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Kähler–Einstein metrics of negative Ricci curvature
on general quasi–projective manifolds

Damin Wu

In this paper, we give sufficient and necessary conditions for the
existence of a Kähler–Einstein metric on a quasi-projective man-
ifold of finite volume, bounded Riemannian sectional curvature
and Poincaré growth near the boundary divisor. These conditions
are obtained by solving a degenerate Monge–Ampère equation and
deriving the asymptotics of the solution.

1. Introduction

Let M be a quasi-projective manifold which can be compactified by adding
a divisor D with simple normal crossings, which means that D =

∑p
i=1 Di,

where the irreducible components Di are smooth and intersect transversely.
Under certain positivity conditions of the adjoint bundle over the com-
pactification, the existence of a complete Kähler–Einstein metric on the
quasi-projective manifold was first addressed by Yau (see, for example, [29,
p. 166]), right after his resolution of the Calabi conjecture [28]. This program
has been followed by many authors, for example, [1, 5, 8, 22,24], and [31].

In fact, notice that the second part of [28] is essentially devoted to con-
struct Kähler–Einstein metrics on algebraic manifolds of general type. In
general such a metric has singularities. In a sense, Yau’s motivation for this
program may be viewed as to understand these singularities in many impor-
tant cases from the differential-geometric point of view. This appears in his
later papers joint with Cheng [8], and with Tian [22]. In the last paper, they
proved the following result.

Let

(1.1) KM +
q∑

i=1

[Di] +
p∑

j=q+1

mj − 1
mj

[Dj ]

be big, nef, and ample modulo
∑q

i=1 Di, where KM denotes the canonical
bundle over M , [Di] is the line bundle induced from Di, mj ∈ N and mj ≥ 2.
Then there exists a unique (almost) complete Kähler–Einstein metric with
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negative Ricci curvature on M . (See Section 7 here for definition of almost
completeness. The completeness is later settled by Yau [31, p. 474].) As a
consequence, the logarithmic version of Miyaoka–Yau inequality is estab-
lished on M and a numerical characterization of ball quotients is given
(see [22, p. 626]).

Note that the condition of (1.1) is equivalent to the following (see [22,
p. 612]): There exist μi ∈ Q, μ ∈ (0, 1], for i = 1, . . . , q, and mj ∈ N, mj ≥ 2
such that

(1.2) KM +
q∑

i=1

μi[Di] +
p∑

j=q+1

mj − 1
mj

[Dj ] > 0

on M and

(1.3) KM +
q∑

i=1

[Di] +
p∑

j=q+1

mj − 1
mj

[Dj ] is nef.

The positivity condition (1.2) assures that, on M , there exists a natural com-
plete Kähler metric, which has Poincaré growth near the divisor

∑q
i=1 Di.

This background metric can be deformed to a complete Kähler–Einstein
metric by solving a degenerate Monge–Ampère equation on M . (For the
condition corresponding to a nondegenerate Monge–Ampère equation, the
existence has also been studied from the viewpoint of Ricci flow, see Chau [4],
which is parallel to Cao’s work [3] on the compact case.)

In [22], a modified continuity method is introduced to solve the equation.
The nef condition (1.3) is imposed so that the deformation of metrics would
not be out of control until t = 1. But then it is nontrivial to show the
completeness of the resulting metric. The key observation in [31] is that
the Kähler–Einstein metric can dominate a Poincaré-type metric which has
negative holomorphic curvature at least in the normal direction. This is
proved by the argument in Yau’s Schwarz lemma [30] together with the
property of almost completeness.

In this paper, we would like to consider a general positivity assump-
tion, under which M admits a Kähler–Einstein metric of a negative Ricci
curvature. Under the assumption, it turns out that the information com-
ing from the boundary divisor is crucial for the Kähler–Einstein geometry
over the whole quasi-projective manifold. Indeed, let us relax the positivity
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(1.2) to the following condition: There exist real numbers αi ∈ [−1, +∞),
i = 1, . . . , p, so that

(1.4) KM −
p∑

i=1

αi[Di] > 0

on M . This assumption is pretty general for the existence of a Kähler–
Einstein metric with negative Ricci curvature on M . In fact, if we allow
some coefficient αk < −1, then it is possible that there is no Kähler–Einstein
metric of negative Ricci curvature on M . For instance, let M = CPn and D
be a smooth hypersurface of degree n + 1. Then (1.4) holds for any α < −1.
But by [23] there exists a complete Kähler–Ricci flat metric on M . Thus,
M does not admit any Kähler–Einstein metric of negative Ricci curvature,
in view of Yau’s Schwarz lemma.

Under an assumption like (1.4), it is standard to construct a complete
Kähler metric ω on M with Poincaré growth near D. Furthermore, ω has
bounded sectional curvature, and indeed, has bounded geometry in the sense
of Cheng–Yau (see, for example, [26, p. 800–802]). Let R(M) be the Cheng–
Yau’s Hölder ring (see Section 2 for definition). Our first result is on the
existence of a negative Kähler–Einstein metric on M , which is parallel to
part of Yau’s work on the compact degenerate case [28, p. 364–389].

Theorem 1.1. Under (1.4), there exists a Kähler–Einstein metric ωKE on
M of finite volume and negative Ricci curvature, satisfying that

C−1
p∏

i=1

|si|2Λω < ωKE < C

p∏

i=1

|si|−2Λω,

where si is the holomorphic defining section of Di, | · | is a metric on [Di],
i = 1, . . . , p, and C and Λ are positive constants.

Here, the finite volume property follows directly from Yau’s Schwarz
lemma ([30, p. 202]); see also Lemma 3.4 of this paper. The proof of existence
amounts to solving a degenerate Monge–Ampère equation, similar to the
previous work. However, without any extra assumption like (1.3), the conti-
nuity method will break down. So instead we use an approximation method
modified from the second part of Yau’s celebrated paper [28, pp. 364–389].
It is unclear whether such a Kähler–Einstein metric is complete or not in
the general setting, which is the main drawback of the theorem.

On the other hand, for a Kähler–Einstein metric of negative Ricci curva-
ture, if complete, then it must be unique, and depends only on the complex
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structure. (This fact is also an immediate consequence of Yau’s Schwarz
lemma [30].) Hence, the complete metric imposes certain restrictions on the
complex structure of the manifold. Besides, from the differential–geometric
viewpoint of compactification (see, for example, [18,32, p. 13]), it would be
helpful to compare the Kähler–Einstein metric with the background metric
ω, which has bounded curvature. The following theorem can be viewed as
the main result of this paper.

Theorem 1.2. The following results are based on the assumption of (1.4).

(1) If KM + [D] restricted to each irreducible component of D is positive,
then there exists a Kähler–Einstein metric ωKE of negative Ricci curva-
ture which is uniformly equivalent1 to ω, i.e., there exists some constant
C > 0 such that

C−1ω < ωKE < Cω.

As a consequence, the Kähler–Einstein metric is complete, has finite
volume and bounded sectional curvature.

(2) If there exists a Kähler–Einstein metric of negative Ricci curvature ωKE
on M which dominates ω, namely, ωKE > Cω, for some constant C > 0,
then ωKE is uniformly equivalent to ω, and is given by

ωKE = ω −
p∑

i=1

(αi + 1)ddc log |si|2 + ddcv,

where v ∈ R(M) and αi are the coefficients in (1.4). As a consequence,
ωKE has bounded sectional curvature, and

ωn
KE =

evV
∏p

i=1 |si|2(log |si|2)2
,

where V is a volume form on M .

We remark that, unlike the nefness of KM + [D], under
(
KM + [D]

)∣
∣
Di

> 0, i = 1, . . . , p,

the resulting Käher–Einstein metric on M is uniformly equivalent to the
background metric. This endows the new Käher–Einstein metric with all
the merits of ω, especially the bounded sectional curvature property.

