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Note on orbifold Chow ring of semi-projective toric
Deligne –Mumford stacks

Yunfeng Jiang and Hsian-Hua Tseng

We prove a formula for the orbifold Chow ring of semi-projective
toric Deligne–Mumford (DM) stacks, generalizing the orbifold
Chow ring formula of projective toric DM stacks by Borisov–Chen–
Smith. We also consider a special kind of semi-projective toric
DM stacks, the Lawrence toric DM stacks. We prove that the orb-
ifold Chow ring of a Lawrence toric DM stack is isomorphic to the
orbifold Chow ring of its associated hypertoric DM stack studied
in Y. Jiang and H.-H. Tseng, The orbifold Chow ring of hyper-
toric Deligne–Mumford stacks, J. Reine Angew. Math. (Crelle’s
Journal), to appear, math.AG/0512199.

1. Introduction

The main aim of this paper is to generalize the orbifold Chow ring formula
of Borisov–Chen–Smith for projective toric Deligne–Mumford (DM) stacks
to the case of semi-projective toric DM stacks.

In the paper [3], Borisov, Chen and Smith developed the theory of toric
DM stacks using stacky fans, generalizing the quotient construction of sim-
plicial toric varieties, [7, 8]. A stacky fan is a triple Σ = (N, Σ, β), where
N is a finitely generated abelian group, Σ is a simplicial fan in the lattice
N := N/torsion and β : Z

n → N is a map given by a collection of vectors
{b1, . . . , bn} ⊂ N such that the images {b1, . . . , bn} generate the fan Σ. A
toric DM stack X (Σ) is defined using Σ; it is a quotient stack whose coarse
moduli space is the toric variety X(Σ) corresponding to the simplicial fan Σ.

The construction of toric DM stacks was slightly generalized later in
[12], in which the notion of extended stacky fans was introduced. This new
notion is based on that of stacky fans plus some extra data. Extended stacky
fans yield toric DM stacks in the same way as stacky fans do. The main
point is that extended stacky fans provide presentations of toric DM stacks
not available from stacky fans.

When X(Σ) is projective, it is found in [3] that the orbifold Chow ring
(or Chen–Ruan cohomology ring) of X (Σ) introduced in [1, 5] is isomorphic
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to a deformed ring of the group ring of N . We call a toric DM stack X (Σ)
semi-projective if its coarse moduli space X(Σ) is semi-projective. Hausel
and Sturmfels [10] computed the Chow ring of semi-projective toric varieties.
Their answer is also known as the “Stanley–Reisner” ring of a fan, also
see [14, 15]. Using their result, we prove a formula of the orbifold Chow ring
of semi-projective toric DM stacks.

Consider an extended stacky fan Σ = (N, Σ, β), where Σ is the simpli-
cial fan of the semi-projective toric variety X(Σ). Let Ntor be the torsion
subgroup of N , then N = N ⊕ Ntor. Let NΣ := |Σ| ⊕ Ntor. Note that |Σ|
is convex, and so |Σ| ⊕ Ntor is a subgroup of N . Define the deformed ring
Q[NΣ] :=

⊕
c∈NΣ

Qyc with the product structure given by

yc1 · yc2 :=

{
yc1+c2 if there is a cone σ ∈ Σ such that c1 ∈ σ, c2 ∈ σ;
0 otherwise.

(1.1)

Note that if X (Σ) is projective, then NΣ = N and Q[NΣ] is the deformed
ring Q[N ]Σ in [3]. Let A∗

orb(X (Σ)) denote the orbifold Chow ring of the
toric DM stack X (Σ).

Theorem 1.1. Assume that X (Σ) is semi-projective. There is an isomor-
phism of rings

A∗
orb(X (Σ)) ∼=

Q[NΣ]
{
∑n

i=1 e(bi)ybi : e ∈ N�} .

The strategy of proving Theorem 1.1 is as follows. We use a formula in
[10] for the ordinary Chow ring of semi-projective toric varieties. We prove
that each twisted sector is also a semi-projective toric DM stack. With
this, we use a method similar to that in [3, 12] to prove the isomorphism as
modules. The argument to show the isomorphism as rings is the same as
that in [3], except that we only take elements in the support of the fan.

An interesting class of examples of semi-projective toric DM stack is the
Lawrence toric DM stacks. We discuss the properties of such stacks. We
study the 3-twisted sectors or twisted sectors of Lawrence toric DM stacks,
which allows us to draw connections to hypertoric DM stacks studied in
[13]. We prove that the orbifold Chow ring of a Lawrence toric DM stack is
isomorphic to the orbifold Chow ring of its associated hypertoric DM stack.
This is an analog of Theorem 1.1 in [10] for orbifold Chow rings.
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The rest of this text is organized as follows. In Section 2, we define semi-
projective toric DM stacks and prove Theorem 1.1. Results on Lawrence
toric DM stacks are discussed in Section 3.

Conventions. In this paper we work entirely algebraically over the field
of complex numbers. Chow rings and orbifold Chow rings are taken with
rational coefficients. By an orbifold we mean a smooth DM stack with trivial
generic stabilizer.

For a simplicial fan Σ, we use |Σ| to represent the lattice points in Σ.
Note that if Σ is convex, |Σ| is a free abelian subgroup of N . We write
N� for HomZ(N, Z) and N → N the natural map of modding out torsions.
We refer to [3] for the construction of the Gale dual β∨ : Z

m → DG(β) of
β : Z

m → N .

2. Semi-projective toric DM stacks and their orbifold
chow rings

In this section, we define semi-projective toric DM stacks and discuss their
properties.

2.1. Semi-projective toric DM stacks

Definition 2.1 [10]. A toric variety X is called semi-projevtive if the
natural map

π : X → X0 = Spec(H0(X, OX)),

is projective and X has at least one torus-fixed point.

