset V' of U. Then,
by Lemma 3.11, ¢ = 0 on V and consequently Ty = 0 on V. This contra-
dicts the fact that dimimS = 1, because VxTy = SX. [l

Lemma 3.13. There exists a constant C # 0 such that 1o = Cp1 on U.

Proof. Let Us be a connected, open, non-empty subset of Us and let X €
TM|y,. From the equality im S = im R = ker R and from T} € ker R it fol-
lows that X (11) 22 + X (¢2) 52 € ker R, because

0 0 0 0
X(%)@ + X(%)% = VxTy — @ble@ - i/JQVX@
0

0
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Since TO € ker R and dimker R = 1, the tangent vectors 101 o7 T wg ot and
X ()% 51 T X (wg)w are linearly dependent over C. Consequently

Yo\ 11y vy |
(3.13) X <¢1)  (¢)? ‘ X(h1) X(¥2) =0

It follows that X (ﬁ> = 0 for any m € Us, for any X € T,, M. Since Us is

connected, there exists a constant C' such that ¢2 = C on Us. The constant
C # 0, for if not, then ¥y =0. Now g — Cwl is a holomorphic function
defined on the connected subset U of M and equal to zero on an open,
non-empty set Us. From the identity principle for holomorphic functions it
follows that 12 — C1; =0 on U.

Let (Z,w) = ¢3(z,w) := (2, —Cz+w) and A3(z,w,u) = (2, —Cz + w, u).
Then Az 0 Ay o fo (p30p1) L (Z,@) = Az 0 Ao fopy (Z,CZ+ W) = A3(Z,
Cz+w, F(z,Cz4+w)) = (z,w, F(z,Cz + w)) = (Z, @,f(?, w)),

A3 = —(Az o Ay o f)«(To) + Azes = —(Az o Ay o f)«(Tp) + e,

Jé)

5 = z1 + C’ 57 and awl = 8w1 Using the new coordinates we can rewrite
Ty as
0 0 0 0
3.14 Ty = — 4+ C— | =1—= = a(z,0)—=
(3.14) 0= "1 <az1 + awl) Vigm = AZ0) 55

where oo = 1)1 o (pl_l ) <pg1. From now on we write z, w, F' instead of z,w, F.
Then the formulae (2.6) to (2.8) hold. O

Lemma 3.14. There exist an open neighbourhood U’ of mg and a holo-
morphic function g of one variable such that a(z,w) = g(Fz(z, w)) on p3 o

e1(U').
Proof. An easy computation shows that
0 0

and

2 2
o) r( ) (L ey o
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By Lemma 3.12 and by (3.14) « # 0 on some dense open subset U of p3 0
©1(U). For any (z,w) € U we can write

0’F 0a  O°F 0a\ 0O o 0 1
(3:.17) (811)82’ 0z 020z 8w> dz1 R <8z1’ 6w1> (a(z, w) 0) 0

Hence

O*°F Oa 9?F Oa
(3.18) owdz 0z 020z Ow 0

on U and, by continuity, on ¢3 o ¢1(U). Félrthermore, 8:02 #0 or 8w dz #*
0 for any point m € M, since otherwise 3.7 € ker h which contradicts the

non-degeneracy of f. Therefore ¥ := 8—F satisfies the assumptions of the
following lemma. Applying Lemma 3. 15 to ¥ and A := a completes the
proof of Lemma 3.14. U

Lemma 3.15. Let V be an open subset of C?. Let ¥ :V — C be a holo-
morphic function of two variables such that for any (z,w) € V, %\f (z,w) #0
or ‘gq’ (z,w) #0. Then A : V — C satisfies the equation

61 ovor owon_,

if and only if for any (z0,wg) € V there exist an open neighbourhood V' of

(20, wo) and a holomorphic function g : (V') — C of one variable such that

Aly=
V/

Proof. is similar to that of constant-rank mapping theorem. Let A satisfy
(3.19). It follows that rank of the holomorphic mapping

