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On a Gromoll-Meyer type theorem in globally
hyperbolic stationary spacetimes

Leonardo Biliotti, Francesco Mercuri and Paolo Piccione

Following the lines of the celebrated Riemannian result of Gromoll
and Meyer, we use infinite dimensional equivariant Morse the-
ory to establish the existence of infinitely many geometrically dis-
tinct closed geodesics in a class of globally hyperbolic stationary
Lorentzian manifolds.

1. Introduction

The question of existence of closed geodesics is one of the most classical
themes of Riemannian geometry (see [31]); spectacular contributions to the
theory of global geometry have been given in this area by very many authors,
including Hadamard, Cartan, Poincaré, Birkhoff, Morse and many others.
Variational techniques for establishing the existence and the multiplicity of
closed geodesics have been developed and employed by many authors, includ-
ing among others Ljusternik, Schnirelman, Fet, Klingenberg, Gromoll and
Meyer. Closed geodesics are critical points of the geodesic action functional
in the space of closed paths, and existence results may be obtained by apply-
ing global variational techniques to this variational problem. In particular,
Morse theory has been used by Gromoll and Meyer (see [21]) to establish the
celebrated result on the existence of infinitely many geometrically distinct
closed geodesics in simply connected Riemannian manifolds, whose space of
free closed curves has unbounded rational Betti numbers.

As to the existence of closed geodesics in manifolds endowed with a non-
positive definite metric, very few results are available in the literature, and
basically nothing is known on their multiplicity. An earlier result by Tipler
(see [48]) gives the existence of one closed timelike geodesic in compact
Lorentzian manifolds that admit a regular covering which has a compact
Cauchy surface. More recently, Guediri (see [26, 27]) has extended Tipler’s
result to the case that the Cauchy surface in the covering is not necessarily
compact. In this situation, a closed geodesic is proven to exist in each free
timelike homotopy class which is determined by a central deck transforma-
tion. It is also proved in [26] that compact flat spacetimes contain a causal
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(i.e., non-spacelike) closed geodesic, and in [27] the author proves that such
spacetimes contain a closed timelike geodesic if and only if the fundamental
group of the underlying manifold contains a non-trivial timelike transla-
tion. The existence of closed timelike geodesic has been established also by
Galloway in [14], where the author proves the existence of a longest closed
timelike curve, which is necessarily a geodesic, in each stable free timelike
homotopy class. Also non-existence results for non-spacelike geodesics are
available, see [15,28].

All these results are based on the notion of Lorentzian distance function
(see [6, Chapter 4]). Recall that in Lorentzian geometry only non-spacelike
geodesics have length extremizing properties, while for spacelike geodesics
usual geometrical constructions (curve shortening methods) do not work.
The question of existence of closed geodesics of arbitrary causal charac-
ter has to be studied using the quadratic geodesic action functional in the
Hilbert manifold of closed paths of Sobolev regularity H1; its critical points
are typically saddle points. In the Lorentzian (or semi-Riemannian) case,
the variational theory associated to the study of the critical points of this
quadratic functional is complicated by the fact that, unlike the Riemannian
counterpart, the condition of Palais and Smale is never satisfied. Moreover,
this functional is not bounded from below, and its critical points always
have infinite Morse index. In [2] the authors use an approximation scheme
in the theory of Ljusternik and Schnirelman to determine the existence of
a critical point of the geodesic action functional in the space of closed H1

curves in a class of product Lorentzian manifolds, whose metric is of split-
ting type. Such critical point corresponds to a spacelike closed geodesic;
in this situation, thanks to the result of Galloway [14], one has two geo-
metrically distinct closed geodesic, one is timelike and the other is space-
like. Masiello has proved the existence of one (spacelike) closed geodesic in
standard stationary Lorentzian manifolds M = M0 × R whose spatial com-
ponent M0 is compact. More recently (see [11]), using variational methods
the authors have established the existence of a closed geodesic in each free
homotopy class corresponding to an element of the fundamental group hav-
ing finite conjugacy class, in the case of static compact Lorentzian manifold.
In [44], the author shows that one closed timelike geodesic exists in compact
Lorentzian manifolds that are conformally static, provided that that the
group of deck transformations of some globally hyperbolic regular covering
of the manifold admits a finite conjugacy class containing a closed timelike
curve.

In this paper, we develop a Morse theory for closed geodesics in a class of
stationary Lorentzian manifolds, obtaining a result of existence of infinitely
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many distinct closed geodesics analogous to the corresponding result of
Gromoll and Meyer in the Riemannian case. More precisely, the result
will hold for stationary manifolds whose free loop space has unbounded
Betti numbers (relatively to any coefficient field), and that admit a compact
Cauchy surface.1 Let us recall briefly the essential ingredients required in
Gromoll and Meyer’s theory. One considers the geodesic action functional
f on the Hilbert manifold ΛM of all closed paths of Sobolev class H1 on
a compact and simply connected Riemannian manifold (M, g); this func-
tional is bounded from below, it satisfies the Palais–Smale condition and its
critical points are exactly the closed geodesics. The compact group O(2)
acts equivariantly on ΛM via the operation of O(2) on the parameter circle
S

1; the orbits of this action are smooth (compact) submanifolds of ΛM .
In particular, the critical points of f are never isolated; nevertheless, using
a generalized Morse Lemma for possibly degenerate isolated critical point
(see [20]), generalized Morse inequalities can be applied to obtain estimates
on the number of critical orbits, provided that these orbits are isolated.
Finally, one has to distinguish between critical orbits that correspond to
iterates of the same closed geodesic. This is done using an iteration formula
for the Morse index (and the nullity) of the n-fold covering of a given closed
geodesic, which is obtained from a celebrated result due to Bott (see [9]).
Using a Morse index theorem for closed geodesics, the Morse index of the
nth iterated of a closed geodesic is proven to be either bounded, or to have
linear growth in n. Using this fact one proves that if (M, g) has only a finite
number of geometrically distinct closed geodesics, then the rational Betti
numbers of ΛM must form a bounded sequence. Restriction to the case
of a field of characteristic zero was used by the authors to prove an esti-
mate on the dimension of relative homology spaces of certain fiber bundles;
an elementary argument based on the Mayer–Vietoris sequence, discussed
in Appendix 7, shows that such restriction is not necessary.2 Thus, if ΛM
has an unbounded sequence of Betti numbers, (M, g) must contain infinitely
many geometrically distinct closed geodesics. It is known (see [49]), that the
existence of an unbounded sequence of rational Betti numbers of the free loop
space of M is equivalent to the fact that the rational cohomology algebra of
M is generated by at least two elements. In particular, if M has the same
homotopy type of the product of two simply connected compact manifold,

1Recall that any two Cauchy surfaces of a globally hyperbolic spacetime are
homeomorphic. See Refs. [7, 8] for questions concerning the smoothness of Cauchy
surfaces in globally hyperbolic spacetimes.

2Extension of the Gromoll and Meyer result to non-zero characteristic seems to
have been established in the subsequent literature.
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then ΛM has unbounded rational Betti numbers. Ziller [52] has proved
that any compact symmetric space of rank greater than 1 has unbounded
Z2-Betti numbers; McCleary and Ziller [35] have later proved that the same
conclusion holds for compact, simply connected homogeneous spaces which
are not diffeomorphic to a symmetric space of rank 1.

Several extensions of the theory have been developed in the context of
Riemannian manifolds (see [3–5, 22–24, 46]), Finsler manifolds ([38]) and,
recently, of Riemannian orbifolds (see [25]). Reference [47] is a good survey
paper on the classical results of Gromoll–Meyer type.

When passing to the case of Lorentzian metrics, none of the arguments
above works. First, the geodesic action functional f is not bounded from
below and it does not satisfy the PS condition; besides, the Morse index
of each critical point is infinite. In this paper we consider the case of sta-
tionary Lorentzian manifolds that admit a complete timelike Killing vector
field. Timelike invariance of the metric tensor allows to determine a smooth
embedded submanifold N of ΛM with the following properties:

• f |N has the same critical points of f ;

• N has the same homotopy type of ΛM ;

• f is bounded from below and it satisfies the PS condition on each
connected component of N ;

• each critical point of f |N has finite Morse index;

• if a critical point is degenerate for f |N , then it is also degenerate for f .

The abelian group G = O(2) × R acts (isometrically) on N , and f is G-
invariant. The group O(2) acts on the parameter space S

1 of the curves,
and as in the Riemannian case, this action is not smooth, but only con-
tinuous. Nevertheless, if γ is a smooth curve, then the orbit O(2)γ is
smooth, and it is diffeomorphic to O(2) if γ is not constant. In particular,
critical orbits are always smooth. The group R acts by translation along
the flow lines of the timelike Killing vector field; obviously, the actions of
O(2) and of R commute. In this situation, we define geometrically dis-
tinct two closed geodesics that belong to different G-orbits, and that can-
not be obtained one from another by iteration. The action of R is free,
the orbit space given by the quotient ˜N = N/R is a smooth manifold and
N is diffeomorphic to the product ˜N × R. Thus, in order to study mul-
tiplicity of distinct closed geodesics, it suffices to study geometrically dis-
tinct critical O(2)-orbits for the constrained functional f |

˜N . The central
result of this paper, which gives the existence of infinitely many distinct
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closed geodesics in a class of stationary Lorentzian manifolds, is obtained
applying equivariant Morse theory to this setup. Essential tools for the
development of the theory are a calculation of the Morse index for each
critical point of f |N , and a formula that describes its growth under iter-
ations. The Morse index is given in terms of symplectic invariants of the
geodesic, such as the Conley–Zehnder and the Maslov index, and it is com-
puted explicitly in Theorem 5.4, which is a Morse index theorem for pos-
sibly degenerate closed Lorentzian geodesics. This result is obtained by
purely functional analytical techniques, proving a preliminary result (Theo-
rem 2.6) that gives a method for computing the index of essentially positive
symmetric bilinear forms, possibly degenerate, in terms of restrictions to
possibly degenerate subspaces. We believe that this result has interest in
its own, and that its applicability should go beyond the purposes of the
present paper. Using this method, one reduces the computation of the
Morse index for periodic geodesics to the Morse index of the corresponding
fixed endpoint geodesic, avoiding the usual assumption of orientability of
the closed geodesic (see [40]). The Morse index theorem is given in terms
of a symplectic invariant of the geodesic, called the Maslov index; in order
to estimate its growth by iteration, we use a recent formula that gives an
estimate on the growth of another symplectic invariant, called the Conley–
Zehnder index (Proposition 3.3). For orientation preserving geodesics, the
two indices are related by a simple formula, involving a fourfold index,
which is called the Hörmander index (Proposition 3.2). Using the growth
formula for the Conley–Zehnder index and the (non-trivial) fact that the
Morse index is, up to a bounded perturbation, non-decreasing by iteration
(Lemma 5.5), we then obtain a superlinear estimate on the growth of the
Maslov index of an iterate of a closed geodesic (Proposition 5.7 and Corol-
lary 5.8). As to the nullity of an iterate, the result is totally analogous
to the Riemannian case using the linearized Poincaré map (Lemma 5.9).
This setup paves the path to an application of infinite dimensional equiv-
ariant Morse theory, in the same spirit as Gromoll and Meyer’s celebrated
result, that gives the existence of infinitely many critical points for the func-
tional f |

˜N .
We will now give a formal statement of the main result of the paper.

Let (M, g) be a globally hyperbolic stationary Lorentzian manifold, and let
us assume that M admits a complete timelike Killing vector field Y. Denote
by Ft, t ∈ R, the flow of Y; clearly, if γ is a (closed) geodesic in M , then
also Ft ◦ γ is a (closed) geodesic for all t ∈ R.

In order to state our main result, we need to give an appropriate notion
of geometric equivalence of closed geodesics.
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Definition 1.1. Given closed geodesics γi : [ai, bi] → M , i = 1, 2, in a
stationary Lorentzian manifold (M, g), we will say that they are geomet-
rically distinct, if there exists no t ∈ R such that the sets Ft ◦ γ1

(

[a1, b1]
)

and γ2
(

[a2, b2]
)

coincide.

The main result of this paper is the following:

Theorem 1.2. Let (M, g) be a simply connected globally hyperbolic station-
ary Lorentzian manifold having a complete timelike Killing vector field, and
having a compact Cauchy surface. Assume that the free loop space ΛM has
unbounded Betti numbers with respect to some coefficient field. Then, there
are infinitely many geometrically distinct non-trivial (i.e., non-constant)
closed geodesics in M .

Note that, by causality, every closed geodesic in (M, g) is spacelike. It
should be observed here that, although the notion of geometric equivalence
given above depends on the choice of a complete timelike Killing vector field,
the property of existence of infinitely many geometrically distinct closed
geodesics is intrinsic to (M, g) (see Remark 7.1). It is also interesting to
observe that the statement of the Theorem admits a generalization to a
class of non-simply connected manifolds (see Remark 7.4).

The paper is organized as follows. Section 2 contains a few basic facts
concerning bilinear forms and their index; here we prove the main result con-
cerning the computation of the index of an essentially positive symmetric
bilinear form on a real Hilbert space (Theorem 2.6). In Section 3 we recall
the notions of Conley–Zehnder index for a continuous symplectic path, and
of Maslov index for a continuous Lagrangian path. The central result is an
inequality (Corollary 3.7) that provides an estimate on the growth of the
Maslov index of the iterate of a periodic solution of a Hamiltonian system.
The definition of such index depends on the choice of a periodic symplec-
tic trivialization along the solution of the Hamiltonian. When applied to
the case of periodic geodesics on a semi-Riemannian manifold M , under a
certain orientability assumption we have a canonical choice of a class of peri-
odic symplectic trivializations along the corresponding periodic solution of
the geodesic Hamiltonian in the cotangent bundle TM∗ (Section 3.4), and we
therefore obtain estimates on the growth of the Maslov index of orientation
preserving periodic geodesics. The results in Section 3 are valid for closed
geodesics in arbitrary semi-Riemannian manifolds. Section 4 contains some
material on the geodesic variational problem in stationary Lorentzian man-
ifolds and on the Palais–Smale condition of the relative action functional.
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In Section 5 we prove a general version of the Morse index theorem for
closed geodesics in stationary Lorentzian manifold, that holds in the general
case of possibly degenerate and non-orientation preserving geodesics (Theo-
rem 5.4). This is obtained as an application of Theorem 2.6, which reduces
the periodic case to the case of fixed endpoints geodesics. In Section 5.2
we first show that the Morse index of an N -th iterate is non-decreasing
on N , up to adding a bounded sequence. Then, we use the Morse index
theorem and the estimates on the growth of the Maslov index to get an esti-
mate on the growth of the Morse index under iteration. The central result
(Proposition 5.7, Corollary 5.8), which provides an alternative approach to
the iteration theory of Bott [9] also for the Riemannian case, says that the
index of an N -th iterate is either bounded or it has linear growth in N ,
up to adding a bounded sequence. The nullity of an iterate is studied in
Section 5.3, and the result is totally analogous to the Riemannian case.
Finally, in Section 6, we use equivariant Morse theory for isolated critical
O(2)-orbits of the action functional f in ˜N to prove our main result. We
follow closely the original paper by Gromoll and Meyer, but we take advan-
tage of a more recent approach to equivariant Morse theory [12, 50], that
simplifies some of the constructions in [21]. The local homological invariant
at an isolated critical orbit is defined as the relative homology of the critical
sublevel, modulo the sublevel minus the critical orbit. Using excision, this
invariant is computed as the relative homology of a fiber bundle over the
circle modulo a subbundle; these bundles can be described as associated
bundles to the principal fiber bundle O(2) → O(2)/Γ, where Γ ⊂ SO(2) is
the stabilizer of the orbit. One of the crucial steps in Gromoll and Meyer
construction is an estimate on the dimension of this relative homology (see
(6.14)); this estimate is proven in Appendix 7 in the case of homology with
coefficients in arbitrary fields using the Mayer–Vietoris sequence in relative
homology. This allows a slight generalization of the original result in [21],
in that no restriction is posed on the characteristic of the coefficient field.

In order to make the paper essentially self-contained, and to facilitate its
reading, we have opted to include in the present version of the manuscript
the full statement of some results already appearing in the literature and
needed in our theory. Quotations of the original authors and complete biblio-
graphical references are given for the proof of these results.