Definition 2.2 [12]. An extended stacky fan Σ is a triple (N, Σ, β), where
N is a finitely generated abelian group, Σ is a simplicial fan in NR and
β : Z

m → N is the map determined by the elements {b1, . . . , bm} in N such
that {b1, . . . , bn} generate the simplicial fan Σ (here m ≥ n).

Given an extended stacky fan Σ = (N, Σ, β), we have the following exact
sequences:

0 −→ DG(β)� −→ Z
m β−→ N −→ Coker(β) −→ 0,(2.1)

0 −→ N� −→ Z
m β∨

−→ DG(β) −→ Coker(β∨) −→ 0,(2.2)
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where β∨ is the Gale dual of β (see [3]). Applying HomZ(−, C∗) to (2.2)
yields

(2.3) 1 −→ μ −→ G
α−→ (C∗)m −→ (C∗)d −→ 1.

The toric DM stack X (Σ) is the quotient stack [Z/G], where Z := (Cn \
V (JΣ)) × (C∗)m−n, JΣ is the irrelevant ideal of the fan Σ and G acts on
Z through the map α in (2.3). The coarse moduli space of X (Σ) is the sim-
plicial toric variety X(Σ) corresponding to the simplicial fan Σ; see [3, 12].

Definition 2.3. A toric DM stack X (Σ) is semi-projective if the coarse
moduli space X(Σ) is semi-projective.

Theorem 2.4. The following notions are equivalent:

(1) A semi-projective toric DM stack X (Σ);

(2) A toric DM stack X (Σ) such that the simplicial fan Σ is a regular
triangulation of B = {b1, . . . , bn} which spans the lattice N .

Proof. Since the toric DM stack is semi-projective if its coarse moduli space
is semi-projective, the theorem follows from results in [10]. �

2.2. The inertia stack

Let Σ be an extended stacky fan and σ ∈ Σ a cone. Define link(σ) :=
{τ : σ + τ ∈ Σ, σ ∩ τ = 0}. Let {ρ̃1, . . . , ρ̃l} be the rays in link(σ). Con-
sider the quotient extended stacky fan Σ/σ = (N(σ), Σ/σ, β(σ)), with β(σ) :
Z

l+m−n → N(σ) given by the images of b1, . . . , bl and bn+1, . . . , bm under
N → N(σ). By the construction of toric DM stacks, if σ is contained
in a top-dimensional cone in Σ, we have X (Σ/σ) := [Z(σ)/G(σ)], where
Z(σ) = (Al \ V(JΣ/σ)) × (C∗)m−n and G(σ) = HomZ(DG(β(σ)), C∗).

Lemma 2.5. If X (Σ) is semi-projective, so is X (Σ/σ).

Proof. Semi-projectivity of the stack X (Σ) means the simplicial fan Σ is
a fan coming from a regular triangulation of B = {b1, . . . , bn} which spans
the lattice N . Let pos(B) be the convex polyhedral cone generated by B.
Then from [10], the triangulation is supported on pos(B) and is determined
by a simple polyhedron whose normal fan is Σ. So σ is contained in a
top-dimensional cone τ in Σ. The image τ̃ of τ under quotient by σ is a
top-dimensional cone in the quotient fan Σ/σ. So the toric variety X(Σ/σ)
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is semi-projective by Theorem 2.4, and the stack X (Σ/σ) is semi-projective
by definition. �

Recall in [3] that for each top-dimensional cone σ in Σ, define Box(σ) to
be the set of elements v ∈ N such that v =

∑
ρi⊆σ aibi for some 0 ≤ ai < 1.

Elements in Box(σ) are in one-to-one correspondence with elements in the
finite group N(σ) = N/Nσ, where N(σ) is a local group of the stack X (Σ).
In fact, we write v =

∑
ρi⊆σ(v) aibi for some 0 < ai < 1, where σ(v) is the

minimal cone containing v. We denote by Box(Σ) the union of Box(σ) for
all top-dimensional cones σ.

Proposition 2.6. The r-inertia stack is given by

(2.4) Ir(X (Σ)) =
∐

(v1,...,vr)∈Box(Σ)r

X (Σ/σ(v1, . . . , vr)),

where σ(v1, . . . , vr) is the minimal cone in Σ containing v1, . . . , vr.

Proof. Since G is an abelian group, we have

Ir(X (Σ)) =

⎡

⎣

⎛

⎝
∐

(v1,...,vr)∈(G)r

Z(v1,...,vr)

⎞

⎠ /G

⎤

⎦ ,

where Z(v1,...,vr) ⊂ Z is the subvariety fixed by v1, . . . , vr. Since σ(v1, . . . , vr)
is contained in a top-dimensional cone in Σ. We use the same method
as in Lemma 4.6 and Proposition 4.7 of [3] to prove that [Z(v1,...,vr)/G] ∼=
X (Σ/σ(v1, . . . , vr)). �

Note that in (2.4) each component is semi-projective.

2.3. The orbifold Chow ring

In this section, we compute the orbifold Chow ring of semi-projective toric
DM stacks and prove Theorem 1.1.

The module structure. Let Σ = (N, Σ, β) be an extended stacky fan such
that the toric DM stack X (Σ) is semi-projective. Since the fan Σ is convex,
|Σ| is an abelian subgroup of N . We put NΣ := |Σ| ⊕ Ntor, where Ntor is
the torsion subgroup of N . Define the deformed ring Q[NΣ] :=

⊕
c∈NΣ

Qyc

with the product structure given by (1.1).
Let {ρ1, . . . , ρn} be the rays of Σ, then each ρi corresponds to a line

bundle Li over the toric DM stack X (Σ) given by the trivial line bundle
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C × Z over Z with the G action on C given by the ith component αi of
α : G → (C∗)m in (2.3). The first Chern classes of the line bundles Li,
which we identify with ybi , generate the cohomology ring of the simplicial
toric variety X(Σ).