1This may also be called as quasi-isometric in the literature.
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As far as (2) in Theorem 1.2 is concerned, the coefficients αi in (1.4) are
allowed to be any real numbers. We derive (2) by studying the asymptotics
of the unbounded solution of the degenerate Monge–Ampère equation. We
introduce the Cheng–Yau’s Hölder spaces of negative weight to character-
ize the unbounded solution. Then we derive the asymptotics by extending
the isomorphism theorems developed in [26] to the negative weight spaces.
Specifically, we show that the solution has a logarithmic pole of order αi + 1
along each irreducible component of D. See Theorem 5.3 for details and
also for certain uniqueness. The idea of using isomorphism theorems orig-
inally came from Lee and Melrose [14] in handling the asymptotics in the
strictly pseudoconvex domain in C

n (see also, for example, [7, 10] for the
background.)

Statement (1) in Theorem 1.2 is proved by the continuity method. It
is more or less standard that such a proof can be reduced to some a priori
estimates near the boundary divisor (see, for example, [22, Theorem 1.1,
p. 581]). An important ingredient here is a generalized Saper’s lemma on
metric extensions, which enables us to obtain the desired estimates near
D. Then we choose the classical version of the continuity method, together
with certain a priori asymptotic treatment, which makes the argument more
transparent. By pushing the argument one step further, we have

Theorem 1.3. Under (1.4), if KM + [D] restricted to each irreducible com-
ponent of D is nef, then there exists an (almost) complete Kähler–Einstein
metric on M .

By using the metric extension lemma, one can again derive the a priori
estimates near D. Following [22], we use the modified continuity method
which has the advantage that the Ricci curvature of the deforming metric
always has a lower bound. But one has to pay the cost of nonemptiness.
Here, inspired from [19], we use Newton’s iteration to overcome the difficulty
due to the failure of the usual implicit function theorem.

In Section 2, we recall the setting of bounded geometry, and weighted
Cheng–Yau’s Hölder spaces. We construct a background Kähler metric
adapted to these settings. In Section 3, we collect some well-known and
standard techniques, such as Yau’s generalized maximum principle and Yau’s
upper bound lemma. These results are stated and proved in the form we
need. In Section 4, a general existence of a Kähler–Einstein metric is proved,
by the approximation method. In Section 5, we derive the asymptotics of
the solution of the Monge–Ampère equation near D. As an application,
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we prove the second part of Theorem 1.2. In Section 6, we prove the first
part of Theorem 1.2 by the classical continuity method. Theorem 1.3 is
proved in the final section, Section 7.

Throughout this paper, we always identify a Hermitian metric with its
associated (1, 1)-form. We denote by

σi = − log |si|2, i = 1, . . . , p.

And in fact, we will use both notations interchangeably. For instance, σi is
used in Cheng–Yau’s Hölder spaces as the weight function, while − log |si|2
is used in the estimates of the Monge–Ampère equation. The operator dc is
given by

dc =
√

−1
4π

(∂̄ − ∂),

and hence

ddc =
√

−1
2π

∂∂̄.

By a Ricci form of a volume form Ψ we mean

Ric(Ψ) = ddc log γα,

where Ψ = γα
∏

i((
√

−1/2π)dzi
α ∧ dz̄i

α) locally. The Ricci form is in fact
globally defined. Notice that Ric(ωn) differs by a negative sign from the
usual Ricci curvature of ω.

2. Bounded Geometry

Let M be a compact complex manifold, and D =
∑p

i=1 Di an effective divi-
sor, in which the irreducible components Di are smooth and intersect trans-
versely. Let M = M \ D. Suppose that (1.4) holds; namely, there exist real
numbers αi ∈ [−1, +∞), i = 1, . . . , p such that

KM −
p∑

i=1

αi[Di] > 0

on M . Then one can construct a complete Kähler metric ω on M with
Poincarè growth near D, and has bounded geometry as follows: One can
choose a volume form V on M and a metric hi on each [Di] such that
the induced metric on KM −

∑p
i=1 αi[Di] has positive curvature form. Let

si be the holomorphic defining section of Di. Then the Ricci form of the
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following volume

Ω =
p∏

i=1

|si|2αi

(log |si|2)2
· V

over M is the desired Kähler metric. More precisely, we have

ω = Ric(Ω)

= ωK − 2
p∑

i=1

σ−1
i ωDi

+ 2
p∑

i=1

σ−2
i dσi ∧ dcσi

over the quasi-projective manifold M . Here σi = − log |si|2, and

ωK = Ric(V ) +
p∑

i=1

αiddc log hi

ωDi
= −ddc log hi, i = 1, . . . , p,

represent, respectively, the first Chern classes of KM −
∑p

i=1 αi[Di] and [Di],
i = 1, . . . , p, over M . Note that we can always rescale the metric on each
[Di] such that

0 ≤ |si|2 < 1/e on M,

and hence, we have σi > 1 on M .
Let us recall the setting of bounded geometry (see, for example,

[7, 8, 22,26]) over M . The idea is to resolve the singularities of the metric
near the boundary, by certain nice local holomorphic maps, called quasi-
coordinate maps. In the case of the quasi-projective manifold, the boundary
is the divisor D =

∑
i Di with simple normal crossings. For any p ∈ D, there

is a neighborhood U of p with (z1, . . . , zn) a local coordinate system on M ,
such that

D ∩ U = {z1 · · · zk = 0}, 1 ≤ k ≤ n.

The complement is

U∗ = U \ (D ∩ U) = (Δ∗)k × Δn−k,

where Δ is the unit disk in C and Δ∗ = Δ\{0}.
The quasi-coordinate maps can be constructed as follows: Let

Δ3/4 = {v ∈ C; |v| < 3/4},
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and define a holomorphic map φη : (Δ3/4)k × Δn−k → U∗ by

φi
η(v) = e(1+ηi)/(1−ηi)·(vi+1)/(vi−1), i = 1, . . . , k,

φj
η(v) = vj , j = k + 1, . . . , n,

for each η = (η1, . . . , ηk) ∈ (0, 1)k. It follows that U∗ is covered by the union

⋃

η∈(0,1)k

φη

(
(Δ3/4)

k × Δn−k
)

.

The essential point here is the invariance of the Poincaré metrics under the
map φη: Let zi = φi

η(v); the pullback metric

(φi
η)

∗
(

dzi ∧ dz̄i

|zi|2(log |zi|2)2

)

=
dvi ∧ dv̄i

(1 − |vi|2)2 , i = 1, . . . , k,

which is independent of η. In particular, all the derivatives of the pullback
metric are bounded on Δ3/4.

Now let U run through all the neighborhoods. We get a collection of
quasi-coordinate maps {Vη, φη}, in which each Vη is a ploydisk of the form

(Δ3/4)
l × Δn−l, 0 ≤ l ≤ n,

such that M is covered by the union of all the φη(Vη) and that the pullback
metric φ∗

η(ω) on Vη and all its derivatives are bounded. In this sense, we say
(M,ω) has bounded geometry up to infinite order.

The bounded geometry setting is particularly useful for applying the
techniques of partial differential equations into the geometry of the quasi-
projective manifolds, since the natural operators associated with the metric,
say Laplacian, will be uniformly elliptic on the quasi-coordinate charts. For
this purpose, let us define the Cheng–Yau Hölder spaces as follows: For
k ≥ 0 and α ∈ (0, 1), define the norm ‖ · ‖k,α on C∞(M) by

‖f‖k,α = sup
Vη

{‖φ∗
η(f)‖Ck,α(Vη)}.

Then the Cheng–Yau Hölder space Ck,α(M) is defined to be the comple-
tion of {f ∈ C∞(M); ‖f‖k,α < ∞} with respect to ‖ · ‖k,α. It follows that
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Ck,α(M) with ‖ · ‖k,α is a Banach space. Let

R(M) =
⋂

k≥0, 0<α<1

Ck,α(M).

It is a Fréchet space consisting of all the smooth functions on M whose all
derivates are bounded with respect to ω. In particular, we have

σ−1
i = − 1

log |si|2
∈ R(M),

for each holomorphic defining section si of Di, i = 1, . . . , p. Here each σi can
be viewed as a natural distance function with respect to Di. Furthermore,
σi induces σ−r

i Ck,α(M), the Cheng–Yau Hölder space with weight r ∈ R,
which is the Banach space defined as usual, i.e., f ∈ σ−r

i Ck,α(M) if and
only if

σr
i f ∈ Ck,α(M).