V3 (z,w) —~ (\Il(z,w),A(z,w)) cC?

is equal to 1 on V. Let (z0,wp) € V. Without loss of generality we can
assume that %—‘f(zo, wp) # 0. Then there exists a neighbourhood V" of (2¢, wp)
such that ®: V'3 (z,w) — (¥(z,w),w) € ®(V’') C C? is biholomorphic. We
may also assume that ®(V’) is a product of two open discs D; C C and
Dy C C. Let g(u,v) := A(® *(u,v)). Rank of the mapping

(T, A) 0@ 1 : (V') 3 (u,v) — (u,g(u,v)) € C?

is also equal to 1, therefore %(u,v) =0 for any (u,v) € Dy x Dy. Let
u € Dq. Since the function Dy 3 v+ g(u,v) € C is a constant one, we
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may define g(u) := g(u,v) with an arbitrary v € Dy. We have then (¥, A) o
O (u,v) = (u,g(u)). If we take (u,v) = ®(z,w) = (V(z,w),w), the asser-
tion follows.

Conversely, let A = g o ¥ on some open set V. Applying the chain rule

we obtain %(z,w) = g’(\ll(z,w))%‘p(z w) and 28(z,w) = g’(\ll(z w))a‘l’

ow ow
(z,w). Multiplying the first equation by 6w( w), the second by (z w)
and subtracting we obtain (3.19). O

Let (20, wp) = p3 0 p1(mg). We can decrease the neighbourhood U’ of
mo so as to obtain a connected, simply connected open neighbourhood

F.(U") of {y:= F.(z0,wp). The holomorphic function ¢ f,y(co’g)g(o)da,
where v({o,() denotes a path joining ¢y with ¢, is then well defined on
F,(U"). Let

(3.20) n(¢) i= e o0 9.
— 1’
We have then ¢({) = o and
n"(F) 0
21 X = Ty = X(F,)—.
(3.21) S VxTp (7)) ( )821

Since dimim S = 1, ”(F,) # 0 everywhere on U’.

Lemma 3.16. F satisfies the differential equation

(3.22) FeFuw = FruFow = 5

where k € C\ {0}.

Proof. Using the Gauss equation and (3.21) we obtain

(3.23) R< 0 a> ? 0'(Fx) 8

@jw w:(Fzszw_szsz)

0 0 0 0 0 0 0
OZ(VXR)(azl’awl>a 1 VX( 61)R<vxaz1’8wl>6wl

B o\ o o 0 B
R(al’vxa )8w1_R(821’8w1> (anwl>'
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The last two terms vanish, because ﬁ and Vx 8 r are linearly dependent
and VXa r = X(Fy)Tp with Ty € ker R. Hence

0

0 0
a1 '

0
+¢XGQ%X@»R@E&M>

Since U’ is connected, ® = const =: k. From 7" # 0 and from the non-
degeneracy of f it follows that x # 0. O

Let 3 be a complex number such that 52 = k. Let (Z,w) = p4(z,w) =
(2, Bw), Aa(z,w,u) = (2, Bw,u), o = pgop3zop; and A= As0 Az0 A;. It
is easy to check that Ao fop l(z,w) = (z,w, F(z,w)) where F(z,w) =
F(z, B ) satisfies the differential equation (2.1). Since at the corresponding
points F F, and 8~1 = %, we have a local section of A7 N as claimed.

Having A, ¢, F, n and £ which satisfy (i), (ii) and (iii) of Theorem 3.1,
we consider now the particular case when A is the complex affine normal
bundle of the immersion f.

Lemma 3.17. »3 -9 = ¢ with some c € C\ {0}.