2. On the index of essentially positive bilinear forms

In this section we will discuss some functional analytical preliminaries needed
for the index theorem. The central result is Theorem 2.6, that gives a
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result concerning the computation of the index of symmetric bilinear forms,
possibly degenerate, using restrictions to possibly degenerate subspaces.
All vector spaces considered in the entire text are assumed to be real.
Given a (normed) vector space X, we will denote by X∗ its (topological)
dual; throughout this section we will always identify continuous bilinear
forms B : X × X → R on a normed space X with the continuous linear map
B : X → X∗ given by x �→ B(x, ·). The B-orthogonal complement of a sub-
space S ⊂ X is defined by

S⊥B =
{

x ∈ X : B(x, y) = 0, for all y ∈ S
}

;

the kernel of B is defined by

Ker(B) = X⊥B =
{

x ∈ X : B(x, y) = 0, for all y ∈ X
}

.

We say that B is non-degenerate if Ker(B) = {0}. A subspace S ⊂ X is
called isotropic if B|S×S = 0. Assume now that B is symmetric. We say
that B is positive definite (resp., positive semi-definite) if B(x, x) > 0 for
all non-zero x ∈ X (resp., B(x, x) ≥ 0, for all x ∈ X). Similarly, we say
that B is negative definite (resp., negative semi-definite) if B(x, x) < 0 for
all non-zero x ∈ X (resp., B(x, x) ≤ 0, for all x ∈ X). A subspace S ⊂ X
is called positive (resp., negative) for B if B|S×S is positive definite (resp.,
negative definite). The index of B is the (possibly infinite) natural number
defined by

n−(B) = sup
{

dim(W ) : W ⊂ X is a negative subspace for B
}

.

Given any subspace Y ⊂ X, then:

n+(B|Y ×Y ) ≤ n+(B) ≤ n+(B|Y ×Y ) + codimX(Y ),(2.1)
n−(B|Y ×Y ) ≤ n−(B) ≤ n−(B|Y ×Y ) + codimX(Y ).(2.2)

Let Y be a vector space and let q : X → Y be surjective linear map with
Ker(q) ⊂ Ker(B). Then there exists a unique map B : Y × Y → R such that

(2.3) B
(

q(x1), q(x2)
)

= B(x1, x2), for all x1, x2 ∈ X;

the map B is a symmetric bilinear form on Y . Moreover:

Ker(B) = q
(

Ker(B)
) ∼=

Ker(B)
Ker(q)

,(2.4)

n+(B) = n+(B), n−(B) = n−(B).(2.5)
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In particular, if Ker(q) = Ker(B) then B is non-degenerate. If B is
non-degenerate and symmetric, and S ⊂ X is an isotropic subspace, then

(2.6) dim(S) ≤ n−(B), dim(S) ≤ n+(B).

Let us now consider a (real) normed space X. If T : X → Y is a con-
tinuous linear map between normed spaces then T ∗ : Y ∗ → X∗ denotes the
transpose map defined by T ∗(α) = α ◦ T . If S ⊂ X is a subspace we denote
by So ⊂ X∗ the annihilator of S. If X, Y are Banach spaces and T :
X → Y is a continuous linear map then Ker(T ∗) = Im(T )o and Im(T ∗) ⊂
Ker(T )o. Moreover, if Im(T ) is closed in Y then Im(T ∗) = Ker(T )o. Given
a closed subspace S ⊂ X, denote by q : X → X/S the quotient map; then
q∗ : (X/S)∗ → X∗ is injective and its image equals So. Moreover, if X is
reflexive, by identifying X with X∗∗ in the usual way, the bi-annihilator
(So)o equals the closure of S. If Y ⊂ X is a finite co-dimensional closed
subspace and Z ⊂ X is a subspace with Y ⊂ Z, then Z is also closed in X.
If Y1 ⊂ X is a closed subspace and Y2 ⊂ X is a finite dimensional subspace,
then Y1 + Y2 is closed in X. Assume that X is reflexive, B is a continuous
symmetric bilinear form on X and S ⊂ X is a subspace. If Im(B) + So is
closed in X∗ then the bi-orthogonal complement of S is given by

(S⊥B)⊥B = S + Ker(B).

Let (X, 〈·, ·〉) be a Hilbert space and let B : X × X → R be a contin-
uous bilinear form. We say that a continuous linear operator T : X → X
represents B with respect to 〈·, ·〉 if

B(x, y) =
〈

T (x), y
〉

,

for all x, y ∈ X. A continuous bilinear form B : X × X → R on a Banach
space X is called strongly non-degenerate if the linear map B : X → X∗ is
an isomorphism. Obviously if B is strongly non-degenerate then B is non-
degenerate. The converse holds if we know that the linear map B : X → X∗

is a Fredholm operator of index zero (for instance, a compact perturbation
of an isomorphism).

Let (X, 〈·, ·〉) be a Hilbert space. A continuous linear operator P : X →
X is called positive if the bilinear form 〈P ·, ·〉 represented by P is symmet-
ric and positive semi-definite. If P : X → X is a continuous linear oper-
ator, then the bilinear form 〈P ·, ·〉 represented by P is an inner product
on X that defines the same topology as 〈·, ·〉 if and only if P is a positive
isomorphism of X.
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If X is a Banach space, B is a continuous bilinear form on X and S ⊂
X is a closed subspace with X = S ⊕ S⊥B , then B|S×S is non-degenerate.
Conversely, if B|S×S is strongly non-degenerate then X = S ⊕ S⊥B .

Definition 2.1. Let (X, 〈·, ·〉) be a Hilbert space and let B be a continuous
symmetric bilinear form on X. We say that B is essentially positive if
the operator T : X → X that represents B is of the form T = P + K, with
P : X → X a positive isomorphism and K : X → X a (symmetric) compact
operator.

If B : X × X → R is a continuous symmetric bilinear form then B is
essentially positive if and only if there exists an inner product 〈·, ·〉1 on X
and a compact operator K : X → X such that B = 〈·, ·〉1 + 〈K·, ·〉 and such
that 〈·, ·〉1 defines the same topology on X as 〈·, ·〉. If B : X × X → R is
an essentially positive symmetric bilinear form, then there exists an inner
product 〈·, ·〉1 on X that defines the same topology as 〈·, ·〉 and such that
B is represented with respect to 〈·, ·〉1 by an operator of the form identity
plus compact. Moreover, Ker(B) is finite dimensional and n−(B) is finite.
In Equation (2.3), if B is essentially positive, then also B is essentially
positive. If a continuous symmetric bilinear form B on a Hilbert space X
is essentially positive then B is non-degenerate if and only if B is strongly
non-degenerate. Namely, B is represented by a Fredholm operator of index
zero. Restriction to a closed subspace of an essentially positive bilinear form
is again essentially positive.

Remark 2.2. If B is a continuous symmetric bilinear form on a Hilbert
space X which is essentially positive and if S ⊂ X is a subspace then

(S⊥B)⊥B = S + Ker(B).

Lemma 2.3. Let X be a Hilbert space and let B be a continuous symmet-
ric bilinear form on X which is essentially positive. If W ⊂ X is a closed
subspace then W + W⊥B is also closed in X.

Proof. We can choose the inner product 〈·, ·〉 on X such that B is represented
by an operator of the form T = Id + K, with K compact. If W ′ denotes the
orthogonal complement of W with respect to 〈·, ·〉 then W⊥B = T−1(W ′).
We then have to show that W + T−1(W ′) is closed in X. Since T is a
Fredholm operator, its image is closed in X and so T : X → Im(T ) is a
surjective continuous linear operator between Banach spaces. We have
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Ker(T ) ⊂ T−1(W ′) ⊂ W + T−1(W ′), so that W + T−1(W ′) is T -saturated;3

thus W + T−1(W ′) is closed in X if and only if T
[

W + T−1(W ′)] = T (W ) +
(

W ′ ∩ Im(T )
)

is closed in Im(T ). But

T (W ) +
(

W ′ ∩ Im(T )
)

=
(

T (W ) + W ′) ∩ Im(T ),

and therefore the proof will be completed once we show that T (W ) + W ′ is
closed in X. We have

T (W ) + W ′ =
{

x + y + K(x) : x ∈ W, y ∈ W ′} = Im(Id + K ◦ π),

where π denotes the orthogonal projection (with respect to 〈·, ·〉) onto W .
Since K ◦ π is compact, Id + K ◦ π is a Fredholm operator and hence its
image is closed in X. �

Lemma 2.4. Let X be a Hilbert space and let B be a non-degenerate contin-
uous symmetric bilinear form on X which is essentially positive. If Z ⊂ X
is an isotropic subspace then

(2.7) n−(B) = n−(B|Z⊥B ×Z⊥B ) + dim(Z),

all the terms in the above equality being finite natural numbers.

Proof. Since B is essentially positive, n−(B) < +∞ and thus dim(Z) < +∞,
by (2.6). This proves that all terms in equality (2.7) are finite natural
numbers. Since Z is isotropic, we have Z ⊂ Z⊥B and thus we can find a
closed subspace U ⊂ Z⊥B with Z⊥B = Z ⊕ U (for instance, take U to be the
orthogonal complement of Z in Z⊥B with respect to any Hilbert space inner
product). Clearly

Ker(B|Z⊥B ×Z⊥B ) = Z⊥B ∩ (Z⊥B)⊥B .

3If X, Y are sets and f : X → Y is a map then a subset S ⊂ X is called
f-saturated if x1 ∈ S, x2 ∈ X and f(x1) = f(x2) imply x2 ∈ S. If X, Y are vector
spaces, f is linear and S ⊂ X is a subspace then S is f -saturated if and only if
Ker(f) ⊂ S. Observe that if X, Y are Banach spaces and f : X → Y is a surjective
continuous linear map then, by the open mapping theorem, f is a quotient map in
the topological sense; hence a saturated subset S ⊂ X is open (resp., closed) in X
if and only if f(S) is open (resp., closed) in Y . Similarly, a subset U ⊂ Y is open
(resp., closed) in Y if and only if f−1(U) is open (resp., closed) in X.
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Now, by Remark 2.2, (Z⊥B)⊥B = Z. We have thus proven that

Ker(B|Z⊥B ×Z⊥B ) = Z,

and thus B|U×U is non-degenerate. Since B|U×U is also essentially positive,
B|U×U is actually strongly non-degenerate; thus

X = U ⊕ U⊥B ,

and
n−(B) = n−(B|U×U ) + n−(B|U⊥B ×U⊥B )

and since Z is isotropic

n−(B|U×U ) = n−(B|Z⊥B ×Z⊥B ).

To complete the proof, it suffices to show that

n−(B|U⊥B ×U⊥B ) = dim(Z).

First, we claim that dim(U⊥B) = 2 dim(Z). Namely, since X = U ⊕ U⊥B ,
the dimension of U⊥B equals the co-dimension of U in X. We have

U ⊂ Z⊥B ⊂ X;

since Z⊥B = Z ⊕ U , the co-dimension of U in Z⊥B equals the dimension of
Z. Since B : X → X∗ is an isomorphism and Z⊥B = B−1(Zo), B induces
an isomorphism

X/Z⊥B
∼=−−→ X∗/Zo;

moreover, X∗/Zo ∼= Z∗ ∼= Z. Thus the co-dimension of Z⊥B in X is equal
to the dimension of Z, which proves that dim(U⊥B) = 2 dim(Z). To com-
plete the proof, observe that B is non-degenerate on U⊥B since B is non-
degenerate on U . It follows

n+(B|U⊥B ×U⊥B ) + n−(B|U⊥B ×U⊥B ) = dim(U⊥B) = 2 dim(Z),

and by (2.6)

n+(B|U⊥B ×U⊥B ) ≥ dim(Z), n−(B|U⊥B ×U⊥B ) ≥ dim(Z).

This proves that both n+(B|U⊥B ×U⊥B ) and n−(B|U⊥B ×U⊥B ) are equal to
dim(Z). �
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Lemma 2.5. Let X be a Hilbert space and let B be a non-degenerate contin-
uous symmetric bilinear form on X which is essentially positive. If W ⊂ X
is a closed subspace then

n−(B) = n−(B|W×W ) + n−(B|W ⊥B ×W ⊥B ) + dim(W ∩ W⊥B),

all the terms in the above equality being finite natural numbers.

Proof. Obviously Z = W ∩ W⊥B is an isotropic subspace, and we can apply
Lemma 2.4 to obtain

n−(B) = n−(B|Z⊥B ×Z⊥B ) + dim(W ∩ W⊥B).

The conclusion will follow once we show that Z⊥B = W + W⊥B . Using
Remark 2.2, we compute

(W + W⊥B)⊥B = W⊥B ∩ (W⊥B)⊥B = W⊥B ∩ W = Z.

Now using Lemma 2.3 and Remark 2.2 we obtain

Z⊥B =
[

(W + W⊥B)⊥B
]⊥B = W + W⊥B .

�

Finally, the central result we aimed at:

Theorem 2.6. Let X be a Hilbert space and let B be a continuous symmet-
ric essentially positive bilinear form on X. If W ⊂ X is a closed subspace
and S denotes the B-orthogonal space to W , then

n−(B) = n−
(

B|W×W

)

+ n−
(

B|S×S

)

+ dim(W ∩ S) − dim
(

W ∩ Ker(B)
)

,

all the terms in the above equality being finite natural numbers.

Proof. Set N = Ker(B), Y = X/N and denote by q : X → Y the quotient
map. Define B as in (2.3); then B is a non-degenerate continuous symmetric
bilinear form on Y and B is essentially positive. We will apply Lemma 2.5
to B and to the subspace q(W ) of Y ; we first check that q(W ) is closed in
Y . It suffices to observe that q−1

(

q(W )
)

= W + N is closed in X and this
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follows from the fact that dim(N) < +∞. Now

n−(B) = n−(B|q(W )×q(W )) + n−(B|q(W )⊥B ×q(W )⊥B ) + dim
(

q(W ) ∩ q(W )⊥B
)

.

It is straightforward to verify that

q(W )⊥B = q(W⊥B).

Now using (2.4), (2.5) and considering the surjective linear maps q, q|W :
W → q(W ) and q|W ⊥B : W⊥B → q(W )⊥B , we obtain

n−(B) = n−(B),

n−(B|q(W )×q(W )) = n−(B|W×W ),

n−(B|q(W )⊥B ×q(W )⊥B ) = n−(B|W ⊥B ×W ⊥B ).

To complete the proof, we have to show that

dim
(

q(W ) ∩ q(W⊥B)
)

= dim(W ∩ W⊥B) − dim(W ∩ N).

Keeping in mind that N ⊂ W⊥B , we compute

q−1(q(W ) ∩ q(W⊥B)
)

= (W + N) ∩ W⊥B = (W ∩ W⊥B) + N,

so that q(W ) ∩ q(W⊥B) = q
(

(W ∩ W⊥B) + N
) ∼=

[

(W ∩ W⊥B) + N
]

/N .
Then

dim
(

q(W ) ∩ q(W⊥B)
)

= dim
[

(W ∩ W⊥B) + N
]

− dim(N)

= dim(W ∩ W⊥B) − dim(W ∩ N).

This concludes the proof. �

3. On the Maslov index and iteration formulas

In this section we will prove an iteration formula for the Maslov index of a
periodic solution of a Hamiltonian system, using a similar formula proved
in [19] for the Conley–Zehnder index, and a formula relating the two indices
via the Hörmander index. The reader should note that in the literature
there are several definitions Maslov index for a continuous Lagrangian path;
these definitions differ by a boundary term when the path has endpoints in
the Maslov cycle. In Robbin and Salamon [43], the Maslov index is a half
integer, obtained as half of the variation of the signature function of certain
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bilinear forms, whereas in our case we replace half of the signature with the
extended coindex (i.e., index plus nullity), see formula (3.1). Obviously, the
two definitions are totally equivalent; however, the reader should observe
that, using our definition, the Maslov index takes integer values, but it fails
to have the property that, when one changes the sign of the symplectic form
the absolute value of the Maslov index remains constant. The reader should
also be aware of the fact that the definition of Maslov index for a semi-
Riemannian geodesic adopted here differs slightly from previous definitions,
originated from Helfer [29], in that here we also consider the contribution
given by the initial endpoint, which is always conjugate. The results in this
section (more specifically, in Section 3.4) are valid in any semi-Riemannian
manifold (M, g).