Notice that the weighted Cheng–Yau Hölder spaces are independent of the
choice of metrics on each [Di].

The positive weighted spaces have been used in [26] to characterize the
bounded solution of a nondegenerate Monge–Ampère equation. In the situ-
ation here, we are going to handle the degenerate case, which naturally has
unbounded solutions. So it is necessary to extend to the negative weighted
Cheng–Yau spaces. In this paper, we only need the case of weight −1;
namely, σiC

k,α(M) for each i = 1, . . . , p. Similar to [26], each negative
weighted space has a log-filtration:

σiC
k,α(M) ⊃ Ck,α(M) ⊃ σ−1

i Ck,α(M) ⊃ · · · .

And similarly, we will prove in Section 5 that the Laplacian operator minus
one is a linear isomorphism which preserves the log–filtration. In the follow-
ing analysis, the sum

p∑

i=1

σiC
k,α(M)

will be considered as an R-vector space rather than a Ck,α(M)-module. It
induces a direct sum modulo Ck,α(M), since for fi ∈ Ck,α(M), i = 1, . . . , p,
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we have
p∑

i=1

fiσi ∈ Ck,α(M)

if and only if

fiσi ∈ Ck,α(M) for all i = 1, . . . , p.

This simple observation will be used in the proofs of Lemmas 5.1 and 5.2.
Finally, in order to set up a Monge–Ampère-type equation, let us com-

pute the error term which measures the failure of ω to be Kähler–Einstein.
By direct calculation,

ωn

Ω
=

p∏

i=1

|si|−2aie−F ,

where ai = αi + 1 > 0 for i = 1, . . . , p, and F ∈ R(M). In other words,

log
(

ωn

Ω

)

∈
p∑

i=1

aiσi + R(M) ⊂
p∑

i=1

σiR(M).

Thus, to prove the existence of a Kähler–Einstein metric on M of negative
Ricci curvature, it suffices to solve the following Monge–Ampère equation
with degenerate right-hand side:

(ω + ddcu)n

ωn
= eu

p∏

i=1

|si|2aieF ,

ω + ddcu > 0 on M.

Indeed, if u ∈ C∞(M) is a solution, then

Ric
(
(ω + ddcu)n

)
= Ric(ωn) +

p∑

i=1

aiddc log |si|2 + ddcF + ddcu

= ω + ddcu,

and hence ω + ddcu defines a Kähler–Einstein metric on M of negative Ricci
curvature.

3. Yau’s upper bound lemma

In this section, we reformulate, respectively, the special cases of Yau’s upper
bound lemma and Yau’s generalized maximum principle, in the setting of



Kähler–Einstein metrics of negative Ricci 405

quasi-projective manifolds. In such setting, we can prove the maximum
principle by using a natural global distance function associated with the
divisor, rather than the usual distance function of a Riemannian metric.
The global distance function is independent of the Levi–Civita connection,
and hence works for certain complete Hermitian metrics.

As applications, we prove the uniqueness of the degenerate Monge–
Ampère equation, and finiteness of the volume of any Kähler–Einstein metric
of negative curvature on M . The latter is well known.

Let (M,ω) be the quasi-projective manifold defined in the previous sec-
tion. Let ω̃ be any Hermitian metric on M satisfying the uniform equivalence
condition

C−1ω < ω̃ < Cω,

where C > 1 is a constant. Denote by Δω̃ the negative Hermitian Laplacian
associated with ω̃, i.e.,

Δω̃v =
nω̃n−1 ∧ ddcv

ω̃n

for any v ∈ C2(M).
The following lemma is a special case of Yau’s generalized maximum

principle (see, for example, [6, p. 340; 27, p. 206] for a general version). The
idea is to compare the function with the global distance function∑

log(− log |si|2) associated with D.

Lemma 3.1. Let (M, ω̃) be given as above. For any function v ∈ C2(M)
with

sup
M

v < +∞,

there exists a sequence {xk} in M such that

lim
k→+∞

v(xk) = sup
M

v,

lim
k→+∞

|dv(xk)|ω̃ = 0,

lim sup
k→+∞

Δω̃v(xk) ≤ 0.

where | · |ω̃ is the metric norm associated with ω̃.
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Proof. For each ε > 0, let

vε = v − ε log

(

−
p∏

i=1

log |si|2
)

.

Then vε ∈ C2(M) has an upper bound. Indeed, since

log

(

−
p∏

i=1

log |si|2
)

(x) → +∞

as x approaches the boundary divisor D, supM vε must be achieved at the
interior of M , say xε. Then by applying the usual maximum principle, we get

vε(xε) ≥ v(x) − ε log

(

−
p∏

i=1

log |si|2
)

(x)

dvε(xε) = dv(xε) − εd log

(

−
p∏

i=1

log |si|2
)

(xε) = 0

ddcvε(xε) = ddcv(xε) − εddc log

(

−
p∏

i=1

log |si|2
)

(xε) ≤ 0.

Therefore, we have

v(xε) ≥ v(x) − ε log

(

−
p∏

i=1

log |si|2
)

(x),

|dv(xε)|ω̃ ≤ εC|d log

(

−
p∏

i=1

log |si|2
)

(xε)|ω ≤ εC1,

Δω̃v(xε) ≤ εCΔω log

(

−
p∏

i=1

log |si|2
)

(xε) ≤ εC1,

in which C1 > 0 is a constant independent of ε and v. Hence, letting ε → 0+,
we complete the proof. �

With the aid of the above lemma, we can prove the following version
of Yau’s upper bound lemma (See, for example, [6, Theorem 8, p. 353] for
the general case). For completeness, we include here a proof which is due
to Yau.
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Lemma 3.2. Let (M, ω̃) be given as above. Suppose that a function u ∈
C2(M) satisfies

Δω̃u ≥ f(u),

in which f ∈ C0(R) with

lim inf
t→+∞

f(t)
tα

> 0, α > 1 is a constant.

Then supM u < +∞ and f(supM u) ≤ 0.

Proof. Let us assume that supM u = +∞. We want to construct a bounded
C2–function v on M such that infM v = 0, and that for any sequence {xε}
in M , v(xε) → 0+ if and only if u(xε) → +∞, as ε → 0+. In fact, let χ be
a smooth cut-off function which equals 1 on [2,+∞), equals 0 on (−∞, 1],
and belongs to (0, 1) on (1, 2); then

v ≡ χ(u)u−β + χ(3 − u) =

{
u−β if u(x) ≥ 2,

1 if u(x) ≤ 1,

with β > 0 to be chosen, satisfies all the requirements.
Applying Yau’s maximum principle (Lemma 3.1) to −v, we have that

for each sufficiently small ε > 0, there is an xε in M such that

v(xε) < inf
M

v + ε = ε,

|∇v(xε)|ω̃ < ε,

Δω̃v(xε) > −ε.

Therefore, at each xε, we have

−ε2 < v(xε)Δω̃v(xε) ≤ −β
f(u(xε))
u2β+1 +

β + 1
β

|∇v(xε)|2ω̃

Now we set β = (α − 1)/2, and let ε → 0+; this inequality gives a contrac-
tion. Hence, we prove that supu < +∞. Then by applying Lemma 3.1 to
u, we conclude that f(supu) ≤ 0. �

As the first application, let us prove the uniqueness of the following degen-
erate Monge–Ampère equation.
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Lemma 3.3. For any (positive) continuous function G on M and any
constant λ > 0, there exists at most one u ∈ C2(M) satisfying

(ω̃ + ddcu)n

ω̃n
e−λu = G,

Cω > ω̃ + ddcu > C−1ω, C > 0.

Proof. Assume that there are two such solutions u1 and u2. Let h = u2 − u1,
and ω̃1 = ω̃ + ddch. Then the first equation becomes

(ω̃1 + ddch)n

ω̃n
1

= eλh.