Proof. The transversal field

820 Gu=nE)E= (Ao . (H(E) ) +alFes

is the equiaffine section of the bundle AN, which is the complex affine
normal bundle for Ao f. Therefore, there exists a complex number b such
that § = by is the complex affine normal vector field for Ao f. Let Z =

ity o W = g, We have then “w (Ao £).(2), (Ao f).(W),€) = 1.
By the definition of the affine normal vector field,

o (27 )| -

(3.25) hWW,Z) h(W, W)

where h = ( 3 h is the affine fundamental form induced by f Using (2.5)
we obtain

1 4
(326) ‘ < ) (Fzszw - szsz) = 17

bn(Fy)
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which together with (2.1) implies

4
= const

(327 e)* ") = |3

for ¢ € F,(U’). According to the maximum principle, if for a holomorphic
function F : @ — C, where 2 C C is an open and connected set, the function
|F| has a local maximum at some point of €2, then F must be constant on €.
From (3.27) it follows that |3 - 7| has a local maximum at any ¢ € F,(U’).
Therefore i3 - 7" = const. O

Lemma 3.18. n({) = /A(?>+ B(+ C, where Ac C\{0}, B,C € C,

AC — sz = ¢ and /- is some holomorphic branch of the square root defined
on some neighbourhood of the non-zero complex number A(3 + B¢y + C,
Co = F(z0,wo).

Proof. From Tjp,,, = 0 and (2.3) it follows that n'(¢p) = 0. Let

(3.28) E(C) = ((Q)* +

for ( € V, where V is some sufficiently small, connected neighbourhood of

Co- Using Lemma 3.17 we obtain E'({) = (27777(;()%)3 ((17({))3 1" (¢) — c) =0,
therefore E(() = E({o) = m for ¢ € V. It follows that

2 Cc C

(3:29) 0O = Ge? ~ mor

We consider now the function ¢(¢) := (n(¢))*. Using (3.29) and Lemma 3.17

we obtain

W) =2 (1)) +20(¢) - n"(C)
2¢ 2¢c 2¢

e~ moe TN 1O = T

It follows that

C

2
G’ TP

(3.30) ¥(¢) =
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Since 7/(¢o) = 0 implies 1'(¢p) = 0, we have B =

¥(Co) we obtain C' = (7(¢o))* + (b and

77(( E (o Computing

_ ¢ RV 2
(3.31) ¥(¢) = (o)) (€ =¢)" + (n(o))”-

Since 1((p) # 0, there exists a holomorphic branch /- of square root on
some neighbourhood of (1({p))?. But 7 is also holomorphic, therefore we
may conclude, replacing /- by —+/- if necessary, that n(¢) = \/¥((). O

Lemma 3.19. There exist an affine isomorphism Ag of C* and a local
diffeomorphism g, (Z,w) = pg(z,w) such that

Aso Ao fop opg! (1) = (2,@, F(Z,)).
F satisfies the differential equation
~ ~ ~ ~ ~ ,\2
(332) F%Fﬁﬁ — Fg@Fg@ = (1 —+ FE )
and —Ag o Ao f.(Ty) + e3 with

J2;
Ty= —2_ 2
0 1+ F20z!

is a local section of Ay A7N.

Proof. For n as in Lemma 3.18 we have

_AC — (B%/4)
n"€) ¢ - A?

A ¢+ (B/2) +12
VAC — (B2/4) > \JAC — (B2%/4) ’

Let ¢s(z, w) = <@2aw),u48(z,w,u)= <ACT4(B2M)Z,M,u+£‘,Z)

and

FGw)=F A zo | + B2 -
’ AC — (B%/4) AC — (B%/4)




Locally symmetric connections on complex surfaces 455

It is easy to check that at the corresponding points

(3.33) A F. + (B/2) = F

AC — (B2J4) © \JAC — (B%/4)

and

AC — (B%/4) [~ ~  ~ ~
(334) Fzszw_szsz:/l(Q/) (F’EEFG)@_FE@FE~>>

therefore I satisfies Equation (3.32). Since Ages = e3, we do not have to
change Ty but it should be described in the new coordinates. We have at
the corresponding points

' (F) AF, + (B/2)

n(F.) L (AF, + (B/2))* + C — (B2/4A)

