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Morse theory for the space of Higgs bundles
Graeme Wilkin

The purpose of this paper is to prove the necessary analytic results
to construct a Morse theory for the Yang–Mills–Higgs functional
on the space of Higgs bundles over a compact Riemann surface.
The main result is that the gradient flow with initial conditions
(A′′, φ) converges to a critical point of this functional, the isomor-
phism class of which is given by the graded object associated to the
Harder–Narasimhan–Seshadri filtration of (A′′, φ). In particular,
the results of this paper show that the failure of hyperkähler
Kirwan surjectivity for rank 2 fixed determinant Higgs bundles
does not occur because of a failure of the existence of a Morse
theory.

1. Introduction

This paper studies the convergence properties of the gradient flow of the
Yang–Mills–Higgs functional on the space of Higgs bundles over a com-
pact Riemann surface, as introduced by Hitchin in [10]. Higgs bundles that
minimize this functional correspond to solutions of Hitchin’s self-duality
equations, which (modulo gauge transformations) correspond to points of
the SL(n, C) or GL(n, C) character variety of the surface. The results of
this paper provide the analytic background for the use of Morse theory in
the spirit of Atiyah and Bott’s approach for holomorphic bundles in [2] to
compute topological invariants of these character varieties, a program that
has been carried out for the case n = 2 by the author, Daskalopoulos and
Weitsman in the paper [5].

To precisely define the spaces and functions under consideration we use
notation as follows. Let X be a compact Riemann surface of genus g, and
fix a C∞ complex vector bundle E of rank r and degree d over X with
a Hermitian metric on the fibres. Let A denote the space of connections
on E compatible with the metric, and note that A is isomorphic to the
space A0,1, the space of holomorphic structures on E. A pair (A′′, φ) ∈
A0,1 × Ω1,0(End(E)) ∼= T ∗A is called a Higgs pair if the relation d′′

Aφ = 0 is
satisfied. Let B(r, d) denote the space of all Higgs pairs on E, this space
can be visualized as follows. There is a projection map p : B(r, d) → A0,1
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given by p(A′′, φ) = A′′, the fibres of p are vector spaces {φ | d′′
Aφ = 0}, which

change in dimension as the holomorphic structure changes. In this way it is
easy to see that the space B(r, d) is singular. If the determinant of E is held
fixed throughout this process then the gauge group G has an SU(r) structure,
the space A consists of holomorphic structures with fixed determinant, and
the Higgs field φ is also trace-free. This is known as the fixed determinant
case. If the determinant of E is unrestricted then the gauge group G has a
U(r) structure and this is known as the non-fixed determinant case.

In the following, B will be used to denote the space of Higgs bundles and
the extra notation for the rank and degree of E will be omitted if the meaning
is clear from the context. Bst (resp. Bss) denotes the space of stable (resp.
semistable) Higgs bundles, those for which every φ-invariant holomorphic
sub-bundle F ⊂ E satisfies deg(F )

rank(F ) < deg(E)
rank(E) (resp. deg(F )

rank(F ) ≤ deg(E)
rank(E)). The

moduli space of semistable Higgs bundles is the space MHiggs(r, d) = Bss//G,
where the GIT quotient // identifies the orbits whose closures intersect. In
the fixed determinant case the moduli space is denoted MHiggs

0 (r, d).
As noted in [10], the space T ∗A is an infinite-dimensional hyperkähler

manifold, and the action of the gauge group G induces three moment maps
μ1, μ2 and μ3 taking values in Lie(G)∗ ∼= Ω2(End(E)) and given by

μ1(A, φ) = FA + [φ, φ∗]
μC(A, φ) = μ2 + iμ3 = 2id′′

Aφ.

A theorem of Hitchin in [10] and Simpson in [21] identifies the moduli space
of semistable Higgs bundles with the quotient

(
μ−1

1 (α) ∩ μ−1
C

(0)
)
/G, where

α is a constant multiple of the identity that minimizes ‖μ1‖2, and which is
determined by the degree of the bundle E. This is the hyperkähler quotient
(as defined in [11]) of T ∗A by G at the point (α, 0, 0) ∈ Lie(G)∗ ⊗R R

3.
The functional YMH (A, φ) = ‖FA + [φ, φ∗]‖2 is defined on B using the

L2 inner product 〈a, b〉 =
∫
X tr a ∗̄ b. The purpose of this paper is to use

the gradient flow of YMH to provide an analytic stratification of the space
B for any rank and degree, and for both fixed and non-fixed determinant.
The theorem of Hitchin and Simpson described above identifies the minimal
stratum with the space of semistable Higgs bundles, the results here com-
plete this picture by providing an algebraic description of the non-minimal
strata for the flow in terms of the Harder–Narasimhan filtration.

Theorem 1.1 (Convergence of gradient flow). The gradient flow of

YMH (A, φ) = ‖FA + [φ, φ∗]‖2
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converges in the C∞ topology to a critical point of YMH . Moreover, let
r(A0, φ0) be the map which take the initial conditions (A0, φ0) to their limit
under the gradient flow equations. Then for each connected component η
of the set of critical points of YMH , the map r : {(A0, φ0) ∈ B : r(A0, φ0) ∈
η} → η is a G-equivariant continuous map.

This theorem is proved in Section 3. On each non-minimal critical set,
the critical point equations of YMH define a splitting of E = F1 ⊕ · · · ⊕ Fn

into φ-invariant holomorphic sub-bundles. The degree of each component of
the splitting is (up to re-ordering) well defined on each connected component
of the set of critical points, and each component can be classified by the
Harder–Narasimhan type of the splitting into sub-bundles. This leads to
the following stratification of the space B.

Corollary 1.2 (Description of analytic stratification). The space B
admits a stratification in the sense of [2, Proposition 1.19 (1)–(4)], which
is indexed by the set of connected components of the critical points of the
functional YMH .

As described in [9], B can also be stratified algebraically by the φ-
invariant Harder–Narasimhan type of each Higgs bundle. The following
theorem shows that this stratification is the same as that in Corollary 1.2.

Theorem 1.3 (Equivalence of algebraic and analytic stratifications).
The algebraic stratification of B by Harder–Narasimhan type is equivalent to
the analytic stratification of B by the gradient flow of the functional YMH .

This theorem is proved in Section 4. Moreover, the following theorem
(proved in Section 5) provides an algebraic description of the limit of the
gradient flow in terms of the Harder–Narasimhan–Seshadri filtration of the
bundle.

Theorem 1.4 (Convergence to the graded object of the HNS
filtration). The isomorphism class of the retraction r : B → Bcrit onto the
critical sets of YMH is given by

(1.1) r(A′′, φ) ∼= GrHNS(A′′, φ),

where GrHNS(A′′, φ) is defined in Section 5.
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A long-standing question for finite-dimensional hyperkähler quotients
M /// G is the question of whether the hyperkähler Kirwan map is surjec-
tive. In infinite dimensions this is not true, since a comparison of the Betti
numbers from the computation of Pt(MHiggs

0 (2, 1)) in [10], together with
the calculation of Pt(BGSU(2)) from Theorem 2.15 of [2], shows that the
hyperkähler Kirwan map κHK : H∗

G(T ∗A) → H∗
G(μ−1

1 (α) ∩ μ−1
C

(0)) cannot
be surjective in the case of rank 2 degree 1 fixed determinant Higgs bundles.
It would have been reasonable to conjecture that this failure of surjectivity
occurs because of a failure of the Morse theory for this infinite-dimensional
example, however the results of this paper show that the Morse theory actu-
ally does work, and the paper [5] explains the failure of hyperkähler Kirwan
surjectivity for this example in terms of the singularities in the space B.

The proof of Theorem 1.1 is an extension of the approach of Rade in [17]
and [18] where it was shown that the gradient flow of the Yang–Mills func-
tional converges in the H1 norm when X is a 2- or 3-dimensional manifold,
thus providing a purely analytic stratification of the space A. R̊ade’s proof
was based on a technique of Simon in [19], the key step being to show that a
Lojasiewicz-type inequality holds in a neighbourhood of each critical point.
Theorem 1.1 extends this result to Higgs bundles and also improves on the
convergence (showing C∞ convergence instead of H1 convergence), by using
a Moser iteration argument.

This paper is organized as follows. Section 2 sets the notation that is
used in the rest of the paper. In Section 3 we prove the convergence result,
Theorem 1.1. Section 4 contains the proof of the equivalence between the
analytic stratification defined by the gradient flow of YMH and the alge-
braic stratification by Harder–Narasimhan type (Theorem 1.3) and Section 5
shows that the gradient flow converges to the graded object of the Harder–
Narasimhan–Seshadri double filtration (Theorem 1.4).

2. Symplectic preliminaries

In this section we derive the basic symplectic formulas that are used to set
the notation and sign conventions for the rest of the paper. First identify

A × Ω1,0(End(E)) ∼= A0,1 × Ω1,0(End(E)),

where A0,1 denotes the space of holomorphic structures on E (as in [2,
Section 5]), and note that the tangent space is isomorphic to

(2.1) T(A′′,φ)
(
A0,1 × Ω1,0(End(E))

) ∼= Ω0,1(End(E)) × Ω1,0(End(E)).



Morse theory for space of Higgs bundles 287

The metric used here is given by

(2.2) g

((
a′′

1
ϕ1

)
,

(
a′′

2
ϕ2

))
= 2 Re

∫

X
tr{a′′

1 ∗̄ a′′
2} + 2 Re

∫

X
tr{ϕ1 ∗̄ ϕ2},

where ∗̄(·) = ∗(·)∗, ∗ being the usual Hodge star operator and (·)∗ the
Hermitian adjoint with respect to the Hermitian metric on the fibres. Sim-
ilarly, the inner product on Lie(G) is defined as follows

(2.3) 〈u, v〉 =
∫

X
tr{u ∗̄ v} = −

∫

X
tr{u ∗ v}.

The dual pairing Lie(G)∗ × Lie(G) → R is given by

(2.4) μ · u = −
∫

X
tr{uμ}

and noting that μ · u = 〈u, ∗μ〉 we see that the identification of Lie(G)∗ with
Lie(G) for this choice of inner product and dual pairing is the Hodge star
operator ∗ : Ω2(End(E)) → Ω0(End(E)). The group action of G on A0,1 ×
Ω1,0(End(E)) is given by

(2.5) g ·
(

A′′

φ

)
=
(

g−1A′′g + g−1dg
g−1φg

)
.

Differentiating this gives us the infinitesimal action

(2.6) ρ(A′′,φ)(u) =
(

d′′
Au

[φ, u]

)
.

The extra notation denoting the point (A′′, φ) will be omitted if the meaning
is clear from the context. If ρ(u) = 0 then differentiating again gives us the
infinitesimal action of u on the tangent space T(A′′,φ)

(
T ∗A0,1

)

(2.7) δρ(u)
(

a′′

ϕ

)
=

d

dt

∣
∣
∣
∣
t=0

(
d′′

A+tau
[φ + tϕ, u]

)
=
(

[a′′, u]
[ϕ, u]

)
.

For some calculations (such as those in Section 3) it is more convenient to
use the identification

T(A,φ)
(
A × Ω1,0(End(E))

) ∼= Ω1(End(E))
(

a
ϕ

)
�−→a + ϕ + ϕ∗,
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where a ∈ Ω1(ad(E)) and ϕ ∈ Ω1,0(End(E)). This allows us to consider a
Higgs pair (A, φ) as a GL(n, C) connection on E, given by

D(A,φ) : Ω0(End(E)) −→ Ω1(End(E))
u �−→ dAu + [φ + φ∗, u].

Note that if u ∈ Ω1(ad(E)), then D(A,φ)u −
(
D(A,φ)u

)∗ = 2dAu and
D(A,φ)u +

(
D(A,φ)u

)∗ = 2[φ + φ∗, u], and therefore by splitting the tangent
space into skew-adjoint and self-adjoint parts we can use this interpretation
to give us the infinitesimal action of G on AGL(n,C), the space of GL(n, C)
connections on E.

ρ : Lie(G) −→ Ω1(End(E))
ρ(u) = D(A,φ)u.

In the case of a Higgs pair (A, φ) a simple computation shows that the cur-
vature of D(A,φ), denoted F(A,φ), satisfies F(A,φ) = FA + [φ, φ∗]. It is useful
to note that F ∗

(A,φ) = −F(A,φ). Now consider a general hyperkähler manifold
M with the hyperhamiltonian action of a Lie group G. Let ρ : Lie(G) →
C∞(TM) be the infinitesimal action of G, and define ρ∗

x to be the operator
adjoint of ρx at the point x ∈ M with respect to the metric g and the pairing
〈·, ·〉 on the space Lie(G)

g(ρx(u), X) = 〈u, ρ∗
x(X)〉 .

The moment map condition dμ1(X) · u = ω(ρx(u), X) = g(Iρx(u), X) shows
that dμ1 ∈ Lie(G)∗ can be identified with −ρ∗

xI ∈ Lie(G). By differentiating
the condition μ(g · x) = g−1μ(x)g we obtain the following formula

(2.8) ρ∗
xIρx(u) = −[∗μ1(x), u],

and similarly ρ∗
xJρx(u) = −[∗μ2(x), u] and ρ∗

xKρx(u) = −[∗μ3(x), u], where
∗ is used to denote the identification of Lie(G) with Lie(G)∗. Differentiating
again, we obtain the following product formulas for ρ∗

x acting on Iδρx(u)(X)
and δρx(u)(X):

(2.9) ρ∗
xIδρx(u)(X) = [ρ∗

x(IX), u] − (δρ)∗
x (X, Iρx(u)) .
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For the space of Higgs bundles with the action of G on the space T ∗A, a
calculation shows that the complex structure I commutes with the infinite-
simal action on the tangent space in the following sense

(2.10) Iδρx(u)(X) = δρx(u)(IX).

Therefore we can use (2.9) to derive the product formula

(2.11) ρ∗
xδρx(u)(X) = [ρ∗

xX, u] + (δρ)∗
x(X, ρx(u)).

Note that this formula is true for any Kähler manifold for which the com-
mutativity relation (2.10) holds.

3. Convergence of the gradient flow

Using the notation and formulae of the previous section, a calculation shows
that for a Kähler manifold M with moment map μ1 associated to a Hamil-
tonian G-action, the downwards gradient flow equations for the functional
1
2 ‖μ1(x)‖2 are given by ∂x

∂t = −Iρx(∗μ1(x)). More explicitly, for the func-
tional YMH on the manifold T ∗A0,1, the gradient flow equations are

∂A′′

∂t
= id′′

A ∗ (FA + [φ, φ∗])

∂φ

∂t
= i[φ, ∗(FA + [φ, φ∗])].

(3.1)

The purpose of this section is to prove the following theorem.