By the arithmetic and geometric mean inequality we have

Δω̃1h ≥ neλh/n − n.

Applying Yau’s upper bound lemma (Lemma 3.2) yields

suph ≤ 0.

Similarly, we have inf h ≥ 0. Hence, h = 0. This implies that u1 = u2. �

Next, let us prove the finite volume of an arbitrary negative Kähler–Einstein
metric on M .

Lemma 3.4. Suppose that ωKE is a negative Kähler–Einstein metric on
M . Then there exists a constant C > 0 such that ωn

KE < Cωn. Hence, ωKE
has finite volume.

Proof. Notice that ωn
KE/ωn is a well-defined smooth positive function on M .

Let G ∈ C∞(M) such that

(3.1) eG =
ωn

KE
ωn

.

It suffices to show sup G < +∞. Note that

ωKE = Ric(ωn
KE) = ddcG + Ric(ωn)

= ω + ddcG + ddcf,
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where f = −
∑p

i=1(αi + 1) log |si|2 − F with F ∈ R(M). Applying the
arithmetic and geometric mean inequality to (3.1) yields that

neG/n ≤ n + ΔωG + Δωf

≤ n + ΔωG + C1,

in which C1 > 0 is a positive constant. It follows from Yau’s upper bound
lemma (Lemma 3.2) that

esup G < (1 + C1/n)n.

This completes the proof. �

4. General existence

Consider the following Monge–Ampère equation with degenerate right-hand
side:

(ω + ddcu)n

ωn
e−u =

p∏

i=1

|si|2aieF(4.1)

ω + ddcu > 0 on M,(4.2)

where all ai are positive real numbers, and F ∈ R(M).
In this section, we will solve the equation by the ε-approximation

method, introduced by Yau in the second part of his paper [28, pp. 364–389].
The idea is to approximate (4.1) by a sequence of Monge–Ampère equations
with nondegenerate right–hand side:

(ω + ddcuε)n

ωn
e−uε =

p∏

i=1

(|si|2 + ε)aieF(4.3)

ω + ddcuε > 0 on M.

For each ε, there exists a unique solution uε ∈ R(M) such that ωε ≡ ω +
ddcuε is uniformly equivalent to ω. This is guaranteed by the continuity
method based on bounded geometry. (This can also be viewed as a special
case in Section 6 by setting all ai = 0.) To show the existence of (4.1), it
suffices to derive a C2-Hölder estimate of uε independent of ε on an arbitrary
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relative compact subset of M . We first derive a uniform C0-estimate for uε:
It follows from (4.3) that

e−uε =
(ωε − ddcuε)n

ωn
ε

eF
p∏

i=1

(|si|2 + ε)ai ≤ C1
(ωε − ddcuε)n

ωn
ε

,

≤ C1

(
n − Δ′

εuε

n

)n

where Δ′
ε is negative Laplacian associated with ω + ddcuε, and C1 is a pos-

itive constant depending only on supF and [D]. Then applying Lemma 3.2
to (−uε) yields

(4.4) einf uε > C1.

Unfortunately, there is no global uniform upper bound for uε because of the
degeneracy of the equation; we will have, however, the following substitute:

(4.5) sup
M

(

uε +
p∑

i=1

ai log |si|2
)

< C2,

where C2 is a positive constant independent of ε. In fact, let

vε = uε +
p∑

i=1

ai log |si|2.

Then (4.3) becomes

evε =
(ω −

∑p
i=1 aiddc log |si|2 + ddcvε)n

ωn

p∏

i=1

(
|si|2

|si|2 + ε

)ai

e−F

≤ (ω −
∑p

i=1 aiddc log |si|2 + ddcvε)n

ωn
e− inf F

≤
(

n + C ′
2 + Δωvε

n

)n

e− inf F .

Here the constant C ′
2 > 0 depends only on the trace of the curvature form

of [D] with respect to ω. Hence, by Lemma 3.2 to vε we get (4.5).
Second, we would like to derive a second-order estimate for uε which is

uniform on each relative compact subset of M . Based on Yau’s classic work,
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we have, for sufficiently large C,

p∏

i=1

|si|−2aieCuεΔ′
ε

(
p∏

i=1

|si|2aie−Cuε(n + Δuε)

)

≥ (n + Δuε)Δ′
ε

(

log(n + Δuε) − Cuε +
p∑

i=1

ai log |si|2
)

≥ Δ′
ε(Δuε) − |∇′

ε(Δuε)|2
n + Δuε

− Cn(n + Δuε)

+ (C − CD)(n + Δuε)
n∑

k=1

1
1 + (uε)kk

≥
(

p∑

i=1

aiΔ log(|si|2 + ε) + ΔF − n2 inf
k �=l

Rkkll

)

− (Cn − 1)(n + Δuε)

+ (C − CD + inf
k �=l

Rkkll)(n + Δuε)
n∑

k=1

1
1 + (uε)kk

≥ −C3 − C4(n + Δuε) + C5

(
p∏

i=1

|si|2ai/(n−1)(n + Δuε)n/(n−1)

)

,

where CD, C3, C4 and C5 are positive constants independent of ε. Note
that

∏p
i=1 |si|2aie−Cuε(n + Δuε) must achieve its maximum at the interior

of M . Let us denote the maximum point by x. Then by applying the usual
maximum principle, we have

p∏

i=1

|si|2ai/(n−1)(n + Δuε)n/(n−1) < 2 max{C3, C4(n + Δuε)}

at x. Hence, as 0 ≤ |si|2 < 1 for i = 1, . . . , p, we get

p∏

i=1

|si|2ai(n + Δuε) < C5 ≡ (2C3)(n−1)/n + (2C4)n−1
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at x. This, together with the zero-order estimates (4.4) and (4.5), implies
that

0 < n + Δuε ≤ C5e
−Cuε(x)eCuε

p∏

i=1

|si|−2ai

≤ C6

p∏

i=1

|si|−2ai(1+C)

on M , where C6 is a positive constant independent of ε. It follows that there
are positive constants Λ and C7 independent of ε such that

C−1
7

p∏

i=1

|si|2Λω ≤ ω + ddcuε ≤ C7

p∏

i=1

|si|−2Λω.

Once the second-order estimate is done, the third- and higher-order
derivatives can be localized on relative compact subsets of M , by choos-
ing appropriate cut-off functions. Therefore, letting ε → 0, we can conclude
that {uε} has a subsequence converging to a solution u of (4.1) and (4.2)
such that u is smooth on M , and satisfies that

C−1
7

p∏

i=1

|si|2Λω ≤ ω + ddcu ≤ C7

p∏

i=1

|si|−2Λω.

This completes the proof of Theorem 1.1.

5. Isomorphism and asymptotics

In this section we would like to show the statement (2) in Theorem 1.2.
The main tool is the isomorphism theorem developed in [26]. We need the
negative weight spaces to characterize the unbounded solution arising from
the degenerate equation. In this case, we extend the isomorphism theorems
to the negative weight spaces. The following lemmas are needed in deriving
the asymptotics of the solution. Throughout this paper, σi ≡ − log |si|2 for
each irreducible component Di of D.

Let ω̃ be a Hermitian metric uniformly equivalent to ω on M , i.e., there
exists a constant C > 0 such that

C−1ω < ω̃ < Cω.
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Let Δω̃ be the negative Hermitian Laplacian associated with ω̃, i.e.,

Δω̃(v) =
nω̃n−1 ∧ ddcv

ω̃n
for all v ∈ C2(M).

Lemma 5.1. Δω̃ − 1 :
∑p

i=1 σiC
k+2,α(M) →

∑p
i=1 σiC

k,α(M) is a linear
isomorphism.

Proof. The proof consists of two steps. The first step is to show that

Δω̃ − 1 : σiC
k+2,α(M) → σiC

k,α(M)

is a linear isomorphism, for all i = 1, . . . , p. Let us fix such an i. Define the
conjugate operator

Li(v) = σ−1
i (Δω̃ − 1)(σiv)

= Δω̃v + 2〈dv, σ−1
i dσi〉ω̃ + (σ−1

i Δω̃(σi) − 1)v,

for all v ∈ C2(M). Then it suffices to show that Li : Ck+2,α(M) → Ck,α(M)
is a linear isomorphism, given the following commutative diagram.