F;\JAC — (B?/4) A Fs

AC(B/4) (ﬁgzﬂ) C JAC —(B2/4) F2 41
\/ﬁ
(335) 2L - vAC- (B O

0zt A ozt

and the lemma follows. O

We now turn to the case dimim R = 2. The shape operator S is then
invertible. We first show that there exists a C-bilinear, complex valued non-
degenerate symmetric holomorphic tensor field g such that Vg = 0. Let

(3.36) g(X,Y) =T h(STIX,Y),

where H is a holomorphic function as in Lemma 3.4 and h, S, 7 are induced
by the pair (A; o f,€), or, equivalently, by (f, (A7") 1) on some neighbour-
hood of my. Since H is defined up to a constant, we may assume that H,,, =
0. Since S is C-linear and h C-bilinear, g is C-bilinear. It is non-degenerate
because h is non-degenerate and S, is an isomorphism at any z. Accord-
ing to Lemma 02, h(S71X,Y) = h(S71X,9571Y) = h(SS~1X,571Y) =
h(X,S571Y) = h(S7Y, X), therefore g is symmetric.
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We fix now some basis Z, W of T, M and define o : T, M — T,,M and
L:T,MxT,M — C:

(3.37) a(Y) = h(W,Y)Z — h(Z, Y)W,
(3.38) LY, U) := det (;LL((VZV ’Q) ]’Z((VZV ZD

Lemma 3.20. (i) «a is a C-linear isomorphism.
(ii) L is C-bilinear and anti-symmetric.
L(Z,W) £0.
aoa=—L(Z,W)idr, p-
hY,a(U)) = —-h(U,a(Y)) for any Y,U € T, M.
L(a(Y),U) = L(Z,W)h(Y,U) for any Y,U € T, M.

(ii

i)
(iv)
(v)
(vi)
Proof. (i) and (ii) are obvious, (iii) follows from the non-degeneracy of h.
To prove (iv) we need only to compute o a(Z) and o «(WW). An easy
computation shows that h(Y,a(U)) + h(U,a(Y)) = 0. For (vi), it suffices to

take as (Y,U) the pairs of basis vectors, to use the definition of o and only
the anti-symmetry of L. O

In the following lemmas we will need the assumption that VR = 0.
Lemma 3.21. For any X,U

L(Z,W) (VxS)U = (Vxh) (W, a(U)) SZ = (Vxh) (Z,a(U)) SW.
Proof. From the Gauss equation (1.7) it follows that

(VxR) (Z, W)Y = (Vxh) (W,Y)SZ — (Vxh) (Z,Y) SW
(3.39) + W(W,Y) (VxS)Z —h(Z,Y) (VxS)W.

If VR =0, then

— (Vxh) (W,Y)SZ + (Vxh) (Z,Y) SW
=h(W)Y) (VxS)Z = h(Z,Y) (VxS)W = (VxS) (a(Y)).

We take now Y = «o(U) and use Lemma 3.20(iv). O
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Lemma 3.22. For any X,U,Y
(Vxh) (U,a(Y)) — (Vxh) (Y, a(U)) = h(X, Tp) [L(U, Y) + h(U, a(Y))]

Proof. Since both sides are C-bilinear and anti-symmetric with respect to
Y, U (see Lemma 3.20(ii) and (v)), it suffices to prove the formula for U = Z
and Y = W. If we apply Lemma 3.21 to X = Z, U =W, next to X =W,
U = Z and subtract the formulae, then we obtain

L(Z,W)|[(V28)W ~ (VwS) Z|
= |(Vzh) (W,a(W)) = (Viwh) (W,a(2))| 52
~ [(V20) (Z.(W)) = (Vwh) (Z,a(2))| SW.
From the Codazzi equation (1.9) and (2.8) it follows that
(V2S)W — (VwS) Z = h(W,Ty) SZ — h(Z, Ty)SW.
Since S is invertible, SZ and SW are linearly independent over C, therefore

L(Z, W)W, Tp) = (Vzh) (W, (W) = (Viwh) (W, a(2)),
L(Z,W)Z,Ty) = (Vzh) (Z,a(W)) = (Vwh) (2, a(Z)).