Theorem 3.1 (Convergence of gradient flow). The gradient flow of

YMH (A, φ) = ‖FA + [φ, φ∗]‖2

with initial conditions in B converges in the C∞ topology to a critical point of
YMH . Moreover, let r(A0, φ0) be the map which takes the initial conditions
(A0, φ0) to their limit under the gradient flow equations. Then for each
connected component η of the set of critical points of YMH , the map r :
{(A0, φ0) ∈ B : r(A0, φ0) ∈ η} → B is a G-equivariant continuous map.

In [17] and [18], R̊ade proves convergence of the gradient flow of the
Yang–Mills functional in the H1 norm when the base manifold is 2 or 3
dimensional. Here we extend R̊ade’s results to the case of Higgs bundles
over a compact Riemann surface, and use a Moser iteration method to
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improve the regularity to smooth convergence. This relies on the following
propositions.

Proposition 3.2 (Existence and uniqueness). The gradient flow equa-
tions for the functional YMH have a unique solution which exists for all
time.

Proposition 3.3 (Convergence modulo gauge transformations). For
each k > 0 there exist sequences {tn} ⊆ R+ and {gn} ⊆ G of Sobolev class
Hk+2 such that tn → ∞ and gn · (A(tn), φ(tn)) converges strongly in the Hk

norm to a critical point (A∞, φ∞) of the functional YMH (A, φ).

Proposition 3.4 (Continuous dependence on initial conditions).
For all k ≥ 1 and T > 0, a solution to the gradient flow Equations (3.1) at
time T depends continuously on the initial conditions in the topology induced
by the Hk norm.

Proposition 3.5 (Lojasiewicz inequality). Given a critical point (A∞,
φ∞) of the functional YMH , there exists ε1 > 0 such that the inequality

(3.2) ‖D∗
(A,φ)F(A,φ)‖L2 ≥ c |YMH (A, φ) − YMH (A∞, φ∞)|1−θ

holds for some θ ∈ (0, 1
2) whenever ‖(A, φ) − (A∞, φ∞)‖H1 < ε1.

Proposition 3.6 (Interior estimate). Let ε1 be as in Proposition 3.5, k
any positive integer and S any real number greater than 1. Given a critical
point (A∞, φ∞) of the functional YMH and some T such that 0 ≤ T ≤ S −
1, there exists a constant c such that for any solution (A(t), φ(t)) to the
gradient flow of YMH (A, φ) satisfying ‖(A(t), φ(t)) − (A∞, φ∞)‖Hk < ε1 for
all t ∈ [T, S] then

(3.3)
∫ S

T+1

∥
∥
∥
∥

(
∂A

∂t
,
∂φ

∂t

)∥∥
∥
∥

Hk

dt ≤ c

∫ S

T

∥
∥
∥
∥

(
∂A

∂t
,
∂φ

∂t

)∥∥
∥
∥

L2

dt.

Assuming the results of these propositions, the proof of Theorem 3.1
proceeds as follows.

Proposition 3.7. Let (A∞, φ∞) be a critical point of the functional YMH
and let k > 0. Then there exists ε > 0 such that if (A(t), φ(t)) is a solution
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to (3.1) and if for some T ≥ 0

(3.4) ‖(A(T ), φ(T )) − (A∞, φ∞)‖Hk < ε,

then either YMH (A(t), φ(t)) < YMH (A∞, φ∞) for some t > T , or (A(t),
φ(t)) converges in Hk to a critical point (A′

∞, φ′
∞) as t → ∞, where

YMH (A′
∞, φ′

∞) = YMH (A∞, φ∞). In the second case the following inequal-
ity holds

(3.5)
∥
∥(A′

∞, φ′
∞) − (A∞, φ∞)

∥
∥

Hk ≤ c ‖(A(T ), φ(T )) − (A∞, φ∞)‖2θ
Hk

with θ as in Proposition 3.5 and where c depends on the choice of critical
point (A∞, φ∞).

The method of proof of Proposition 3.7 is the same as the proof of
[18, Proposition 7.4], and so it is omitted. Here we use Higgs bundles
instead of connections, and also derive estimates in the Hk norm using
Proposition 3.6.

Using the above results we can now prove the main theorem of this
section.

Proof of Theorem 3.1. Let (A(t), φ(t)) be a solution to the gradient flow
equations, and let GHk+2 denote the completion of the group G in the Hk+2

norm. Proposition 3.3 shows that there exists a sequence {tn} such that
tn → ∞ and {gn} ⊂ GHk+2 such that

(3.6) gn · (A(tn), φ(tn)) −→ (Ak
∞, φk

∞)

strongly in Hk, where (Ak
∞, φk

∞) is a critical point of the functional YMH .
Since the functional YMH is invariant under the action of G and decreasing
along the gradient flow then

(3.7) YMH (gn · (A(tn), φ(tn))) ≥ · · · ≥ YMH (Ak
∞, φk

∞).

In particular YMH (A(t), φ(t)) ≥ YMH (Ak
∞, φk

∞) for all t. Equation (3.6)
implies that given any ε there exists some n such that

∥
∥
∥gn · (A(tn), φ(tn)) − (Ak

∞, φk
∞)
∥
∥
∥

Hk
< ε.

The gradient flow equations are both unitary gauge-invariant and translation
invariant with respect to t, and so gn · (A(tn + t), φ(tn + t)) is also a solution.
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For notation let (A′(t), φ′(t)) = gn · (A(tn + t), φ(tn + t)). Then

∥
∥
∥(A′(t), φ′(t)) − (Ak

∞, φk
∞)
∥
∥
∥

Hk
< ε

for all t ≥ 0, and YMH (A′(t), φ′(t)) ≥ YMH (Ak
∞, φk

∞). Therefore we are in
the second case of Proposition 3.7, and so (A′(t), φ′(t)) → (A′

∞, φ′
∞) strongly

in Hk for some critical point (A′
∞, φ′

∞). Therefore

gn · (A(tn + t), φ(tn + t)) −→ (A′
∞, φ′

∞)
⇔ (A(t), φ(t)) −→ (gn)−1 · (A′

∞, φ′
∞).

Since the critical point equations are G invariant, then (gn)−1 · (A′
∞, φ′

∞) is
a critical point of the functional YMH .

Therefore the gradient flow converges in Hk to a critical point (Ak
∞, φk

∞)
for all k > 0. Since ‖ · ‖Hk ≤ ‖ · ‖Hk+1 for all k then (Ak

∞, φk
∞) = (Ak+1

∞ ,
φk+1

∞ ) = · · · = (A∞, φ∞) for all k. The Sobolev embedding theorem implies
Ck−2 ⊂ Hk for all k, and so the gradient flow of YMH converges smoothly
to (A∞, φ∞).

To show that the limit depends continuously on the initial data, con-
sider a solution (A(t), φ(t)) to the gradient flow equations that converges in
Hk to a critical point (A∞, φ∞). Since (A(t), φ(t)) converges to (A∞, φ∞)
then there exists T such that ‖(A(T ), φ(T )) − (A∞, φ∞)‖Hk < 1

2β2. Propo-
sition 3.4 states that finite time solutions to the gradient flow equations
depend continuously on the initial conditions, therefore given β2 and T as
above there exists β3 > 0 such that if ‖(A′(0), φ′(0)) − (A(0), φ(0))‖Hk < β3
then

∥
∥(A′(T ), φ′(T )) − (A(T ), φ(T ))

∥
∥

Hk <
1
2
β2.

It then follows from Proposition 3.7 that for any β1 > 0 there exists
β2 > 0 such that if (A′(t), φ′(t)) is another solution to the gradient flow
equations which satisfies

∥
∥(A′(T ), φ′(T )) − (A∞, φ∞)

∥
∥

Hk < β2

for some T , and which converges to (A′
∞, φ′

∞) in the same connected
component of the set of critical points of YMH as (A∞, φ∞), then we
have the estimate ‖(A′

∞, φ′
∞) − (A∞, φ∞)‖Hk < β1. Therefore, given any

initial condition (A(0), φ(0)), the above results show that for any β1 > 0



Morse theory for space of Higgs bundles 293

there exists β3 > 0 such that given another initial condition (A′(0), φ′(0))
satisfying both

∥
∥(A′(0), φ′(0)) − (A(0), φ(0))

∥
∥

Hk < β3,

and also that r(A′(0), φ′(0)) and r(A(0), φ(0)) are in the same connected
component of the set of critical points of YMH , then (A′(t), φ′(t)) converges
in Hk to a critical point (A′

∞, φ′
∞) such that

∥
∥(A′

∞, φ′
∞) − (A∞, φ∞)

∥
∥

Hk < β1 �

3.1. Existence and uniqueness of the gradient flow

In this section we prove Proposition 3.2, which states existence and unique-
ness for the gradient flow equations (3.1) with initial conditions (A0, φ0) ∈ B.

In [21] the gradient flow equations (3.1) are studied as evolution equa-
tions on the space of Hermitian metrics on E. This equivalence is described
as follows: fix a holomorphic structure on E and a holomorphic section
φ0 of Ω1,0(End(E)). Now let H be any Hermitian metric on E and let
DH = d′′ + d′

H + φ0 + φ∗H

0 be a GL(r, C) connection, where d′′ + d′
H = dA

denotes the metric connection on E and φ∗H

0 is defined using Hermitian
transpose with respect to the metric H. More explicitly, we can write

dA = d′′ + d′ + H−1d′H(3.8)

φ0 + φ∗H

0 = φ0 + H−1φ̄0
T
H.(3.9)

Denote the curvature of DH by FH and let ΛF⊥
H = ΛFH − λ · id where

λ = tr{FH} is a function λ : X → C, and Λ : Ωk → Ωk−2 is defined in the
standard way using the Kähler structure on X. For X a compact Riemann
surface, the following theorem is a special case of that given by Simpson
in [21, Section 6].

Theorem 3.8 (Simpson). Solutions to the nonlinear heat equation

(3.10) H−1 ∂H

∂t
= −2iΛF⊥

H = −2i (ΛFH − λ · id)

exist for all time and depend continuously on the initial condition H(0).

The proof of Proposition 3.2 relies on showing that Equation (3.10) is
equivalent to the gradient flow of YMH . As an intermediate step we use the
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following equivalent flow equations for (Ã(t), φ̃(t))

∂Ã′′

∂t
= id̃

′′

A ∗ (F̃A + [φ̃, φ̃∗]) + d̃
′′

Aα

∂φ̃

∂t
= i[φ̃, ∗(F̃A + [φ̃, φ̃∗])] + [φ̃, α]

(3.11)

for some one-parameter family α(t) ∈ Ω0(ad(E)). Note that the new terms
in the equations correspond to the infinitesimal action of α at (Ã′′, φ̃). These
equations are Higgs bundle versions of the equivalent flow equations used
in [7] to prove existence for the Yang–Mills gradient flow equation, however
here we also use the methods of [12] to show the relationship between the
equivalent flow equations and the gradient flow equations. To achieve this
let H(t) = H0h(t), note that h−1 ∂h

∂t = H−1 ∂H
∂t and consider the following

equation for h(t)

(3.12)
∂h

∂t
= −2ih ∗

(
FA0 + d′′

A0
(h−1(d′

A0
h)) + [φ0, h

−1φ∗
0h]
)

+ 2iλh,

where dA0 is the metric connection for H(0). The proof of Proposition 3.2
requires the following lemmas, which together show that Theorem 3.8 implies
existence for Equation (3.11).

Lemma 3.9. Existence for Equation (3.10) implies existence for Equation
(3.12).

Proof. By explicit computation using (3.8) and (3.9) we also have

(3.13) FH(t) = FA0 + d′′
A0

(h−1(d′
A0

h)) + [φ0, h
−1φ∗

0h]. �

Note that h(0) = id and that h(t) is positive definite, therefore we can
choose g(t) ∈ GC such that g(t)g∗(t) = h(t)−1 (Note that a priori this choice
is not unique).

Lemma 3.10. Let h(t) be a solution to Equation (3.12), choose g(t) ∈
GC such that g(t)g(t)∗ = h(t)−1, and let A′′(t) = g(t) · A′′

0, φ(t) = g(t) · φ0.
Then (A′′(t), φ(t)) is a solution to (3.11) with α(t) = 1

2(g−1∂tg − (∂tg
∗)

(g∗)−1).
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Proof. Let (A′′(t), φ(t)) = (g(t) · A′′
0, g(t) · φ0). We have the following

identities for g ∈ GC (cf [12] (3.2) for the vortex equations)

gFAg−1 = gF(g·A0)g
−1 = FA0 + d′′

A0
(h−1(d′

A0
h))(3.14)

g[φ, φ∗]g−1 = g[(g · φ0), (g · φ∗
0)]g

−1 = [φ0, h
−1φ∗

0h].(3.15)

Differentiating A′′ and φ gives us

∂A′′

∂t
=

∂

∂ε

∣
∣
∣
∣
ε=0

d′′
(g+ε∂tg)·A0

= d′′
A(g−1(∂tg))

=
1
2
d′′

A(g−1∂tg + (∂tg
∗)(g∗)−1) +

1
2
d′′

A(g−1∂tg − (∂tg
∗)(g∗)−1)

(3.16)

and similarly
(3.17)

∂φ

∂t
=

1
2
[φ, (g−1∂tg + (∂tg

∗)(g∗)−1)] +
1
2
[φ, (g−1∂tg − (∂tg

∗)(g∗)−1)].

Let α(t) = 1
2(g−1∂tg − (∂tg

∗)(g∗)−1). Since gg∗ = h−1, then

(3.18)
∂h

∂t
= −(g∗)−1 ((∂tg

∗)(g∗)−1 + g−1(∂tg)
)
g−1.

Using the identities (3.14) and (3.15) together with the equation (3.12) shows
that the right-hand side of (3.18) is −2i(g∗)−1g−1g ∗ (FA + [φ, φ∗])g−1 +
2iλh, and therefore

1
2
(
(∂tg

∗)(g∗)−1 + g−1(∂tg)
)

= i ∗ (FA + [φ, φ∗]) − iλ · id .

Together with (3.16) and (3.17) this gives us the following equations for
A′′(t) and φ(t)

∂A′′

∂t
= id′′

A ∗ (FA + [φ, φ∗]) + d′′
A(α − iλ · id)

∂φ

∂t
= i[φ, (FA + [φ, φ∗])] + [φ, α − iλ · id] �

Proof of Proposition 3.2. To prove existence, we construct a solution to the
gradient flow equations (3.1) from a solution to the equivalent flow equations
(3.11). To prove uniqueness we then show that this solution is independent
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of the choice of g(t) such that g(t)g(t)∗ = h(t)−1. Consider the following
ODE for a one-parameter family of complex gauge transformations S(t)

(3.19)
∂S

∂t
= S(t) (α(t) − iλ · id) ,

where α : R → Lie(G) is as defined in the proof to Lemma 3.10. Note first
that S(t) is a unitary gauge transformation, even though a priori S(t) ∈
GC. This follows from observing that S(0) = id ∈ G and ∂S

∂t ∈ S(t) · Lie(G),
therefore S(t) ∈ G for all t. Lemma 3.10 shows that α(t) is defined for all t,
and therefore solutions to Equation (3.19) exist for all time by linear ODE
theory.