Ck+2,α(M) Ck,α(M)

σiC
k+2,α(M) σiC

k,α(M)
�

·σi ≈

�Li

�
·σi ≈

�Δω̃−1

(In this paper, the symbol ≈ in all diagrams stands for the linear isomor-
phism between two vector spaces.) Note that the space σiC

k+2,α(M) is
independent of the choice of the metric norm | · | for si ∈ H0(M, O([Di])).
We can choose a norm small enough, for instance, by multiplying a small
constant, so that

σ−1
i Δω̃σi < 1

2 .

This is because Δω̃σi ∈ R(M) is bounded, and σ−1
i is small when the supre-

mum of |si|2 is sufficiently small. Then we claim that

ker Li ∩ Ck+2,α(M) = {0}.

Indeed, for v ∈ Ck+2,α(M) such that Liv = 0, applying Yau’s generalized
maximum principle (Lemma 3.1) yields sup v ≤ 0. Similarly, sup(−v) ≤ 0,
and hence v = 0. This proves the claim. It follows from the Fredholm
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alternative (see, for example, [26, p. 811]) that Li is a linear isomorphism
from Ck+2,α(M) to Ck,α(M). This completes the first step.

From the first step we know that

(5.1) Δω̃ − 1 :
p∑

i=1

σiC
k+2,α(M) −→

p∑

i=1

σiC
k,α(M)

is surjective. It remains to prove the injectivity. Suppose that there exist
ui ∈ Ck+2,α(M), i = 1, . . . , p, such that

(Δω̃ − 1)

(
p∑

i=1

σiui

)

= 0.

Equivalently, we have
p∑

i=1

σiLi(ui) = 0.

This implies that

Li(ui) ∈ σ−1
i Ck,α(M) for all i = 1, . . . , p,

in view of the spaces with negative weight. Then, we have

ui ∈ σ−1
i Ck+2,α(M) for all i = 1, . . . , p,

because of the following commutative diagram

σ−1
i Ck+2,α(M) σ−1

i Ck,α(M)

Ck+2,α(M) Ck,α(M)
�

·σi ≈

�Li

�
·σi ≈

�Δω̃−1

≈

and the injectivity of Li on Ck+2,α(M). Hence,
∑p

i=1 σiui ∈ Ck+2,α(M).
Then, the injectivity of

Δω̃ − 1 : Ck+2,α(M) → Ck,α(M)

forces that
∑p

i=1 σiui = 0. This proves the injectivity of (5.1). Therefore
the proof is completed. �
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Remark. The proof of Lemma 5.1 implies that Δω̃ − 1 is a linear
isomorphism preserving the natural log-filtration of the Cheng–Yau Hölder
spaces up to weight (−1). It is possible that the operator has nontrivial
kernel on weight (−2) spaces.

In the case of the subspace (⊕p
i=1Rσi) ⊕ Ck,α(M), we can say more:

Lemma 5.2. For any constants bi, i = 1, . . . , p, the following diagram
commutes.

p∑

i=1

biσi + Ck+2,α(M) −
p∑

i=1

biσi + Ck,α(M)

p∑

i=1

σiC
k+2,α(M)

p∑

i=1

σiC
k,α(M)

�
ι

�Δω̃−1

≈

�
ι

�Δω̃−1

≈

Here the map ι stands for the inclusion.

Proof. We have only to prove the map on the top is a bijection between
the hyperplanes. By the previous lemma, for each f ∈ Ck,α(M), there exist
ui ∈ Ck+2,α(M), i = 1, . . . , p, such that

(Δω̃ − 1)

(
p∑

i=1

σiui

)

= −
p∑

i=1

biσi + f.

On the other hand,

(Δω̃ − 1)

(
p∑

i=1

biσi

)

= −
p∑

i=1

biσi +
p∑

i=1

biΔω̃(σi).

Hence,

(Δω̃ − 1)

(
∑

i

(ui − bi)σi

)

= f −
∑

i

biΔω̃(σi) ∈ Ck,α(M).

This implies that
p∑

i=1

σiLi(ui − bi) ∈ Ck,α(M).
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Hence,
Li(ui − bi) ∈ σ−1

i Ck,α(M) for all i = 1, . . . , p.

It follows that

ui − bi ∈ σ−1
i Ck+2,α(M) for all i = 1, . . . , p.

Therefore,
p∑

i=1

uiσi −
p∑

i=1

biσi ∈ Ck+2,α(M).

This completes the proof. �
Now let us start to prove the first part of Theorem 1.2. Assume that

there exists a Kähler–Einstein metric ωKE of negative Ricci curvature domi-
nating ω. This together with Lemma 3.4 imply that ωKE is in fact uniformly
equivalent to ω. As in the proof of Lemma 3.4, we let G ∈ C∞(M) such that

(5.2) eG =
ωn

KE
ωn

.

Let u = G −
∑p

i=1 ai log |si|2 − F with ai = αi + 1. We want to show that

(5.3) u +
p∑

i=1

ai log |si|2 ∈ R(M).

Observe that by (5.2)

ωKE = Ric(ωn
KE) = Ric(ωn) + ddcG

= ω + ddcu.

Hence, (5.2) becomes

(ω + ddcu)n

ωn
= eu

p∏

i=1

|si|2aieF .

Let
ωt = ω + tddcu for all t ∈ [0, 1].

In terms of local coordinates, we denote

ω =
√

−1
2π

n∑

i,j=1

gij̄dzi ∧ dz̄j , ωt =
√

−1
2π

n∑

i,j=1

gt,ij̄dzi ∧ dz̄j .
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It follows that

u +
p∑

i=1

ai log |si|2 + F =
∫ 1

0

[
d

dt
log det(gt,ij̄)

]

dt

=
n∑

i,j=1

Aij̄uij̄ ,(5.4)

in which

Aij̄ =
∫ 1

0
gij̄
t dt,

n∑

k=1

gik̄
t gt,jk̄ = δij , i, j = 1, . . . , n.

Note that {Aij̄} form a tensor on M . Let

ω̃ =
√

−1
2π

n∑

i,j=1

Aij̄dzi ∧ dz̄j ,

where Aij are obtained by lowering the indexes with respect to the metric ω.
In view of the uniform equivalence of ωKE and ω, ωt is uniformly equivalent
to ω. Hence, ω̃ defines a Hermitian metric uniformly equivalent to ω over
M . We can now rewrite (5.4) as

(Δω̃ − 1)u =
p∑

i=1

ai log |si|2 + F.

Since F ∈ R(M) and u ∈ C∞(M), it follows immediately from Lemma 5.2
and the uniqueness (Lemma 3.3) that

(5.5) u ∈ −
p∑

i=1

ai log |si|2 + R(M).

In conclusion, we have derived the following results.

Theorem 5.3. Let ω̃ be a Hermitian metric on M , which is uniformly
equivalent to ω. For any F ∈ C0(M) and any constants λ > 0 and bi,
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i = 1, . . . , p, the following equation

(ω̃ + ddcu)n

ω̃n
= eλu

p∏

i=1

|si|2bieF ,

Cω > ω̃ + ddcu > C−1ω, C > 1,

has at most one solution in C2(M). Furthermore, if such a solution exists,
and if F ∈ Ck,α(M) for some k ≥ 0 and α ∈ (0, 1), then the solution u has
the asymptotic form

u +
1
λ

p∑

i=1

bi log |si|2 ∈ Ck+2,α(M).
�

As a consequence, we obtain that

ωKE = ω −
p∑

i=1

aiddc log |si|2 + ddcv,

for some v ∈ R(M); and hence, ωKE has bounded sectional curvature and

ωn
KE = ev+F ωn =

evV
∏p

i=1 |si|2(log |si|2)2

where V is the volume form on M (defined in Section 2). This proves the
statement (2) in Theorem 1.2.