3.1. Maslov and Conley–Zehnder index

Let us recall a few definitions from the theory of Maslov index. Let V be
a finite dimensional real vector space endowed with a symplectic form ω,
and let Sp(V, ω) denote the symplectic group of (V, ω); set dim(V ) = 2n.
Denote by Λ = Λ(V, ω) the Grassmannian of all n-dimensional subspaces of
V , which is a 1

2n(n + 1)-dimensional real-analytic compact manifold. For
L0 ∈ Λ, one has a smooth fibration βL0 : Sp(V, ω) → Λ defined by

βL0(Φ) = Φ[L0].

Let L0, L1 ∈ Λ be transverse Lagrangians; any other Lagrangian L which
is transverse to L1 is the graph of a unique linear map T : L0 → L1; we
will denote by ϕL0,L1(L) is defined to be the restriction of the bilinear map
ω(T ·, ·) to L0 × L0, which is a symmetric bilinear form on L0. For L ∈ Λ, we
will denote by Λ0(L) the set of all Lagrangians L′ ∈ Λ that are transverse
to L; this is a dense open subset of Λ.

Denote by π(Λ) the fundamental groupoid of Λ, endowed with the partial
operation of concatenation �. For all L0 ∈ Λ, there exists a unique Z-valued
groupoid homomorphism μL0 on π(Λ) such that

μL0

(

[γ]
)

= n+
(

ϕL0,L1(γ(1))
)

+ dim
(

γ(1) ∩ L0
)

− n+
(

ϕL0,L1(γ(0))
)

− dim
(

γ(0) ∩ L0
)

(3.1)

for all continuous curve γ : [0, 1] → Λ0(L1) and for all L1 ∈ Λ0(L0). The
map μL0 : π(Λ) → Z is called the L0-Maslov index.
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Given four Lagrangians L0, L1, L
′
0, L

′
1 ∈ Λ and any continuous curve γ :

[a, b] → Λ such that γ(a) = L′
0 and γ(b) = L′

1, then the value of the quantity
q(L0, L1; L′

0, L
′
1) = μL1(γ) − μL0(γ) does not depend on the choice of γ, and

it is called the Hörmander index of the quadruple (L0, L1; L′
0, L

′
1). Consider

the direct sum V 2 = V ⊕ V , endowed with the symplectic form ω2 = ω ⊕
(−ω), defined by

ω2((v1, v2), (w1, w2)
)

= ω(v1, v2) − ω(w1, w2), v1, v2, w1, w2 ∈ V,

and let Δ ⊂ V 2 denote the diagonal subspace. If Φ ∈ Sp(V, ω), then the
graph of Φ, denoted by Gr(Φ), is given by (Id ⊕ Φ)[Δ] ∈ Λ(V 2, ω2); in par-
ticular Δ = Gr(Id) and Δo = {(v,−v) : v ∈ V } = Gr(−Id) are Lagrangian
subspaces of V 2. Given a continuous curve Φ in Sp(V, ω), the Conley–
Zehnder index iCZ(Φ) of Φ is the Δ-Maslov index of the curve t �→ Gr

(

Φ(t)
)

∈
Λ(V 2, ω2):

iCZ(Φ) := μΔ
(

t �→ Gr(Φ(t))
)

.

We have the following relation between the Maslov index and the Hörmander
index:

Lemma 3.1. Let Φ : [a, b] → Sp(V, ω) be a continuous curve and let L0, L1,
L′

1 ∈ Λ(V, ω) be fixed. Then

μL0

(

βL1 ◦ Φ
)

− μL0

(

βL′
1
◦ Φ

)

= q
(

L1, L
′
1; Φ(a)−1(L0), Φ(b)−1(L0)

)

.

Proof. Using the Maslov index for pairs and the symplectic invariance, we
compute as follows:

μL0

(

βL1 ◦ Φ
)

= μ
(

βL1 ◦ Φ, L0
)

= μ
(

L1, t �→ Φ(t)−1(L0)
)

= −μL1

(

t �→ Φ(t)−1(L0)
)

.

Similarly,

μL0

(

βL′
1
◦ Φ

)

= −μL′
1

(

t �→ Φ(t)−1(L0)
)

.

The conclusion follows easily from the definition of q. �

The following relation between the notions of Maslov, Conley–Zehnder
and Hörmander index holds:
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Proposition 3.2. Let Φ : [a, b] → Sp(V, ω) be a continuous curve and L0,
�0 ∈ Λ(V, ω) be fixed. Then

iCZ(Φ) + μL0

(

β�0 ◦ Φ
)

= q
(

Δ, L0 ⊕ �0; Gr
(

Φ(a)−1), Gr
(

Φ(b)−1)).

In particular, if Φ is a loop, then iCZ(Φ) = −μL0(β�0 ◦ Φ).

Proof. We compute

iCZ(Φ) = μΔ
(

t �→ (Id ⊕ Φ(t))(Δ)
)

and, using the properties of the Maslov index for pairs of curves,

μL0

(

β�0 ◦ Φ
)

= −μΔ
(

t �→ L0 ⊕ β�0 ◦ Φ(t)
)

= −μΔ
(

t �→ (Id ⊕ Φ(t))(L0 ⊕ �0)
)

.

The result follows now easily applying Lemma 3.1 to the curve t �→ Id ⊕ Φ(t)
in the symplectic group Sp(V 2, ω2) and to the Lagrangians Δ, L0 ⊕ �0 ∈
Λ(V 2, ω2). �

3.2. Periodic solutions of Hamiltonian systems

The notion of Conley–Zehnder index is used in the theory of periodic solu-
tions for Hamiltonian systems. Let us recall a few basic facts; let (M, 	) be
a 2n-dimensional symplectic manifold, and let H : M × R → R be a (pos-
sibly time-dependent) smooth Hamiltonian. Assume that H is T -periodic
in time, and that z : [0, T ] → M is a solution of H (i.e., ż = 
H(z) such
that z(0) = z(T ), where 
H is the time-dependent Hamiltonian vector field,
defined by 	( 
H, ·) = dH). Then, the iterates z(N) of z, defined as the con-
catenation

z(N) = z � · · · � z
︸ ︷︷ ︸

N -times

: [0, NT ] −→ M

are also solutions of H. Assume that the following objects are given:

• a periodic symplectic trivialization of the tangent bundle of M along z
(i.e., of the pull-back z∗TM), which consists of a smooth family Ψ =
{ψt}t∈[0,T ] of symplectomorphisms ψt : Tz(0)M → Tz(t)M with ψ0 =
ψT = Id;

• a Lagrangian subspace L0 ⊂ Tz(0)M.
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By a simple orientability argument, periodic symplectic trivializations along
periodic solutions always exist. By the periodicity assumption, we have
a smooth extension R � t �→ ψt by setting ψt+NT = ψt for all t ∈ [0, T ].
Denote by FH

t,t′ : M → M the flow of 
H,4 i.e., FH
t,t′(p) = γ(t′), where γ is the

unique integral curve of the time-dependent vector field 
H on M satisfying
γ(t) = p. It is well known that for all t, t′, the FH

t,t′ is a symplectomorphism
between open subsets of M. Left composition with ψ−1

t gives a smooth map
R � t �→ Ψ(t) = ψ−1

t ◦ FH
0,t

(

z(0)
)

of linear symplectomorphisms of Tz(0)M;
clearly X(t) = Ψ′(t)Ψ(t)−1 lies in the Lie algebra sp

(

Tz(0)M, 	z(0)
)

of the
symplectic group Sp

(

Tz(0)M, 	z(0)
)

.
The linearized Hamilton equation along z is the linear system

(3.2) v′(t) = X(t)v(t),

in Tz(0)M; the fundamental solution of this linear system is a smooth sym-
plectic path Φ : R → Sp

(

Tz(0)M, 	z(0)
)

that satisfies Φ(0) = Id and Φ′ = XΦ.

Definition 3.3. The Conley–Zehnder index of the solution z = z(1) associ-
ated to the symplectic trivialization Ψ, denoted by iCZ(z, Ψ), is the Conley–
Zehnder of the path in Sp

(

Tz(0)M, 	z(0)
)

obtained by restriction of the
fundamental solution Φ to the interval [0, T ]. Similarly, the L0-Maslov index
of the solution z associated to the symplectic trivialization Ψ, denoted by
μL0(z, Ψ), is the L0-Maslov index of the path in Sp

(

Tz(0)M, 	z(0)
)

given by
[0, T ] � t �→ Φ(t)[L0] ∈ Λ

(

Tz(0)M, 	z(0)
)

.

Remark 3.4. We observe here that both the notions of Conley–Zehnder
index and of Maslov index for a periodic solution z of a Hamiltonian sys-
tem depend on the choice of a symplectic trivialization. More precisely,
given two periodic symplectic trivializations Ψ = {ψt}t, ˜Ψ = {ψ̃t}t and set-
ting Gt = ψ−1

t ◦ ψ̃t ∈ Sp
(

Tz(0)M, 	z(0)
)

, the corresponding paths Φ and ˜Φ
in Sp

(

Tz(0)M, 	z(0)
)

are related by

Φ(t) = Gt ◦ ˜Φ(t), ∀ t ∈ [0, T ].

Clearly, [0, T ] � t �→ Gt is a closed path in Sp
(

Tz(0)M, 	z(0)
)

with endpoint
in the identity; in this situation, one proves easily5 that iCZ(z, Ψ) = iCZ(G) +
iCZ(z, ˜Ψ). In particular, if the loop G is homotopically trivial, then

4For our purposes, we will not be interested in questions of global existence of
the flow FH .

5For instance, using the product formula in [19, Lemma 3.3].
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iCZ(z, Ψ) = iCZ(z, ˜Ψ). Similarly, if Gt[L0] = L0 for all t, and if G is homo-
topically trivial, then μL0(z, Ψ) = μL0(z, ˜Ψ).

This observation will be used in a situation described in the following
Lemma:

Lemma 3.5. Let V be a finite dimensional vector space and set V = V ⊕
V∗; V is a symplectic space, endowed with its canonical symplectic form
ω
(

(v, α), (w, β)
)

= β(v) − α(w), v, w ∈ V, α, β ∈ V∗. Given any η ∈ GL(V),
then the linear map

G =
(

η 0
0 η∗−1

)

: V → V

is a symplectomorphism of (V, ω). If [a, b] � t �→ Gt ∈ Sp(V, ω) is a contin-
uous map of symplectomorphisms of this type with Ga = Gb = Id, then G is
homotopically trivial in Sp(V, ω).

Proof. The first statement is immediate. In order to prove that G is homo-
topically trivial, it is not restrictive to assume V = R

n; identifying R
n∗ with

R
n via the Euclidean inner product, we will consider the canonical complex

structure on V ∼= R
2n. The thesis is obtained if we prove that, denoting by

Gt = utpt the polar decomposition of Gt, with ut unitary and pt positive
definite, then t �→ ut is homotopically trivial in U(n). This is equivalent
to the fact that the closed in loop t �→ det(ut) ∈ S

1 is homotopically trivial
in S

1. If ηt = otqt is the polar decomposition of ηt, with ot ∈ O(n) and qt

positive definite, then the unitary ut is given by
(

ot 0
0 ot

)

∈ U(n), which

has constant determinant equal to 1. The conclusion follows easily, recalling
that the determinant map det : U(n) → S

1 induces an isomorphism between
the fundamental groups. �

3.3. An iteration formula for the Maslov index

Let us recall the following iteration formula for the Conley–Zehnder index,
proved in [19]:

Proposition 3.6. In the notations of Section 3.2, the following inequality
holds:

(3.3)
∣

∣

∣iCZ
(

z(N), Ψ
)

− N · iCZ
(

z, Ψ
)

∣

∣

∣ ≤ n(N − 1).
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In particular,
∣

∣iCZ
(

z(N), Ψ
)∣

∣ has sublinear growth in N . Moreover, if
∣

∣iCZ
(

z, Ψ
)∣

∣ > n, then iCZ
(

z(N), Ψ
)

has superlinear growth in N .

Proof. See [19, Corollary 4.4]. Observe that we are using here a slightly
different definition of Conley–Zehnder index, and the inequality (3.3) differs
by a factor 2 from the corresponding inequality in [19, Corollary 4.4]. �

Let us prove that a similar iteration formula holds for the Maslov index.

Corollary 3.7. The following inequality holds:

∣

∣

∣ μL0

(

z(N), Ψ
)

− N · μL0

(

z, Ψ
)

∣

∣

∣ ≤ n(7N + 5).

In particular,
∣

∣μL0

(

z(N), Ψ
)∣

∣ has sublinear growth in N ; moreover, if
μL0

(

z, Ψ
)

> 7n, then μL0

(

z(N), Ψ
)

has superlinear growth in N .

Proof. The inequality is obtained easily from (3.3), using Proposition 3.2

∣

∣

∣μL0

(

z(N), Ψ
)

− N · μL0

(

z, Ψ
)

∣

∣

∣ ≤
∣

∣

∣iCZ
(

z(N), Ψ
)

− N · iCZ
(

z, Ψ
)

∣

∣

∣

+
∣

∣q
(

Δ, L0 ⊕ L0; Δ, Gr
(

Φ(NT )
))

− N · q
(

Δ, L0 ⊕ L0; Δ, Gr
(

Φ(T )
))∣

∣

≤ n(N − 1) + 6n(N + 1) = n(7N + 5).
�

3.4. Maslov index of a geodesic and of the corresponding
Hamiltonian solution

Let us now define the notion of Maslov index for a closed geodesic γ in a
semi-Riemannian manifold (M, g); we will show that when γ is orientation
preserving, then its Maslov index coincides with the Maslov index of the
corresponding periodic solution of the geodesic Hamiltonian in the cotangent
bundle TM∗.

Let us recall the notion of Maslov index for a fixed endpoint geodesic.
If γ : [0, 1] → M is any geodesic, consider a continuous trivialization of TM
along γ, i.e., a continuous family of isomorphisms ht : Tγ(0)M → Tγ(t)M ,
t ∈ [0, 1]. Consider the symplectic space V = Tγ(0)M ⊕ Tγ(0)M

∗ endowed
with its canonical symplectic structure (recall Lemma 3.5), the Lagrangian
subspace L0 = {0} ⊕ Tγ(0)M

∗, and the continuous curve of Lagrangians
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�(t) ∈ Λ(V, ω) given by

�(t) =
{

(

h−1
t [J(t)], h∗

t [g(D
dtJ(t))]

)

: J Jacobi field along γ, with J(0) = 0
}

.

In the above formula, the metric tensor g is seen as a map g : Tγ(t)M →
Tγ(t)M

∗. The Maslov index of γ, denoted by iM (γ) is defined as the
L0-Maslov index of the continuous path [0, 1] � t �→ �(t).6 This quantity
does not depend on the choice of the trivialization of TM along γ. Let us
now consider the case of a closed geodesic, in which case one may study the
existence of periodic trivializations of TM along γ.

Recall that a closed curve γ : [a, b] → M is said to be orientation preserv-
ing if for some (and hence for any) continuous trivialization ht : Tγ(a)M →
Tγ(t)M , t ∈ [a, b], of TM along γ, the isomorphism h−1

b ◦ ha : Tγ(a)M →
Tγ(a)M is orientation preserving. It is easy to prove that if γ is orientation
preserving then there exists a smooth trivialization ht : Tγ(a)M → Tγ(t)M ,
t ∈ [a, b], of TM along γ with h−1

b ◦ ha the identity of Tγ(a)M .
Assume that γ : [0, 1] → M is a closed geodesic in M , which is orienta-

tion preserving. Let Γ : [0, 1] → TM∗ be the corresponding periodic solution
of the geodesic Hamiltonian:

H(q, p) = g−1(p, p).