Let SΣ be the quotient ring Q[yb1 , . . . , ybn ]/IΣ, where IΣ is the square-
free ideal of the fan Σ generated by the monomials

{ybi1 · · · ybik : bi1 , . . . , bik
do not generate a cone in Σ}.

It is clear that SΣ is a subring of the deformed ring Q[NΣ].

Lemma 2.7. Let A∗(X (Σ)) be the ordinary Chow ring of a semi-projective
toric DM stack X (Σ). Then there is a ring isomorphism:

A∗(X (Σ)) ∼=
SΣ

{
∑n

i=1 e(bi)ybi : e ∈ N�} .

Proof. The lemma is easily proven from the fact that the Chow ring of a
DM stack is isomorphic to the Chow ring of its coarse moduli space [17];
[10, Proposition 2.11]. �

Now we study the module structure on A∗
orb(X (Σ)). Because Σ is a

simplicial fan, we have:

Lemma 2.8. For any c ∈ NΣ, let σ be the minimal cone in Σ containing
c. Then there is a unique expression c = v +

∑
ρi⊂σ mibi, where mi ∈ Z≥0

and v ∈ Box(σ).

Proposition 2.9. Let X (Σ) be a semi-projective toric DM stack associ-
ated to an extended stacky fan Σ. We have an isomorphism of A∗(X (Σ))-
modules:

⊕

v∈Box(Σ)

A∗(X (Σ/σ(v)))[deg(yv)] ∼=
Q[NΣ]

{
∑n

i=1 e(bi)ybi : e ∈ N�} .

Proof. From the definition of Q[NΣ] and Lemma 2.8, we see that Q[NΣ] =⊕
v∈Box(Σ) yv · SΣ. The rest is similar to the proof of [12, Proposition 4.7],

we leave it to the readers. �

The Chen–Ruan product structure. The orbifold cup product on a DM
stack X is defined using genus 0, degree 0, 3-pointed orbifold Gromov–
Witten invariants on X . The relevant moduli space is the disjoint union of
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all 3-twisted sectors (i.e., the double inertia stack). By (2.4), the 3-twisted
sectors of a semi-projective toric DM stack X (Σ) are

(2.5)
∐

(v1,v2,v3)∈Box(Σ)3,v1v2v3=1

X (Σ/σ(v1, v2, v3)).

Let evi : X (Σ/σ(v1, v2, v3)) → X (Σ/σ(vi)) be the evaluation maps.
The obstruction bundle (see [5, 6]) Ob(v1,v2,v3) over the 3-twisted sector
X (Σ/σ(v1, v2, v3)) are defined by

(2.6) Ob(v1,v2,v3) := (e∗T (X (Σ)) ⊗ H1(C,OC))H ,

where e : X (Σ/σ(v1, v2, v3)) → X (Σ) is the embedding, C → P
1 is the

H-covering branched over three marked points {0, 1,∞} ⊂ P
1, and H is

the group generated by v1, v2, v3.
A general result in [4, 11] about the obstruction bundle implies the

following.

Proposition 2.10. Let X (Σ/σ(v1, v2, v3)) be a 3-twisted sector of the stack
X (Σ). Suppose v1 + v2 + v3 =

∑
ρi⊂σ(v1,v2,v3) aibi, ai = 1 or 2. Then the

Euler class of the obstruction bundle Ob(v1,v2,v3) on X (Σ/σ(v1, v2, v3)) is

∏

ai=2

c1(Li)|X (Σ/σ(v1,v2,v3)),

where Li is the line bundle over X (Σ) corresponding to the ray ρi.

Let v ∈ Box(Σ), say v ∈ N(σ), for some top-dimensional cone σ. Let v̌ ∈
Box(Σ) be the inverse of v as an element in the group N(σ). Equivalently,
if v =

∑
ρi⊆σ(v) αibi for 0 < αi < 1, then v̌ =

∑
ρi⊆σ(v)(1 − αi)bi. Then for

α1, α2 ∈ A∗
orb(X (Σ)), the orbifold cup product is defined by

(2.7) α1 ∪orb α2 = êv3∗(ev∗
1α1 ∪ ev∗

2α2 ∪ e(Ob(v1,v2,v3))),

where êv3 = I ◦ ev3, and I: IX (Σ) → IX (Σ) is the natural map given by
(x, g) �→ (x, g−1).

Proof of Theorem 1.1. By Proposition 2.9, it remains to consider the cup
product. In this case, for any v1, v2 ∈ Box(Σ), we also have

v1 + v2 = v̌3 +
∑

ai=2

bi +
∑

i∈J

bi,
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where J represents the set of j such that ρj belongs to σ(v1, v2), but not
belong to σ(v3). Then the proof is the same as the proof in [3]. We omit
the details.

3. Lawrence toric DM stacks

In this section, we study a special type of semi-projective toric DM stacks
called the Lawrence toric DM stacks. Their orbifold Chow rings are shown
to be isomorphic to the orbifold Chow rings of their associated hypertoric
DM stacks studied in [13].

3.1. Stacky hyperplane arrangements

Let N , {b1, . . . , bm} ∈ N , β : Z
m → N , and {b1, . . . , bm} ⊂ N be as in Defi-

nition 2.2. We assume that {b1, . . . , bm} ∈ N are nontorsion integral vectors.
We still have the exact sequences (2.1) and (2.2). The Gale dual map β∨

of β is given by a collection of integral vectors β∨ = (a1, . . . , am). Choose a
generic element θ ∈ DG(β) and let ψ := (r1, . . . , rm) be a lifting of θ in Z

m

such that θ = −β∨ψ. Note that θ is generic if and only if it is not in any
hyperplane of the configuration determined by β∨ in DG(β)R. Associated to
θ there is a hyperplane arrangement H = {H1, . . . , Hm} defined as follows:
let Hi be the hyperplane

(3.1) Hi := {v ∈ MR| < bi, v > +ri = 0} ⊂ MR.