We remark that the constants bi in Theorem 5.3 need not be positive.
The argument of asymptotics work through as long as we have a background
metric ω with bounded curvature and Poincaré growth near D. And such a
background metric can always be constructed, provided that

KM +
p∑

i=1

αi[Di] > 0 on M

for some real numbers αi.

6. Uniform equivalence

In this section, we would like to show the first part of Theorem 1.2; namely, if
KM + [D] restricted to be positive on each irreducible component of D, then
there exists a Kähler–Einstein metric ωKE, which is uniformly equivalent
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to ω. By Lemma 6.2 below we can reduce the proof to some estimates near
D. The key observation is that the following lemma on metric extension can
help us to obtain the desired estimates.

Lemma 6.1. Let X be an n-dimensional compact complex manifold, and
E =

∑q
i=1 Ei be a simple normal crossing divisor in X. Let L be a line

bundle over X such that L|Ei
is positive for each i = 1, . . . , q. Then there

exists a smooth metric h of L over X such that the curvature form of h
restricted to Ei is positive for each i = 1, . . . , q.

Remark. It follows from the positivity of L|Ei
that there always exists

a metric hi on LEi
with positive curvature form on Ei for each i. The

question is whether it is possible to pass the local data {hi} to a global h,
while preserving the positivity of curvature forms. This is not quite obvious,
unless E has only one irreducible component. This lemma is originally
proved by Saper [21, p. 212] for complex surfaces; his argument can be
straightforwardly generalized to higher dimensions. One can also compare
[26, pp. 834–838] for a slightly different setting.

Proof of Lemma 6.1. We first prove that, for a sufficiently large integer
m, a global section of mLEi

can be extended to a global section of mL|E
for each i = 1, . . . , q. It is sufficient to show that, for an arbitrary partial
sum, say Ẽ =

∑k−1
i=1 Ei, a global section of mL|

˜E can be extended to a global
section of mL|

˜E+Ek
. By the short exact sequence

0 → OEk
(mL − Ẽ ∩ Ek) → O

˜E+Ek
(mL) → O

˜E(mL) → 0

we obtain the long exact sequence

H0(Ẽ + Ek,O(mL)) → H0(Ẽ,O
˜E(mL)) → H1(Ek, OEk

(mL − Ẽ ∩ Ek)).

Note that

H1(Ek, OEk
(mL − Ẽ ∩ Ek)) = H1(Ek, Ωn−1

Ek
(mL − Ẽ ∩ Ek − KEk

)) = 0,

for a large m, because of L|Ek
> 0 and applying the Kodaira vanishing

theorem. This proves the extension of global sections.
On the other hand, the global sections of mL|E define a holomorphic

map of E into a large projective space. Hence, by applying the Kodaira
embedding theorem and extending the sections, the map restricted to each
Ei is an embedding, provided that m is sufficiently large. Let us fix such an
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m. Since mL|E is the pullback of the hyperplane bundle on the projective
space, we obtain a metric hE on mL|E by pulling back the standard metric
on the hyperplane bundle. Then h

1/m
E is a metric on L|E such that h

1/m
E |Ei

is a smooth metric on L|Ei
with positive curvature form for i = 1, . . . , q.

Finally, patching h
1/m
E with any smooth extension gives the desired metric

h on L. �

Let us return to the proof of Theorem 1.2. Let L = KM + [D]. Note
that

ωK −
p∑

i=1

(αi + 1)ddc log hi,

represents the first Chern class of L, where hi is the metric on [Di]. Let
ai = αi + 1. By the previous lemma, there exists a smooth function f defined
on M such that

ω̃K ≡ ωK −
p∑

i=1

aiddc log hi + ddcf

restricted to each Di is positive. Then ω̃K |Di
is uniformly equivalent to

ωK |Di
, since ωK > 0 all over M and by the compactness of Di. Now com-

paring ω with

ω̃K − 2
p∑

i=1

σ−1
i ωDi

+ 2
p∑

i=1

σ−2
i dσi ∧ dcσi = ω −

p∑

i=1

aiddc log hi + ddcf,

both have the same term
∑p

i=1 σ−2
i dσi ∧ dcσi, which is dominant near D in

the normal direction. Hence, they are uniformly equivalent on a neighbor-
hood of D. In particular, the following (6.1) is satisfied. Hence, we complete
the proof of Theorem 1.2, with the aid of the following lemma.

Lemma 6.2. Suppose that there exist two positive constants δ and λ such
that

(6.1) ω −
p∑

i=1

aiddc log |si|2 + ddcf > λω on Dδ \ D,

for some bounded function f ∈ C2(Dδ), where Dδ′ ≡ ∪p
i=1{|si| < δ′} for any

0 < δ′ < 1. Then there exists a Kähler–Einstein metric ωKE which is uni-
formly equivalent to ω.
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Proof. It is sufficient to solve the following Monge–Ampère equation:

(ω + ddcu)n

ωn
= eu

p∏

i=1

|si|2aieF ,

C−1ω < ω + ddcu < Cω,

where F ∈ R(M). Let us fix a k ≥ 3 and an α ∈ (0, 1) so that F ∈ Ck,α(M).
Let

U =
{
u ∈ C2(M); C−1ω < ω + ddcu < Cω for some C > 1.

}
,

and

T =

{

t ∈ [0, 1];
(ω + ddcu)n

ωn
= eu

p∏

i=1

|si|2aitetF has a solution u ∈ U

with u + t

p∑

i=1

ai log |si|2 ∈ Ck+2,α(M)

}

.

This is the classical form of the continuity method. The aim is to show that
1 ∈ T . Here, the nonemptiness of T is trivial, since 0 ∈ T . The openness
of T follows from the usual implicit function theorem for Banach spaces.
Indeed, for t ∈ T , there is a function v ∈ Ck+2,α(M) such that

C−1ω < ω + ddcv − t

p∑

i=1

aiddc log |si|2 < Cω

for some C > 1, and that

M(t, v) ≡ log
(ω + ddcv − t

∑p
i=1 aiddc log |si|2)n

ωn
− v = tF.

Note that M defines a map from an open subset of [0, 1] × Ck+2,α(M) to
Ck+2,α(M), and the partial Fréchet derivative of M at (t, v) with respect to
v is a linear isomorphism between Ck+2,α(M) and Ck,α(M), since

D2M(t, v) = Δt,v − 1.

Here we denote by Δt,v the negative Laplacian associated with the metric
ω + ddcv − t

∑
aiddc log |si|2. Hence, there is an open neighborhood of t

belongs to T . This proves the openness.
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For closedness, it is sufficient to establish a uniform C3-estimate for

v ≡ u + t

p∑

i=1

ai log |si|2 ∈ Ck+2,α(M), t ∈ [0, 1].

The C3 estimate depends on a uniform C2 estimate which, in turn, depends
on a uniform C0 estimate of v.

Note that, as in Section 4, we can always get the global uniform upper
bound of v and lower bound of u by applying Yau’s upper bound lemma
to the Monge–Ampère equation. Rewriting the Monge–Ampère equation in
terms of v and applying the arithmetic and geometric mean inequality yields

ev =
(ω − t

∑p
i=1 aiddc log |si|2 + ddcv)n

ωn
e−tF

≤
(

n + C ′
2 + Δωv

n

)n

e| inf F |,

where C ′
2 > 0 depends only on the trace of the curvature form [D] with

respect to ω. By Lemma 3.2, we have

(6.2) esup v ≤ (1 + C ′
2)

ne| inf F |.

Similarly, we have

e−u =
(ωu − ddcu)n

ωn
u

etF
p∏

i=1

|si|2tai

≤
(

n − Δωuu

n

)n

e| sup F |,

where ωu ≡ ω + ddcu ∈ U . Hence, applying Lemma 3.2 yields

(6.3) einf u ≥ e−| sup F |.