Let
(
Ã(t), φ̃(t)

)
denote a solution to the equivalent flow equations. For

notation let α̃ = α − iλ · id. Define A′′(t) = S−1(t) · Ã′′(t) and φ(t) =
S(t)−1 · φ̃(t). Then (A′′(t), φ(t)) exists for all t and it remains to show that
(A′′(t), φ(t)) satisfies the gradient flow equations (3.1). Differentiating with
respect to t gives us

∂A′′

∂t
=

∂

∂t

(
Sd̃′′

AS−1
)

= Sα̃d̃′′
AS−1 + Sid̃′′

A ∗
(
F̃A + [φ̃, φ̃∗]

)
S−1 + S

(
d̃′′

Aα̃
)

S−1 − d′′
A

∂S

∂t
S−1

= Sα̃d̃′′
AS−1 + id′′

A ∗
(
FA + [φ, φ∗]

)
+ S
(
d̃′′

Aα̃
)

S−1 − Sd̃′′
Aα̃S−1

= id′′
A ∗
(
FA + [φ, φ∗]

)

and similarly for φ̃ we obtain ∂φ
dt = i[φ, ∗(FA + [φ, φ∗])]. Therefore the solu-

tion (A′′(t), φ(t)) of (3.1) exists for all time.
To prove uniqueness we note first that (as in the unitary case studied

in [7]) solutions to Simpson’s heat equation (3.10) are unique, by apply-
ing the maximum principle to the distance function σ given in the proof
of [21, Proposition 6.3]. From the construction in the proofs of Lemmas 3.9
and 3.10, the only non-unique choice made in constructing the solution to
the gradient flow of YMH from a solution to Equation (3.10) is the choice
of g(t) such that g(t)g(t)∗ = h(t)−1. The following lemma shows that the
solution is independent of this choice.

Lemma 3.11. Let h(t) be a solution to (3.10), and suppose that g1(t)
and g2(t) are one-parameter families in GC such that g1(t)g1(t)∗ = h(t)−1 =
g2(t)g2(t)∗. Let S1(t) and S2(t) be the corresponding solutions constructed
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above such that

(
A′′

1(t), φ1(t)
)

= S1(t)−1 · g1(t) ·
(
A′′

0, φ0
)

=
(
g1(t)S1(t)−1) ·

(
A′′

0, φ0
)

(
A′′

2(t), φ2(t)
)

= S2(t)−1 · g2(t) ·
(
A′′

0, φ0
)

=
(
g2(t)S2(t)−1) ·

(
A′′

0, φ0
)
.

Then (A′′
1(t), φ1(t)) = (A′′

2(t), φ2(t)).

Proof. Note that g−1
1 g2g

∗
2(g

∗
1)

−1 = id, therefore g−1
1 g2 = u(t) for some curve

u(t) ∈ G. As in the proof of Lemma 3.10, define the gauge fixing terms α1(t)
and α2(t) by

α1(t) =
1
2

(
g−1
1 ∂tg1 − (∂tg

∗
1)(g

∗
1)

−1
)

α2(t) =
1
2

(
g−1
2 ∂tg2 − (∂tg

∗
2)(g

∗
2)

−1
)

= u(t)−1α1(t)u(t) + u(t)−1∂tu.

Therefore the equations for S1(t) and S2(t) are

S1(t)−1 ∂S

∂t
= α1(t) − iλ

S2(t)−1 ∂S

∂t
= α2(t) − iλ = u(t)−1α1(t)u(t) + u(t)−1∂tu.

S2(t) = S1(t)u(t) is a solution to this equation, which is unique by lin-
ear ODE theory. Therefore g2(t)S2(t)−1 = g1(t)u(t)u(t)−1S1(t)−1 = g1(t)
S1(t)−1, which completes the proof of uniqueness. �

3.2. Compactness along the gradient flow

In this section we derive estimates for
∣
∣∇k

A(FA + [φ, φ∗])
∣
∣
C0 along the gradi-

ent flow of YMH , and prove a compactness theorem (Lemma 3.14). Together
these are sufficient to prove Proposition 3.3. The basic tool is the following
estimate based on [10, Theorem 4.3] (for the case of SU(2) bundles) and
Lemma 2.8 of [22] (for bundles with a general compact structure group).

Theorem 3.12 (Hitchin/Simpson). Fix a Higgs pair (A0, φ0) and a con-
stant C, and consider the subset OC of the complex group orbit GC · (A0, φ0)
consisting of Higgs pairs satisfying the estimate ‖FA + [φ, φ∗]‖L2 < C. Then
there exists a constant K such that ‖FA‖L2 < K and ‖φ‖H1 < K for all
(A, φ) ∈ OC .
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The Sobolev spaces Lp
k used in this section are defined via norm

‖σ‖A
Lp

k
=

(
k∑

i=0

‖∇i
Aσ‖Lp

)

.

Remark 3.13. A priori the norm depends on the connection dA, however
Propositions D.1 and D.2 from [17] show that given a uniform bound on
the curvature ‖FA‖A

L2
k
, the norms of the Sobolev multiplication, embedding

and interpolation operators are uniformly bounded in A. Therefore the
bounds obtained from Lemma 3.14 below show that the estimates obtained
in this section are independent of the choice of connection used to define the
Sobolev norm.

The proof of Proposition 3.3 relies on the following two lemmas. Firstly,
by bootstrapping the results of Theorem 3.12 using the equation d′′

Aφ = 0
we obtain the following result.

Lemma 3.14. Consider the subset Ok
C of the complex group orbit GC ·

(A0, φ0) consisting of Higgs pairs satisfying the estimate ‖FA + [φ, φ∗]‖L4
k

<
C. Then there exists a constant K such that ‖FA‖L4

k
< K and ‖φ‖L4

k+2
< K

for all (A′′, φ) ∈ Ok
C . Moreover, the Sobolev embedding theorems show that

‖∇k+1
A φ‖C0 < K.

Proof. Suppose that ‖FA + [φ, φ∗]‖L4
k

< C on a GC-orbit. Then
‖FA + [φ, φ∗]‖L2 is bounded and Theorem 3.12 shows that there exists K
such that ‖FA‖L2 < K and ‖φ‖L2

1
< K. Therefore [φ, φ∗] is bounded in L4

and so ‖FA‖L4 is bounded. Theorem 1.5 in [23] shows that after apply-
ing unitary gauge transformations ‖A‖L4

1
< K locally. Then Sobolev multi-

plication L4
1 × L2

1 → L2
1 shows that ‖[A′′, φ]‖L2

1
is bounded locally and so

the equation d′′φ = −[A′′, φ] gives the elliptic estimate ‖φ‖L2
2

≤ C(‖[A′′,
φ]‖L2

1
+ ‖φ‖L2). Applying this procedure again with Sobolev multiplication

L4
1 × L2

2 → L4
1 shows that φ is bounded in L4

2. Therefore [φ, φ∗] is bounded
in L4

1, so ‖FA‖L4
1

< C and we can repeat the above process inductively for
all k to complete the proof of Lemma 3.14. �

The next lemma shows that the L4
k bound on FA + [φ, φ∗] exists along

the flow.

Lemma 3.15. Let s ≥ 0 and suppose that ‖∇�
A(FA + [φ, φ∗])‖C0 is bounded

for all � < s, and that ‖∇�
Aφ‖C0 is bounded for all � ≤ s. Then the following
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estimates hold for a solution (A(t), φ(t)) of the gradient flow equations (3.1)

2 |∇s
A(FA + [φ, φ∗])|2 ≤ −

(
∂

∂t
+ Δ
) ∣
∣∇s−1

A (FA + [φ, φ∗])
∣
∣2

+ C
(∣
∣∇s−1

A (FA + [φ, φ∗])
∣
∣2 + 1

)
(3.20)

(3.21)
(

∂

∂t
+ Δ
)

|∇s
A(FA + [φ, φ∗])|2 ≤ C

(
|∇s

A(FA + [φ, φ∗])|2 + 1
)

Proof. For notation let μ = FA + [φ, φ∗] and define the operator L: Ω0

(ad(E)) → Ω1,0(End(E)) by L(u) = [φ, u]. First we note that (in the nota-
tion of Section 2) for any moment map μ on a symplectic manifold we have
the following equation along the gradient flow

(3.22)
∂(∗μ)

∂t
= ∗dμ

(
∂x

∂t

)
= −ρ∗

xI(−Iρx(∗μ)) = −ρ∗
xρx(∗μ).

For Higgs bundles this reduces to the equation
(

∂
∂t + Δ(A′′,φ)

)
(∗μ) = 0.

Since ∗μ is a 0-form then Δ(A′′,φ)(∗μ) = ∇∗
A∇A(∗μ) + L∗L(∗μ). The method

of [7, pp. 16–17] for the Yang–Mills functional shows that in this case

(3.23)
∂ |∗μ|2

∂t
+ Δ |∗μ|2 ≤ 0.

In particular, the maximum principle shows that supX |∗μ|2 is decreasing
and therefore bounded uniformly in t. Equations (3.20) and (3.21) can then
be computed in a standard way ([3, cf p. 40] for the Yang–Mills flow and
the proof of [13, Proposition 3 and Proposition 6] for the vortex equations),
and so the rest of the proof is omitted. �

As a corollary, we obtain uniform L2
k bounds on FA + [φ, φ∗].

Corollary 3.16.
∫ T+1

T
‖∇s

A(FA + [φ, φ∗])‖L2 dt is bounded uniformly in

T , and so ‖∇s
A(FA + [φ, φ∗])‖C0 is bounded uniformly in t.

The proof relies on Moser’s Harnack inequality from [16], which can be
stated in the following form.

Theorem 3.17 (Moser). Let 0 ≤ τ−
1 < τ−

2 < τ+
1 < τ+

2 and suppose that
u ≥ 0 is a function on a compact manifold X, and that ∂u

∂t + Δu ≤ Cu.
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Then there exists a constant γ depending only on (τ−
2 − τ−

1 ), (τ+
1 − τ−

2 ),
(τ+

2 − τ−
2 ) and C such that

sup
τ−
1 <t<τ−

2

u ≤ γ

∫ τ+
2

τ+
1

‖u‖L2 dt

Proof of Corollary 3.16. To obtain a C0 bound on |∇s
A(∗μ)| we use Theo-

rem 3.17 as follows. Equation (3.20) together with the fact that
∣
∣∇�

A(∗μ)
∣
∣

is bounded in C0 for all � < s shows that
∫ T+1
T ‖∇s

A(∗μ)‖L2 dt < C, where
C is independent of T . Equation (3.21) shows that Moser’s theorem applies
to the function |∇s

A(∗μ)| + 1. Therefore

sup
T−2<t<T−1

|∇s
A(∗μ)| + 1 ≤ γ

∫ T+1

T
‖∇s

A(∗μ)‖L2 dt

is uniformly bounded in T (where γ is independent of T because the time
intervals [T − 2, T − 1] and [T, T + 1] are of constant size and relative posi-
tion). Therefore |∇s

A(∗μ)| is uniformly bounded in t. �
Using these lemmas, the proof of Proposition 3.3 proceeds as follows.

Proof of Proposition 3.3. First we show by induction that ‖FA + [φ, φ∗]‖L4
k

is bounded for all k. The computation in the proof of Lemma 3.15 shows
that a solution (A(t), φ(t)) of the gradient flow equations (3.1) satisfies the
equation (

∂

∂t
+ Δ
)

|FA + [φ, φ∗]|2 ≤ 0.

Therefore ‖FA + [φ, φ∗]‖C0 is bounded uniformly in t, and in particular
‖FA + [φ, φ∗]‖L4 is bounded. Lemma 3.14 then gives a bound on the C0

norm of |∇Aφ| and Corollary 3.16 with s = 1 gives a bound on ‖∇A(FA +
[φ, φ∗])‖C0 , and hence on ‖FA + [φ, φ∗]‖L4

1
.

Now suppose that ‖FA + [φ, φ∗]‖L4
k

is bounded, and also suppose that
‖∇�

Aφ‖C0 and ‖∇�
A (FA + [φ, φ∗])‖C0 are bounded uniformly in t for all � ≤

k. Applying Lemma 3.14 shows that ‖∇�
Aφ‖C0 is bounded for all � ≤ k +

1. Then we can apply Lemma 3.15 for s = k + 1 which shows that ‖FA +
[φ, φ∗]‖L4

k+1
and ‖∇k+1

A (FA + [φ, φ∗])‖C0 are bounded, which completes the
induction.

Since ‖(FA + [φ, φ∗])‖L4
k

is bounded for all k then Lemma 3.14 holds
for all k. In particular, ‖FA‖L4

k
and ‖φ‖L4

k+2
are bounded for all k. To

complete the proof we need to show that along a subsequence the gradi-
ent flow converges to a critical point of YMH . To see this, first note that
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in general for the gradient flow of any non-negative functional f : M → R

we have for any time T the equation f(t = 0) − f(t = T ) = −
∫ T
0

∂f
∂t dt =∫ T

0 df(grad f) dt and therefore
∫ T
0 ‖ grad f‖2 dt ≤ f(t = 0). Therefore there

exists a subsequence tn → ∞ such that grad f(tn) → 0 strongly in the appro-
priate norm. For the case of f = YMH , along this subsequence tn the above
argument provides a bound on ‖FA‖L4

k
. Therefore Uhlenbeck’s compact-

ness theorem shows that along a subsequence (also call it tn) there exists
a sequence of unitary gauge transformations gn such that gn · A(tn) ⇀ A∞
weakly in L4

k+1 and strongly in L4
k. Since ‖gn · φ(tn)‖L4

k+2
is also bounded,

then there exists a subsequence (also call it tn) such that gn · φ(tn) → φ∞
in L4

k. It only remains to show that (A∞, φ∞) is a critical point of YMH .
Let ρn : Ω0(ad(E)) → Ω0,1(End(E)) ⊕ Ω1,0(End(E)) denote the

operator

u �−→
(

d′′
A(tn)u

[φ(tn), u]

)

and let ∗μ = ∗(FA + [φ, φ∗]). Note that gradYMH (tn) = Iρn(∗μ(tn)).
Along the subsequence tn, gradYMH → 0 strongly in L4

k−1. Therefore
(3.24)

ρn(∗μ(tn)) − ρ∞(∗μ(∞)) = ρ∞(∗μ(tn) − ∗μ(∞)) − (ρn − ρ∞)(∗μ(tn))

ρn(∗μ(tn)) → 0 strongly in L4
k−1 and the right-hand side of the above equa-

tion converges to 0 strongly in L4
k−1. Therefore ρ∞(∗μ(∞)) = 0, and so

(A∞, φ∞) is a critical point of YMH . �

3.3. Continuous dependence on initial conditions

In this section we prove Proposition 3.4. The proof of this proposition
follows the method of [18, Section 5] which proves continuous dependence
on the initial conditions in the H1 norm for the Yang–Mills gradient flow,
however here we generalize to the case of Higgs bundles, and also use the
estimates for the higher derivatives of the curvature from Lemma 3.14 to
show continuous dependence on the initial conditions in the Hk norm for
all k. This relies on the estimates from [18, Proposition A], which are
valid when the higher derivatives of the curvature are bounded. R̊ade’s
approach also proves the existence and uniqueness of a solution, however
since in this case Proposition 3.2 together with the estimates derived in
the proof of Proposition 3.3 already show that a unique smooth solution to
(3.1) exists, then the estimates in this section can be simplified from those
of [18, Section 5]. The reference for the definitions of the time-dependent
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Sobolev spaces used in this section is the Appendix of [18] (further details
are explained in [17]).