Given a smooth periodic trivialization of TM along γ, ht : Tγ(0)M → Tγ(t)M ,
t ∈ [0, 1], h0 = h1, then one can define a smooth periodic symplectic triv-
ialization of the tangent bundle T (TM∗) along Γ as follows. Denote by
π : TM∗ → M the canonical projection; for p ∈ TM∗, denote by Verp =
Ker(dπp) the vertical subspace of Tp(TM∗) and by Horp the horizontal sub-
space of Tp(TM∗) relatively to the Levi–Civita connection ∇. One has a
canonical identification Verp = Tp(TxM∗) ∼= (TxM)∗, while the restriction
of the differential dπp to Horp gives an identification Horp

∼= TxM , where
x = π(p). Since ∇ is torsion free, with these identifications, the canonical

6A different convention was originally adopted by Helfer [29] in the definition of
Maslov index of a semi-Riemannian geodesic. In Helfer’s original definition, given
a geodesic γ : [0, 1] → M with non-conjugate endpoints, iM (γ) was given by the
L0-Maslov index of the continuous path [ε, 1] � t �→ �(t), where ε > 0 is small
enough so that there are no conjugate instants in ]0, ε]. This convention was
motivated by the necessity of avoiding dealing with curves in the Lagrangian
Grassmannian with endpoints in the Maslov cycle. An immediate calculation
using (3.1) shows that, if g is Lorentzian, the following simple relation holds:
iM

(

γ|[ε,1]
)

= iM (γ) + 1.
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symplectic form 	 of TM∗ at p ∈ TM∗ becomes the canonical symplectic
form of TxM ⊕ (TxM)∗; moreover, for all t ∈ [0, 1] we define an isomorphism

ψt : TΓ(0)(TM∗) = HorΓ(0) ⊕ VerΓ(0)
∼= Tγ(0)M ⊕ (Tγ(0)M)∗

−→ Tγ(t)M ⊕ (Tγ(t)M)∗ ∼= HorΓ(t) ⊕ VerΓ(t) = TΓ(t)(TM∗)

by setting

ψt(v, α) =
(

ht(v), h∗
t
−1(α)

)

,

for all v ∈ Tγ(0)M and α ∈ (Tγ(0)M)∗. This is obviously a symplectomor-
phism for all t, hence we obtain a smooth periodic symplectic trivializa-
tion Ψ = {ψt}t∈[0,1] of T (TM∗) along Γ. It is immediate to observe that
the Maslov index iM (γ) of the geodesic γ coincides with the L0-Maslov
index μL0(Γ, Ψ) of the solution Γ associated to the symplectic trivializa-
tion Ψ, where L0 is the Lagrangian subspace {0} ⊕ (Tγ(0)M)∗ of Tγ(0)M ⊕
(Tγ(0)M)∗.

Lemma 3.8. Let γ be an orientation preserving closed geodesic in (M, g),
and let Γ be the corresponding periodic solution of the geodesic Hamiltonian
in TM∗. The L0-Maslov index μL0(Γ, Ψ), where Ψ is the smooth periodic
trivialization of T (TM∗) along Γ constructed from a smooth periodic trivi-
alization {ht}t∈[0,1] of TM along γ, as described above, does not depend on
the choice of {ht}t∈[0,1].

Proof. This is an immediate consequence of Lemma 3.5, observing that
two distinct trivializations {ht} and {h̃t} of TM along γ, with ηt = h̃t ◦
ht ∈ GL

(

Tγ(0)
)

M , yield periodic symplectic trivializations {ψt} and {ψ̃t} of
T (TM∗) along Γ that differ by a loop {Gt} in GL

(

TΓ(0)
)

of the form

Gt =
(

ηt 0
0 η∗

t
−1

)

.

By Lemma 3.5, this loop is contractible in Sp
(

TΓ(0)(TM∗), 	Γ(0)
)

, and
clearly Gt[L0] = L0 for all t, which concludes the proof. �

Using the construction above and Corollary 3.7 we obtain immediately

Corollary 3.9. Let γ be an orientation preserving closed geodesic in (M, g).
Then, denoting by γ(N) the Nth iterated of γ, N ≥ 1, the following inequality
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holds:
∣

∣

∣ iM
(

γ(N)) − N · iM (γ)
∣

∣

∣ ≤ dim(M)(7N + 5).

In particular,
∣

∣iM
(

γ(N)
)∣

∣ has sublinear growth in N ; moreover, if iM (γ) >

7 dim(M), then iM
(

γ(N)
)

has superlinear growth in N . �

4. The variational setup

Let (M, g) be a stationary Lorentzian manifold, and let Y ∈ X(M) be a
timelike Killing vector field in M . Consider the auxiliary Riemannian metric
gR on M , defined by

(4.1) gR(v, w) = g(v, w) − 2
g(v,Y)g(w,Y)

g(Y,Y)
;

observe that Y is Killing also relatively to gR. Let S
1 be the unit circle,

viewed as the quotient [0, 1]/{0, 1}, and denote by ΛM = H1(S1, M) the
infinite dimensional Hilbert manifold of all loops γ : [0, 1] → M , i.e., γ(0) =
γ(1), of Sobolev class H1; if Λ0M is the set of continuous loops in M endowed
with the compact-open topology, the inclusion ΛM ↪→ Λ0M is a homotopy
equivalence (this can be proved, for instance, using the results in [42]). Set:

N =
{

γ ∈ ΛM : g(γ̇,Y) = cγ (constant) a.e. on S
1
}

.

For all γ ∈ ΛM , the tangent space TγΛM is identified with the space of
all sections of the pull-back γ∗(TM) (i.e., periodic vector fields along γ) of
Sobolev class H1; this space will be endowed with the Hilbert space inner
product:

(4.2) 〈〈V, W 〉〉 =
∫ 1

0

[

gR(V, W ) + gR
(

DR

dt V, DR

dt W
)

]

dt,

where DR

dt denotes the covariant differentiation along γ relatively to the
Levi–Civita connection of the metric gR.

Recall the definition of the classical geodesic energy functional on ΛM :

f(γ) =
1
2

∫ 1

0
g(γ̇, γ̇) dt.
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4.1. The constrained variational problem

It is well known that the critical points of f in ΛM are exactly the closed
geodesics in M ; it is also clear that the set N contains the closed geodesics
in M . It is proven that the equality g(γ̇,Y) = cγ provides a natural con-
straint for the critical points of the geodesic action functional in a stationary
Lorentzian manifold; more precisely:

Proposition 4.1. The following statements hold:

(1) N is a smooth embedded closed submanifold of ΛM , and for γ ∈ N , the
tangent space TγN is given by the space of sections V of the pull-back
γ∗(TM) of Sobolev class H1, satisfying:

(4.3) g
(

D
dtV, Y

)

− g
(

V, D
dtY

)

= CV (constant) a.e. on [0, 1];

(2) if Y is complete, then N is a strong deformation retract of ΛM (hence
it is homotopy equivalent to ΛM);

(3) a curve γ ∈ N is a critical point of the restriction of f to N if and only
if γ is a critical point of f in ΛM , i.e., if and only if γ is a closed
geodesic in (M, g);

(4) if γ is a critical point of f , then the Hessian Hf |N of the restriction f |N
at γ is given by the restriction of the index form:

Iγ(V, W ) =
∫ 1

0
g
(

D
dtV, D

dtW
)

+ g
(

Rγ(t)(γ̇, V ) γ̇, W
)

dt

to the tangent space TγN ;

(5) if γ is a critical point of f , then the index form Iγ is essentially positive
on TγN , and in particular the Morse index of f |N at γ is finite.

Proof. See [16,17,37,40]. �

It is clear that f does not satisfy the Palais–Smale condition in N ;
namely, all its critical orbits are non-compact.

Given a closed geodesic γ in (M, g), let us denote by μ(γ) the Morse
index of f |N at γ, i.e., the index of the restriction of Iγ to TγN . This index
will be computed explicitly using the Morse index theorem (Theorem 5.4)
in Section 5. Moreover, let us denote by μ0(γ) the extended index if f |N
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at γ, which is the sum of the index μ(γ) and the nullity n(γ):

n(γ) = dim
[

Ker
(

Iγ |TγN×TγN
)]

.

We will establish in Lemma 5.1 that n(γ) equals the dimension of the space
of periodic Jacobi fields along γ.

4.2. The Palais–Smale condition

Let us now assume that (M, g) is a globally hyperbolic stationary Lorentzian
manifold, that admits a complete timelike Killing vector field Y. Let us
recall that, in this situation, (M, g) is a standard stationary manifold (see
for instance [10, Theorem 2.3]), i.e., denoting by S a smooth Cauchy surface
of M , then M is diffeomorphic to a product S × R, and the Killing field Y is
the vector field ∂t which is tangent to the fibers {x} × R. One should observe
that such product decomposition of M is not canonical; however, all Cauchy
surfaces of M are homeomorphic. In particular, M is simply connected if
and only if S is, and the inclusion of the free loop space ΛS ↪→ ΛM is a
homotopy equivalence.

The projection onto the second factor S × R → R, that will be denoted
by T , is a smooth time function, that satisfies

(4.4) Y(T ) = g
(

∇T, Y
)

≡ 1

on M . If L denotes the Lie derivative, from (4.4) it follows that LY(dT )
vanishes identically. For, given an arbitrary smooth vector field X on M :

LY(dT )(X) = Y
(

X(T )
)

− dt
(

[Y, X]
)

= Y
(

X(T )
)

− Y
(

X(T )
)

+ X
(

Y(T )
)

= 0.

Since Y is Killing, then LY(g) = 0, and (4.4) implies that the Lie bracket
[Y,∇T ] = LY

(

g−1dT
)

also vanishes identically. It follows that the quantity
g(∇T, ∇T ) is constant along the flow lines of Y:

Y g(∇T, ∇T ) = 2g
(

∇Y∇T, ∇T
)

= 2g
(

[Y,∇T ] − ∇∇T Y,∇T
)

= 0.

Lemma 4.2. The restriction of the functional f to N is bounded from
below; more precisely, f(γ) ≥ 0 for all γ ∈ N , and f(γ) = 0 only if γ is a
constant curve.
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Proof. Let γ ∈ N be fixed, and denote by cγ the value of the constant
g(γ̇,Y). For almost all t ∈ [0, 1], the vector γ̇ − g(γ̇,∇T ) Y is (null or) space-
like, namely, using (4.4), one checks immediately that it is orthogonal to the
timelike vector ∇T . Hence

0 ≤ g
(

γ̇ − g(γ̇,∇T ) Y, γ̇ − g(γ̇,∇T ) Y
)

= g(γ̇, γ̇) − 2 cγ g
(

γ̇,∇T
)

+ g(γ̇,∇T )2g(Y,Y),(4.5)

and thus

g(γ̇, γ̇) ≥ 2 cγ g
(

γ̇,∇T
)

− g(γ̇,∇T )2g(Y,Y).

Integrating on [0, 1], and observing that since γ is closed
∫ 1
0 g

(

γ̇,∇T
)

dt = 0,
we get:

(4.6) 2 f(γ) ≥ −
∫ 1

0
g(γ̇,∇T )2g(Y,Y) dt ≥ 0.

Equality in (4.5) holds only if γ̇ − g(γ̇,∇T ) Y = 0, while, in the last inequal-
ity of (4.6), the equal sign holds only if g(γ̇,∇T ) = 0 almost everywhere on
[0, 1]. Hence, f(γ) = 0 only if γ̇ = 0 almost everywhere. �

We will assume in the sequel that the Cauchy surface S is compact;
recall that any two Cauchy surfaces of a globally hyperbolic spacetime are
homeomorphic.

Lemma 4.3. The metric gR is complete, and thus ΛM and N are complete
Hilbert manifolds when endowed with the Riemannian structure (4.2).

Proof. The flow of Y preserves gR; each orbit of the induced R-action meets
the compact subset S, and the conclusion follows easily. �

The flow of the Killing vector field Y gives an isometric action of R in
ΛM , defined by R × ΛM � (t, γ) �→ Ft ◦ γ ∈ ΛM . This action preserves N ,
and the functional f is invariant by this action; the orbit of a critical point
of f consists of a collection of critical points of f with the same Morse index.
Such action is obviously free, and the quotient ˜N = N/R has the structure
of a smooth manifold such that the product ˜N × R is diffeomorphic to N .
For γ ∈ N , we will denote by [γ] its class in the quotient ˜N ; the tangent
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space T[γ]
˜N can be identified with

(4.7) T[γ]
˜N ∼=

TγN
Eγ

,

where Eγ is the 1-dimensional space of vector fields spanned by the restric-
tion of Y to γ. If S is a Cauchy surface in M , then ˜N can also be identified
with the set

(4.8) ˜N =
{

γ ∈ N : γ(0) ∈ S
}

;

using this identification, for γ ∈ ˜N is given by

(4.9) Tγ
˜N =

{

V ∈ TγN : V (0) ∈ Tγ(0)S
}

.

Obviously, the quotient ˜N inherits an isometric action of O(2); it should
be observed that, if one uses the identification (4.8), then the action of
an element in O(2) is not simply a rotation in the parameter space, but a
rotation followed by a translation along the flow of Y.

The function f defines by quotient a smooth function on ˜N , that will
still be denoted by f , and for which the statement of Proposition 4.1 holds
verbatim. In addition, f satisfies the PS condition on ˜N .

Proposition 4.4. ˜N is a complete Hilbert manifold, which is homotopically
equivalent to N and to ΛM . The critical points of the functional f in ˜N
correspond to orbits

[γ] = {Ft ◦ γ}t∈R,

where γ is a closed geodesic in M ; the Morse index of each critical point
[γ] of f equals the Morse index of γ, while the nullity of [γ] equals n(γ) − 1.
Moreover, f satisfies the Palais–Smale condition in ˜N .

Proof. Most part of the statement is a direct consequence of the construction
of ˜N . The statement on the Morse index and the nullity of a critical point
[γ] is obtained easily, observing that the 1-dimensional space Eγ in formula
(4.7) is contained in the kernel of the index form Iγ (see Lemma 5.1 below).
The Palais–Smale condition is essentially the same as in [36, Lemma 3.2];
we will sketch here a more intrinsic proof along the lines of [10, 17]. Using
[17, Section 5] and the compactness of S, for the PS condition it suffices
to show that f is pseudo-coercive on ˜N , i.e., that given a sequence (γn)n∈N

in ˜N such that f(γn) is bounded, then γn admits a uniformly convergent
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subsequence. Using the identification (4.8), let (γn)n∈N be a sequence in ˜N
such that f(γn) ≤ c for all n; we claim that the real sequence cγn

= g(γ̇n,Y)
is bounded. Namely, the vector field γ̇n − cγn

∇T along γn is a.e. spacelike
or null for all n, because it is a.e. orthogonal to the timelike vector field Y.
Hence,

∫ 1

0
g
(

γ̇n − cγn
∇T, γ̇n − cγn

∇T
)

dt = 2f(γn) + c2
γn

∫ 1

0
g(∇T, ∇T ) dt ≥ 0,

that gives

c2
γn

≤ 2f(γn)
(∫ 1

0
−g(∇T, ∇T ) dt

)−1

.

Observe that the functions g(Y,Y) and g(∇T, ∇T ) admit minimum and
maximum in M , because they are constant along the flow lines of Y, and
because S is compact. The claim on the boundedness of cγn

follows. From
this, it follows that the sequence

∫ 1

0
gR(γ̇n, γ̇n) dt = 2f(γn) − 2c2

γn

∫ 1

0
g(Y,Y)−1 dt

is bounded. Since gR is complete and S is compact, the theorem of Arzelà–
Ascoli implies that, up to subsequences, γn is uniformly convergent in M .
This concludes the proof. �

From Lemma 4.2 and Proposition 4.4, one obtains the existence of
one non-trivial closed geodesic in M , as proved in [36]. Namely, using
the theory of Ljusternik and Schnirelman, one shows the existence of a
sequence

(

[γr]
)

r≥1 of critical points of f |
˜N with f(γr) → ∞. Thus, these

critical points are not constant curves; observe however that the Ljusternik–
Schnirelman theory does not give information on whether such curves are
geometrically distinct. In the non-simply connected case, the following result
follows immediately:

Corollary 4.5. Let (M, g) be a Lorentzian manifold that admits a complete
timelike Killing vector field and a compact Cauchy surface. Then, there is
a closed geodesic in each free homotopy class of M . �

Remark 4.6. The orthogonal group O(2) acts isometrically on ΛM via
the operation of O(2) on the parameter circle S

1. It is easy to observe that
the stabilizer of each γ ∈ ΛM with respect to this action is a finite cyclic
subgroup of SO(2) generated by the rotation of 2π

N , for some N ≥ 1. A closed
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γ ∈ ΛM will be called prime if its stabilizer in O(2) is trivial, i.e., if γ is
not the Nth iterate of some other curve in ΛM with N > 1. The functional
f defined in ΛM is invariant by the action of O(2); moreover, this action
leaves N invariant, and it commutes with the time translations (Ft ◦ ). We
therefore get an equivariant and isometric action of O(2) on the manifold
˜N by g · [γ] =

[

g · γ
]

, g ∈ O(2). An element [γ] ∈ ˜N will be called prime if
γ is prime, in which case its orbit O(2) · [γ] will contain only prime curves.
The existence of infinitely many geometrically distinct (in the sense of the
definition given in the Introduction) closed geodesics in M is equivalent to
the existence of infinitely many distinct prime critical O(2)-orbits of f in ˜N .