Using the Codazzi equation (1.8), (2.8) and Lemma 3.20(v), we obtain

(Vzh) (W, a(W)) = (Vwh) (Z,«(W)) = h(W, To) h(Z, a(W)),
(Vwh) (Z,a(2)) = (Vzh) (W,a(Z)) + h(Z,To) h(Z, «(W)).

It follows that
(Vwh) (Z,a(W)) = (Vwh) (W,a(2)) = (W, Ty) [L(Z, W) + h(Z, a(W)],
(V2h) (Z, (W) = (Vzh) (W,a(2)) = h(Z, To) |L(Z, W) + h(Z, a(W)).
Since the C-linear mappings
X = (Vxh) (Z,a(W)) = (Vxh) (W, a(Z))

and
X — h(X,Tp) |L(Z,W) + h(Z, a(W))]

have the same values on the basis vectors Z, W, they are equal and the
lemma follows. U
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Lemma 3.23.
(Vxh) (a(U),a(Y)) = L(Z,W)|— (Vxh) (U,Y) + 2h(X, To)h(U, Y)]

Proof. We apply Lemma 3.22 to a(U) and Y, then we use Lemma 3.20(iv),
(v) and (vi). O

Lemma 3.24.
L(Z,W) h((VXS) U, Y) = — (Vxh) <a(SY),a(U)).
Proof. Using Lemmas 3.21 and O2 we obtain

L(Z,W)h((VxS)U,Y)
= (Vxh) (W, a(U)) h(SZ,Y) = (Vxh) (Z,a(U)) h(SW,Y)
= (Vxh) (W, a(U)) M(Z,5Y) = (Vxh) (Z,a(U)) H(W, SY)
= (Vxh) (h(Z SY)YW — h(W, SY)Z, a(U)

— (Vxh) (a(SY), a(U)). 0

\_/

Lemma 3.25.

h((VXS) U, Y) = (Vxh) (SY,U) — 2h(X, Tp) h(SY, U).
Proof. From Lemmas 3.23 and 3.24 we have
Lz, W)h((vXS) U, Y> — L(Z,W) [(Vxh) (SY,U) — 2h(X, To)h(SY, U)] .
Since L(Z,W) # 0, the lemma follows. O
Lemma 3.26. Vg = 0.

Proof. 1t suffices to check that (Vxg) (SU,SY) =0 for any X,U,Y. We
have

(Vxg) (SU,SY)
- X(g(SU, SY)) - g(VX(SU), SY) . g(SU, VX(SY)>
- X<e2H h(U, SY)> — 2H (Y (SU),Y) — e2H h(U, Vx(SY))
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=2dH(X) 1 h(U, SY) + 22 (Vxh) (U, SY) + 22 h(VxU, SY)
+ (U, Vx(SY)) — 2B h(Vx (SU),Y) — 2 (U, Vx(SY))
= —2h(X, Tp) 2T WU, SY) + > (Vxh) (U, SY)
+ 2 (S (VxU),Y) — 2 n(Vx(SU),Y)
_— [—2h(x, To) h(U, SY) + (Vxh) (U, SY) — h((VXS) U, Y)]

which is equal to zero by symmetry of h and Vxh and by Lemma 3.25.
Let x € U and let for X, Y € T, M

G (A0 )X, (ALe )Y ) = g(X.Y),
Go((Ar 0 ).X,6) =0, Gulén &) i= .

Lemma 3.27. DG = 0.

Proof. From Vg = 0 it follows easily that (DxG)((Aj 0 f).Y, (A0 f)U)=0
for any X,Y,U. By definition of g, g(SX,Y) —e?! h(X,Y) =0, which
implies (DxG)((A; o f).Y,€) =0. Finally, (DxG)(&,€) =0 because dH =1T.