This determines hyperplane arrangement in MR, up to translation. It is well
known that hyperplane arrangements determine the topology of hypertoric
varieties [2]. We call A := (N, β, θ) a stacky hyperplane arrangement.

The toric variety X(Σ) is defined by the weighted polytope Γ :=
⋂m

i=1 Fi,
where Fi = {v ∈ MR| < bi, v > +ri ≥ 0}. Suppose that Γ is bounded, the
fan Σ is the normal fan of Γ in MR = R

d with one dimensional rays gen-
erated by b1, . . . , bn. By reordering, we may assume that H1, . . . , Hn are
the hyperplanes that bound the polytope Γ, and Hn+1, . . . , Hm are the
other hyperplanes. Then we have an extended stacky fan Σ = (N, Σ, β)
as in Definition 2.2, with Σ the normal fan of Γ, β: Z

m → N given by
{b1, . . . , bn, bn+1, . . . , bm} ⊂ N , and {bn+1, . . . , bm} the extra data. We define
the hypertoric DM stack M(A) using this A; see [13] for more details.
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3.2. Lawrence toric DM stacks

Applying Gale dual to the map

(3.2) Z
m ⊕ Z

m → DG(β),

given by (β∨,−β∨), we obtain

βL : Z
m ⊕ Z

m −→ NL,

which is given by integral vectors {bL,1, . . . , bL,m, b′
L,1, . . . , b

′
L,m} in NL. The

natural images {bL,1, . . . , bL,m, b
′
L,1, . . . , b

′
L,m} ⊂ NL are called the Lawrence

lifting of {b1, . . . , bm} ⊂ N .
Associated to the generic element θ, let θ be the natural image under

the map DG(β) → DG(β). Then the map β
∨ : Z

m → DG(β) is given by
β

∨ = (a1, . . . , am). For any column basis of the form C = {ai1 , . . . , aim−d
},

there exist unique λ1, . . . , λm−d such that

ai1λ1 + · · · + aim−d
λm−d = θ.

Let C[z1, . . . , zm, w1, . . . , wm] be the coordinate ring of C
2m. Let σ(C, θ) =

{bij
|λj > 0} � {b

′
ij
| λj < 0}, and C(θ) = {zij

|λj > 0} � {wij
| λj < 0}.

We set

(3.3) Iθ :=
〈∏

C(θ)|C is a column basis of β
∨〉

,

and

(3.4) Σθ := {σ(C, θ) : C is a column basis of β
∨},

where σ(C, θ) = {bL,1, . . . , bL,m, b
′
L,1, · · · , b

′
L,m} \ σ(C, θ) is the complement

of σ(C, θ) and corresponds to the maximal cones in Σθ. According to [10],
Σθ is the fan of Lawrence toric variety X(Σθ) corresponding to θ in the
lattice NL. The ideal Iθ is the irrelevant ideal of the fan Σθ. Then we have
the Lawrence stacky fan Σθ = (NL, Σθ, βL) introduced in [13].

Applying HomZ(−, C∗) functor to (3.2), we get

(3.5) αh : G → (C∗)2m.

So G acts on C
2m through αh. From Section 2, X (Σθ) = [(C2m \

V (Iθ))/G] whose coarse moduli space is the Lawrence toric variety X(Σθ) =
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(C2m \ V (Iθ))/G. Let Y ⊂ C
2m \ V (Iθ) be the subvariety defined by

the ideal:

(3.6) Iβ∨ :=

〈
m∑

i=1

(β∨)�(x)iaijziwi|∀x ∈ DG(β)�

〉

,

where (β∨)� : DG(β)� → Z
m is the dual map of β∨ and (β∨)�(x)i is

the ith component of the vector (β∨)�(x). From [13], the hypertoric DM
stack M(A) = [Y/G] whose coarse moduli space is the hypertoric variety
Y (β∨, θ) = Y/G.

Definition 3.1 [13]. The Lawrence toric DM stack is the toric DM stack
X (Σθ) corresponding to the Lawrence stacky fan Σθ.

By [10], X(Σθ) is semi-projective. So the Lawrence toric DM stack
X (Σθ) is semi-projective by definition.

3.3. Comparison of inertia stacks

Next we compare the orbifold Chow ring of the hypertoric DM stack and
the orbifold Chow ring of the Lawrence toric DM stack. First we compare
the inertia stacks. From the map β : Z

m → N which is given by vectors
{b1, . . . , bm}. Let Cone(β) be a partially-ordered finite set of cones generated
by b1, . . . , bm. The partial order is defined by: σ ≺ τ if σ is a face of τ , and
we have the minimum element 0̂ which is the cone consisting of the origin.
Let Cone(N) be the set of all convex polyhedral cones in the lattice N . Then
we have a map

C : Cone(β) −→ Cone(N)

such that for any σ ∈ Cone(β), C(σ) is the cone in N . Then Δβ :=
(C,Cone(β)) is a simplicial multi-fan in the sense of [9].

For the multi-fan Δβ, let Box(Δβ) be the set of pairs (v, σ), where σ is
a cone in Δβ, v ∈ N such that v =

∑
ρi⊆σ αibi for 0 < αi < 1. (Note that

σ is the minimal cone in Δβ satisfying the above condition.) From [13], an
element (v, σ) ∈ Box(Δβ) gives a component of the inertia stack I(M(A)).
Also consider the set Box(Σθ) associated to the stacky fan Σθ, see Section
2.2 for its definition. An element v ∈ Box(Σθ) gives a component of the
inertia stack I(X (Σθ)).