It will be useful to prove the following two results:

Lemma 4.7. If (M, g) has only a finite number of geometrically distinct
closed geodesics, then the critical orbits of f in ˜N are isolated.

Proof. If γ1, . . . , γr is a maximal set of pairwise geometrically distinct closed
geodesics in M with γj(0) ∈ S for all j, then the critical orbits of f in ˜N is
the countable set formed by all the iterates O(2)

[

γ
(N)
j

]

, j = 1, . . . , r, N ≥ 1;
observe that f(γj) > 0 for all j. Any sequence k �→ γ

(Nk)
jk

of pairwise distinct
iterates of the γjs would necessarily have Nk → ∞, hence f(γ(Nk)

jk
) → +∞.

In particular, no subsequence of such sequence could have a converging
subsequence in ˜N . The group O(2) is compact, and the conclusion follows
easily. �

Let S be a Cauchy surface in (M, g); we will use the identification (4.8)
to prove the existence of a strong deformation retract from the ε-sublevel of
f in ˜N to the set of constant curves in S.

Lemma 4.8. For ε > 0 small enough, the closed ε-sublevel of f in ˜N :

fε =
{

[γ] ∈ ˜N : f(γ) ≤ ε
}

is homotopically equivalent to (the set of constant curves in) S.

Proof. Let us show that the map fε � γ �→ γ(0) ∈ S is a deformation retract.
By part (4.1) of Proposition 4.1, it suffices to show that there exists a con-
tinuous map Φ : fε × [0, 1] → ΛM with Φ(γ, 0) = γ and Φ(γ, 1) equal to the
constant curve γ(0). To this aim, consider the auxiliary Riemannian met-
ric h on M defined by h(v, w) = g(v, w) − 2g(v,∇T )g(w,∇T )g(∇T, ∇T )−1.
Recalling that the functions g(Y,Y) and g(∇T, ∇T ) admit minimum in
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M , set a0 = min
[

− g(Y,Y)
]

> 0 and b0 = min
[

− g(∇T, ∇T )
]

> 0. From
(4.6), if [γ] ∈ fε, then

∫ 1

0
g(γ̇,∇T )2 dt ≤ 2εa−1

0 ,

and thus
(4.10)
∫ 1

0
h(γ̇, γ̇) dt =

∫ 1

0

[

g(γ̇, γ̇) − 2g(γ̇,∇T )2g(∇T, ∇T )−1
]

dt ≤ ε

(

1 +
2

a0b0

)

.

Using the Cauchy–Schwartz inequality, we get that the h-length of every
curve γ ∈ fε is less than or equal to ε

(

1 + 2
a0b0

)

. Let ρ0 > 0 be the minimum
on the compact manifold S of the radius of injectivity of the Riemannian
metric h; choose a positive ε < ρ0

(

a0b0
a0b0+2

)

; if γ is a curve in fε and t ∈ [0, 1],
then the h-distance between γ(t) and γ(0) is less than ρ0. The required defor-
mation retract Φ is given by setting Φ(γ, s)(t) = c(s), where c : [0, 1] → M is
the unique affinely parameterized minimal h-geodesic from γ(0) to γ(t). �

5. The Morse index theorem

In this section, we will prove an index theorem for closed geodesics in a
stationary Lorentzian manifold with arbitrary endpoints, generalizing the
result in [40]. The result is now obtained as a corollary of Theorem 2.6
together with the semi-Riemannian Morse index theorem for fixed endpoints
geodesics proved in [18]. An earlier version of the theorem was proven in [40]
for the non-degenerate case, under the further assumption that the closed
geodesic be orientation preserving. The use of Theorem 2.6 allows to get rid
of both these extra assumptions at the same time.

5.1. The index theorem

Let us consider a closed geodesic γ in M ; it is easy to check that TγN
contains the space of all Jacobi fields J along γ such that J(0) = J(1). The
following lemma tells us that γ is a non-degenerate critical point of f if and
only if it is a non-degenerate critical point of f |N .

Lemma 5.1. Let γ be a critical point of f |N , i.e., a closed geodesic in M .
Then, the kernel of the index form Iγ in TγN coincides with the Kernel of
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Iγ in TγΛM , and it is given by the space of periodic Jacobi fields along γ:

Ker
(

Iγ |TγN×TγN
)

=
{

J Jacobi field along γ : J(0) = J(1), D
dtJ(0) = D

dtJ(1)
}

.

Moreover, consider the following closed subspace Wγ ⊂ TγN :

Wγ =
{

V ∈ TγN : V (0) = V (1) = 0
}

.

Then, the Iγ-orthogonal space of Wγ in TγN is given by

Sγ =
{

J Jacobi field along γ : J(0) = J(1)
}

.

Proof. The statement on the kernel of Iγ is proved readily using the following
two facts:

(a) TγΛM = TγN + Y, where Y is the space of vector fields in TγΛM that
are pointwise multiple of the Killing field Y;

(b) Y is contained in the Iγ-orthogonal complement of TγN in TγΛM .

In order to prove (a), simply observe that for any W ∈ TγΛM , then the
vector field V along γ defined below belongs to TγN

V (t) = W (t) + λW (t) · Y
(

γ(t)
)

, t ∈ [0, 1],

where

λ(t) =
∫ t

0

CW + g
(

W, (D/dt)Y
)

− g
(

(D/dt)W, Y
)

g(Y,Y)
ds,

and

CW =

[

∫ 1

0

g
(

(D/dt)W, Y
)

− g
(

W, (D/dt)Y
)

g(Y,Y)
ds

]

·
(∫ 1

0

ds

g(Y,Y)

)−1

.

Part (b) is a simple partial integration calculation, which is omitted; simi-
larly, the last part of the statement is obtained by an immediate calculation
using the fundamental lemma of calculus of variations. �

Remark 5.2. In the case of a periodic geodesic γ the index form Iγ is
always degenerate, being the tangent field γ̇ in its kernel. Moreover, also
the restriction of the Killing field Y to γ is a non-trivial Jacobi field in
Ker

(

Iγ |TγN×TγN
)

. Thus, dim
[

Ker
(

Iγ |TγN×TγN
)]

≥ 2.
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Remark 5.3. If S is a Cauchy surface in (M, g), using the identifications
(4.8) and (4.9), the null space of the Hessian of f |

˜N at [γ] is given by
the space of periodic Jacobi fields J along γ such that J(0) ∈ Tγ(0)S. The
tangent space T[γ]

(

O(2)[γ]
)

is given by the space of all constant multiples of
the periodic Jacobi vector field J along γ given by J(t) = γ̇(t) + αY

(

γ(t)
)

,
where α ∈ R is such that J(0) ∈ Tγ(0)S.

By Lemma 5.1, the nullity n(γ) is equal to the dimension of the space
of periodic Jacobi fields J along γ.

Theorem 5.4 (Morse index theorem for closed geodesics with arbi-
trary endpoints). Let γ : [0, 1] → M be a closed geodesic in M . Then, the
Morse index μ(γ) of f |N at γ is given by

(5.1) μ(γ) = iM (γ) + 1 + n−(B0) − n1,

where B0 is the symmetric bilinear form on the finite dimensional vector
space Sγ given by

(5.2) B0(J1, J2) = g
(

D
dtJ1(0), J2(0)

)

,

and n1 is the dimension of the vector space

Wγ ∩ Ker(Iγ) =
{

J Jacobi field along γ : J(0) =J(1) = 0, D
dtJ(0) = D

dtJ(1)
}

.

Proof. Formula (5.1) follows from Theorem 2.6 applied to the index form Iγ

and the closed spaces Wγ and Sγ introduced in Lemma 5.1. One has:

n−
(

Iγ |Wγ×Wγ

)

= iM (γ) + 1 − n0,

where n0 is the dimension of the vector space:

Wγ ∩ Sγ =
{

J Jacobi field along γ : J(0) = J(1) = 0
}

.

Such equality is given by the Morse index theorem for fixed endpoints
geodesics, which is proved in [16] in the non-degenerate case and in [18]
for the general case.7 In order to apply the result of [18], one needs to
observe that the extended index (i.e., index plus nullity) of Iγ in Wγ is
equal to the spectral flow of the path of Fredholm symmetric bilinear forms

7Recall also that the definition of Maslov index iM (γ) employed here differs by
1 from the definition in [18].
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[0, 1] � s �→ Iγ|[0,s]
defined on the space of fixed endpoints variational vector

fields along γ|[0,s]. This follows easily from the fact that Iγ is negative semi-
definite on the space Y defined in the proof of Lemma 5.1. An immediate
partial integration argument shows that the restriction of Iγ to Sγ is given
by (5.2), and equality (5.1) follows readily. �

Observe that the following inequalities hold:

0 ≤ n1 ≤ dim(M), 0 ≤ n−(B0) ≤ dim(M), 0 ≤ n(γ) ≤ dim(M),
0 ≤ n−(B0) + n0 − n1 ≤ dim(M).(5.3)

Inequality (5.3) is obtained easily using (2.1) and (2.2), and observing that
Wγ has codimension equal to dim(M) in TγN .

5.2. Morse index of an iteration

Throughout this subsection, we will consider a fixed critical point γ of f |N .
Given an integer N ≥ 1, let us denote by γ(N) the N -iterated of γ, defined by
γ(N)(t) = γ̃(Nt) for all t ∈ [0, 1], where γ̃ : R → M is the periodic extension
of γ. Observe that γ(N) is a critical point of f |N for all N ≥ 1. One of the
central results of this paper will be to establish the growth of the sequence
μ
(

γ(N)
)

(Proposition 5.7 and Corollary 5.8). The result will be first estab-
lished for orientation preserving closed geodesics and then extended to the
general case using Lemma 5.5 below.

Although it is not clear at all whether the Morse index of a closed
geodesic increases by iteration, an argument using a finite codimensional
restriction of the index form yields the following interesting consequence.

Lemma 5.5. There exists a bounded sequence of integers (dN )N≥1 such
that the sequence N �→ μ

(

γ(N)
)

+ dN ∈ Z is non-decreasing.

Proof. Let us introduce the following space

(5.4) Wo
γ =

{

V ∈ Wγ : g
(

D
dtV, Y

)

− g
(

V, D
dtY

)

≡ 0
}

.

Clearly, Wo
γ is a 1-codimensional closed subspace of Wγ , being the kernel

of the bounded linear functional Wγ � V �→ CV ∈ R (see (4.3)). Hence,
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recalling (2.1) and (2.2):

n−
(

Iγ |Wo
γ×Wo

γ

)

≤ n−
(

Iγ |Wγ×Wγ

)

≤ n−
(

Iγ |Wo
γ×Wo

γ

)

+ 1.

Thus, keeping in mind formula (5.1) and inequality (5.3), in order to prove
the lemma it suffices to show that the sequence μ̄

(

γ(n)
)

is non-decreasing,
where

(5.5) μ̄
(

γ
)

= n−
(

Iγ |Wo
γ×Wo

γ

)

.

To this aim, let 1 ≤ N ≤ M be given, and consider the map

EN,M : Wo
γ(N) −→ Wo

γ(M)

defined by EN,M (V ) = ˜V , where

˜V (t) =

{

V (tM/N) if t ∈ [0, N/M ];
0 if t ∈ ]N/M, 1].

Obviously, EN,M is an injective bounded linear map; an immediate compu-
tation shows that the following equality holds:

(5.6) Iγ(M)

(

EN,M (V ), EN,M (W )
)

= M
N Iγ(N)(V, W ), ∀V, W ∈ Wo

γ(N) .

Hence, if V ⊂ Wo
γ(N) is a subspace such that

dim(V) = n−
(

Iγ |Wo

γ(N)×Wo

γ(N)

)

and such that Iγ(N) is negative definite on V, then dim
(

EN,M (V)
)

= dim(V),
and by (5.6) Iγ(M) is negative definite on EN,M (V). This shows that μ̄

(

γ(N)
)

≤
μ̄
(

γ(M)
)

and concludes the proof. �
It will be useful to record here the following relation between the Morse
index μ(γ), the Maslov index iM (γ) and the restricted Morse index μ̄(γ)
(see (5.5)) of a closed geodesic γ:

μ̄(γ) ≤ iM (γ) ≤ μ(γ);

more precisely

(5.7)
μ(γ) = iM (γ) + Aγ , 0 ≤ Aγ ≤ dim(M) − 1,

iM (γ) = μ̄(γ) + Bγ , 0 ≤ Bγ ≤ 1.
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Exploiting the same idea in Lemma 5.5, one has the following result on the
additivity of the Morse index.

Lemma 5.6. There exists a bounded sequence (eN )N≥1 of non-negative
integers such that for all r, s > 0, the following inequality holds:

(5.8) μ
(

γ(r+s)) ≥ μ(γ(r)) + μ(γ(s)) − er − es.

Proof. As in the proof of Lemma 5.5, the sequence μ̄
(

γ(N)
)

satisfies

μ̄
(

γ(r+s)) ≥ μ̄(γ(r)) + μ̄(γ(s));

the conclusion follows easily using (5.7) and setting eN = Aγ(N) + Bγ(N) ≤
dim(M). �
Finally, we have our aimed results on the growth of the Maslov index.

Proposition 5.7. Given any closed geodesic γ in M , the sequence of Morse
indices N �→ μ

(

γ(N)
)

is either bounded (by a constant depending only on the
dimension of M), or it has superlinear growth in N for large N .

Proof. Assume first that γ is orientation preserving, and that μ
(

γ(N)
)

is not
bounded. Let k∗ ∈ N be the first positive integer such that

μ
(

γ(k∗)) > 8 dim(M) + 1.

Using Theorem 5.4, the non-increasing property of the restricted Morse
index proved in Lemma 5.5 and formulas (5.7), for m ≥ k∗, we compute
as follows:

μ
(

γ(m)) = μ̄
(

γ(m)) + Aγ(m) + Bγ(m)

Lemma 5.5
≥ μ̄

(

γ(� m

k∗
	k∗)) + Aγ(m) + Bγ(m)

by (5.7)
≥ iM

(

γ(� m

k∗
	k∗)) − 1 + Aγ(m) + Bγ(m)

Corollary 3.9
≥

(

iM
(

γ(k∗)) − 7 dim(M)
)

·
⌊

m

k∗

⌋

− 5 dim(M)

− 1 + Aγ(m) + Bγ(m)

by (5.7)
≥

(

μ
(

γ(k∗)
)

− 8 dim(M) − 1
k∗

)

· m − μ
(

γ(k∗)) + 2 dim(M)

− 1 + Aγ(m) + Bγ(m) .

Here, �·� denotes the integer part function. The conclusion follows, recalling
from formulas (5.7), that Aγ(m) and Bγ(m) are bounded sequences.
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For the general case of possibly non-orientation preserving closed
geodesics, observe that the double iterate γ(2) of any closed geodesic is ori-
entation preserving. Observe also that, by Lemma 5.5, the sequence μ

(

γ(N)
)

is bounded if and only if μ
(

γ(2N)
)

is bounded. Based on these observations
and on Lemma 5.5, establishing the superlinear growth of μ

(

γ(N)
)

in the
non-orientable case is obtained by elementary arithmetics from the previous
case. �

We will need a slightly refined property on the growth of the Morse
index, which is some sort of uniform superlinear growth.

Corollary 5.8. Let γ be a closed geodesic in M such that μ
(

γ(N)
)

is not
bounded. Then, there exist positive constants ᾱ, β̄ ∈ R such that, for s suf-
ficiently large, the following inequality holds:

(5.9) μ
(

γ(r+s)) ≥ μ
(

γ(r)) + s ᾱ − β̄, ∀ r > 0.

Proof. Let k∗ be as in the proof of Proposition 5.7, and set

ᾱ =
μ
(

γ(k∗)
)

− 8 dim(M) − 1
k∗

, β̄ = μ
(

γ(k∗)) + 1.