(]

In that way we have defined a symmetric, C-bilinear mapping G : C3 x
C? — C. It is easy to check that G is non-degenerate.

Remark 3.28. By the formula (3.36) we have defined the metric tensor
g only locally. Let h, S and 7 be induced by Aj o f and a local section
€= (A1 0 f)u(—Tp) +e3 of ATN. Since (A7?)71¢ and (A7) 1€ are local
holomorphic sections of N, there exists a holomorphic function ¢ such that
(A7) = ¢ (A7)~ ¢ on some neighbourhood U of mg. From (1.4), (1.5)
and (1.6) we obtain h = éh, S =¢Sand dH =dH + d log ¢, where log is
some holomorphic branch of logarithm in the neighbourhood of mg. If U is
connected, then we have H = H +log¢ + C, C € C, and g = 2% g.

Remark 3.29. In [7], B. Opozda has shown that the Ricci tensor Ric of
a locally symmetric torsion-free connection of rank 2 on a 2-dimensional
real manifold is symmetric and non-degenerate, hence V is the Levi-Civita
connection for the metric tensor g := Ric. Following this, we could in the
complex case instead of Ric consider, defined in [5], the complex Ricci tensor
ric(X,Y) = %[Ric(X,Y) — i Ric(X, JY)] which for a holomorphic connec-
tion V is equal to tre{V +— R(V, X)Y}. In the case of induced connection
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we obtain ric(X,Y) = h(X,Y) trcS — h(SX,Y), where h, S are induced by
f and some local section of N'. The right-hand side does not depend on the
particular section, but on f and N only. From Lemma O2 it follows that it
is symmetric. Let X € T,,M and let ric(X,Y) = 0 for any Y € T,,M. Then
h(trcSX — SX,Y) =0forany Y € T,, M and from the non-degeneracy of h
it follows that SX = trc.S X, which for 2-dimensional vector space T, M and
invertible S implies X = 0. Therefore ric is non-degenerate. From VR = (
and VJ = 0 it follows that Vric = 0. In this way we can on the whole of M
define a C-bilinear metric tensor g := ric such that Vg = 0. According to the
complex version of the Cartan—Norden theorem, there exists a C-bilinear,
non-degenerate symmetric G : C3 x C3 — C such that for X YeTM,

(3.40)
G((Ar 0 f)u(X), (A10 (V) =G(X,Y) and G((A10 f).(X),€) =0

for any local section of A;?N. These conditions together with the non-
degeneracy of g are sufficient to prove the following Lemma 3.30, but in
Lemma 3.31 we need not only the formula §(SX,Y) = Cie* h(X,Y), which
may occur in the proof of the Cartan—Norden theorem, or which we may
derive using (3.40), but also there should be C; = 1, because we use (3.36).
To this aim we should locally modify g.

From H,,, =0 and T,,, =0 it follows that G(es,e3) = G({my,Emo) =
e2Hmo = 1. There exists a complex linear isomorphism As of C3 such that
Aser, Ases, Ases is a G-orthonormal basis of C? and Ases = es. Let Ag :=
Agl. We have Ages = AgAsez = e3. For the given A5 and Ag it is easy to

find pg and F' such that

~

(3.41) AgoAro foprtopst(z,w) = (z,w, F(z,w)).

From Ages = eg it follows that Ag€ = —(Ag 0 A1 o f)«(Tp) + e3. We can look
at V, h, S, 7 as at objects induced by (Ag o A o f, As§). The new function
F' from now on we shall denote by F.

Lemma 3.30.