By the Lawrence lifting property, a vector bi in N lifts to two vectors
bL,i, b

′
L,i in NL. Let {bL,i1 , . . . , bL,ik

, b
′
L,i1 , . . . , b

′
L,ik

} be the Lawrence lifting
of {bi1 , . . . , bik

}.
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Lemma 3.2. {bi1 , . . . , bik
} generate a cone σ in Δβ if and only if {bL,i1 , . . . ,

bL,ik
, b

′
L,i1 , . . . , b

′
L,ik

} generate a cone σθ in Σθ.

Proof. Suppose σ is a cone in Δβ generated by {bi1 , . . . , bik
}, it is contained

in a top-dimensional cone τ . Assume that τ is generated by {bi1 , . . . , bik
,

bik+1 , . . . , bid
}. Let C be the complement {b1, . . . , bm} \ τ . Then C cor-

responds to a column basis of β
∨ in the map β

∨ : Z
m → DG(β). By the

definition of Σθ in (3.4), C corresponds to a maximal cone τθ in Σθ which
contains the rays generated by {bL,i1 , . . . , bL,ik

, b
′
L,i1 , . . . , b

′
L,ik

}. Thus these
rays generate a cone σθ in Σθ.

Conversely, suppose σθ is a cone in Σθ generated by {bL,i1 , . . . , bL,ik
,

b
′
L,i1 , . . . , b

′
L,ik

}. Using the similar method above we prove that {bi1 , . . . , bik
}

must be contained in a top-dimensional cone of Δβ. So {bi1 , . . . , bik
}

generate a cone σ in Δβ. �

Lemma 3.3. There is an one-to-one correspondence between the elements
in Box(Σθ) and the elements in Box(Δβ). Moreover, their degree shifting
numbers coincide.

Proof. First the torsion elements in Box(Σθ) and Box(Δβ) are both iso-
morphic to μ = ker(α) = ker(αh) in (2.3) and (3.5). Let (v, σ) ∈ Box(Δβ)
with v =

∑
ρi⊆σ αibi. Then v may be identified with an element (which

we ambiguously denote by) v ∈ G := HomZ(DG(β), C∗). Certainly v fixes a
point in C

m. Consider the map α in (2.3), put α(v) = (α1(v), . . . , αm(v)).
Then αi(v) �= 1 if ρi ⊆ σ, and αi(v) = 1 otherwise. By Lemma 3.2, let
{bL,i, b

′
L,i : i = 1, . . . , |σ|} be the Lawrence lifting of {bi}ρi⊆σ. Since the

action of v on C
2m is given by (v, v−1), v fixes a point in C

2m and yields an
element vθ in Box(Σθ). From the map (3.5), let

(3.7) αh(vθ) = (α1
h(vθ), . . . , αm

h (vθ), αm+1
h (vθ), · · · , α2m

h (vθ)).

Then αi
h(vθ) �= 1 and αi+m

h (vθ) �= 1 if ρi ⊆ σ; αi
h(vθ) = αi+m

h (vθ) = 1 oth-
erwise. So σθ(vθ) = {bL,i, b

′
L,i : i = 1, . . . , |σ|} is the minimal cone in Σθ

containing vθ. Furthermore, vθ =
∑

ρi⊆σ αibL,i +
∑

ρi⊆σ(1 − αi)b
′
L,i.

Conversely, given an element vθ ∈ Box(Σθ), let σθ(vθ) be the minimal
cone in Σθ containing vθ. Then from the action of G on C

2m and (3.7),
we have αi

h(vθ) = (αi+m
h (vθ))−1. If αi

h(vθ) �= 1, then αi+m
h (vθ) �= 1, which

means that bL,i, bL,i+m ∈ σθ(vθ). The cone σθ(vθ) is the one in Σθ containing
bL,i, bL,i+m satisfying this condition. Then vθ =

∑
i(αibL,i + (1 − αi)b

′
L,i).

By Lemma 3.2, σθ(vθ) is the Lawrence lifting of a cone σ generated by
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the {bi}s in Δβ. Let v =
∑

ρi⊆σ αibi. So it also determines an element
(v, σ) ∈ Box(Δβ). �

For (v1, σ1), (v2, σ2), (v3, σ3) ∈ Box(Δβ), let σ(v1, v2, v3) be the mini-
mal cone containing v1, v2, v3 in Δβ such that v1 + v2 + v3 =

∑
ρi⊆σ(v1,v2,v3)

aibi and ai = 1, 2. Let vθ,1, vθ,2, vθ,3 be the corresponding elements in
Box(Σθ) and σ(vθ,1, vθ,2, vθ,3) the minimal cone containing vθ,1, vθ,2, vθ,3
in Σθ. Then by Lemmas 3.2 and 3.3, σ(vθ,1, vθ,2, vθ,3) is the Lawrence
lifting of σ(v1, v2, v3). Suppose that σ is generated by {bi1 , . . . , bis

}, then
σ(vθ,1, vθ,2, vθ,3) is generated by {bL,i1 , . . . , bL,is

, b′
L,i1 , . . . , b

′
L,is

}, the
Lawrence lifting of {bi1 , . . . , bis

}. Let {bj1 , . . . , bjm−l−s
} be the rays not

in σ ∪ link(σ), we have the Lawrence lifting {bL,j1 , . . . , bL,jm−l−s
, b

′
L,j1 , . . . ,

b
′
L,jm−l−s

}. Then from the definition of Lawrence fan Σθ in (3.4), we have
the following lemma.

Lemma 3.4. There exist m − l − s vectors in {bL,j1 , . . . , bL,jm−l−s
, b

′
L,j1 , . . . ,

b
′
L,jm−l−s

} such that the rays they generate plus the rays in σ(vθ,1, vθ,2, vθ,3)
generate a cone σθ in Σθ.

Proposition 3.5. The stack X (Σθ/σθ) is also a Lawrence toric DM stack.