For s ≥ k∗, inequality (5.9) follows readily from Lemma 5.6 and Proposi-
tion 5.7. �

5.3. Nullity of an iteration

The nullity of an iterated closed geodesic γ will be computed using the
spectrum of the linearized Poincaré map Pγ defined below. Given a closed
geodesic γ : [0, 1] → M , denote by V the space Tγ(0)M ⊕ Tγ(0)M

∗, endowed
with its canonical symplectic structure, and let Pγ : V → V be the linear
map defined by:

Pγ

(

J(0), g D
dtJ(0)

)

=
(

J(1), g D
dtJ(1)

)

,

where J is a Jacobi field along γ. The map Pγ is a symplectomorphism
of V; denote by s(Pγ) its spectrum. It follows from Lemma 5.1 that Ker
(

Iγ |TγN×TγN
)

consists of all Jacobi fields J along γ such that
(

J(0), g(D/dt)
J(0)

)

belongs to the 1-eigenspace of Pγ . The subspace of V spanned by
(

γ′(0), 0
)

and by
(

Y(γ(0)), g∇γ′(0)Y
)

is a 2-dimensional isotropic subspace
of Ker(Pγ). From Proposition 4.4, it follows that O(2)[γ] is a non-degenerate
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critical orbit of f in ˜N when dim
[

Ker
(

Iγ |TγN×TγN
)]

= 2. We have a result
on the nullity of an iteration, which is totally analogous to the Riemannian
case (see [21, Lemma 2] and [31, Proposition 4.2.6]); its proof, repeated here
for the reader’s convenience, is purely arithmetical.

Lemma 5.9. Let γ be a closed geodesic in M and let γ(N) denote its N th
iterate, N ≥ 1. Then, O(2)

[

γ(N)
]

is a non-degenerate critical orbit of f in
˜N if and only if:

(a) O(2)[γ] is a non-degenerate critical orbit of f in ˜N ;

(b) s(Pγ) \ {1} does not contain any N th root of unity.

Moreover, there exists a sequence m1, . . . , ms of positive integers, s≤ 2dim(M),
and, for each j ∈ {1, . . . , s}, a strictly increasing sequence qj1 < qj2 < · · · <
qjm < · · · of positive integers such that the sets Nj =

{

mjqji, i = 1, 2, . . .}
form a partition of N \ {0}, and such that

(5.10) n
(

γmjqji
)

= n
(

γmj ), ∀ i ∈ N.

Proof. The first statement is proved easily observing that PN
γ = Pγ(N) .

For the second statement, consider all the elements in s(Pγ) of the form
e±2π(p/q)i, with p, q positive integers and relatively prime. Let D the possibly
empty set of all these denominators, and for all E ⊂ D denote by m(E) the
least common multiple of all elements of E, setting m(∅) = 1. Denote by
m1, . . . , ms the set of all pairwise distinct numbers obtained as m(E), for
all subsets E ⊂ D, where m1 = 1. Clearly, s ≤ 2dim(M). Finally, for all
j ∈ {1, . . . , s}, consider a maximal sequence {qji, i ≥ 1} of positive integers
such that none of the mk, with k �= j, divides mjqji. Then, (5.10) holds;
furthermore, every m ∈ N \ {0} can be written as the product mjq, where
q is a positive integer, and mj is some divisor of m among the elements
m1, . . . , ms. If mj is the maximum of such divisors, then q must be one of
the qji, for some i ≥ 1. This concludes the proof. �

Remark 5.10. By Lemma 5.9, we have the following situation. Assuming
that there is only a finite number of geometrically distinct closed geodesics
in M , it is possible to find a finite number of closed geodesics γ1, . . . , γr

(possibly not all geometrically distinct) such that any closed geodesics γ in
M is geometrically equivalent to some iterate γ

(N)
i0

of one of the γis, and it
has the same nullity as γi0 .
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6. Equivariant Morse theory for the action functional

6.1. Abstract Morse relations

Given sequences (μk)k≥0 and (βk)k≥0 in N
⋃

{+∞}, we will say that the
sequence of pairs (μk, βk)k≥0 satisfies the Morse relations if there exists a
formal power series Q(t) =

∑

k≥0 qk tk with coefficients in N
⋃

{+∞} such
that

∑

k≥0

μk tk =
∑

k≥0

βk tk + (1 + t)Q(t).

This condition implies (and, in fact it is equivalent to if all μks are finite)
the familiar set of inequalities:

μ0 ≥ β0,

μ1 − μ0 ≥ β1 − β0

μ2 − μ1 + μ0 ≥ β2 − β1 + β0,
...

μk − μk−1 + · · · + (−1)kμ0 ≥ βk − βk−1 + · · · + (−1)kβ0,

. . .

that are called the strong Morse inequalities. In turn, these inequalities
imply the weak Morse inequalities:

(6.1) μk ≥ βk, ∀ k ≥ 0.

Given a pair Y ⊂ X of topological space and a coefficient field K, let us
denote by Hk(X, Y ; K) the kth relative homology vector space with coeffi-
cients in K, and by βk(X, Y ; K) = dim

(

Hk(X, Y ; K)
)

the kth Betti number
of the pair. We set Hk(X; K) = Hk(X, ∅; K) and βk(X; K) = βk(X, ∅; K).
Using standard homological techniques, one proves the following:

Proposition 6.1. Let K be a field, and let (Xn)n≥0 be a filtration of a
topological space X; assume that every compact subset of X is contained in
some Xn. Setting

μk =
∞

∑

n=0

βk(Xn+1, Xn; K), k ≥ 0,

and βk = βk(X, X0; K), then the sequence (μk, βk)k≥0 satisfies the Morse
relations.
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6.2. Homological invariants at isolated critical points and
critical orbits

Let us recall here a few basic facts on the homological invariants associated
to isolated critical points and group orbits; the basic references are [12,20,21,
24,50]. Let M be a smooth Hilbert manifold and let f : M → R be a smooth
function; for d ∈ R, denote by fd the closed sublevel

{

x ∈ M : f(x) ≤ d
}

.
Let p ∈ M be a critical point of f, and assume that the Hessian Hf(p) of f

at p is represented by a compact perturbation of the identity of TpM. A
generalized Morse lemma for this situation [20, Lemma 1] says that there
exists a smooth local parametrization of M around p, Φ : U → V , where
U is an open neighborhood of 0 ∈ TpM ∼= Ker

(

Hf(p)
)⊥ ⊕ Ker

(

Hf(p)
)

, V is
an open neighborhood of p, with Φ(0) = p, and there exists an orthogonal
projection P on Ker

(

Hf(p)
)⊥ such that f ◦ Φ(x, y) = ‖Px‖2 − ‖(1 − P )x‖2 +

f0(y), where f0 : U ∩ Ker
(

Hf(p)
)

→ R is a smooth function having 0 as an
isolated completely degenerate critical point. Using this decomposition of f,
a homological invariant H(f, p; K) of f at p is defined by:

H(f, p; K) = H∗(Wp, W
−
p ; K),

where K is any coefficient field, and (W, W−) is a pair of topological spaces
constructed in [20] and called admissible pair (a GM-pair in the language of
[50]). Let us describe briefly such construction. Denote by η : R × M → M
the flow of −∇f and set f(p) = c; an admissible pair (Wp, W

−
p ) is character-

ized by the following properties (see [50, Definition 2.3]):

(1) Wp is a closed neighborhood of p that contains a unique critical point
of f and such that:
(a) if t1 < t2 and η(ti, x) ∈ W for i = 1, 2, then η(t, x) ∈ W for all t ∈

[t1, t2];
(b) there exists an ε > 0 such that f has no critical value in [c − ε, c[ and

such that W ∩ fc−ε = ∅;

(2) W− =
{

x ∈ W : η(x, t) ∈ W, ∀ t > 0
}

is closed in W ;

(3) W− is a (piecewise smooth) hypersurface of M which is transversal
to ∇f.

By [50, Theorem 2.1], if (Wp, W
−
p ) is an admissible pair, then

H∗(Wp, W
−
p ; K) = H∗(fc, fc \ {p}; K);
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furthermore, by excision, if U is any open subset of M containing p, then

H∗(f, p; K) = H∗
(

U ∩ f
c, U ∩ (fc) \ {p}); K

)

.

If M is complete, c is the only critical value of f in [c − ε, c + ε], and
p1, . . . , pr are the critical points of f in f−1(c), then the relative homology
H∗

(

fc+ε, fc−ε; K
)

can be computed as:

H∗
(

f
c+ε, fc−ε; K

)

=
r

⊕

i=1

H∗(f, pi; K).

Another homological invariant Ho(f, p; K) is defined by setting

H
o(f, p; K) = H(f0, p; K),

where f0 is the degenerate component of f described above. Among the
main results of [20], the celebrated shifting theorem gives a relation between
H(f, p; K) and Ho(f, p; K). The shifting theorem states that if μ(p) is the
Morse index of f at p, then:

(6.2) Hk+μ(p)(f, p; K) = H
o
k(f, p; K), ∀ k ∈ Z.

The homological invariant H, as well as Ho, is of finite type, i.e., Hk is finite-
dimensional for all k and Hk = {0} except for a finite number of k’s. More-
over, the homological invariant Ho has the following localization property.

Lemma 6.2. Let M be a smooth Hilbert manifold, f : M → R be a smooth
map, p ∈ M an isolated critical point of f such that the Hessian Hf(p) is
represented by compact perturbation of the identity. Let ̂M be a smooth
closed submanifold of M containing p such that ∇fq ∈ Tq

̂M for all q ∈ ̂M ,
and such that the null space of the Hessian Hf(p) is contained in Tp

̂M . Then,
Ho(f, p) = Ho

(

f|
̂M, p

)

.

Proof. See [20, Lemma 7, p. 368–369]. �

Consider now the case of a compact Lie group G acting by isometries
on M, and let f : M → R be a G-invariant smooth function satisfying the
Palais–Smale condition. If p is a critical point of f, denote by Gp its G-orbit,
which consists of critical points of f. If such critical orbit is isolated, i.e., if
there exists an open neighborhood of Gp that does not contain critical points
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of f outside Gp, then one defines a homological invariant at the critical orbit
Gp by setting

H(f, Gp; K) = H∗(fc, fc \ Gp; K),

where c = f(p). Again, by excision, if U is any open subset of M containing
Gp, then

H∗(f, Gp; K) = H∗
(

U ∩ f
c, (U ∩ f

c) \ Gp); K
)

.

If M is complete, c is the unique critical value of f in [c − ε, c + ε], and the
critical set of f at c consists of a finite number of isolated critical orbits Gp1,
. . . , Gpr, then by [43, Theorem 2.1], the relative homology H∗(fc+ε, fc−ε; K)
can be computed as:

(6.3) H∗(fc+ε, fc−ε; K) =
r

⊕

i=1

H∗(f, Gpi; K).

6.3. Local homological invariants at critical O(2)-orbits in ˜N

Let us now consider the Hilbert manifold ˜N (4.8) and the geodesic action
functional f : ˜N → R. Consider a non-constant critical point [γ] of f and
assume that the critical orbit O(2)[γ] is isolated. Recalling that the Hessian
of f at each critical orbit is a Fredholm form which is a compact perturba-
tion of the identity (part (4.1) of Proposition 4.1), the completeness of ˜N
and the Palais–Smale condition (Proposition 4.4), the construction of the
local homological invariant at the critical orbit O(2)[γ] can be performed
as follows. Denote by Γ ⊂ SO(2) the stabilizer of γ, which is a finite cyclic
group; observe that the quotient O(2)/Γ ∼= O(2)[γ] is diffeomorphic to the
union of two copies of the circle and denote by ν

(

O(2)[γ]
)

⊂ T ˜N the normal
bundle of O(2)[γ] in ˜N . Denote by EXP the exponential map of ˜N relatively
to the metric (4.2), and let r > 0 be chosen small enough so that EXP gives
a diffeomorphism between

Ar =
{

v ∈ ν
(

O(2)[γ]
)

: ‖v‖ < r
}

and an open subset D of ˜N containing O(2)[γ]. For u ∈ O(2)[γ], set

Du = EXPu

(

Ar ∩ Tu
˜N

)

;

D is a normal disc bundle over O(2)[γ] whose fiber at u is Du. Observe that,
since O(2) acts by isometries on ˜N , then for all g ∈ O(2) and all u ∈ O(2)[γ],
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gDu = Dgu. In particular, the restriction of the O(2)-action gives an action
of Γ on each fiber Du.

Consider the principal fiber bundle O(2) �→ O(2)/Γ ∼= O(2)[γ]; we claim
that the bundle D can be described as the fiberwise product:8

(6.4) D ∼= O(2) ×Γ Dγ .

Namely, consider the local diffeomorphism ψ : O(2) × Dγ → D

O(2) × Dγ � (g, σ) �−→ gσ ∈ D;

assuming ψ(g, σ) = ψ(g′, σ′) gives g−1g′ = h ∈ Γ and hσ = σ′, thus (g′, σ′) =
(gh−1, hσ) and ψ passes to the quotient giving a diffeomorphism ψ̄ : O(2) ×
ΓDγ → D, and (6.4) is proved. As observed above, by excision, the local
homological invariant H

(

f, O(2)[γ]; K
)

can be computed as:

H∗
(

f, O(2)[γ]; K
)

= H∗
(

f c ∩ D, (f c \ O(2)[γ]) ∩ D; K
)

,

where c = f(γ). Since f is O(2)-invariant, with this construction, we have
g(f c ∩ Dγ) = f c ∩ Dgγ for all g ∈ O(2); in particular, f c ∩ Dγ is Γ-invariant,
and we have two fiber bundles over O(2)

f c ∩ D = O(2) ×Γ (f c ∩ Dγ), (f c ∩ D) \ O(2)[γ] = O(2)
×Γ

(

(f c ∩ Dγ) \ {[γ]}
)

.(6.5)

If c is the only critical value of f in [c − ε, c + ε], and O(2)
[

γ1
]

, . . . , O(2)
[

γ1
]

are the critical orbits of f in f−1(c), then by (6.3) the relative homology
H∗

(

f c+ε, f c−ε; K
)

is given by

(6.6) H∗
(

f c+ε, f c−ε; K
)

=
r

⊕

i=1

H∗
(

f, O(2)
[

γi

]

; K
)

.

8Recall that given a G-principal fiber bundle P → X over the manifold X , and
given a topological space Y endowed with a left G-action, the fiberwise product
P ×G Y is a fiber bundle over X whose fiber at x ∈ X is the quotient of the product
Px × Y by the left action of G given by:

G × (Px × Y) �
(

g, (p, y)
)

= (pg−1, gy) ∈ Px × Y.

Since the right action of G on Px is free and transitive, then each fiber of P ×G Y
is homeomorphic to Y. Fiberwise products are examples of associated bundles to
principal bundles.
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Remark 6.3. The restriction f |Dγ of f to the disc Dγ has an isolated
critical point at [γ]. By (4.1) of Proposition 4.1, the Hessian Hf |Dγ at [γ] of
the restriction f |Dγ is essentially positive. We can therefore define the local
homological invariant H(f |Dγ , [γ]; K) as the relative homology

H(f |Dγ , [γ]; K) = H∗(f c ∩ Dγ , (f c ∩ Dγ) \ {[γ]}; K).

Observe also that the Morse index of [γ] as a critical point of the restriction
f |Dγ equals the Morse index of f at [γ]; the dimension of the kernel of Hf |Dγ

at [γ] equals the dimension of the kernel of Hf at [γ] minus one.

For all k ≥ 0, set

Bk(γ; K) = dim
[

Hk(f, O(2)[γ]; K)
]

, Ck(γ; K) = dim
[

Hk(f |Dγ , [γ]; K)
]

and Co
k(γ, K) = dim

[

H
o
k(f |Dγ , [γ]; K)

]

.

Our construction of the local homological invariants does not clarify that, in
fact, the invariants Ck and Co

k do not depend on the metric structure of ˜N ;
observe that in Proposition 6.8 we will need to employ different Riemannian
structures on ˜N . In order to prove the independence on the metric, we will
now establish that Ck(γ; K) and Co

k(γ, K) can be computed by considering
restrictions of f to any hypersurface Σ of ˜N through [γ] which is transversal
to the orbit O(2)[γ]:

Lemma 6.4. Let O(2)[γ] be an isolated critical orbit of f in ˜N , with f(γ) =
c, and let Σ be any smooth hypersurface of ˜N with [γ] ∈ Σ and with T[γ]

˜N =
T[γ]Σ ⊕ T[γ]

(

O(2)[γ]
)

. Then, [γ] is an isolated critical point of f |Σ, and

H∗(f |Dγ , [γ]; K) ∼= H∗
(

Σ ∩ f c, (Σ ∩ f c) \ {[γ]}; K
)

.