FZ 8 Fw a
= 2 391+ 2 2 1
1+ F.,* + F,” 0z 1+ F,* + F,* 0w

To

Proof. From (3.41) we obtain (Ago.4; o f). (%) =e1+ Fy ez, (Ago Ao f).
(%) =ey+ Fye3, and consequently (Ajo f), (%) =Ase; + F, As es,
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(A1 o f). (331) = As ey + Fy, As e3. Hence

=G 6+ (ro (T, (410 ). (8‘21)
— G(Ases, Aser + FuAses) —
<€+(«410f)( (Ao f)s (821)
(Ases, Asea + Fiy Asez) =
o

)
o )
Z((Alof) <8> (Ao f), 1>1>+
)

(Aser + FL Ases, Aseq + F. Ases)
0 0
(e (o) o ()
)=
0
ow!

Q’)
N

2
F.=,

(3.45) = G(.A561 + FZ.A563, Ases + FwA5€3 =F, F,,
0 0 0
g(awl’@wl ((.Alof) < w) (A1o f)s ( >>
(3.46) = G(.A562 + FpAses, Ases + Fw.A563) =1+ Fw2.

Let Ty = a% +b52;. From (3.42) to (3.46) we obtain the following system
of linear equations:

(1+F*a+F,F,b=F
F.Fya+(1+Fb=F,

It remains to find the solution a, b and the lemma follows. We use here the
fact that g is non-degenerate, which implies

9 9N (0 9N (0 0N (0 8\,
I\ 8217921 ) I\ Gwl” duwl I\ 1wt ) T\ 821 6w
Let Z, W be a basis of T, M. For C-bilinear g and a holomorphic con-

nection V such that Vg =0

g(R(Z, W)W, Z)
9(Z,Z)g W, W) — g(Z,W)g(W, Z)

is a complex valued analogue of the sectional curvature of 2-dimensional real
manifold. It is easy to check that x does not depend on the choice of the
basis and depends on x only. O
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Lemma 3.31. Ifdimc M =2, VR =0, g is a C-bilinear metric tensor on
U C M such that Vg =0 and U is connected, then k = const.

Proof. We take a local basis E, F such that g(E,F)=g(F,F)=1 and
g(E, F) = 0. Since Vg = 0, there exists a complex valued 1-form w such that
VxE=w(X)Fand VxF = —w(X)E. As Vg =0 and VR = 0 we have

X(r) = X(g(R(E, F)F, E))
9(R(VxE,F)F + R(E,VxF)F + R(E, F)VxF, E)
+9(R(E,F)F,VxE)=0

because R(X,Y)=—R(Y,X) and g(R(K,L)M,N)=—gR(K,L)N,M). O
Lemma 3.32. F satisfies the differential equation
o Fww — FoFop = K(1+Fz2+Fw2)2-

Proof. Let H := —% log(1 + F.? + F,?), where log is a holomorphic branch
of logarithm, defined in the neighbourhood of 1. Then

dH(X) = — F.X(F,) + F,X(Fy) _ F.h (X7 8/821) + F,h ()(7 8/8101)
N 1+Fz2+Fw2 o 1+F2’2+Fw2

= —h(X,Tp) = 7(X).

Since Tp,,, =0, from Lemma 3.30 we obtain F,(zg,wp) =0 and Fy,(zo,
wp) = 0, where (29, wy) = @g © p1(mg). Therefore H,,, = 0. It follows that
we may use H to define g. From (1.7), (2.5) and (3.36), we obtain

(3.47) g <R < a a ) 8 8 > - €2H (Fzszw - szsz>-

921 dw' ) dw!l’ 92!
By (3.44) to (3.46) we have
9 9N (0 oN_ (90 9\ (9 9
I\ 021821 ) 9\ Gut’ aw! I\ 020 awt ) 9\ 821 awt
=1+ F2+ F,2
It follows that e (F.,Fyy — FowFoyw) = k(1 + F.? + F,%), hence

F..Fuyy — FouFop = ke 2P 1+ F.24+ F,%) = k(1 + F.2 4+ F,22
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To prove Lemma 3.32 one can also directly compute SX as VxTp, then
using the Gauss equation compute R and using (3.44)—(3.46) express k by
the derivatives of F'. (]