First note that for the general case of a moment map on a symplec-
tic manifold, the downwards gradient flow of ‖μ‖2 satisfies the following
equations

∂x

∂t
+ Iρx(∗μ) = 0

∂(∗μ)
∂t

+ ρ∗
xρx(∗μ) = 0.

(3.25)

The results of Proposition 3.2 and Proposition 3.3 show that in the Higgs
bundle case, a smooth solution to (3.25) exists. Now consider instead the
following generalized system, with ∗μ replaced by a general Ω ∈ Lie(G)

∂x

∂t
+ Iρx(Ω) = 0

∂Ω
∂t

+ ρ∗
xρx(Ω) = 0

(3.26)

First we note that if a smooth solution (x(t), Ω(t)) of (3.26) exists with
initial conditions x(0) = x0 and Ω(0) = ∗μ(x0) then this solution satisfies
Ω(t) = ∗μ(x(t)). This follows by considering ψ(t) = Ω(t) − ∗μ(x(t)), and
noting that

∂ψ

∂t
=

∂Ω
∂t

− ∂(∗μ)
∂t

= −ρ∗
xρx(Ω) − ∗dμ

(
∂x

∂t

)

= −ρ∗
xρx(Ω) + ρ∗

xI (−Iρx(Ω))

= −ρ∗
xρx(Ω) + ρ∗

xρx(Ω) = 0.

Therefore if ψ(t = 0) = 0 then Ω(t) = ∗μ(x(t)) for all t. In the Higgs bundle
case, the space T ∗A is an affine space, and ρx+a(u) = ρx(u) + {a, u} where
{·, ·} denotes various intrinsically defined multilinear operators. For a fixed
point x0 ∈ T ∗A, let y = x − x0 and note that the Equations (3.26) become

∂y

∂t
+ Iρx0(Ω) = {y, Ω}

∂Ω
∂t

+ ρ∗
x0

ρx0(Ω) = {y∗, ρx0(Ω)} + {ρ∗
x0

(y), Ω} + {y∗, y, Ω}.

(3.27)
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In the Higgs bundle case we can write (for x0 = (A0, φ0))

ρ∗
x0

ρx0(Ω) = d′′∗
A0

d′′
A0

Ω − ∗̄ [φ0, ∗̄[φ0, Ω]]

= ∇∗
A0

∇A0Ω + {φ∗
0, φ0, Ω}.

Therefore the gradient flow equations become

∂y

∂t
+ Iρx0(Ω) = {y, Ω}

∂Ω
∂t

+ ∇∗
A0

∇A0Ω = {φ∗
0, φ0, Ω} + {y∗, ρx0(Ω)} + {y∗, y, Ω}.

(3.28)

Following the method of [18], define the operator L

(3.29) L =

⎛

⎜
⎝

∂

∂t
ρ∗

x0

0
∂

∂t
+ ∇∗

A0
∇A0

⎞

⎟
⎠ ,

and Q1, Q2, Q3

Q1

(
y

Ω

)

=

(
0

{φ∗
0, φ0, Ω}

)

Q2

(
y

Ω

)

=

(
{y, Ω}

{y, ρx0(Ω)} + {ρ∗
x0

(y), Ω}

)

Q3

(
y

Ω

)

=

(
0

{y∗, y, Ω}

)

.

Define the Hilbert spaces

Uk(t0) =

{(
y

Ω

)

: y ∈ H(1/2)+ε,k([0, t0]) and Ω ∈ H(1/2)+ε,k−1([0, t0])

∩H−(1/2)+ε,k+1([0, t0])
}

Uk
P (t0) =

{(
y

Ω

)

: y ∈ H
(1/2)+ε,k
P ([0, t0]) and Ω ∈ H

(1/2)+ε,k−1
P ([0, t0])

∩H
−(1/2)+ε,k+1
P ([0, t0])

}
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Wk
P (t0) =

{(
y

Ω

)

: y ∈ H
−(1/2)+ε,k
P ([0, t0]) and Ω ∈ H

−(1/2)+ε,k−1
P ([0, t0])

}

.

The following lemma is a Higgs bundle version of [18, Lemma 5.1], the
proof is analogous and therefore omitted.

Lemma 3.18. Let (A0, φ0) ∈ B. Then the maps L, Qi for i = 1, 2, 3 and
the identity map I define bounded linear operators

L : Uk
P (t0) → Wk

P (t0)

Q1 : Uk(t0) → Wk
P (t0)

Q2 : S2Uk(t0) → Wk
P (t0)

Q3 : S3Uk(t0) → Wk
P (t0)

I : Uk
P (t0) → U(t0).

Moreover, the operator L is invertible. For any K > 0 there exists cK > 0
such that if ‖FA0‖Hk−1 < K then

‖L−1‖ ≤ cK , ‖Q1‖ ≤ cKt
(1/4)−ε
0

‖M‖ ≤ cKt−ε
0 , ‖Q2‖ ≤ cKt

(1/4)−2ε
0

‖I‖ ≤ 1, ‖Q3‖ ≤ cKt
(1/2)−2ε
0

for t0 sufficiently small.

Note that the Sobolev spaces in [18] are defined slightly differently to
the definitions of Uk, Uk

P and Wk above. R̊ade also considers the case of a
3-dimensional manifold for which the multiplication theorems used in the
proof of [18, Lemma 5.1] become borderline with the definitions above, how-
ever here we only consider the case of a compact Riemann surface, and so
we can derive stronger estimates. Now consider the homogeneous system of
equations with initial conditions (y1(0), Ω1(0)) = (x0, Ω0).

∂y1

∂t
+ Iρx0(Ω1) = 0(3.30)

∂Ω1

∂t
+ ∇∗

A0
∇A0Ω1 = 0.(3.31)

Proposition A of [18] shows that there exists a unique solution to (3.31) given
by Ω1 ∈ H(1/2)+ε,k−1 ∩ H−(1/2)+ε,k+1, which satisfies ‖Ω1‖ ≤ cKt−ε

0 ‖Ω0‖.
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Therefore there also exists a unique solution y1 = y0 −
∫ t
0 Iρx0(Ω1(s)) ds to

(3.30) which (again by [18, Proposition A]) satisfies ‖y1‖ ≤ cK‖y0‖.
Therefore, the solution operator M defined by

(3.32) M

(
y0
Ω0

)
=
(

y1
Ω1

)

is bounded, with ‖M‖ ≤ cKt−ε
0 . Let (y2, Ω2) = (y − y1, Ω − Ω1). Then the

initial-value problem (3.27) can be written as

L

(
y2
Ω2

)
= Q1

(
M

(
y0
Ω0

)
+ I

(
y2
Ω2

))
+ Q2

(
M

(
y0
Ω0

)
+ I

(
y2
Ω2

))

+ Q3

(
M

(
y0
Ω0

)
+ I

(
y2
Ω2

))
.(3.33)

The estimates from Lemma 3.18 are identical to those of [18, Lemma 5.1],
and applying [18, Lemma 5.2] shows that for a small interval [0, t0], the
solution to (3.27) satisfies y ∈ C0([0, t0], Hk), Ω ∈ C0([0, t0], Hk−1), and that
(y, Ω) depends continuously on the initial conditions (y0, Ω0) ∈ Hk × Hk−1.
This completes the proof of Proposition 3.4.

3.4. A Lojasiewicz inequality

In the paper [19], Simon proved the convergence of solutions to the equation

u̇ − M(u) = f

as t → ∞, where u = u(x, t) is a smooth section of a vector bundle F over a
compact Riemannian manifold Σ, and M(u) is the gradient of an “Energy
Functional” E(u) =

∫
Σ E(x, u,∇u) on Σ. The function E is assumed to have

analytic dependence on u and ∇u, and the operator M is assumed to be
elliptic. The key estimate in Simon’s proof was the inequality

‖M(u)‖ ≥ |E(u) − E(0)|1−θ ,

where θ ∈ (0, 1
2), an infinite dimensional version of an inequality proved by

Lojasiewicz in [15] for real analytic functionals on a finite-dimensional vector
space. The proof uses the ellipticity of M to split the space of sections
into a finite dimensional piece corresponding to the kernel of an elliptic
operator (where Lojasiewicz’s inequality holds) and an infinite dimensional
piece orthogonal to the kernel (where Simon uses elliptic estimates).
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In [17, 18], R̊ade extends this estimate to the case of the Yang–Mills
functional on 2- and 3-dimensional manifolds. Simon’s result does not hold
a priori since the gradient of the Yang–Mills functional is not an elliptic
operator, however R̊ade uses a Coulomb gauge theorem to show that after
the action of the gauge group one can restrict to a sub-space where the
Hessian is an elliptic operator, and then prove the result directly, following
Simon’s technique.

In this section we prove Theorem 3.19, which is a Higgs bundle version
of Simon’s estimate for the functional QH defined below, and it is then
shown that Proposition 3.5 follows from Theorem 3.19. Many aspects of the
proof of Theorem 3.19 are more general than just the case of Higgs bundles
considered in this paper, and can be extended to functionals on other spaces,
such as the case of quiver bundles over Riemann surfaces (for which an
analogue of Hitchin and Simpson’s theorem was proven in [1]). With this in
mind, when possible the results are given in more general terms.

For notation, let M denote the affine Hilbert space (T ∗A)H1 and let GH2

denote the completion of G in the H2 norm. Note that Sobolev multiplica-
tion implies that GH2 acts on M .

Theorem 3.19. Let ρ : M × g → TM denote the infinitesimal action of
GH2 on M , and consider the functional QH : M → R defined by

QH(x) = ‖μ1(x)‖2 + ‖μ2(x)‖2 + ‖μ3(x)‖2,

where x denotes the point (A′′, φ) ∈ (T ∗A)H1.
Fix a critical point x of QH. Then there exists some ε > 0 (depending

on x) and θ ∈
(
0, 1

2

)
such that the following inequality holds:

(3.34) ‖ grad QH(y)‖H−1 ≥ C |QH(y) − QH(x)|1−θ

whenever ‖x − y‖H1 < ε.

Assuming the result of the theorem, the proof of Proposition 3.5 is as
follows.

Proof of Proposition 3.5. Choose a critical point (A′′
∞, φ∞) ∈ B of YMH ,

which is also a critical point of QH. Note that QH|B = YMH and
apply Theorem 3.19 to show that there exists ε > 0 and θ ∈

(
0, 1

2

)
such

that the following inequality holds for (A, φ) ∈ B such that
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‖(A′′, φ) − (A′′
∞, φ∞)‖H1 < ε.

‖D∗
(A′′,φ)F(A′′,φ)‖H−1 ≥ |YMH (A, φ) − YMH (A∞, φ∞)|1−θ .

The inequality ‖D∗
(A′′,φ)F(A′′,φ)‖H−1 ≤ ‖D∗

(A′′,φ)F(A′′,φ)‖L2 completes the
proof. �

The first step in the proof of Theorem 3.19 is the following local descrip-
tion around a critical point.

Proposition 3.20 (Coulomb gauge). Let M be an affine Hilbert
manifold with the action of a Hilbert Lie group G, and let f : M → R be
a G-invariant functional. Let x ∈ M be a critical point of f and denote the
Hessian of f at the point x ∈ M by Hf (x) : TxM → TxM . Let ρx : Lie(G) →
TxM be the infinitesimal action of the group G at the point x ∈ M and sup-
pose that the following operator is elliptic

(3.35) Hf (x) + ρxρ∗
x : TxM −→ TxM

Then there exists ε > 0 such that if ‖y −x‖ < ε then there exists u ∈ (ker ρx)⊥

such that for g = e−u

(3.36) ρ∗
x (g · y − x) = 0.

This more general situation described above is related to the space of
Higgs bundles in the following way. The functional QH is GH2-invariant, and
the Hessian is given (in the notation of Section 2) by the following formula

1
2
HQH(x) = −Iρxρ∗

xIX + Iδρx(∗μ1(x))(X) − Jρxρ∗
xJX

+ Jδρx(∗μ2(x))(X) − Kρxρ∗
xKX + Kδρx(∗μ3(x))(X).

From this description of the Hessian together with the description of the
operator ρx from Section 2 and complex structures I, J, K from [10], we see
that HQH(x) + ρxρ∗

x is an elliptic operator on the tangent space

Tx(T ∗A)H1 ∼= H1 (Ω0,1(End(E)) ⊕ Ω1,0(End(E))
)

and therefore the critical points of the functional QH on the space T ∗A
satisfy the conditions of Proposition 30.20. Since a critical point (A′′, φ) ∈ B
of YMH is also a critical point of QH, then the theorem applies at all critical
points of YMH .

The first step in the proof of Proposition 3.20 is the following lemma.
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Lemma 3.21. At a critical point x ∈ M of the functional f , im ρx is a
closed sub-space of TxM and the following decomposition holds

TxM ∼= ker ρ∗
x ⊕ im ρx.

The proof of this lemma in turn depends on the following lemmas.

Lemma 3.22. Let L = Hf (x) + ρxρ∗
x. Then ker L = ker Hf (x) ∩ ker ρ∗

x.