Moreover, the Morse indexes and the nullities of [γ] as a critical points of
f |Dγ and of f |Σ coincide, respectively.

Proof. Let Σ be as above; the entire result will follow from the existence
of an f -invariant diffeomorphism ψ from (a small neighborhood of [γ] in)
Dγ onto (a small neighborhood of [γ] in) Σ with ψ

(

[γ]
)

= [γ]. Consider the
smooth map Σ × O(2) � (u, g) �→ gu ∈ ˜N ; the assumption of transversality
of Σ to the orbit O(2)[γ] implies that the differential of this map at the point
(

[γ], 1
)

is an isomorphism, and hence the map restricts to a diffeomorphism
from a neighborhood of

(

[γ], 1
)

to a neighborhood of [γ] in ˜N . Since Dγ

is also transversal to O(2)[γ], a neighborhood of [γ] in Dγ is diffeomorphic,
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via this map, to the graph of a smooth function ϕ : ˜Σ → O(2), where ˜Σ
is a neighborhood of [γ] in Σ and ϕ

(

[γ]
)

= 1. The required f -invariant
diffeomorphism ψ is given by ˜Σ � u �→ ϕ(u)u ∈ Dγ . �

Corollary 6.5. Under the assumptions of Lemma 6.4:

H
o
∗
(

f |Dγ , [γ]; K
) ∼= H

o
∗
(

f |Σ, [γ]; K
)

.

Proof. Follows immediately from Lemma 6.4 and the shifting theorem (6.2).
�

Remark 6.6. More generally, from the proof of Lemma 6.4 we get that if
Σ is any hypersurface of ˜N as in the statement, all the properties of f |Dγ

discussed in Remark 6.3 also hold for the restriction f |Σ. Under the cir-
cumstance that Σ is a hypersurface through [γ] in ˜N that is orthogonal
(relatively to an arbitrary Riemannian metric on ˜N ) to the critical orbit
O(2)[γ] at [γ], then the null space of the Hessian of f |Σ at [γ] is the inter-
section of the null space of the Hessian of f |

˜N at γ and T[γ]Σ. This follows
easily from the observation that T[γ]

(

O(2)[γ]
)

is contained in the kernel of
the Hessian of f |

˜N at γ.

Finally, the key result of this subsection is to show that the local homo-
logical invariants at [γ] coincide with the invariants at the iterate

[

γ(N)
]

when γ and γ(N) have the same nullity (Proposition 6.8). It will therefore
be necessary to study the N -times iteration map N : ˜N → ˜N , defined by
N

(

[γ]
)

=
[

γ(N)
]

.

Lemma 6.7. N is a smooth embedding.

Proof. We use the following criterion, which is proved easily. Let A, B be
Banach manifolds and let A′ ⊂ A be an embedded submanifold. Let g :
A′ → B and h : B → A be smooth maps such that h ◦ g is the inclusion of
A′ into A. Then g is a smooth embedding. In order to prove the lemma,
the criterion is used in the following setup. The manifolds A and B are
the sets of all curves σ : [0, 1] → M of Sobolev class H1, with σ(0) ∈ S, and
satisfying g(σ̇, Y) constant almost everywhere (the existence of a Hilbert
manifold structure of this set is proved exactly as for ˜N ). The submanifold
A′ is ˜N , which corresponds to the subset of A consisting of closed curves.
The map g is the N -times iteration map N, and the map h is defined by
h(σ) = σ̃ and σ̃(t) = σ(t/N), for all t ∈ [0, 1]. �
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The differential dN[γ] at [γ] is the N -times iteration map for vector fields
along γ. Let us now prove the following central result.

Proposition 6.8. Let γ be a closed geodesic in M , let N ≥ 1 be fixed,
and assume that O(2)

[

γ(N)
]

is an isolated critical orbit of f in ˜N . Then,
O(2)[γ] is an isolated critical orbit of f in ˜N , and if n(γ) = n

(

γ(N)
)

, one
has Co

k(γ; K) = Co
k

(

γ(N); K
)

for all k.

Proof. The idea of the proof is analogous to that of [21, Theorem 3] and [24,
Proposition 3.6]; several adaptations are needed due to the fact that we are
dealing with different metric structures in the manifold M : the Lorentzian
structure g and the Riemannian structure gR (recall (4.1)) employed in the
definition of the Hilbert structure of ˜N .

Consider a modified Riemannian structure on ˜N induced by the inner
product (compare with (4.2)) on each tangent space TγN given by

(6.7) 〈〈V, W 〉〉N =
∫ 1

0

[

N2gR(V, W ) + gR
(

DR

dt V, DR

dt W
)

]

dt.

Consider the N -times iteration map N :
(

˜N , 〈〈·, ·〉〉
)

→
(

˜N , 〈〈·, ·〉〉N

)

, which is
an embedding onto a smooth submanifold N( ˜N ) of ˜N by Lemma 6.7, and
it preserves the metric up to a factor N2. We claim that, at the points in
the image of the map N, the gradient ∇Nf of the functional f |

˜N relatively
to the metric 〈〈·, ·〉〉N is tangent to the image of N. The set of points in
the image of N where this situation occurs is closed, and so, by a density
argument, it suffices to prove the claim at those points σ(N) = N(σ) in the
image of N that are curves of class C2. Given one such point σ(N), using
the fundamental theorem of calculus of variations, one sees that the gradient
∇Nf(σ(N)) of f at σ(N) is the unique periodic vector field X along σ(N) that
solves the differential equation

(6.8) D2
R

dt2 X − N2X − 2
g(D2

R/dt2X − N2X, Y)
g(Y,Y)

Y = D
dt

d
dtσ

(N).

Now, if X∗ is the vector field along σ which is the unique periodic solution
of:

D2
R

dt2 X∗ − X∗ − 2
g(D2

R/dt2X∗ − X∗,Y)
g(Y,Y)

Y = D
dt

d
dtσ,

i.e., X∗ is the gradient of f relatively to the metric 〈〈·, ·〉〉 at σ, then the iterate
X

(N)
∗ = dNσ(X∗) satisfies (6.8), which proves the claim.9

9Observe that dNσ

(

Y|σ
)

= Y|σ(N) .



378 Leonardo Biliotti, Francesco Mercuri and Paolo Piccione

Let Γ ⊂ SO(2) be the stabilizer of γ; consider a normal disc bundle
D = O(2)Dγ ∼= O(2) ×Γ Dγ of the critical orbit O(2)[γ] as described in Sub-
section 6.2. The image N(Dγ) is a smooth embedded submanifold of ˜N con-
taining γ(N); since N : Dγ → N(Dγ) is a diffeomorphism and f ◦ N = N2f ,
then

(6.9) H
o
∗
(

f |N(Dγ), γ
(N); K

)

= H
o
∗
(

f |Dγ , γ; K
)

.

In order to conclude the proof, we will now determine a hypersurface Σ in
˜N through γ(N) which is transversal at

[

γ(N)
]

to the orbit O(2)
[

γ(N)
]

and
satisfying the following two properties:

(a) N
(

Dγ) ⊂ Σ;

(b) the gradient ∇N
(

f |Σ
)

at the points of N(Dγ) is tangent to N(Dγ);

(c) the null space of the Hessian Hf |Σ at
[

γ(N)
]

is contained in
T[γ(N)]N(Dγ).

By Corollary 6.5 it will follow that

(6.10) Co
k(γ(N); K) = dim

[

Hk

(

Σ ∩ fd, (Σ ∩ fd) \ {[γ(N)]}; K
)

]

, ∀ k ≥ 0,

where d = f
(

γ(N)
)

= cN2 and c = f(γ). Moreover, using Lemma 6.2, prop-
erties (a), (b) and (c) will imply that

(6.11) H∗
(

Σ ∩ fd, (Σ ∩ fd) \ {[γ(N)]}; K
) ∼= H

o
∗
(

f |N(Dγ), γ
(N); K

)

.

The thesis will follow then from (6.9), (6.10) and (6.11).
For the construction of the desired Σ, consider be the normal bundle

ν
(

N(D)
)

of the submanifold N(D) in ˜N relatively to the metric 〈〈·, ·〉〉N . Let
ẼXP be the exponential map of ˜N relatively to the metric 〈〈·, ·〉〉N ; define Σ
to be the image under ẼXP of a small neighborhood U of the zero section
of the bundle ν

(

N(D)
)

|N(Dγ), i.e., the restriction to N(Dγ) of the normal
bundle of N(D). Since Dγ is a hypersurface in D, if U is sufficiently small,
then Σ is a hypersurface in ˜N ; clearly, N(Dγ) ⊂ Σ.

The image N
(

SO(2)[γ]
)

coincides with the orbit SO(2)
[

γ(N)
]

; this is
easily seen observing that the map SO(2) � g �→ gN ∈ SO(2) is surjective.
Since Dγ is orthogonal to O(2)[γ] and N is metric preserving up to a con-
stant factor, it follows that Σ is orthogonal to O(2)

[

γ(N)
]

at
[

γ(N)
]

(observe
that

[

γ(N)
]

belongs to the connected component SO(2)
[

γ(N)
]

of O(2)
[

γ(N)
]

)
relatively to the metric 〈〈·, ·〉〉N .
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For u ∈ N(Dγ), the tangent space TuΣ is given by the orthogonal direct
sum (see Lemma 6.9 below)

(6.12) TuΣ = Tu

(

N(Dγ)
) ⊥

⊕ Tu

(

N(D)
)⊥

.

From the first part of the proof we know that at the points u ∈ N(Dγ), the
gradient ∇Nf(u) is tangent to N(D); from (6.12), the orthogonal projection
of ∇Nf(u) onto TuΣ, which is the gradient of f |Σ at u, must be tangent
N(Dγ). Property (b) is thus satisfied.

Finally, we claim that the differential dN[γ] of N at [γ] carries the null
space of the Hessian of f |Dγ at [γ] (injectively) into the null space of the
Hessian of f |Σ at [γ]. Namely, recall from Remark 6.6 that the null space
of the Hessian of f |Dγ (resp., of f |Σ) at [γ] (resp., at

[

γ(N)
]

) consists of all
periodic Jacobi fields that are orthogonal to the critical orbit O(2)[γ] (resp.,
O(2)

[

γ(N)
]

). Thus, the proof of the claim follows easily observing that the
map dN[γ]:

• carries periodic Jacobi fields along γ to periodic Jacobi fields along
γ(N);

• carries T[γ]
(

O(2)[γ]
)

isomorphically onto T[γ(N)]
(

O(2)
[

γ(N)
])

;

• preserves orthogonality.

The null spaces of the two Hessians have the same dimension, because of our
assumption on the nullity of [γ] and of

[

γ(N)
]

(recall from Proposition 4.4
and Remarks 6.3, 6.6 that these two spaces have dimensions n(γ) − 2 and
n
(

γ(N)
)

− 2, respectively). This implies that the null space of Hf |Σ at
[

γ(N)
]

is in the image of dN[γ], and hence it is contained in T[γ(N)]N(Dγ), which
gives property (c). This concludes the proof. �

Lemma 6.9 below has been used in the proof of Proposition 6.8 to the
following setup: A = ˜N , B = N(Dγ) and E = ν

(

N(D)
)

|N(Dγ).

Lemma 6.9. Let A be a Hilbert manifold and B ⊂ A a submanifold. Let
ν(B) ⊂ TA be the normal bundle of B in A and let E ⊂ ν(B) be a sub-
bundle. Let U ⊂ ν(B) be a small open subset containing the zero section
and set Σ = exp(U ∩ E). Then, B is a submanifold of Σ, and for all b ∈ B,
the tangent space TbΣ is the orthogonal direct sum TbB ⊕ Eb.

Proof. B is the image of the zero section 0 of E. At each point 0b ∈ 0, b ∈ B,
there is a canonical isomorphism T0b

E ∼= TbB ⊕ Eb, where TbB is identified
with the tangent space at 0b of 0. Using this identification, the differential
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d(exp |0)(0b) : TbB ⊕ {0} → TbB of the restriction of exp to 0 at 0b is the
identity. Moreover, the restriction of d exp(0b) to {0} ⊕ Eb coincides with
the differential d expb(0b), which is the identity. Thus, d exp(0b) carries T0b

E
isomorphically onto TbB ⊕ Eb, and the conclusion follows. �

6.4. Equivariant Morse theory for closed geodesics

As observed in Remark 4.6, in order to prove the theorem we need to show
the existence of infinitely many distinct prime critical O(2)-orbits of the
functional f in ˜N ; this will be obtained by contradiction, showing that
assuming the existence of only a finite number of geometrically distinct
closed geodesics will yield a uniform upper bound on the Betti numbers
of ΛM .

Let us assume that there is only a finite number of geometrically distinct
critical orbits, and hence by Lemma 4.7, the critical orbits of f in ˜N are
isolated. If 0 ≤ a < b are regular values of f , and if O(2)

[

γ1
]

, . . . , O(2)
[

γr

]

are all the critical orbits of f in f−1
(

[a, b]
)

, then, using (6.6) and the fact
that the βk are subadditive functions, one has the Morse inequalities:

(6.13) βk(f b, fa; K) ≤
r

∑

j=1

Bk(γj ; K).

In particular, since H is of finite type, i.e., Bk(γ; K) is finite for all k and
Bk(γ; K) = 0 except for a finite number of k’s, then βk(f b, fa; K) < +∞ for
all a, b and k.

Using the relative Mayer–Vietoris sequence to the pair of bundles (6.5)
over O(2), which is homeomorphic to the disjoint union of two copies of the
circle, one proves that the following inequality:

(6.14) Bk(γ; K) ≤ 2
(

Ck(γ, K) + Ck−1(γ, K)
)

,

holds for all k ≥ 1. The details of this computation will be given in Appendix
7; it should be observed that in [21, 24] the inequality is stated only in the
case of a field K of characteristic zero.

By the shifting theorem (see (6.2)), inequalities (6.14) become

(6.15) Bk(γ; K) ≤ 2
(

Co
k−μ(γ)(γ; K) + Co

k−μ(γ)−1(γ; K)
)

.

Proposition 6.10. Let γ be a closed geodesic in M . If all the critical
orbits O(2)

[

γ(N)
]

of f in ˜N are isolated, then the double sequence (k, N) �→
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Co
k

(

γ(N); K
)

is uniformly bounded:

(6.16) Co
k

(

γ(N); K
)

≤ B, ∀ k, N ∈ N \ {0}.

Moreover, there exists a k0 such that Co
k

(

γ(N); K
)

= 0 for all k > k0 and all
N ≥ 1.

Proof. Inequality (6.16) follows readily from Lemma 5.9 (see Remark 5.10)
and Proposition 6.8. For a fixed N , the existence of k0 as above is guaranteed
by the fact that the invariant Ho is of finite type. Again, independence on
N is obtained easily from Lemma 5.9 and Proposition 6.8. �

Corollary 6.11. Under the assumptions of Proposition 6.10, the following
inequality holds:

(6.17) Bk

(

γ(N); K
)

≤ 4B, ∀N ≥ 1.

Moreover, for k > k0 + 8 dim(M) + 2, the number of iterates γ(N) of γ such
that Bk

(

γ(N); K
)

�= 0 is bounded by a constant C which does not depend on k.

Proof. Inequality (6.17) follows from (6.15) and (6.16). Moreover, using
(6.15) and Proposition 6.10 we get that Bk

(

γ(N); K
)

�= 0 only if

(6.18) k − k0 − 1 ≤ μ
(

γ(N)) ≤ k.

If the sequence μ
(

γ(N)
)

is bounded, then by our assumption on k and Propo-
sition 5.7, no iterate γ(N) of γ satisfies (6.18). Assume that μ

(

γ(N)
)

is not
bounded, and let k∗ be as in the proof of Proposition 5.7. Let k̄ ≥ k∗ be
the smallest integer for which μ

(

γ(k̄)
)

≥ k − k0 − 1; we need to estimate the
number of positive integers s such that μ

(

γ(k̄+s)
)

≤ k. If s ≥ k∗, then by
Corollary 5.8

k0 + 1 ≥ μ
(

γ(k̄+s)) − μ
(

γ(k̄)) ≥ ᾱ s − β̄,

where ᾱ, β̄ > 0. Thus, the number of iterates γ(N) such that Bk

(

γ(N); K
)

�= 0
is bounded by the constant

max
{

k∗,
k0 + 1 + β̄

ᾱ

}

.