Let 8 be a complex number such that 3% = k. Let A7(z,w,u) =
(Bz, Bw, Bu), ¢7(2, w) = (B2, w), A= A7 0 Ag o Ay and ¢ = 7.0 ¢ 0 1.
It is easy to check that Ao fop l(Z w) = (E, w, BF (%E, %ﬁ?)) As a
local section of A7N we take %A7 oAl = —(Ao f)s (%To) +e3=:—(Ao
F)«(To) + es. Let F(Z,@) := BF (%Z %@), then F satisfies the differential
equation

FzFag — FagPop = (1+ F5* + F2)*

From F(3, @) = F, (%z, %@) and Fiu(3, @) = Fy (%z, %@5) it follows that
Fx(p(m)) = F. (g 0 p1(m)) and Fg(p(m)) = Fy (6 0 p1(m)), therefore
Th= "Fm2 72384 2 2 3 Hul
1+ F2+F,2 B 0z 1+ F,2+ F,* B ow
Ps 0 Py 0

1+ P24+ F2 02" 14 F2 4 F2ou!

It is easy to check that the equiaffine section of A7N

F 9 F a)

é. _ —Aof* z = 4 w
- VEZ+ FS 41028 /Ry 241 0wl

+\/F.2+F,2 +1es

is the complex affine normal vector field.

4. Examples

1. Let 4AC — B? =1, F(z,w) = A2%2 + Bzw + Cw? + Kz + Lw, n(¢) =
. We have then

Fzszw_szsz:L
_ 9
02V

Note that at no point mg, To,,, = 0, but in Proposition 2.1 we do not
need such point. The equiaffine section of AN is

To §€=(-1,0,—2A2z — Bw— K +1).

é‘eq — n(FZ)§ — (_62Az+Bw+K7 0, €2Az+Bw+K(_2Az —Bw—- K+ 1))
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2. Let 4AC —B?>=-1, F(z,w)= A2?+ Bazw+ Cw?+ Kz + Lw,
n(¢) = sin¢. Then

Fzszw - szsz = _17
0
T(] = Cot(2A2+ B'U) -+ K) @,
& = (—cot(24Az+ Bw + K),0, —(2Az + Bw + K) cot(2Az + Bw + K) + 1),

€oq = (—cos(2Az + Bw + K), 0,
—(2Az 4+ Bw + K) cos(2Az + Bw + K) + sin(2Az + Bw + K)).

3. Let F(z,w) = 2%, n(¢) = 1 (% Then F..Fy — FopFoyw = $F.%,

1 .. 0 1 A o 9
Ty = P tw 2.1 &= (—Ze “”,0,—1), feq = (—226“",0,—22 e “").

4. Warped helicoid. An example of locally symmetric complex surface
with V induced by the complex affine normal vector field is a warped
helicoid (see [2]). Under a suitable parametrization it can be described
by a solution F' of the differential equation F,,F,, — FapFayw = (1 +
F.,?)? which we obtain, taking in (2.1) n(¢) = 1/¢2 + 1. In this case
the solution is F'(z,w) = (z - h (zw)) tan(iw) + fo(iw), where f; and
f2 are holomorphic functions of one variable. The surface (z,w) —
(z,w, F(z,w)) is a warped helicoid, because zj := z, 29 := F(z,w),

z3 :=iw satisfy the equation <21 — fl(Zg)) sin z3 = <22 — fg(Zg))

1 0 O

cos zz, and (z,w, F(z,w)) = B(z1, 22,23) where B:= [0 0 —i] is
01 0

an equiaffine transformation. We obtain T = sin(iw) cos(iw) aazl, §=

(—sin(iw) cos(iw), 0, cos?(iw)) and &eq = (— sin(iw), 0, cos(iw)).

5. As an example of locally symmetric complex surface of rank 2 let us
take  F(z,w) =+v1— 22 —w?. Then Tp=—v1—22—w?
(2% —I—w%), E=V1—-22—w?(z,w,V1—22—w?) and &q=

(z,w, V1 — 22 —w?) = (2,w, F(z,w)).
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