Proof of Lemma 3.22. f is G-invariant implies that im ρx ⊆ ker Hf (x),
and since the Hessian Hf (x) is self-adjoint then imHf (x) ⊆ ker ρ∗

x. There-
fore im ρx ⊆ (im Hf (x))⊥, and so kerL ⊆ ker Hf (x) ∩ ker ρ∗

x. The inclusion
ker Hf (x) ∩ ker ρ∗

x ⊆ ker L follows from the definition of L. �

Using this lemma together with the fact that L is elliptic and self-adjoint,
we have the splitting

(3.37) TxM = ker L ⊕ im L∗ ∼= ker L ⊕ im L ∼= (ker Hf (x) ∩ ker ρ∗
x) ⊕ im L

Next we need the following technical lemma.

Lemma 3.23. Let H be a closed Hilbert space with two linear sub-spaces
A, B ⊂ H that satisfy A ⊆ B⊥ and B ⊆ A⊥. If H = A + B, then A and B
are closed sub-spaces, and H = A ⊕ B.

Proof. The result follows from showing that A = B⊥. Arguing by con-
tradiction, suppose that x ∈ B⊥ \ A. Then x = a + b for a ∈ A and b ∈
B. Since a ⊥ b, then ‖x‖2 = ‖a‖2 + ‖b‖2. We can also write a = x − b,
so ‖a‖2 = ‖x − b‖2 = ‖x‖2 + ‖b‖2, since x ∈ B⊥ by assumption. Therefore
‖x‖2 = ‖x‖2 + 2‖b‖2 and so b = 0. This implies that x ∈ A, which is a con-
tradiction.

Therefore A = B⊥, and in particular A is a closed sub-space of H.
Repeating the same argument shows that B = A⊥. Since H = A + B and
A, B are closed, orthogonal sub-spaces of H then H = A ⊕ B. �

Lemma 3.24. im L decomposes into a direct sum of closed sub-spaces

(3.38) im L = im Hf (x) ⊕ im ρx.
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Proof. First note that

(3.39) im L = im(Hf (x) + ρxρ∗
x) ⊆ im Hf (x) + im ρx ⊆ (ker L)⊥

and since L is elliptic, im L = (kerL)⊥, and so all of the set inclusions in
(3.39) are equalities. Therefore im L is a closed Hilbert space such that
im L = im Hf (x) + im ρx. Recalling that imHf (x) ⊥ im ρx and applying
Lemma 3.23 completes the proof. �

Proof of Lemma 3.21. Applying Lemma 3.24 to the decomposition (3.37)
shows that

(3.40) TxM = im ρx ⊕ im Hf (x) ⊕ (ker Hf (x) ∩ ker ρ∗
x) .

Since im Hf (x) ⊕ (ker Hf (x) ∩ ker ρ∗
x) ⊆ ker ρ∗

x, and im ρx ⊥ ker ρ∗
x then

applying Lemma 3.23 to (3.40) gives us the decomposition

TxM = im ρx ⊕ ker ρ∗
x. �

To complete the proof of Proposition 3.20 we need the following descrip-
tion of a neighbourhood of the critical point x.

Lemma 3.25. The map F : (ker ρx)⊥ × ker ρ∗
x → M given by

(3.41) F (u, X) = eu · (x + X)

is a local diffeomorphism about the point F (0, 0) = x.

Proof. dF(0,0)(δu, δX) = ρx(δu) + δX. Since δu ∈ (ker ρx)⊥ and δX ∈ ker ρ∗
x

then dF(0,0) is injective. By Lemma 3.21, TxM ∼= ker ρ∗
x ⊕ im ρx and so

dF(0,0) is an isomorphism. Applying the inverse function theorem completes
the proof. �

Proof of Proposition 3.20. Lemma 3.25 shows that there exists ε > 0 such
that if ‖y − x‖ < ε then there exists (u, X) ∈ (ker ρx)⊥ × (ker ρ∗

x) such that
eu · (x + X) = y. Rearranging this gives us

(3.42) X = e−u · y − x

and since X ∈ ker ρ∗
x, then setting g = e−u completes the proof. �

The function QH defined on M satisfies the conditions of Proposition
3.20, and so at a critical point x ∈ M we have the splitting TxM ∼= im ρx ⊕
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ker ρ∗
x. Using this decomposition of the tangent space, define projection

operators Πker and Πim denoting projection onto ker ρ∗
x and im ρx, respec-

tively. Since the inequality (3.34) is GH2-invariant, then we can use Propo-
sition 3.20 to restrict attention to those points y in a δ-neighbourhood of
x such that y − x ∈ ker ρ∗

x. Consider the functional E : ker ρ∗
x → R given

by E(b) = QH(x + b) − QH(b). The gradient of E at the point X ∈ ker ρ∗
x

is then given by gradE(b) = N(b) = Πker grad QH(x + b). Since the func-
tional QH is analytic, then so is E and hence N . The image of the Hessian
of QH satisfies im HQH(x) ⊆ ker ρ∗

x, and so the derivative of N at b = 0 for
b′ ∈ ker ρ∗

x has the following expression

dNb=0(b′) = ΠkerHQH(x)(b′) = HQH(x)(b′).

HQH(x) is an elliptic operator ker ρ∗
x → ker ρ∗

x and so we can decompose
ker ρ∗

x into closed sub-spaces

ker ρ∗
x

∼= (ker HQH(x) ∩ ker ρ∗
x) ⊕ im HQH(x).

For notation, write K0 = (kerHQH(x) ∩ ker ρ∗
x) and decompose ker ρ∗

x ∩
Hs ∼= K0 ⊕ Ks

±. Denote the norm on K0 by ‖ · ‖K0 and note that since
K0 is the kernel of an elliptic operator then it is finite dimensional and all
norms on K0 are equivalent. For any b ∈ ker ρ∗

x ∩ H1 write b = b0 + b± with
b0 ∈ K0 and b± ∈ K1

±. Since HQH(x) is the derivative of N : ker ρ∗
x → ker ρ∗

x

and HQH(x) is an injective operator K1
± → K−1

± (and so an isomorphism
onto its image), then an application of the implicit function theorem gives
us the following lemma.

Lemma 3.26. There exists ε > 0 and δ > 0, and a map � : BεK0 → BδK
1
±,

such that for any b0 ∈ K0 satisfying ‖b0‖K0 < ε, we have that N(b) ∈ K0 if
and only if b = b0 + �(b0). Moreover, since the function N is analytic then
so is �.

Given any b ∈ ker ρ∗
x we can use Lemma 3.26 to decompose b = b0 +

�(b0) + b±, where b0 is the projection of b onto the sub-space K0 ⊆ TxM
and b± = b − b0 − �(b0)

Lemma 3.27. There exists ε > 0 and δ > 0 such that for ‖b‖H1 < ε the
following inequalities hold

‖b0‖K0 ≤ c‖b‖H1 , ‖�(b0)‖H1 ≤ c‖b‖H1 , ‖b±‖H1 ≤ c‖b‖H1 .
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Proof. K0 ⊆ TxM is finite-dimensional, therefore all norms on K0 are equiv-
alent and there exists c such that ‖b0‖K0 ≤ c‖b0‖H1 . Also, b0 ⊥ (�(b0) + b±)
implies that ‖b0‖H1 + ‖�(b0) + b±‖H1 = ‖b‖H1 , so therefore ‖b0‖H1 ≤ ‖b‖H1 .
Since � : BεK0 → BδK± is smooth and has a finite dimensional domain
then for some k we have ‖�(b0)‖H1 ≤ k‖b0‖K0 ≤ (c − 1)‖b‖H1 . Therefore
there exists a constant c such that ‖b±‖H1 = ‖b − b0 − �(b0)‖H1 ≤ ‖b‖H1 +
‖�(b0)‖H1 + ‖b0‖H1 ≤ c‖b‖H1 . �

Denote the completion of TxM in the Hs norm by (TxM)Hs . Define
g : K0 → R by g(b0) = E(b0 + �(b0)) and note that since E and � are real
analytic then g is real analytic. Now we can split N(b) into the following
parts

N(b) = N(b0 + �(b0) + b±)
= ∇g(b0) − N(b0 + �(b0)) + N(b0 + �(b0) + b±)

= ∇g(b0) +
∫ 1

0
dN(b0 + �(b0) + sb±)(b±) ds

= ∇g(b0) + HQH(x)(b±) + L1(b±),(3.43)

where L1 : (TxM)H1 → (TxM)H−1 is defined by L1(a) =
∫ 1
0 dN(b0 + �(b0) +

sb±)(a) − dN(0)(a) ds.

Claim 3.28.

‖L1(b±)‖H−1 ≤ c‖b‖H1‖b±‖H1 .

Proof. For b ∈ TxM define hs(b) = dN(b0 + �(b0) + sb±) − dN(0). Since N
is analytic then hs is also analytic, and together with the fact that hs(0) = 0
then there exists ε > 0 and some constant c(s) depending on s ∈ [0, 1] such
that whenever ‖b‖H1 < ε we have the following inequality

‖hs(b0 + �(b0) + b±)‖H−1 ≤ c(s)‖b0 + �(b0) + b±‖H1

=⇒ ‖hs(b0 + �(b0) + b±)‖H−1 ≤ C‖b‖H1

=⇒ ‖dN(b0 + �(b0) + sb±) − dN(0)‖H−1 ≤ C‖b‖H1 .

Therefore ‖L1(b±)‖H−1 ≤ C‖b‖H1‖b±‖H1 whenever ‖b‖H1 < ε. �

Lemma 3.29. The following inequality holds whenever ‖b‖H1 < ε

(3.44) ‖N(b)‖H−1 ≥ c (‖∇g(b0)‖K0 + ‖b±‖H1) .
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Proof. By Lemma 3.26, ∇g(b0) ∈ K0 and HQH(b±) ∈ K−1
± . Therefore ∇g

(b0) ⊥ HQH(b±), which together with (3.43) implies that

(3.45) ‖N(b)‖H−1 ≥ ‖∇g(b0)‖H−1 + ‖HQH(x)(b±)‖H−1 − ‖L1(b±)‖H−1 .

Since all norms on K0 are equivalent then ‖∇g(b0)‖H−1 ≥ c‖∇g(b0)‖K0 for
some constant c. K1

± is orthogonal to kerHQH and HQH is elliptic, therefore
‖HQH(x)(b±)‖H−1 ≥ c‖b±‖H1 for some constant c. Together with (3.45) and
Claim 3.28 this completes the proof. �

We can decompose the functional E in the following way

E(b) = g(b0) + E(b0 + �(b0) + b±) − E(b0 + �(b0))

= g(b0) +
∫ 1

0
〈N(b0 + �(b0) + sb±), b±〉 ds

= g(b0) + 〈N(b0 + �(b0)), b±〉

+
∫ 1

0
〈N(b0 + �(b0) + sb±) − N(b0 + �(b0)), b±〉 ds

= g(b0) + 〈∇g(b0), b±〉

+
∫ 1

0

∫ 1

0
〈dN(b0 + �(b0) + stb±)(sb±), b±〉 ds dt

= g(b0) + 〈∇g(b0), b±〉 + 〈HQH(x)(b±), b±〉 + 〈L2(b±), b±〉 ,(3.46)

where L2 : (TxM)H1 → (TxM)H−1 is defined by

L2(b±) =
∫ 1

0

∫ 1

0
(dN(b0 + �(b0) + stb±)(sb±) − HQH(b±)) ds dt

Lemma 3.30. The following holds whenever ‖b‖H1 < ε

(3.47) |E(b)| ≤ |g(b0)| + C‖b±‖2
H1 .

Proof. Following the same proof as Claim 3.28, we have that whenever
‖b‖H1 < ε

‖L2(b±)‖H−1 ≤ c‖b‖H1‖b±‖H1 .

Since ∇g(b0) ∈ K0 and b± ∈ K± then 〈∇g(b0), b±〉 = 0. HQH(x) is elliptic
and injective on K1

±, therefore 〈HQH(x)(b±), b±〉 ≤ c‖b±‖2
H1 . Applying these

results to (3.46) completes the proof. �
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Proof of Theorem 3.19. Since the inequality (3.34) is GH2-invariant, then we
can use Proposition 3.20 to restrict to those points y in a δ-neighbourhood of
x such that y − x ∈ ker ρ∗

x. Therefore it is sufficient to prove that |E(b)|1−θ ≤
K‖N(b)‖H−1 for some constant K and b ∈ ker ρ∗

x ∩ H1 with ‖b‖H1 < ε. Since
g : K0 → R is a real analytic function on a finite-dimensional space, from
results of Lojasiewicz in [15] there exists θ ∈ (0, 1

2) such that

(3.48) |g(b0)|1−θ ≤ c‖∇g(b0)‖K0 .

Applying this to Equation (3.47) and using (3.44) gives us

|E(b)|1−θ ≤ |g(b0)|1−θ + c‖b±‖2(1−θ)
H1

≤ c (‖∇g(b0)‖K0 + ‖b±‖H1)
≤ K‖N(b)‖H−1

for any b in ker ρ∗
x ∩ H1 with ‖b‖H1 < ε. �

3.5. An interior estimate

The purpose of this section is to prove Proposition 3.6, which provides an
estimate relating the Hk and L2 norms of a tangent vector to the gradient
flow of YMH . The relationship between the H1 and L2 norms of a tangent
vector to the Yang–Mills flow was proved in [18], here we extend these results
to derive estimates on higher derivatives of the gradient of the functional
YMH on the space B.

Recall that the proof of Proposition 3.3 shows that ‖FA + [φ, φ∗]‖Hk is
bounded for all k. For fixed (A′′

0, φ0) define the bounded complex gauge
orbit

(3.49) Ok
C =
{
(A′′, φ) ∈ GC · (A′′

0, φ0) : ‖FA + [φ, φ∗]‖Hk < C
}

.

As noted in Subsection 3.2, the proof of Lemma 3.14 shows that there exists
a constant K such that ‖FA‖Hk < K on Ok

C . For (A′′, φ) ∈ Ok
C consider the

initial value problem

∂ψ

∂t
+ ∇∗

A∇Aψ = σ

ψ(0, ·) = 0
(3.50)

for some σ ∈ Hs where s ∈ [−k − 2, k + 2]. Equations (11.3), (11.4) and
Proposition A in the Appendix of [18] show that the following estimates
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hold on the time interval [0, 2t0]

‖ψ‖L2([0,2t0],Hk) ≤ cK‖σ‖L1([0,2t0],Hk−1)(3.51)

‖ψ‖L2([0,2t0],Hk) ≤ cKt
1/4
0 ‖σ‖L2([0,2t0],Hk−(3/2)).(3.52)

Moreover the constant cK only depends on K. For notation, in the following
we use H0,k to denote the space L2

(
[0, 2t0], Hk

)
. Now let G(t) =

(
∂A
∂t , ∂φ

∂t

)

and using the notation of Section 2, for any moment map on a symplectic
manifold we have the following formula for ∂G

∂t along the downwards gradient
flow of ‖μ‖2

G(t) =
∂x

∂t
= −Iρx(∗μ)

⇒ ∂G

∂t
= −Iδρx(∗μ)

(
∂x

∂t

)
− Iρx

(
∗dμ

(
∂x

∂t

))

= −Iδρx(∗μ)(G(t)) + Iρxρ∗
xI(G(t)),

where in the last step we identify ∗dμ = −ρ∗
xI as described in Section 2.