Proof. For simplicity, put σ := σ(v1, v2, v3). Suppose there are l rays in the
link(σ). Then by Lemma 3.2 there are 2l rays in link(σθ), the Lawrence
lifting of link(σ). Let s := |σ|, then 2s + m − l − s = |σθ|. Applying Gale
dual to the diagrams:

0 −−−−→ Z
s −−−−→ Z

l+s −−−−→ Z
l −−−−→ 0

⏐
⏐
�βσ

⏐
⏐
�˜β

⏐
⏐
�β(σ)

0 −−−−→ Nσ −−−−→ N −−−−→ N(σ) −−−−→ 0

and
0 −−−−→ Z

l+s −−−−→ Z
m −−−−→ Z

m−l−s −−−−→ 0
⏐
⏐
�˜β

⏐
⏐
�β

⏐
⏐
�

0 −−−−→ N
∼=−−−−→ N −−−−→ 0 −−−−→ 0

yields

(3.8)

0 −−−−→ Z
l −−−−→ Z

l+s −−−−→ Z
s −−−−→ 0

⏐
⏐
�β(σ)∨

⏐
⏐
�˜β∨

⏐
⏐
�β∨

σ

0 −−−−→ DG(β(σ))
ϕ1−−−−→ DG(β̃) −−−−→ DG(βσ) −−−−→ 0
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and

(3.9)

0 −−−−→ Z
m−l−s −−−−→ Z

m −−−−→ Z
l+s −−−−→ 0

⏐
⏐
�∼=

⏐
⏐
�β∨

⏐
⏐
�˜β∨

0 −−−−→ Z
m−l−s −−−−→ DG(β)

ϕ2−−−−→ DG(β̃) −−−−→ 0

Since Z
s ∼= Nσ, we have DG(βσ) = 0. We add two exact sequences

0 −→ Z
l −→ Z

m −→ Z
m−l −→ 0,

and

0 −→ 0 −→ Z
m −→ Z

m −→ 0,

on the rows of the diagrams (3.8), (3.9) and make suitable maps to the Gale
duals we get

(3.10)

0 −−−−→ Z
2l −−−−→ Z

l+s+m −−−−→ Z
s+m−l −−−−→ 0

⏐
⏐
�(β(σ)∨,−β(σ)∨)

⏐
⏐
�(˜β∨,−β∨)

⏐
⏐
�0

0 −−−−→ DG(β(σ))
∼=−−−−→ DG(β̃) −−−−→ 0 −−−−→ 0

and

(3.11)

0 −−−−→ Z
m−l−s −−−−→ Z

2m −−−−→ Z
l+s+m −−−−→ 0

⏐
⏐
�∼=

⏐
⏐
�(β∨,−β∨)

⏐
⏐
�(˜β∨,−β∨)

0 −−−−→ Z
m−l−s −−−−→ DG(β) −−−−→ DG(β̃) −−−−→ 0.

Applying Gale dual to (3.10), (3.11) we get

0 −−−−→ Z
s+m−l −−−−→ Z

l+s+m −−−−→ Z
2l −−−−→ 0

⏐
⏐
�∼=

⏐
⏐
�˜βL

⏐
⏐
�βL(σθ)

0 −−−−→ Z
s+m−l −−−−→ ÑL −−−−→ NL(σθ) −−−−→ 0

and

0 −−−−→ Z
l+s+m −−−−→ Z

2m −−−−→ Z
m−l−s −−−−→ 0

⏐
⏐
�˜βL

⏐
⏐
�βL

⏐
⏐
�0

0 −−−−→ ÑL
∼=−−−−→ NL −−−−→ 0 −−−−→ 0
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For the generic element θ, from the map ϕ2 in (3.9), θ induces θ̃ ∈ DG(β̃),
and from the isomorphism ϕ1 in (3.8), θ̃ = θ(σ) ∈ DG(β(σ)). So we a
quotient stacky hyperplane arrangement A(σ) = (N(σ), β(σ), θ(σ)). From
the above diagrams, we see that the quotient fan Σθ/σθ in NL(σθ) also
comes from a Lawrence construction of the map β(σ)∨ : Z

l → DG(β(σ)).
Let X(σ) = C

2l \ V (Iθ(σ)), where Iθ(σ) is the irrelevant ideal of the quo-
tient fan Σθ/σθ. Let G(σ) = HomZ(DG(β(σ)), C∗). The stack X (Σθ/σθ) =
[X(σ)/G(σ)] is a Lawrence toric Deligne–Mumford stack. �

Corollary 3.6. M(A(σ(v1, v2, v3))) is the hypertoric DM stack associated
to the quotient Lawrence toric DM stack X (Σθ/σθ).

Proof. M(A(σ(v1, v2, v3))) is constructed in [13] as a quotient stack [Y (σ)/
G(σ)], where Y (σ) ⊂ X(σ) is defined by Iβ(σ)∨ , which is the ideal in (3.6)
corresponding to the map β(σ)∨ in (3.8). So the stack M(A(σ(v1, v2, v3)))
is the associated hypertoric DM stack in the Lawrence toric DM stack
X (Σθ/σθ). �

Remark 3.7. For any vθ ∈ Box(Σθ), let v−1
θ be its inverse. We have the

quotient Lawrence toric stack X (Σθ/σθ). Let (v, σ) be the corresponding
element in Box(Δβ), then

M(A(σ(v, v−1, 1))) ∼= M(A(σ)).

By Proposition 3.5 and Corollary 3.6, the twisted sector M(A(σ)) is the
associated hypertoric DM stack of the Lawrence toric DM stack X (Σθ/σθ).

Remark 3.8. From Lemma 3.4, the cone σθ is not the minimal cone
σ(vθ,1, vθ,2, vθ,3) containing vθ,1, vθ,2, vθ,3 in Σθ. So X (Σθ/σ(vθ,1, vθ,2, vθ,3))
is not a Lawrence toric DM stack. But from the construction of Lawrence
toric DM stack, the quotient stack X (Σθ/σ(vθ,1, vθ,2, vθ,3)) is homotopy
equivalent to the quotient stack X (Σθ/σθ). Since we do not need this to
compare the orbifold Chow ring, we omit the details.