�
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Proposition 6.12. Let (M, g) be a Lorentzian manifold that has a complete
timelike Killing vector field and a compact Cauchy surface. If there is only
a finite number of geometrically distinct non-trivial closed geodesics in M ,
then the Betti numbers βk(ΛM ; K) form a bounded sequence for k large
enough.

Proof. Since ΛM is homotopically equivalent to ˜N , βk(ΛM ; K) = βk( ˜N ; K)
for all k ≥ 0. Denote by γ1, . . . , γr a maximal family of pairwise geometri-
cally distinct non trivial closed geodesic in M , and let 0 = c0 < c1 < · · · <
cn < · · · be the critical values of f in ˜N corresponding to the critical orbits
O(2)

[

γ
(N)
i

]

, N ≥ 1, i = 1, . . . , r. By Lemma 4.7, these critical orbits are
isolated, and each fixed sublevel f b of f in ˜N contains only a finite number
of them. By Corollary 6.11, the sequence (i, k, N) �→ Bk

(

γ
(N)
i ; K

)

takes a
finite number of values, and we can define ̂B = maxi,k,N Bk

(

γ
(N)
i ; K

)

.
For each geodesic γi, choose numbers k

(i)
0 and C(i) as in Proposition 6.10

and Corollary 6.11; set k̂0 = maxi k
(i)
0 and ̂C = maxi C

(i).
By Corollary 6.11, for all k > k̂0 + 8 dim(M) + 2, the constant ̂C is an

upper bound for the number of orbits O(2)
[

γ
(N)
i

]

with Bk

(

γ
(N)
i ; K

)

�= 0.
Using the Morse inequalities (6.13), we have for all regular values a, b of
f in ˜N , with 0 < a < b, and for all k > k̂0 + 8 dim(M) + 2 the following
inequality holds:

(6.19) βk(f b, fa; K) ≤ 4 ̂B ̂C.

By Lemma 4.8, there exists an ε ∈ ]0, c1[ such that the sublevel fε is homo-
topically equivalent to a Cauchy surface S of M . For all n ≥ 1, set dn =
1/2(cn + cn+1), d0 = ε, and for all n ≥ 0 set Xn = fdn ; each dn is a regular
value of f in ˜N , and the Xn form a filtration of ˜N as in Proposition 6.1.
Since X0 is homotopically equivalent to S, which is a finite dimensional com-
pact manifold, for k large enough, βk( ˜N , X0; K) = βk( ˜N ; K). We claim that,
for k > k̂0 + 8 dim(M) + 2, the number of indices n such that βk(Xn+1, Xn;
K) �= 0 is bounded by a constant N0 that does not depend on k. Namely,
arguing as in the proof of Corollary 6.11, one proves easily that such constant
N0 can be taken equal to

∑r
i=1 C(i).

Now, using (6.19), it follows that

∞
∑

n=0

βk(Xn+1, Xn; K) ≤ 4 ̂B ̂CN0,
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for all k > k̂0 + 8 dim(M) + 2. Using Proposition 6.1 (and the weak Morse
inequalities (6.1)), we get

βk(ΛM ; K) = βk( ˜N ; K) = βk( ˜N , X0; K) ≤ 4 ̂B ̂CN0

for k large enough, which concludes the proof. �

Remark 6.13. Observe that in Proposition 6.12 we have not used any
assumption on the topology of M . Examples of non-simply connected spaces
M satisfying βk(ΛM ; K) = +∞ for some small value of k but for which
βk(ΛM ; K) is bounded for k large can be obtained as follows. Consider a
standard stationary Lorentzian manifold M = S × R, where S is a compact
connected manifold whose universal cover is contractible.10 The free loop
space ΛM of M is homotopically equivalent to the free loop space ΛS of S.
Given p ∈ S, denote by ΩpS the loop space of S based at p; the map ΛS �
γ �→ γ(0) ∈ S is a fibration, whose fiber at p is ΩpS. The space ΩpS has
infinitely many connected component (π1(S) must be infinite), each of which
is contractible, by the assumption on the universal cover of S. It follows
that each connected component of ΛS is homotopically equivalent to S,
and therefore, given any coefficient field K, βk(ΛS, K) = +∞ for some k ∈
{0, . . . ,dim(S)}, while βk(ΛS; K) = 0 for all k > dim(S).

We are now in the position of finalizing the proof of our main result.

Proof of the main theorem. Assume that (M, g) is a simply connected sta-
tionary globally hyperbolic spacetime, having a compact Cauchy surface S
and a complete timelike Killing vector field Y. Then, S is simply connected,
and by [45] the Betti numbers of the free loop space of S (or, equivalently,
of M) are finite. Then, by Proposition 6.12, the finiteness of the number of
geometrically distinct closed geodesics in M implies that the Betti numbers
of ΛM form a bounded sequence. The thesis follows. �

7. Final remarks

A few observations on the result presented in the paper and its proof are in
order.

Remark 7.1. As to the notion of geometric equivalence for closed geodesics
given in the Introduction, and based on the choice of some complete timelike

10This example has been suggested by Prof. Gudlaugur Thorbergsson.
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Killing vector field, we observe that the property of existence of infinitely
many geometrically distinct closed geodesic is independent on such choice.
This can be seen using the following construction. Assume that S ⊂ M is
a Cauchy surface of (M, g); given a complete timelike Killing vector field
Y, one can define a diffeomorphism PY : ˜N → ΛS by considering projec-
tions onto S along the flow lines of Y (note that also the definition of ˜N
employs the given vector field Y). More precisely, given γ ∈ ˜N , the curve
x = PY(γ) is defined by x(t) = Fhγ(t)

(

γ(t)
)

, where F is the flow of Y and
hγ : [0, 1] → R is uniquely defined by the property that Fhγ(t)

(

γ(t)
)

∈ S. By
an elementary ODE argument, it is easy to see that PY is indeed a bijection,
by proving that, given x ∈ ΛS, there exists a unique closed curve γ with
γ(0) = x(0) such that PY(γ) = x and such that g(γ̇,Y) is constant. The
smoothness of PY is obtained by standard smooth dependence results for
ODE’s. The map PY is O(2)-equivariant; thus, geometrically distinct closed
geodesics in M correspond to distinct critical O(2)-orbits of the functional
fY = f ◦ P

−1
Y : ΛS → R (this is precisely the variational problem considered

in [36]). Given two complete timelike Killing vector field Y1 and Y2 in M , the
number of critical O(2)-orbits of the functionals f1 and f2 = f1 ◦ PY1 ◦ P

−1
Y2

on
ΛS coincide, which proves that the number of geometrically distinct closed
geodesic in (M, g) is an intrinsic notion.

Remark 7.2. Under the assumptions of our main result, if, in addition,
the Killing vector field Y is irrotational, i.e., if the orthogonal distribution
Y⊥ is integrable, then the proof of our result is immediate. Namely, in this
situation, a maximal integrable submanifold S of Y⊥ is a compact totally
geodesic Cauchy surface in (M, g). Thus, infinitely many closed geodesics in
M can be obtained applying the classical Gromoll and Meyer result to the
Riemannian manifold (S, g|S).

Remark 7.3. It must be emphasized that the estimates on the
Conley–Zehnder index and the Maslov index discussed in Section 3 are very
far from being sharp, and they only serve the purposes of the present paper.
An intense literature on the iteration formulas in the context of periodic
solutions of Hamiltonians on symplectic manifolds has been produced in the
last decade (see, for instance, [13, 33, 34] and the references therein). On
the other hand, the naive approach discussed in Section 3 seems to simplify
significantly the approach using Bott’s deep results in [9] on the Morse index
of an iteration, even in the Riemannian case. Sharper growth estimates on
the iterates of closed geodesics have been proved recently in [30].
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Remark 7.4. As to the assumption that M be simply connected, one
should note that the central result in Proposition 6.12 does not use this. The
simple connectedness hypotheses are used in the final argument to guarantee
the finiteness of the dimensions of all the homology spaces of the free loop
space of M , by a result on spectral sequences due to Serre [45]. Observe
that Proposition 6.12 does not give any information on the dimension of the
homology spaces βk(ΛM ; K) for k = 0, . . . , k̂0 + 8 dim(M) + 2. As already
observed in Remark 6.13, if M is not simply connected, then ΛM (and ˜N )
is not connected, and it might be the case that βk(ΛM ; K) = +∞ for small
values of k even if (M, g) has only a finite number of geometrically distinct
non-trivial closed geodesics. This might happen when there is a non-trivial
closed geodesic whose iterates have bounded Morse indexes. Thus, one can
state the main result of the paper in the following slightly more general
form:

Theorem 7.5. Let (M, g) be a globally hyperbolic stationary Lorentzian
manifold having a complete timelike Killing vector field and having a compact
Cauchy surface. Assume that the free loop space ΛM has Betti numbers βk

with respect to some coefficient field that satisfy

lim sup
k→∞

βk = +∞.

Then, there are infinitely many geometrically distinct non-trivial closed
geodesics in M .

Examples of non-simply connected stationary spacetimes to which the
theorem above applies can be constructed by considering standard stationary
manifolds M = S0 × R, where S0 = S × P is a compact manifold given by
the product of a non-simply connected manifold S as in Remark 6.13 and a
compact manifold P whose free loop space has non-vanishing Betti numbers
in arbitrarily large dimension with respect to a field of characteristic zero
(for instance, P = Sn, n ≥ 2).

Remark 7.6. Although it is clear how to produce examples of non-trivial
closed geodesics all of whose iterates have null Morse index (any minimum of
f in a non-trivial free homotopy class of M), it would be extremely interest-
ing to produce Lorentzian examples having bounded, but non-zero, Morse
indexes. The homology generated by the iterates of such closed geodesics
might be richer than the homology of the free loop space, as described in [5]
for the Riemannian case.
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Remark 7.7. The proof of the main result of the paper can be simpli-
fied significantly under the further assumption that all the critical orbits
of the geodesic action functional are non-degenerate. In analogy with the
Riemannian case, we will call bumpy a Lorentzian metric for which such
non-degeneracy assumption is satisfied. It is an interesting open problem to
establish if, as in the Riemannian case (see [1, 32, 51]), bumpy metrics are
generic in the space of (stationary) Lorentzian metrics of a given manifold.
More generally, it would be interesting to determine which properties of the
Lorentzian geodesic flow are generic.

Remark 7.8. Extensions of the result of existence of multiple closed
geodesics in Lorentzian geometry are possible and indeed desirable in more
general classes of manifolds. The non-simply connected case can be studied
following the lines of the corresponding results in Riemannian geometry, as
in [3, 4]. Finally, we observe that in view to applications to General Rel-
ativity, it would be interesting to establish multiplicity results for (causal)
geodesics satisfying more general boundary conditions. A particularly inter-
esting case is that of causal geodesics whose spatial component is periodic.
In the stationary case such geodesics have endpoints related by a global
isometry of the spacetime, and an analysis of this case might be based on a
variational setup as in [22–24,46].

Appendix A. An estimate on the relative homology of fiber
bundles over S

1

In this short appendix we will prove a result on the relative homology of
fiber bundles over the circle with coefficients in an arbitrary field K that
will allow a slight generalization of the result of Gromoll and Mayer.

Proposition A.1. Let K be a field, and let π : E → S
1 be a fiber bundle

with typical fiber E0. Let E′ ⊂ E and E′
0 ⊂ E0 be subsets such that for

all p ∈ S
1 there exists a trivialization φp : π−1

(

S
1 \ {p}

)

→
(

S
1 \ {p}

)

× E0
whose restriction to π−1

(

S
1 \ {p}

)

∩ E′ gives a homeomorphism with
(

S
1 \

{p}
)

× E′
0. Then, for all k ≥ 0, the following inequality holds:

dim
(

Hk(E, E′; K)
)

≤ dim
(

Hk(E0, E
′
0; K)

)

+ dim
(

Hk−1(E0, E
′
0; K)

)

.

Proof. Consider two distinct points p1, p2 ∈ S
1 and set:

Xi = π−1(
S

1 \ {pi}
)

, Ai = Xi ∩ E′, i = 1, 2
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such that E = X1 ∪ X2 and E′ = A1 ∪ A2. The pairs (X1, X2) and (A1, A2)
are excisive couples for E and E′, respectively, since Xi is open in X and Ai

is open in A, i = 1, 2. Hence, there is an exact sequence (Mayer–Vietoris,
see, for instance, [39, § 8.1]):

· · · −→ Hk(X1 ∩ X2, A1 ∩ A2; K)
αk

1⊕αk
2−−−−→ Hk(X1, A1; K) ⊕ Hk(X2, A2; K)

−→ Hk(E, E′; K) −→ Hk−1(X1 ∩ X2, A1 ∩ A2; K)
αk−1

1 ⊕αk−1
2−−−−−−−→ · · ·

Clearly,

X1 ∩ X2 = π−1(
S

1 \ {p1, p2}
)

, A1 ∩ A2 = π−1(
S

1 \ {p1, p2}
)

∩ E′.

We will determine an estimate on the size of the image and the kernel of the
map:

αj
1 : Hj(X1 ∩ X2, A1 ∩ A2; K) −→ Hj(X1, A1; K),

j ≥ 0, that is induced by the inclusion i1 : (X1 ∩ X2, A1 ∩ A2) → (X1, A1).
Choose a trivialization φ : π−1

(

S
1 \ {p1}

)

→
(

S
1 \ {p1}

)

× E0 compatible
with E′ as in the assumptions, and denote by ˜φ the restriction of φ to
π−1

(

S
1 \ {p1, p2}

)

. We have induced isomorphisms:

Hj

(

π−1
(

S
1 \ {p1}

)

, π−1
(

S
1 \ {p1}

)

∩E′; K
)

φ∗

��
Hj

(

(S1 \ {pi})×E0, (S1 \ {p1})×E′
0; K

) ∼=Hj(E0, E
′
0; K),

Hj

(

π−1
(

S
1 \ {p1, p2}

)

, π−1
(

S
1 \ {p1, p2}

)

∩E′; K
)

˜φ∗

��
Hj

(

(S1 \ {p1, p2})×E0, (S1 \ {p1, p2})×E′
0; K

)

∼=Hj(E0, E
′
0; K)⊕Hj(E0, E

′
0; K).

It is immediate to verify that the map

φ∗ ◦ αj
1 ◦ ˜φ−1

∗ : Hj(E0, E
′
0; K) ⊕ Hj(E0, E

′
0; K) → Hj(E0, E

′
0; K)
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is the sum (x, y) �→ x + y, which is surjective. It follows that the dimension
of the image of the map αj

1 ⊕ αj
2 is greater than or equal to dim

(

Hj(E0,
E′

0; K)
)

, while the kernel of αj
1 ⊕ αj

2 has dimension less than or equal to
dim

(

Hj(E0, E
′
0; K)

)

. From the Mayer–Vietoris sequence, we now pass to
the short exact sequence

0 → Vk → Hk(E, E′; K) → Ker(αk−1
1 ⊕ αk−1

2 ) → 0,

where
Vk =

(

Hk(E0, E
′
0; K) ⊕ Hk(E0, E

′
0; K)

)

/Im(αk
1 ⊕ αk

2),

obtaining

dim
(

Hk(E, E′; K) = dim(Vk) + dim
(

Ker(αk−1
1 ⊕ αk−1

2 )
)

≤ dim
(

Hk(E0, E
′
0; K)

)

+ dim
(

Hk−1(E0, E
′
0; K)

)

. �
An example where Proposition A.1 applies is given by considering fiber

bundles E that are associated bundles P ×G E0 of a G-principal fiber bundle
P over S

1, where E0 is a G-space (i.e., a topological space endowed with a
continuous left G-action), E′

0 ⊂ E0 is a G-subspace of E0, and E′ = P ×G E′
0

(see [41, Chapter 1]). This is the situation in which Proposition A.1 is used
in the present paper (recall the definitions of the pair of bundles (6.5)).
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651 Cidade Universitária – Barão Geraldo 13083–859 Campinas

São Paulo, Brazil

E-mail address: mercuri@ime.unicamp.br

Departamento de Matemática
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