Note also that Equation (2.8) shows that ρ∗
xG = 0. Therefore we have the

equation

(3.53)
∂G

∂t
+ ρxρ∗

x(G) − Iρxρ∗
xI(G) = −Iδρx(∗μ)(G)

which for the case of μ = FA + [φ, φ∗] reduces to

(3.54)
∂G

∂t
+ Δ(A′′,φ)G = {FA + [φ, φ∗], G} ,

where the operator {·, ·} denotes various different intrinsically defined multi-
linear operators. The Weitzenböck formula of Simpson ( [20, Lemma 7.2.1])
states that for a k-form α with values in E

∇∗
A∇Aα = Δ(A′′,φ)α + {FA, α} + {(φ + φ∗), (φ + φ∗), α}(3.55)

+ {∇Aφ, α} + {R, α} ,

where R refers to the Riemannian curvature of X. Substituting this formula
into (3.54) gives the following expression

(3.56)
∂G

∂t
+ ∇∗

A∇AG = {FA + [φ, φ∗], G} + {∇Aφ, G} + {R, G} .
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Now let (A′′, φ) = (A′′
∞, φ∞) + a (where a ∈ Ω1(End(E)), and note that the

assumption of Proposition 3.6 is that ‖a‖Hk < ε1. Then we have the follow-
ing equation

∂G

∂t
+ ∇∗

∞∇∞G = {FA + [φ, φ∗], G} + {∇Aφ, G} + {R, G}

+ {a,∇∞G} + {∇∞a, G} + {a, a, G} .(3.57)

Multiplying both sides by a smooth cut-off function η(t) with η = 0 on
[0, 1

2 t0] and η = 1 on [t0, 2t0] gives the equation

∂(ηG)
∂t

+ ∇∗
∞∇∞(ηG) = {FA + [φ, φ∗], ηG} + {∇Aφ, ηG} + {R, ηG}

+ {a,∇∞(ηG)} + {∇∞a, ηG} + {a, a, ηG} +
∂η

∂t
G.(3.58)

The existence of a solution to the gradient flow equations (3.1) shows that
ηG is a solution to the initial value problem (3.50). Therefore, following the
method of [18, p. 156] (see also [24, p. 30] for more details), the estimates
(3.51) and (3.52) show that

‖ηG‖H0,k ≤ Ct
1/4
0 ‖ {FA + [φ, φ∗], ηG} + {∇Aφ, ηG} + {R, ηG} ‖H0,k−(3/2)

+ Ct
1/4
0 ‖ {a,∇∞(ηG)} + {∇∞a, ηG} + {a, a, ηG} ‖H0,k−(3/2)

+ C

∥
∥
∥
∥
∂η

∂t
G

∥
∥
∥
∥

L1([0,2t0],Hk−1)
.

Therefore Sobolev multiplication theorems as used in [18] show that for
G ∈ Hk, FA + [φ, φ∗] ∈ Hk−1, ∇Aφ ∈ Hk−1, R is smooth and a ∈ Hk, the
following two estimates hold

‖ {FA + [φ, φ∗], ηG} + {∇Aφ, ηG} + {R, ηG} ‖H0,k−(3/2) ≤ C‖ηG‖H0,k

‖ {a,∇∞(ηG)} + {∇∞a, ηG} + {a, a, ηG} ‖H0,k−(3/2)

≤ C‖ηG‖H0,k + ε1‖∇∞(ηG)‖H0,k−1 ≤ C‖ηG‖H0,k .

Therefore ‖ηG‖H0,k ≤ Ct
1/4
0 ‖ηG‖H0,k + C‖∂η

∂t G‖L1([0,2t0],Hk−1), and so
when t0 is small we have ‖ηG‖H0,k ≤ C ′‖∂η

∂t G‖L1([0,2t0],Hk−1). Therefore

‖G‖L1([t0,2t0],Hk) ≤ Ct
1/2
0 ‖ηG‖L2([0,2t0],Hk)

≤ Ct
1/2
0

∥
∥
∥
∥
∂η

∂t
G

∥
∥
∥
∥

L1([0,2t0],Hk−1)
≤ Ct

−(1/2)
0 ‖G‖L1([0,2t0],Hk−1).(3.59)
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Dividing the interval [T, S] into subintervals of length t0 and applying
this estimate on each sub-interval shows that (for t0 ≤ 1

k )

∫ S

T+1
‖G‖Hk dt ≤

∫ S

T+kt0

‖G‖Hk dt ≤ C

∫ S

T+(k−1)t0
‖G‖Hk−1 dt

≤ C

∫ S

T
‖G‖L2 dt

which completes the proof of Proposition 3.6.

4. Algebraic and analytic stratifications

In order to set the notation we first recall the main points of the Harder–
Narasimhan filtration for Higgs bundles from [9]. Given a filtration E0 ⊂
E1 ⊂ · · · ⊂ Er = E of E by φ-invariant holomorphic sub-bundles, let Fi =
Ei/Ei−1 and let φi ∈ Ω1,0(End(Fi)) be the induced Higgs field. The filtration
is called a φ-invariant Harder–Narasimhan filtration if the pairs (Fi, φi) are
semi-stable, and the slope deg(Fi)

rank(Fi)
is strictly decreasing in i. For a rank

n bundle, the type of the Harder–Narasimhan filtration is the n-tuple μ =
(μ1, . . . , μn), where the first rank(F1) terms are deg(F1)

rank(F1)
, the next rank(F2)

terms are deg(F2)
rank(F2)

and so on. Let Bμ denote the space of Higgs pairs which
have a φ-invariant Harder–Narasimhan filtration of type μ. As shown in [9,
Section 7], each Higgs pair possesses a unique Harder–Narasimhan filtration,
the space B =

⋃
μ Bμ is stratified by these subsets, and the strata satisfy the

closure condition Bμ ⊆
⋃

ν≥μ Bν , where we use the usual partial ordering
on Harder–Narasimhan types (cf [2, Section 7] for holomorphic bundles,
or [9, Section 7] for Higgs bundles).

At a critical point (A′′, φ) of YMH , the bundle E splits into φ-invariant
holomorphic sub-bundles and the goal of this section is to show that the
algebraic stratification by the type of the Harder–Narasimhan filtration is
equivalent to the analytic stratification by the gradient flow described in
the previous section, where the equivalence is by the type of the splitting
of E into φ-invariant holomorphic sub-bundles at the critical points of the
functional YMH .

In order to describe the analytic stratification of B using the results of
Section 3, first recall the critical point equations

d′′
A ∗ (FA + [φ, φ∗]) = 0,(4.1)

[φ, ∗(FA + [φ, φ∗])] = 0.(4.2)
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Equation (4.1) shows that for a non-minimal critical point (A′′, φ) the bundle
E splits holomorphically into sub-bundles (see for example [8, Theorem 3.1]
for the Yang–Mills functional), and Equation (4.2) shows that the holomor-
phic sub-bundles are φ-invariant. Therefore the space Bcrit of non-minimal
critical sets can be stratified by the Harder–Narasimhan type of each
φ-invariant holomorphic splitting Bcrit =

⋃
μ ημ. Given a Higgs pair (A′′, φ)

let r(A′′, φ) denote the limit of the gradient flow with initial conditions
(A′′, φ) as defined in Section 3. Define the analytic stratum associated to
each critical set by

(4.3) Cμ = {(A, φ) ∈ B : r(A, φ) ∈ ημ} .

Then Theorem 3.1 shows that B is stratified by the sets {Cμ} in the sense of
Proposition 1.19 (1)–(4) of [2] (statement (5) of [2, Proposition 1.19], that
the strata have well-defined codimension, cannot be true for {Cμ} because
the dimension of the negative eigenspace of the Hessian of YMH is not
constant). Moreover, each stratum Cμ retracts G-equivariantly onto the cor-
responding critical set ημ with the retraction defined by the gradient flow.
The main theorem to be proved in this section is the following.

Theorem 4.1. The algebraic stratification by the φ-invariant Harder-
Narasimhan type {Bμ} is the same as the analytic stratification {Cμ} by
the gradient flow of YMH .

The proof of the theorem relies on the following results. Let g denote
the Lie algebra of the structure group of E (which will be u(n) or su(n) in
our case) and note that the following analogue of Proposition 8.22 from [2]
also holds for the functional YMH .

For a pair (A′′, φ) of type μ and a convex invariant function h : g → R,
let H(A′′, φ) = inf

∫
M h(∗(FA + [φ, φ∗])), where the infimum runs over all

pairs (A′′, φ) ∈ Bμ. Also, if μ can be written as μ = (λ1, . . . , λn), let Λμ be
the diagonal matrix with entries −2πiλi.

Proposition 4.2. (A′′, φ) is of type μ iff H(A′′, φ) = h(Λμ) for all convex
invariant h. Moreover, 〈gradH, gradYMH 〉 ≥ 0.

The details are the same as those in [2, Section 8] for the case of holo-
morphic bundles, and so the proof is omitted.

Claim 4.3. If Bμ ∩ Cλ is non-empty then λ ≥ μ.
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Proof. Let (A′′, φ) ∈ Bμ ∩ Cλ for λ �= μ. The proof of Proposition 3.2 shows
that finite-time gradient flow is equivalent to the action of an element of
GC. Therefore we can find {gj} ⊂ GC such that gj · (A′′, φ) → (A∞, φ∞), and
since (A′′, φ) ∈ Cλ then (A∞, φ∞) is of type λ. (A′′, φ) ∈ Bμ and GC preserves
Bμ, therefore by Proposition 4.2, we have YMH (gj · (A′′, φ)) ≥ YMH (Λμ)
for all j. Therefore YMH (Λλ) = YMH (A∞, φ∞) ≥ YMH (Λμ) also. �

Lemma 4.4. For each Harder–Narasimhan type μ, there exists a neigh-
bourhood Vμ of ημ such that Bμ ∩ Vμ ⊆ Cμ.

Proof. The proof follows that of [4, Proposition 4.12] for the Yang–Mills
functional. Since the vector bundle E has finite rank then the set {λi} such
that YMH (Λλi

) = YMH (Λμ) is finite. Choose ε > 0 such that the only crit-
ical sets ηλ intersecting Uμ = YMH −1 (YMH (Λμ) − ε,YMH (Λμ) + ε) are
those for which λ ∈ {λi}. By Claim 4.3 we can restrict attention to those λ
for which λ ≥ μ. For each λ ∈ {λi}λi≥μ choose a convex invariant functional
fλ such that fλ(λ) > fλ(μ), and let eλ = 1

2 (fλ(λ) − fλ(μ)). Define the sets

Vλ = Uμ ∩ F−1
λ (fλ(μ) − eλ, fλ(μ) + eλ)

and note that ημ ⊂ Vλ for each λ ∈ {λi}λi≥μ. Suppose that (A′′, φ) ∈ Vλ ∩
Bμ ∩ Cλ and let (A′′

∞, φ∞) denote the limit of (A′′, φ) under the gradient flow
of YMH . Therefore fλ(λ) = Fλ(A′′

∞, φ∞) ≤ Fλ(A′′, φ) < fλ(μ) + eλ, since
(A′′, φ) ∈ Vλ. We then have

fλ(λ) < fλ(μ) +
1
2

(fλ(λ) − fλ(μ)) =
1
2

(fλ(μ) + fλ(λ)) < fλ(λ)

a contradiction. Therefore Vλ ∩ Bμ ∩ Cλ = ∅, and setting Vμ =
⋂

λ∈{λi}λi≥μ
Vλ

completes the proof. �

Lemma 4.5. Let (A′′, φ) be a Higgs pair of φ-invariant Harder–Narasimhan
type μ, and let {fi} be a finite collection of convex invariant functions as
defined in Proposition 4.2. Then for any ε > 0 there exists a metric H on
E such that fi(FH + [φH , φ∗

H ] − Λμ) < ε for all i.

Proof. Theorem 1 of [21] shows that the result holds if (A′′, φ) is stable.
For the case where (A′′, φ) is semistable, the proof of [21, Theorem 1,
p.895] shows that the functional M(K, Ht) is bounded below, and ∂

∂tM(K,

Ht) = −‖FHt
+ [φHt

, φ∗
Ht

] − μ · id ‖L2 . Therefore
∫ t+1
t ‖FHt

+ [φHt
, φ∗

Ht
] −

μ · id ‖L2 dt → 0 as t → ∞. Equation (3.23) shows that Theorem 3.17 applies
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to the function
∣
∣FHt

+ [φHt
, φ∗

Ht
] − μ · id

∣
∣ and so ‖FHt

+ [φHt
, φ∗

Ht
] − μ · id

‖C0 → 0, which is enough to prove Lemma 4.5 for the semistable case (cf. [7,
Corollary 25] for the case of the Yang–Mills functional on a Kähler surface).

For the case of a Higgs pair of general φ-invariant Harder–Narasimhan
type the result follows by induction on the length of the Harder–Narasimhan
filtration, as in the proof of [6, Theorem 3.10] for the Yang–Mills functional.

�
Applying this result to the functions fλ in the proof of Lemma 4.4 gives

Corollary 4.6. Given (A′′, φ) ∈ Bμ there exists g0 ∈ GC such that g0 ·
(A′′, φ) ∈ Vμ, and so r(g0 · (A′′, φ)) ∈ ημ.

The next lemma shows that if the GC-orbit of (A′′, φ) intersects Vμ then
the gradient flow with initial conditions (A′′, φ) converges to the critical set
ημ ⊂ Vμ.

Lemma 4.7. If there exists g0 ∈ GC such that r(g0 · (A′′, φ)) ∈ ημ then r(g ·
(A′′, φ)) ∈ ημ for all g ∈ GC.

Proof. As noted in Section 3.1, the action of an element g ∈ GC can be
described up to G-equivalence by changing the metric on E by H �→ Hh.
Since the set ημ is preserved by G and the gradient flow is G-equivariant,
then it is immediate that the lemma holds for all g ∈ g0 · G, and so it is
sufficient to show that the lemma is true for any Hermitian metric H on E.