3.4. Comparison of orbifold Chow rings

Recall that NL = NL ⊕ NL,tor, where NL,tor is the torsion subgroup of NL.
Let NΣθ

= NL,tor ⊕ |Σθ|. By Theorem 1.1, we have
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Proposition 3.9. The orbifold Chow ring A∗
orb(X (Σθ)) of the Lawrence

toric DM stack X (Σθ) is isomorphic to the ring

(3.12)
Q[NΣθ

]
{∑m

i=1 e(bL,i)ybL,i +
∑m

i=1 e(b′
L,i)y

b′
L,i : e ∈ N�

L

} .

Recall in [13] that for any c ∈ N , there is a cone σ ∈ Δβ such that
c =
∑

ρi⊆σ αibi where αi > 0 are rational numbers. Let NΔβ denote all the
pairs (c, σ). Then NΔβ gives rise a group ring

Q[Δβ] =
⊕

(c,σ)∈NΔβ

Q · y(c,σ),

where y is a formal variable. For any (c, σ) ∈ NΔβ , there exists a unique
element (v, τ) ∈ Box(Δβ) such that τ ⊆ σ and c = v +

∑
ρi⊆σ mibi, where

mi are non-negative integers. We call (v, τ) the fractional part of (v, σ). We
define the ceiling function for fans. For (c, σ), define the ceiling function �c�σ

by �c�σ =
∑

ρi⊆τ bi +
∑

ρi⊆σ mibi. Note that if v = 0, �c�σ =
∑

ρi⊆σ mibi.
For two pairs (c1, σ1), (c2, σ2), if σ1 ∪ σ2 is a cone in Δβ, define ε(c1, c2) :=
�c1�σ1 + �c2�σ2 − �c1 + c2�σ1∪σ2 . Let σε ⊆ σ1 ∪ σ2 be the minimal cone in
Δβ containing ε(c1, c2) such that (ε(c1, c2), σε) ∈ NΔβ . We define the grad-
ing on Q[Δβ] as follows. For any (c, σ), write c = v +

∑
ρi⊆σ mibi, then

deg(y(c,σ)) = |τ | +
∑

ρi⊆σ mi, where |τ | is the dimension of τ . By abuse of
notation, we write y(bi,ρi) as ybi . The multiplication is defined by

y(c1,σ1) · y(c2,σ2) :=

{
(−1)|σε|y(c1+c2+ε(c1,c2),σ1∪σ2) if σ1 ∪ σ2 is a cone in Δβ,

0 otherwise.

(3.13)

From the property of ceiling function, we check that the multiplication is
commutative and associative. So Q[Δβ] is a unital associative commutative
ring. In [13], it is shown that

(3.14) A∗
orb(M(A)) ∼=

Q[Δβ]
{
∑m

i=1 e(bi)ybi : e ∈ N�} .

Consider the map β : Z
m → N which is given by the vectors {b1, . . . , bm}.

We take {1, . . . , m} as the vertex set of the matroid complex Mβ, defined
from β by requiring that F ∈ Mβ iff the vectors {bi}i∈F are linearly inde-
pendent in N . A face F ∈ Mβ corresponds to a cone in Δβ generated by
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{bi}i∈F . By [16], the “Stanley–Reisner” ring of the matroid Mβ is

Q[Mβ] =
Q[yb1 , . . . , ybm ]

IMβ

,

where IMβ
is the matroid ideal generated by the set of square-free monomials

{ybi1 · · · ybik |bi1 , . . . , bik
linearly dependent in N}.

It is proved in [13] that,

Q[Δβ] ∼=
⊕

(v,σ)∈Box(Δβ)

y(v,σ) · Q[Mβ].

For any (v1, σ1), (v2, σ2) ∈ Box(Δβ), let (v3, σ3) be the unique element in
Box(Δβ) such that v1 + v2 + v3 ≡ 0 in the local group given by σ1 ∪ σ2,
where ≡ 0 means that there exists a cone σ(v1, v2, v3) in Δβ such that
v1 + v2 + v3 =

∑
ρi⊆σ(v1,v2,v3) aibi, where ai = 1 or 2. Let v1 =

∑
ρj⊆σ1

α1
jbj ,

v2 =
∑

ρj⊆σ2
α2

jbj , v3 =
∑

ρj⊆σ3
α3

jbj with 0 < α1
j , α

2
j , α

3
j < 1. Let I be the

set of i such that ai = 1 and α1
j , α

2
j , α

3
j exist, J the set of j such that ρj

belongs to σ(v1, v2, v3) but not σ3. If (v, σ) ∈ Box(Δβ), let (v̌, σ) be the
inverse of (v, σ). Except torsion elements, equivalently, if v =

∑
ρi⊆σ αibi

for 0 < αi < 1, then v̌ =
∑

ρi⊆σ(1 − αi)bi. By abuse of notation, we write
y(bi,ρi) as ybi . We have v1 + v2 = v̌3 +

∑
ai=2 bi +

∑
j∈J bj . From (3.13),

[13, Lemma 5.11] and [13, Lemma 5.12], if v1, v2 �= 0, we have

�v1�σ1 + �v2�σ2 − �v1 + v2�σ1∪σ2 =
{ ∑

i∈I bi +
∑

j∈J bj if v1 �= v̌2,∑
j∈J bj if v1 = v̌2.

So it is easy to check that the multiplication y(v1,σ1) · y(v2,σ2) can be written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−1)|I|+|J |y(v̌3,σ3) ·
∏

ai=2 ybi ·
∏

i∈I ybi ·
∏

j∈J y2bj if v1, v2 ∈ σ for σ ∈ Δβ and v1 �= v̌2,

(−1)|J |∏
j∈J y2bj if v1, v2 ∈ σ for σ ∈ Δβ and v1 = v̌2,

0 otherwise.