The hard part is to derive a global uniform lower bound for v. It is here
that we need the assumption of (6.1). The argument is as follows:

(i) If v achieves its infimum at some point in M \ Dδ/2, then by (6.3) we
have

v = u + t

p∑

i=1

ai log |si|2 ≥ −| supF | + 2
p∑

i=1

ai log(δ/2).
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(ii) If not, then we consider v on Dδ \ D. In this case, v does not take its
infimum on the boundary of Dδ. It follows from (6.1) that

ωu − ddc(v − tf) > [1 + t(λ − 1)]ω
≥ λω for all t ∈ [0, 1],

where we assume λ ∈ (0, 1), without loss of generality. Then by the
Monge–Ampère equation

e−(v−tf) =
ωn

ωn
u

etF+tf

≤ 1
λn

(
n − Δωu(v − tf)

n

)n

e| sup F |+| sup f |.

Hence, by the proof of Lemma 3.2 we get

(6.4) ev−tf ≥ λne−| sup F |−| sup f | on Dδ \ D,

and hence

v ≥ n log λ − | supF | − | sup f | − | inf f | on Dδ \ D.

It follows from (i) and (ii) that

(6.5) inf
M

v > −C8

for a positive constant C8 independent of t.
Next we would like to derive a global uniform second-order estimate for

v. It is standard to derive

e−Cu(n + Δωu) < C9

by using the estimates of inf u and sup v, where C is a sufficiently large
constant and C9 is a positive constant independent of t. (The argument is
similar to that in Section 4 by setting all ai = 0 and ε = 0, except that at
the last step Lemma 3.2 is used instead of the usual maximum principle.
See also the estimate below.)

We still need a global uniform estimate for e−Cv(n + Δu), which depends
on (6.1). Again, let us consider two cases: If e−Cv(n + Δu) achieves its
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supremum at some point in M \ Dδ/2, then

e−Cv(n + Δu) =
p∏

i=1

|si|−2aiCte−Cu(n + Δu)

≤ C9(2/δ)2C
∑p

i=1 ai .

Otherwise, let us consider e−Cv(n + Δu) in Dδ \ D. By the local assumption
(6.1), using a normal coordinate chart near a point we have

Δ′
(
e−C(v−tf)(n + Δu)

)

≥ e−C(v−tf)(n + Δu)
(
−CΔ′(v − tf) + Δ′ log(n + Δu)

)

≥ e−C(v−tf)(n + Δu)

(

−nC +
n∑

k=1

Cλ

1 + ukk

)

+ e−C(v−tf)
(

Δ′(Δu) − |∇′(Δu)|2
n + Δu

)

≥ e−C(v−tf)

(

t

p∑

i=1

aiΔ log |si|2 + tΔF − n2 inf
k �=l

Rkkll − n

)

− (Cn − 1)e−C(v−tf)(n + Δu)

+ (Cλ + inf
k �=l

Rkkll)e
−C(v−tf)(n + Δu)

n∑

k=1

1
1 + ukk

≥ −C10 − (nC + 1)
(
e−C(v−tf)(n + Δu)

)

+ C11

(
e−C(v−tf)(n + Δu)

)n/(n−1)
,

where the constant C is chosen such that Cλ + infk �=l Rkkll > 1, C10 and C11
are positive constants independent of t, and the last inequality uses (6.2)
and (6.5). It follows from Lemma 3.2 that

sup
Dδ\D

(
e−C(v−tf)(n + Δu)

)
≤ C12,

where C12 > 0 is a constant independent of t. Therefore,

e−Cv(n + Δu) ≤ C12e
−C| inf f | on Dδ.

Hence, in both cases we obtain

e−Cv(n + Δu) < C13,
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in which C13 is a positive constant independent of t. This implies that

0 < n + Δu ≤ C13e
C sup v < C14,

in which the constant C14 > 0 is independent of t. This, together with (6.5),
implies that there is a positive constant C15 independent of t such that

(6.6) C−1
15 ω < ω + ddcu < C15ω.

Therefore, we end up with a global uniform second-order estimate for u, and
equivalently for v. The third-order estimate can be localized; in fact, one
can derive a global uniform third-order estimate for u and v over M , due
to (6.6) (we omit the details here since it is not needed). By Ascoli–Arzelà
theorem and (6.6) we complete the proof of closedness of I. �

7. Restricted nef and almost completeness

In this section, we will prove Theorem 1.3. Similar to the previous section,
we can reduce the proof to some boundary estimates. Such estimates can
be obtained by applying the following extension lemma on the nef case, a
corollary of Lemma 6.1 indeed.

Lemma 7.1. Let X be a compact complex manifold, and E =
∑q

i=1 be a
simple normal crossing divisor in X. Let H be a positive line bundle over
X, and Θ a positive (1, 1)-form represented c1(H). Suppose that L is a line
bundle over X such that L|Ei

is nef for each i. Then for any ε > 0, there
exists a smooth metric hε of L over X such that

−ddc log hε

∣
∣
Ei

+ εΘ
∣
∣
Ei

> 0, i = 1, . . . , q.

Proof. Fix an ε > 0. Since L|Ei
is nef, L|Ei

+ εH|Ei
is positive, for each

i. Then the result follows immediately by applying Lemma 6.1 to the line
bundle L + εH. �

To apply this lemma, we set

L = KM + [D], H = KM −
p∑

i=1

αi[Di].

Recall that ωK , defined in Section 2, is a positive (1, 1)-form representing
c1(H). It follows from Lemma 7.1 that for every ε > 0, there exists a function
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fε ∈ C∞(M) such that

(7.1)

(

ωK −
p∑

i=1

(αi + 1)ddc log hi + ddcfε

)
∣
∣
Di

> −εωK

∣
∣
Di

.

Moreover, recall in Section 2 that the background metric is given by

ω = ωK + 2
p∑

i=1

σ−1
i ωDi

+ 2
p∑

i=1

σ−2
i dσi ∧ dcσi,

in which, near D, the last term on the right is dominant in the normal
direction. This observation together with (7.1) imply that there exists a
positive number δ = δ(ε) such that

ω −
p∑

i=1

(αi + 1)ddc log hi + ddcfε > −εω

on Dδ \ D, where Dδ = ∪p
i=1{|si|2 < δ}.

Starting from here, we can prove Theorem 1.3, by the following lemma,
which is essentially done by [22, p. 581]. Here we provide more details for
the nonemptiness of the continuity method.

Lemma 7.2. Suppose that for each ε > 0, there exists a constant δ =
δ(ε) > 0 and a bounded function fε ∈ C2(Dδ) such that

(7.2) ω −
p∑

i=1

(αi + 1)ddc log hi + ddcfε > −εω

on Dδ \ D. Then there exists an almost-complete Kähler–Einstein metric
on M .

Let us recall that a Kähler–Einstein metric ωE on M is said to be almost
complete, if there is a sequence {ωk} of complete Kähler metrics such that

(i) Ric(ωn
k ) ≤ tkωk, with lim tk = 1;

(ii) ωk converges to ωE in C∞ uniformly on every compact subset of M .
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Proof. Let

T ◦ =

{

t ∈ (1,+∞);
(ω + ddcu)n

ωn
= etu

p∏

i=1

|si|2aieF has a solution u ∈ U

with u +
1
t

p∑

i=1

ai log |si|2 ∈ Ck+2,α(M).

}

,

where U is the open set given by

U =
{
u ∈ C2(M); C−1ω < ω + ddcu < Cω for some C > 1

}
.

It is sufficient to show that

T ◦ = (1,+∞).

In fact, by the Monge–Ampère equation, we have for each t ∈ T ◦,

Ric
(
(ω + ddcu)n

)
= ω + tddcu

≤ t(ω + ddcu).(7.3)

On the other hand, we can always get the global uniform estimate of

e−Cu(n + Δu),

by the global uniform estimates sup(tu +
∑

ai log |si|2) and inf u. Hence,
n + Δu is uniformly bounded on every compact subset of M . Hence, we
have a uniform C3-estimate of u on every compact subset. Therefore, for
any sequence tk in T ◦ with lim tk = 1, there is a subsequence of ui that
satisfies (7.3) and converges uniformly on every compact subset to a solution
u ∈ C∞(M) of the Monge–Ampère equation at t = 1. Thus, ω + ddcu is the
desired almost-complete Kähler–Einstein metric on M .