Let H be the set of Hermitian metrics H such that r(A′′
H , φH) ∈ ημ. Since

the neighbourhood Vμ of Lemma 4.4 is open and the finite-time gradient flow
is continuous in the C∞ topology by Proposition 3.4, then H is open. Let Hj

be a sequence of metrics in H that converge to some Hermitian metric K in
the C∞ topology. The proof of Proposition 3.3 shows that ‖FA + [φ, φ∗]‖L4

k

is bounded along the gradient flow for all k, and so Lemma 3.14 together with
the smooth convergence of Hj shows that there exists a Higgs pair (A∞, φ∞),
sequences gj ∈ G and tj ∈ R such that gj · (AHj (tj), φHj (tj)) converges to
(A∞, φ∞) in the C∞ topology. Let (A∞

K , φ∞
K ) denote the limit of the gradient

flow with initial conditions (A′′
K , φK) and note that to prove that H is closed,

it suffices to show that (A∞, φ∞) = (A∞
K , φ∞

K ).
For notation let Hj = Hj(tj) and Kj = K(tj) = Hjhj . A calculation

shows that

(dKj

tj
)′ − (dHj

tj
)′ = h−1

j (dHj

tj
)′hj ,

φ∗
Kj

− φ∗
Hj

= h−1[φ∗
Hj

, h].
(4.4)
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Let Dj : Ω0(End(E)) → Ω1(End(E)) denote the operator u �→ (dHj

tj
)′u +

[φ∗
Hj

, u]. The proof of [21, Proposition 6.3] shows that the distance
measure between metrics sup σ(Ht, Kt) is decreasing with time, and so
‖hj − id ‖C0 → 0 as j → ∞. Then we have for any smooth test 1-form β

〈
(dKj

tj
)′ − (dHj

tj
)′ + φ∗

Kj
− φ∗

Hj
, β
〉

=
〈
h−1

j

(
(dHj

tj
)′hj + [φ∗

Hj
, hj ]
)

, β
〉

≤ C
〈
(dHj

tj
)′hj + [φ∗

Hj
, hj ], β

〉

= C
〈
hj , D

∗
j β
〉

= C 〈hj , (Dj − D∞)∗β〉 + C 〈hj , D
∗
∞β〉 .

(4.5)

The first term converges to zero since Dj − D∞ → 0 smoothly, and since
hj → id in C0 then the second term becomes

(4.6) 〈hj , D
∗
∞β〉 → 〈id, D∗

∞β〉 =
∫

X
d′∗ trβ = 0

by Stokes’ theorem. Therefore (dKj

tj
)′ − (dHj

tj
)′ + φ∗

Kj
− φ∗

Hj
⇀ 0 weakly in

L2 and so (A∞, φ∞) = (A∞
K , φ∞

K ). Therefore H is both open and closed,
which completes the proof of Lemma 4.7. �

Proof of Theorem 4.1. The result of Lemma 4.7 shows that Bμ ⊆ Cμ for each
Harder–Narasimhan type μ. Since the analytic stratification and the alge-
braic stratification are both partitions of B, then this implies that the two
stratifications are equal. �

Next we prove Proposition 4.13, which provides a description of each
stratum in terms of the action of GC. Let GC

H2 denote the completion of the
complex gauge group GC in the H2 norm on Ω0(End(E)), and note that for X
a Riemann surface, the Sobolev embedding theorem shows that GC

H2 ⊂ GC

C0 ,
the completion of GC in the C0 norm. Let BH1 denote the completion of the
space B in the H1 norm. For a fixed C∞ filtration (∗), define UT(E, ∗) to
be the sub-space of bundle endomorphisms preserving (∗), and similarly let
GC

H2∗ denote the subgroup of elements of GC

H2 which preserve (∗). Also let
(T ∗A)∗ denote the space of pairs (A′′, φ) such that both d′′

A and φ preserve
(∗), and let (T ∗A)∗H1 denote the completion of this space in the H1 norm.
Let B∗ and B∗H1 be the respective restrictions of (T ∗A)∗ and (T ∗A)∗H1 to
the space of Higgs pairs. Let Bss

∗ denote the space of Higgs pairs preserving
the filtration (∗) such that the pairs (Fi, φi) are semistable for all i with
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slope strictly decreasing in i, where Fi = Ei/Ei−1 and φi is induced by φ
on Fi.

Lemma 4.8. If (∗) is a filtration of type μ then Bμ = GC · Bss
∗ .

Proof. As in the proof of [4, Lemma 2.10], we note that GC · Bss
∗ ⊆ Bμ. If

(A′′, φ) ∈ Bμ then there is a φ-invariant holomorphic filtration of (E, φ)
which is equivalent to (∗) by an element of GC. �

In order to proceed further, we also need the following local description of
the space of Higgs bundles close to a point (A′′, φ) ∈ B. Define the operator

(4.7) L̃ : Lie(GC

H2) ⊕ Lie(GC

H2) → T(A′′,φ) (T ∗A)H1

by L̃(u, v) =
(

d′′
Au

[φ, u]

)
+ J

(
d′′

Av
[φ, v]

)
= ρC(u) + JρC(v), where J is the com-

plex structure

J =
(

0 (·)∗

−(·)∗ 0

)
.

Since L̃ is elliptic then T(A′′,φ)(T ∗A)H1 ∼= im L̃ ⊕ ker L̃∗. The following
lemma shows that when (A′′, φ) ∈ BH1 then the same is true for the operator
ρC : Lie(GC

H2) → T(A′′,φ) (T ∗A)H1 .

Lemma 4.9. Let (A′′
0, φ0) ∈ BH1. Then T(A′′

0 ,φ0)(T
∗A)H1 = im ρC ⊕ ker ρ∗

C
.

Proof. Since L̃ is elliptic then im L̃ = im ρC + im JρC is closed, and so we
have T(A′′

0 ,φ0)(T
∗A)H1 = im L̃ ⊕ ker L̃∗. The adjoint L̃∗ is given by L̃∗(a′′, ϕ)

= (ρ∗
C
(a′′, ϕ),−ρ∗

C
J(a′′, ϕ)) and so ker L̃∗ = ker ρ∗

C
∩ ker(ρ∗

C
J).

Since im ρC + im JρC is closed and (A′′, φ) ∈ BH1 , then im ρC ⊆
(im JρC)⊥ and imJρC ⊆ (im ρC)⊥. Lemma 3.23 then shows that im ρC =
(im JρC)⊥ and imJρC = (im ρC)⊥, so im ρC and imJρC are closed subspaces
of im L̃ and we have im L̃ = im ρC ⊕ im JρC. Therefore

T(A′′
0 ,φ0)(T

∗A)H1 = im ρC ⊕ im JρC ⊕ (ker ρ∗
C ∩ ker(ρ∗

CJ))

Since im JρC ⊕ (ker ρ∗
C

∩ ker(ρ∗
C
J)) ⊆ ker ρ∗

C
⊆ (im ρC)⊥ then applying

Lemma 3.23 again shows that the set inclusions are in fact equalities, which
gives the decomposition T(A′′

0 ,φ0)(T
∗A)H1 = im ρC ⊕ ker ρ∗

C
. �

The next lemma follows from the inverse function theorem.
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Lemma 4.10. The map f : (ker ρC)⊥ × ker ρ∗
C

→ T ∗AH1 given by f(u, a′′, ϕ)
= eu · (A′′ + a′′, φ + ϕ) is a local diffeomorphism at (0, 0, 0).

Proof. The derivative of f at (0, 0, 0) is the map df(δu, δa′′, δϕ) = ρC(δu) +
(δa′′, δϕ), which is an isomorphism by the previous lemma. The inverse
function theorem then shows that f is a local diffeomorphism. �

Now let S(A′′,φ) be the slice given by

S(A′′,φ) = ker ρ∗
C ∩
{
(a′′, ϕ) ∈ T(A′′,φ)(T

∗A)H1 : d′′
Aϕ + [a′′, φ] + [a′′, ϕ] = 0

}

Lemma 4.11. Let f̃ be the restriction of f to (ker ρC)⊥ × S(A′′,φ). If
(Ã′′, φ̃) ∈ BH1 satisfies ‖(Ã′′, φ̃) − (A′′, φ)‖H1 < ε then there exist unique ele-
ments u ∈ (ker ρC)⊥ and (a′′, ϕ) ∈ S(A′′,φ) such that (A′′, φ) = f̃(u, a′′, ϕ).

Proof. Lemma 4.10 shows that there exists (u, a′′, ϕ) ∈ (ker ρC)⊥ × ker ρ∗
C

such that (Ã′′, φ̃) = f(u, a′′, ϕ). Therefore only remains to show that (a′′, ϕ)
∈ S(A′′,φ), which results from observing that (Ã′′, φ̃) ∈ BH1 iff eu · (A′′ +
a′′, φ + ϕ) ∈ BH1 iff (A′′ + a′′, φ + ϕ) ∈ BH1 . �

Proposition 4.12. Fix (A′′, φ) ∈ BH1. Then the map f̃ : (ker ρC)⊥×S(A′′,φ)
→ BH1 is a local homeomorphism from a neighbourhood of zero in (ker ρC)⊥

× S(A′′,φ) to a neighbourhood of (A′′, φ) ∈ BH1.

Proof of Proposition 4.12. If (a′′, ϕ) ∈ S(A′′,φ) then f(u, a′′, ϕ) ∈ BH1 for any
u ∈ (ker ρ∗

C
)⊥, which combined with the previous lemma shows that f̃ is sur-

jective onto a neighbourhood of (A′′, φ) ∈ BH1 . Since f̃ is the restriction of
a local diffeomorphism then it is a local homeomorphism onto a neighbour-
hood of (A′′, φ) in BH1 . �

Given a filtration (∗) of the bundle E, define the subset of the slice
consisting of variations that preserve the filtration by

(
S(A′′,φ)

)
∗ = S(A′′,φ) ∩

Ω0,1(UT(E, ∗)) ⊕ Ω1,0(UT(E, ∗)). Let p be the projection p : (ker ρC)⊥ ×
S(A′′,φ) → (ker ρC)⊥ ×

(
S(A′′,φ)

)
∗. We then have the following description of

each stratum close to a critical point.

Lemma 4.13. Let (A0, φ0) ∈ BH1 be a critical point of YMH with Harder-
Narasimhan filtration (∗). Then there exists ε > 0 such that for any (A′′, φ)
∈ (Bμ)H1 with ‖(A′′, φ) − (A′′

0, φ0)‖H1 < ε, there exists (u, a′′, ϕ) ∈ ker(1 −
p) such that f̃(u, a′′, ϕ) = (A′′, φ).
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Remark 4.14. Conversely, this lemma implies that if (A′′, φ) ∈ BH1\
(Bμ)H1 and (A′′, φ) is close to (Bμ)H1 , then there exists (u, a′′, ϕ) satisfy-
ing (1 − p)(a′′, ϕ) �= 0 and f̃ (u, a′′, ϕ) = (A′′, φ). In other words we have a
criterion that describes exactly when a point in a neighbourhood of (A′′

0, φ0)
lies in the stratum (Bμ)H1 .

Proof of Lemma 4.13. Proposition 4.12 states that there exists ε > 0 such
that given a point (A′′, φ) within a distance ε from (A′′

0, φ0) in the H1 norm
there exists (u, a′′, ϕ) ∈ (ker ρC)⊥ ⊕ S(A′′,φ) such that f̃(u, a′′, ϕ) = (A′′, φ).
Restricting to the stratum Bμ we follow the same steps as in the proof of
Proposition 3.5 from [4] (for the Yang-Mills functional and unitary connec-
tions), except for the functional YMH and GL(n, C) connections, to show
that (a′′, ϕ) ∈

(
S(A′′,φ)

)
∗. Therefore the projection p is the identity on this

space, which completes the proof. �
Let (ker ρC)⊥

∗ = (ker ρC)⊥ ∩ Ω0(UT(E, ∗)). The previous lemma
describes a neighbourhood in (Bμ)H1 , and now we describe a neighbour-
hood in (Bss

∗ )H1 .

Lemma 4.15. The restricted map f̃∗ : (ker ρC)⊥
∗ ×
(
S(A′′,φ)

)
∗ → (Bss

∗ )H1 is
a local homeomorphism.

Proof. Clearly f̃∗ maps into (Bss
∗ )H1 . Since it is the restriction of a local

homeomorphism then it is a local homeomorphism onto its image, and so the
proof reduces to showing that f̃∗ is locally surjective. Lemma 4.13 shows that
if (Ã′′, φ̃) is close to (A′′, φ) in the H1 norm then there exists u ∈ (ker ρC)⊥

and (a′′, ϕ) ∈
(
S(A′′,φ)

)
∗ such that eu · (A′′ + a′′, φ + ϕ) = (Ã′′, φ̃). The proof

then reduces to showing that u ∈ (ker ρC)⊥
∗ . Restricting our viewpoint to

the holomorphic structures, we see that a weak sub-bundle π corresponding
to a term in the Harder-Narasimhan filtration (∗) is holomorphic, and so the
equation in Lemma (3.2) of [4] holds for π. This allows us to prove a Higgs-
bundle version of Lemma (3.3) in [4], which shows that u ∈ (ker ρC)⊥

∗ . �

Proposition 4.16. (Bμ)H1 is homeomorphic to

GC

H2 ×(GC

H2 )∗ (Bss
∗ )H1

∼= GH2 ×GdiagH2 (Bss
∗ )H1

where Gdiag ⊂ G denotes the space of diagonal gauge transformations with
respect to the fixed C∞ filtration (∗).

Proof of Proposition 4.16. Define the map ψ : GC

H2 ×(GC

H2 )∗ Bss
∗ H1 → (Bμ)H1

by ψ([g, (A′′, φ)]) = g · (A′′, φ). If ψ([g1, (A′′
1, φ1)]) = ψ([g2, (A′′

2, φ2)]) then
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g1 · (A′′
1, φ1) = g2 · (A′′

2, φ2) with (A′′
1, φ1), (A′′

2, φ2) ∈ (Bss
∗ )H1 , so g−1

1 g2 ∈
GC

∗ H2 and therefore ψ is injective. Lemma 4.8 shows that ψ is surjective
onto (Bμ)H1 , and so the first equality in the proposition will follow if we can
show that ψ is a local homeomorphism.

Lemma 4.15 shows that a neighbourhood of a point (A′′
0, φ0) ∈ (Bss

∗ )H1 is
homeomorphic to a neighbourhood of zero in (ker ρC)⊥

∗ ×
(
S(A′′

0 ,φ0)
)
∗. There-

fore, in GC

H2 ×GC
∗ H2 (Bss

∗ )H1 we have [g, (A′′, φ)] = [g, eu · (A′′
0 + a′′, φ0 + ϕ)] =

[e−ug, A′′
0 + a′′, φ0 + ϕ], since eu ∈ (GC

H2)∗. This implies that ψ([g, (A′′, φ)]) =
e−ug · (A′′

0 + a′′, φ0 + ϕ) with (a′′, ϕ) ∈
(
S(A′′

0 ,φ0)
)
∗. Lemma 4.13 then shows

that ψ is a local homeomorphism when g is close to the identity, and trans-
lating this result by the action of the complex gauge group shows that ψ is
a local homeomorphism for all g.