(3.15)

The following is the main result of this section.
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Theorem 3.10. There is an isomorphism of orbifold Chow rings A∗
orb

(X (Σθ)) ∼= A∗
orb(M(A)).

Proof. The ring Q[NΣθ
] is generated by {ybL,i , yb′

L,i : i = 1, . . . , m} and yvθ

for vθ ∈ Box(Σθ) by the definition. By Lemma 3.3, define a morphism

φ : Q[NΣθ
] → Q[Δβ]

by ybL,i �→ ybi , yb′
L,i �→ −ybi and yvθ �→ y(v,σ). By [10], the ideal Iθ goes to

the ideal IMβ
and the relation {

∑m
i=1 e(bL,i)ybL,i +

∑m
i=1 e(b′

L,i)y
b′
L,i : e ∈ N�

L}
goes to the relation {

∑m
i=1 e(bi)ybi : e ∈ N�}. Thus the two rings are iso-

morphic as modules.
It remains to check the multiplications. For any yvθ and ybL,i or yb′

L,i ,
let y(v,σ) be the corresponding element in Q[Δβ]. By the property of vθ and
Lemma 3.3, the minimal cone in Σθ containing vθ, bL,i must contains b

′
L,i.

By Lemma 3.2, there is a cone in Δβ containing v, bi. In this way, yvθ · ybL,i

goes to y(v,σ) · ybi and yvθ · yb′
L,i goes to −y(v,σ) · ybi . If there is no cone

in Σθ containing vθ, bL,i, b
′
L,i, then by Lemma 3.2 there is no cone in Δβ

containing v, bi. So yvθ · ybL,i = 0 goes to y(v,σ) · ybi = 0 and yvθ · yb′
L,i = 0

goes to −y(v,σ) · ybi = 0.
For any yvθ,1 , yvθ,2 , let y(v1,σ1), y(v2,σ2) be the corresponding elements in

Q[Δβ]. If there is no cone in Σθ containing vθ,1, vθ,2, then by Lemmas
3.2 and 3.3, there is no cone in Δβ containing v1, v2. So yvθ,1 · yvθ,2 = 0
goes to y(v1,σ1) · y(v2,σ2) = 0. Suppose there is a cone containing vθ,1, vθ,2,
let vθ,3 ∈ Box(Σθ) such that vθ,1 + vθ,2 + vθ,3 ≡ 0. Let σ(vθ,1, vθ,2, vθ,3) be
the minimal cone containing vθ,1, vθ,2, vθ,3 in Σθ. Then by Lemmas 3.2
and 3.3, σ(vθ,1, vθ,2, vθ,3) is the Lawrence lifting of σ(v1, v2, v3) for
(v1, σ1), (v2, σ2), (v3, σ3) ∈ Box(Δβ). So we may write vθ,1 + vθ,2 + vθ,3 =
∑

ρi⊆σ(v1,v2,v3) aibL,i +
∑

ρi⊆σ(v1,v2,v3) a′
ib

′
L,i. The corresponding v1 + v2 + v3

=
∑

ρi⊆σ(v1,v2,v3) aibi. Let (v̌, σ) be the inverse of (v, σ) in Box(Δβ), i.e., if v

is nontorsion and v =
∑

ρi⊆σ αibi for 0 < αi < 1, then v̌ =
∑

ρi⊆σ

(1 − αi)bi. The v̌θ is defined similarly in Box(Σθ). The notation J rep-
resents the set of j such that ρj belongs to σ(v1, v2, v3) but not σ3, the
corresponding ρL,j , ρ

′
L,j belong to σ(vθ,1, vθ,2, vθ,3) but not σ(vθ,3).

If some vθ,i = 0 which means that vθ,i is a torsion. Then from Lemma
3.3 the corresponding v is also a torsion element. In this case, we know that
the orbifold cup product yvθ,1 · yvθ,2 is the usual product, and under the map
φ, is equal to y(v1,σ1) · y(v2,σ2).
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If vθ,1 = v̌θ,2, then vθ,3 = 0 and the obstruction bundle over the corre-
sponding 3-twisted sector is zero. The set J is the set j such that ρj belongs
to σ(vθ,1). So from [3], we have

yvθ,1 · yvθ,2 =
∏

j∈J

ybL,j · yb′
L,j .

Under the map φ, we see that y(v1,σ1) · y(v2,σ2) is equal to the second line in
the product (3.15).

If vθ,1 �= v̌θ,2, then vθ,3 �= 0 and the obstruction bundle is given by Propo-
sition 2.10. If all α1

j , α
2
j , α

3
j exist, the coefficients ai and a′

i satisfy that if
ai = 1 then a′

i = 2, and if ai = 2 then a′
i = 1. So from [3],

yvθ,1 · yvθ,2 = yv̌θ,3 ·
∏

ai=2

ybL,i ·
∏

i∈I

yb′
L,i ·
∏

j∈J

ybL,j · yb′
L,j .

Under the map φ, we see that y(v1,σ1) · y(v2,σ2) is equal to the first line in
the product (3.15). By Lemma 3.3, the box elements have the same orb-
ifold degrees. By Corollary 3.6 and the definition of orbifold cup product in
(2.7), the products yvθ,1 · yvθ,2 and y(v1,σ1) · y(v2,σ2) have the same degrees
in both Chow rings. So φ induces a ring isomorphism A∗

orb(X (Σθ)) ∼=
A∗

orb(M(A)). �

Remark 3.11. The presentation (3.14) of orbifold Chow ring only depends
on the matroid complex corresponding to the map β : Z

m → N , not θ. Note
that the presentation (3.12) depends on the fan Σθ. We could not see explic-
itly from this presentation that the ring is independent to the choice of
generic elements θ.
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