Hence, it suffices to show that T ◦ is nonempty, and both open and closed
in (1,+∞). The openness and closedness can be proved in the same way
as in Section 6, except that the global estimates inf(u + (1/t)

∑
ai log |si|2)

and sup(n + Δu) depend on t because of (7.2). For instance, let us carry
out the estimate for inf(u + (1/t)

∑
ai log |si|2). Let

v = tu +
p∑

i=1

ai log |si|2 ∈ Ck+2,α(M).
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It suffices to consider v in Dδ \ D. Note that (7.2) is equivalent to

ωu − 1
t
ddc(v − fε) >

(

1 − 1 + ε

t

)

ω,

where ωu = ω + ddcu. Since t > 1, we can choose an ε > 0, say

ε =
t − 1

2
,

such that 1 − (1 + ε)/t > 0. Then, by the Monge–Ampère equation,

e−(v−fε) =
ωn

ωn
u

eF+fε

≤
(

2t

t − 1

)n [

1 − 1
nt

Δωu(v − fε)
]n

esup(F+fε).

Applying Lemma 3.2 yields that

ev−fε ≥
(

t − 1
2t

)n

e− sup(F+fε) on Dδ \ D.

Namely,

v ≥ C16(t) ≡ n log
(

t − 1
2t

)

− sup(F + fε) + inf fε on Dδ \ D,

where ε = (t − 1)/2. Hence,

inf v ≥ min

{

2
p∑

i=1

log(δ/2) − supF, C16(t)

}

.

Similarly, we have

0 < n + Δu < C17(t).

We remark that the positive constant C17(t) blows up when t → 1+. Finally,
the nonemptiness is settled by the following proposition. �

Proposition 7.3. There exists a sufficiently large t ∈ T ◦ so that T ◦ �= ∅.
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Proof. Let us denote by

ωγ,w = ω + γddcw − γ

(
p∑

i=1

aiddc log |si|2 + ddcF

)

,

for all γ ∈ [0, 1] and w ∈ Ck+2,α(M). Then the Monge–Ampère equation
given in the definition of T ◦ is equivalent to

ωn
1/t,v

ωn
= ev,

if we set v = tu +
∑

ai log |si|2 + F . Let us fix some large constant C > 1.
Let

VC = {(γ, w) ∈ [0, 1] × Ck+2,α(M); C−1ω < ωγ,w < Cω}
and define a C∞–map M : VC → Ck,α(M) by

M(γ, w) = log
ωn

γ,w

ωn
− w for all (γ, w) ∈ VC

Hence, it suffices to show that there exists a pair (γ, v) ∈ VC with γ �= 0,
such that

M(γ, v) = 0.

Note that M(0, 0) = 0. However, the implicit function theorem does not
work directly, since the partial Fréchet derivative of M with respect to v is
degenerate at γ = 0. We overcome this difficulty by using the Newton’s iter-
ation method, which is completely elementary without using the curvature
property of ω.

For a small γ �= 0, we want to construct a sequence {vl}∞
l=0 such that

v0 = 0,

(7.4) vl+1 = vl − D2M(γ, vl)−1(M(γ, vl)
)
, l = 0, 1, 2, . . . ,

and (γ, vl) ∈ VC for all l, where D2M(γ, v) is the partial Fréchet derivative
of M at (γ, v) with respect to v. Note that

D2M(γ, v) = γΔγ,v − 1,

where Δγ,v is the negative Laplacian associated with ωγ,v. Hence, for any
f ∈ Ck,α(M), there exists a unique solution h ∈ Ck+2,α(M) for

D2M(γ, v)h = f,
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as long as γ �= 0 and (γ, v) ∈ VC . Applying Yau’s maximum principle
(Lemma 3.1) and the interior Hölder estimate yields that

(7.5) ‖h‖k+2,α ≤ γ−1Ck,α‖f‖k,α,

where the constant Ck,α depends only on k, α, dimM and the constant C
associated with VC .

On the other hand, by Newton’s method, we have

vl+1 − vl = −D2M(γ, vl)−1(M(γ, vl)
− M(γ, vl−1) − D2M(γ, vl)(vl − vl−1)

)

= −D2M(γ, vl)−1·
(∫ 1

0
(1 − τ)D2

2M(τvl + (1 − τ)vl−1)(vl − vl−1, vl − vl−1)
)

dτ.

Here the second-order partial derivative

D2
2M(γ, v)(h, f) = γ2

n∑

i,j,p,q=1

giq̄
γ,vg

pj̄
γ,vhij̄fpq̄,

for all h, f ∈ Ck+2,α(M) and all (γ, v) ∈ VC , and

ωγ,v =
√

−1
2π

n∑

i,j=1

(gγ,v)ij̄dzi ∧ dz̄j ,

n∑

k=1

gik̄
γ,v(gγ,v)jk̄ = δij .

Observe that for any (γ, v1), (γ, v2) ∈ VC ,

(γ, τv1 + (1 − τ)v2) ∈ VC for all τ ∈ [0, 1].

Thus, if (γ, vj) ∈ VC for all j < l + 1, then by (7.5) we obtain

‖vl+1 − vl‖k,α ≤ γ

2
Ck,αC2

∥
∥
∥
∥
∥
∥

∑

i,j,p,q

giq̄gpj̄(vl − vl−1)ij̄(vl − vl−1)pq̄

∥
∥
∥
∥
∥
∥

k,α

≤ γCn‖vl − vl−1‖2
k+2,α,(7.6)

where the constant Cn depends only on k, α, ω and the constant C associated
with VC .
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Since (0, 0) ∈ VC , there exists a small δ0 > 0 such that for any γ < 2δ0,
w ∈ Ck+2,α(M) with γ‖w‖2,α < 2δ0, we have (γ, w) ∈ VC . Let v0 = 0. Then

M(γ, v0) = log
ωn

γ,0

ωn

= −γΔω

(
p∑

i=1

ai log |si|2 + F

)

+ γ2ϕ,

for some ϕ ∈ R(M). Let v1 be given by (7.4). In view of (7.5) we have

‖v1‖k+2,α = ‖ − D2M(γ, 0)−1(M(γ, 0))‖k+2,α

≤ Ck,αC17,

in which the constant C17 is independent of γ. Now we fix a sufficiently
small γ such that

0 < γ < min
{

δ0,
δ0

2Ck,αC17
,

1
2CnCk,αC17

}

.

Then

γ‖v1‖k+2,α ≤ min
{

δ0

2
,

1
2Cn

}

;

in particular, (γ, v1) ∈ VC . Let v2 be given by (7.4). It follows from (7.6) that

‖v2 − v1‖k+2,α ≤ 1
2‖v1‖k+2,α,

and

γ‖v2‖k+2,α ≤ γ‖v2 − v1‖k+2,α + γ‖v1‖k+2,α

≤ δ0

4
+

δ0

2
=

3
4
δ0.

Hence, (γ, v2) ∈ VC . By (7.4), we obtain by induction a sequence {vl} sat-
isfying that

‖vl − vl−1‖k+2,α ≤ 1
2l−1 ‖v1‖k+2,α,

and

γ‖vl‖k+2,α ≤
l∑

j=1

δ0

2j
< δ0,
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for all l ∈ N. In particular, each (γ, vl) ∈ VC . The sequence converges in
‖ · ‖k+2,α to an element v∗ in Ck+2,α(M), as

∞∑

j=1

‖vl − vl−1‖k+2,α ≤
∞∑

j=1

1
2l−1 ‖v1‖k+2,α

≤ 2‖v1‖k+2,α.

Furthermore, (γ, v∗) ∈ VC since

γ‖v∗‖k+2,α ≤ 2γ‖v1‖k+2,α ≤ δ0.

Letting l → ∞ in (7.4) yields that M(γ, v∗) = 0. Hence,

γ−1 ∈ T ◦

with u1/γ = −γ
∑

ai log |si|2 + v∗ − F . This completes the proof. �
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