The homeomorphism GC

H2
∼=
(
GC

∗
)
H2 ×GdiagH2 GH2 from Theorem 2.16 in

[4] completes the proof of the second equality in the statement of
Proposition 4.16. �

Corollary 4.17.

Bμ
∼= GC ×GC

∗
Bss

∗ ∼= G ×Gdiag
Bss

∗

Proof. Lemma 14.8 of [2] shows that every GC

H2-orbit in A0,1
H1 contains a

C∞ holomorphic structure d′′
A. If the holomorphic structure A′′ is smooth,

then since the Higgs bundle equation d′′
Aφ = 0 is elliptic then all φ satisfying

this condition are smooth. Therefore every GC

H2-orbit in BH1 contains a
C∞ Higgs pair. Moreover, if two C∞ holomorphic structures A′′

1 and A′′
2

are isomorphic by an element g ∈ GH2 , then bootstrapping the equation
gA′′

1 − A′′
2g = d′′g shows that g is smooth also, and so every GC

H2-orbit in
BH1 contains exactly one GC orbit of smooth Higgs pairs. The corollary
then follows from Proposition 4.16. �

5. Convergence to the graded object of the filtration

The results of Section 3 show that the gradient flow of YMH converges
smoothly to a critical point of YMH , and the results of Section 4 describe
the type of the φ-invariant Harder–Narasimhan filtration at the limit. The
purpose of this section is to provide an algebraic description of the iso-
morphism class of the limit of the gradient flow, a Higgs bundle version
of [4, Corollary 5.19] (for the Yang–Mills functional on a Riemann surface)
and [6, Theorem 1] (Yang–Mills on a Kähler surface). To describe the limit
algebraically requires a description of the appropriate Higgs bundle versions
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of the Seshadri filtration and the Harder–Narasimhan–Seshadri filtration,
which is contained in the following Propositions (cf. [6, Propositions 2.5 and
2.6] for holomorphic bundles)

Proposition 5.1. Let (A′′, φ) be a Higgs-semistable structure on E. Then
there is a filtration of E by φ-invariant holomorphic sub-bundles

0 = F0 ⊂ F1 ⊂ · · · ⊂ F� = E

called a φ-invariant Seshadri filtration of E, such that Fi/Fi−1 is Higgs
stable for all i (with respect to the Higgs structure induced from (A′′, φ)),
and μ(Fi/Fi−1) = μ(E). The graded object GrS(A′′, φ) =

⊕�
i=1 Fi/Fi−1 is

uniquely determined by the isomorphism class of (A′′, φ).

Proposition 5.2. Let (A′′, φ) be a Higgs structure on E. Then there is
a double filtration {Ei,j} of E, called a φ-invariant Harder–Narasimhan–
Seshadri filtration of E (HNS filtration) such that if {Ei}�

i=1 is the
φ-invariant HN filtration of E then

Ei−1 = Ei,0 ⊂ Ei,1 ⊂ · · · ⊂ Ei,�i
= Ei

is a Seshadri filtration of Ei/Ei−1. The associated graded object

(5.1) GrHNS(A′′, φ) =
�⊕

i=1

�i⊕

j=1

Qi,j

is uniquely determined by the isomorphism class of (A′′, φ).

Recall the gradient flow retraction r : B → Bcrit onto the set of critical
points Bcrit defined in Theorem 3.1. The main theorem of this section is the
following.

Theorem 5.3. The isomorphism class of the gradient flow retraction is
given by

(5.2) r(A′′, φ) ∼= GrHNS(A′′, φ).

Consider a sequence tn → ∞, and denote (A(tn)′′, φ(tn)) by (A′′
n, φn).

Let gn ∈ GC be the complex gauge transformation corresponding to the
finite-time gradient flow from time t0 to tn, i.e. (A′′

n, φn) = gn · (A′′
0, φ0).

Let S be the first term in the Harder–Narasimhan–Seshadri filtration of
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E, and let f0 : S ↪→ E be the φ-invariant, holomorphic inclusion. Define
the map fn : S ↪→ E by fn = gn ◦ f0, and note that since f0 and gn are φ-
invariant holomorphic sections of the associated Higgs bundles Hom(S, E0)
and Hom(E0, En) (with the induced Higgs fields) then fn is also holomorphic
and φ-invariant. Define the operators

D′′
n : Ω0(ad(E)) → Ω0,1(End(E)) ⊕ Ω1,0(End(E))

and

Di,j : Ω0(Hom(Ei, Ej) → Ω0,1 (Hom(Ei, Ej)) ⊕ Ω1,0 (Hom(Ei, Ej))

by u �→
(
d′′

An
u, [φn, u]

)
and u �→

(
d′′u + A′′

j u − uA′′
i , φju − uφi

)
. Let gi,j ∈

GC correspond to the finite-time gradient flow from time ti to tj (i.e. gi,j ·
(Ai, φi) = (Aj , φj)). Then a simple calculation shows that Di,jgi,j = 0. The
proof of Proposition 3.3 shows that ‖φ‖Hk and ‖FA‖Hk are bounded for all
k along the gradient flow of YMH , and so for all �

(5.3) ‖Di,ju‖H�−1 ≤ C‖u‖H� ,

where the bound C is uniform along the gradient flow, by [18, Proposition A]
and Lemma 3.14 in this paper. After these preliminaries we can now prove
the following claim.

Claim 5.4. fn converges in the Hk norm for all k to some non-zero
φ-invariant holomorphic map f∞.

Proof. Replace fn by fn

‖fn‖L2
(note that ‖fn‖L2 �= 0 for all n since ‖f0‖L2 �= 0

and gn is an automorphism of E) and consider D′′
0,nfn = D′′

0,∞fn + [βn, fn]
where βn → 0 in Hk for all k (since D′′

n → D′′
∞ in Hk for all k). Since fn is

holomorphic, D′′
0,nfn = 0. Therefore for any � we have the estimate

(5.4)
∥
∥D′′

0,∞fn

∥
∥

H� ≤ ‖βn‖C0 ‖fn‖H�

Since βn → 0 smoothly then along a subsequence (also denoted fn), fn is
bounded in H� implies that fn is bounded in H�+1, where the bound only
depends on ‖fn‖H� . Since ‖fn‖L2 = 1, by induction ‖fn‖H� ≤ C� for all �.
Therefore there exists f∞ such that fn → f∞ strongly in H�−1 for all �. The
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estimate (5.3) for the operator D′′
0,∞ shows that

∥
∥D′′

0,∞f∞
∥
∥

H�−1 ≤
∥
∥D′′

0,∞(fn − f∞)
∥
∥

H�−1 +
∥
∥D′′

0,∞fn

∥
∥

H�−1

≤ C ‖fn − f∞‖H� +
∥
∥D′′

0,∞fn

∥
∥

H�−1

Since βn → 0 and ‖fn‖H� is bounded, (5.4) shows that the right-hand side of
the above estimate approaches zero as n → ∞ for all �. Therefore D′′

0,∞f∞ =
0 and so f∞ is holomorphic. Since ‖fn‖L2 = 1 for all n then f∞ �= 0. �

Theorem 4.1 shows that the type of the Harder–Narasimhan filtration
is preserved in the limit. The next result shows that the destabilizing
Higgs sub-bundles in the Harder–Narasimhan filtration along the gradient
flow converge to the destabilizing Higgs sub-bundles of the limiting Higgs
pair. In the following we use the projection π : E → E to denote the sub-
bundle π(E).

Proposition 5.5. Let {π
(i)
t } be the HN filtration of a solution (A′′

t , φt) to
the gradient flow equations (3.1), and let {π

(i)
∞ } be the HN filtration of the

limit (A′′
∞, φ∞). Then there exists a subsequence {tj} such that π

(i)
tj

→ π
(i)
∞

in L2 for all i.

To prove this we need the following lemmas.

Lemma 5.6. ‖D′′
t (π(i)

t )‖L2 → 0.

Proof. Let D′′
tj

: Ω0(End(E)) → Ω0,1(End(E)) ⊕ Ω1,0(End(E)) denote the
infinitesimal action of GC at time t, i.e. D′′

t (u) = (d′′
At

u, [φt, u]). The Chern–
Weil formula of [21] shows that

(5.5) deg(π(i)
t ) =

√
−1
2π

∫

X
tr
(
π

(i)
t ∗ (FAt

+ [φt, φ
∗
t ])
)

− ‖D′′
t (π(i)

t )‖2
L2 .

Along the finite-time flow di = deg(π(i)
t ) is fixed; therefore we can re-write

(5.5):

‖D′′
t (π(i)

t )‖L2 = −di +
√

−1
2π

∫

X
tr
(
π

(i)
t ∗ (FA∞ + [φ∞, φ∗

∞])
)

+
√

−1
2π

∫

X
tr
(
π

(i)
t ∗ (FAt

+ [φt, φ
∗
t ] − FA∞ − [φ∞, φ∗

∞])
)

.(5.6)

Theorem 3.1 shows that FAt
+ [φt, φ

∗
t ] → FA∞ + [φ∞, φ∗

∞] in the C∞ topol-
ogy, and therefore since π

(i)
t is uniformly bounded in L2 (it is a projection)
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then the last term in (5.6) converges to zero. Let μ be the HN type of
(A′′

∞, φ∞). Since (A′′
∞, φ∞) is a critical point of YMH , we also have

(5.7)
√

−1
2π

∫

X
tr
(
π

(i)
t ∗ (FA∞ + [φ∞, φ∗

∞])
)

≤
∑

k≤rank(π(i)
∞ )

μk = di.

Combining all of these results, we see that ‖D′′
t (π(i)

t )‖L2 → 0. �

In particular, this lemma shows that ‖π
(i)
tj

‖H1 ≤ C and so there exists
some π̃

(i)
∞ and a subsequence tj such that π

(i)
tj

→ π̃
(i)
∞ weakly in H1 and

strongly in L2.

Lemma 5.7. ‖D′′
∞(π̃(i)

∞ )‖L2 = 0.

Proof. ‖D′′
∞(π(i)

tj
)‖L2 ≤ ‖D′′

∞(π(i)
tj

) −D′′
tj

(̃π(i)
tj

)‖L2 + ‖D′′
tj

(̃π(i)
tj

)‖L2 . Theorem
3.1 and the previous lemma then show that ‖D′′

∞(π(i)
tj

)‖L2 → 0. Since π
(i)
tj

→
π̃

(i)
∞ weakly in H1 then ‖D′′

∞(π̃(i)
∞ )‖L2 = 0. �

Lemma 5.8. deg(π̃(i)
∞ ) = deg(π(i)

∞ ).

Proof. The previous lemma and equation (5.5) show that

deg(π̃(i)
∞ ) =

√
−1
2π

∫

X
tr
(
π̃(i)

∞ ∗ (FA∞ + [φ∞, φ∗
∞])
)

= lim
j→∞

‖D′′
tj

π
(i)
tj

‖2
L2 + deg

(
π

(i)
tj

)

= deg
(
π(i)

∞

)
,

(5.8)

where in the last step we use the result of Theorem 4.1 that the type of the
HN filtration is preserved in the limit. �

Proof of Proposition 5.5. The results of the preceding lemmas show that
the degree and rank of π

(i)
∞ and π̃

(i)
∞ are the same. For i = 1, π

(1)
∞ is the

maximal destabilizing Higgs sub-bundle of (A∞, φ∞), which is the unique
Higgs sub-bundle of this degree and rank. Therefore π

(1)
∞ = π̃

(1)
∞ . Proceeding

by induction on the HN filtration as in [6] completes the proof of Proposi-
tion 5.5. �

Following the idea in part (2) of the proof of [6, Lemma 4.5] in the Yang–
Mills case, we see that the same argument applies to the Seshadri filtration
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of a semistable Higgs bundle, except that because of the lack of uniqueness
of the Seshadri filtration we can only conclude that the degree and rank of
the limiting sub-bundle are the same.

The following lemma is completely analogous to the proof of in [14,
(V.7.11)] for holomorphic bundles and so the proof is omitted.

Lemma 5.9. Let (S1, φ1) be a stable Higgs bundle, and let (S2, φ2) be a
semistable Higgs bundle over a compact Riemann surface X. Also suppose
that deg(S1)

rank(S1)
= deg(S2)

rank(S2)
, and let f : S1 → S2 be a holomorphic map satisfying

f ◦ φ1 = φ2 ◦ f . Then either f = 0 or f is injective.

Since the Harder–Narasimhan filtration is preserved in the limit then
(S, A0, φ0) is Higgs-stable and (S, A∞, φ∞) is Higgs-semistable with the same
degree/rank ratio, so the non-zero map f∞ must be injective. Therefore
im f∞ = (S, A∞, φ∞) is Higgs-stable. Using [4, Lemma 5.12] we can assume
(after unitary co-ordinate changes) that the operator D′′

i preserves the bun-
dle S∞ for all i. To complete the induction we need the following result for
the quotient bundle Q.

Claim 5.10. Let Qk = Ek/Sk. Then Qk = hk · Q0 for some hk ∈ GC(Q),
the induced connections D′′

j
Q converge to some D′′

∞
Q in the C∞ norm, and

Q0 and Q∞ have the same φ-invariant Harder–Narasimhan type.

Proof. The construction of hk follows from the following commutative dia-
gram

0 �� S0 ��

fk

��

E0 ��

gk

��

Q0

hk

���
�
�

�� 0

0 �� Sk
�� Ek

�� Qk
�� 0

(5.9)

where the map hk is constructed from the maps fk and gk using the exactness
of the rows in the diagram.

Using the notation from [4, Lemma 5.12], the induced connection on
Qk is given by D′′

k
Q = π̃k

⊥D′′
k π̃k

⊥. Lemma 5.12 from [4] states that π̃k =
π∞ is constant with respect to k, and so D′′

k
Q = π⊥

∞D′′
kπ⊥

∞ converges to
π⊥

∞D′′
∞π⊥

∞ = D′′
∞

Q. Finally, Theorem 4.1 shows that Q0 and Q∞ have the
same Harder–Narasimhan type. �

Therefore we can apply the previous argument to the first term in the
double filtration of Q. Repeating this process inductively shows that the
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limit of the gradient flow YMH along the sequence {tn} is the graded
object associated to the φ-invariant Harder–Narasimhan–Seshadri filtration
of (A′′, φ). Since Theorem 3.1 shows that the limit exists along the flow inde-
pendently of the subsequence chosen, the limit is GrHNS(A′′, φ), completing
the proof of Theorem 5.3.
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