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Rigidity of marginally trapped surfaces
and the topology of black holes

Gregory J. Galloway

In a recent paper the author and Rick Schoen obtained a gen-
eralization to higher dimensions of a classical result of Hawking
concerning the topology of black holes. It was proved that, apart
from certain exceptional circumstances, cross sections of the event
horizon, in the stationary case, and “weakly outermost” marginally
outer trapped surfaces, in the general case, in black hole spacetimes
obeying the dominant energy condition, are of positive Yamabe
type. This implies many well-known restrictions on the topol-
ogy, and is consistent with recent examples of five-dimensional
stationary black hole spacetimes with horizon topology S2 × S1.
In the present paper, we rule out for “outermost” marginally outer
trapped surfaces, in particular, for cross sections of the event hori-
zon in stationary black hole spacetimes, the possibility of any
such exceptional circumstances (which might have permitted, e.g.,
toroidal cross sections). This follows from the main result, which
is a rigidity result for marginally outer trapped surfaces that are
not of positive Yamabe type.

1. Introduction

Some recent developments in physics inspired by string theory, such as the
AdS/CFT correspondence and brane world phenomenology, have height-
ened interest in higher-dimensional gravity. In particular, there has been a
considerable amount of recent research devoted to the study of black holes in
higher dimensions; for a sample, see [10,12,17], and references cited therein.
In [14], Schoen and the author obtained a generalization to higher dimen-
sions of a classical result of Hawking concerning the topology of black holes.
We proved that, apart from certain exceptional circumstances, “weakly
outermost” marginally outer trapped surfaces, in particular, cross sections
of the event horizon in stationary black hole spacetimes, are of positive
Yamabe type, i.e., admit metrics of positive scalar curvature, provided the
dominant energy condition holds. This implies many well-known restrictions
on the topology of the horizon, and is consistent with recent examples [12]
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of five-dimensional stationary black hole spacetimes with horizon topology
S2 × S1. In particular, in (3 + 1) dimensions, the Gauss–Bonnet theorem
implies that the horizon is topologically a 2-sphere, and one recovers Hawk-
ing’s theorem.

If, however, certain quantities vanish on the horizon, e.g., if the horizon
is Ricci flat and spacetime is vacuum in its vicinity, then the arguments
in [14] do not quite guarantee the conclusion of being positive Yamabe.
One of the main aims of the present paper is to rule out the possibility of
any exceptions to being positive Yamabe under a natural set of physical
circumstances. This will follow as a consequence of a rigidity result for
marginally outer trapped surfaces that do not admit metrics of positive
scalar curvature. This result may be viewed as a spacetime analog of the
rigidity results for area minimizing hypersurfaces in a Riemannian manifold
obtained in [8, 9]. The rationale for such a result had been discussed by
the author (in the 3 + 1 setting) in [13].

Before stating our main results, let us begin with a few definitions,
and, in particular, introduce the basic object of study, that of a marginally
outer trapped surface. Let Σn−1, n ≥ 3, be a compact spacelike submani-
fold of codimension 2 in a spacetime (time-oriented Lorentzian manifold)
(Mn+1, g). Under suitable orientation assumptions, Σ admits two smooth
nonvanishing future directed null normal vector fields K+ and K−. These
vector fields are unique up to pointwise scaling. By convention, we refer
to K+ as outward pointing and K− as inward pointing. Let χ± denote
the null second fundamental form associated to K±. Thus, for each p ∈ Σ,
χ± : TpΣ × TpΣ → R is the symmetric bilinear form defined by,

(1.1) χ±(X, Y ) = 〈∇XK±, Y 〉 for all X, Y ∈ TpΣ,

where ∇ is the Levi–Civita connection of g = 〈, 〉. Tracing with respect to
the induced metric h on Σ, we obtain the null expansion scalars (or null
mean curvatures) θ± = trχ± = divΣ K±. As is well known, the sign of θ±
is invariant under positive rescalings of K±. Physically, θ+ (respectively,
θ−) measures the divergence of the outward pointing (respectively, inward
pointing) light rays emanating from Σ. For round spheres in Euclidean slices
of Minkowski space, with the obvious choice of inside and outside, one has
θ− < 0 and θ+ > 0. In fact, this is the case, in general, for large “radial”
spheres in asymptotically flat spacelike hypersurfaces. However, in regions of
spacetime where the gravitational field is strong, one may have both θ− < 0
and θ+ < 0, in which case Σ is called a trapped surface. Under appropriate
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energy and causality conditions, the occurrence of a trapped surface signals
the onset of gravitational collapse [18] and the existence of a black hole [15].

Focusing attention on just the outward null normal, we say that Σ is
an outer trapped surface if θ+ < 0, and is a marginally outer trapped surface
(MOTS) if θ+ = 0. MOTSs arise in a number of natural situations. For
example, compact cross sections of the event horizon in stationary (steady
state) black hole spacetimes are MOTSs. For dynamical black hole space-
times, MOTSs typically occur in the black hole region, i.e., the region inside
the event horizon. While there are heuristic arguments for the existence of
MOTSs in this situation, based on looking at the boundary of the “trapped
region” [15, 22] within a given spacelike slice, a recent result of Eichmair
and Schoen [11,19], and of Andersson and Metzger [5] rigorously establishes
their existence under natural conditions. MOTSs are the key ingredient
behind the development of quasi-local notions of black holes (see [7] and
references cited therein). On the more purely mathematical side, there are
connections between MOTSs in spacetime and minimal surfaces in Rieman-
nian manifolds. In fact, a MOTS contained in a totally geodesic spacelike
hypersurface V n ⊂ Mn+1 is simply a minimal hypersurface in V . Despite
the absence of a variational characterization of MOTSs like that for minimal
surfaces, MOTS have recently been shown to satisfy a number of analogous
properties; see, e.g., [2–6, 11, 14, 19], as well as the important earlier work
of Schoen and Yau [21]. The rigidity results presented here provide another
case in point.

For our main results, we shall only consider spacetimes (Mn+1, g) that
satisfy the Einstein equations,

(1.2) Rab − 1
2Rgab = Tab

for which the energy-momentum tensor T obeys the dominant energy con-
dition, T (X, Y ) = TabX

aY b ≥ 0 for all future pointing causal vectors X, Y .
We now restrict attention to MOTSs contained in a spacelike hyper-

surface. Thus, let V n be an n-dimensional, n ≥ 3, spacelike hypersurface
in a spacetime (Mn+1, g), and let Σn−1 be a closed hypersurface in V n.
Assume that Σn−1 separates V n into an “inside” and an “outside.” Denote
the closure of the outside of V by V+; hence V+ is a manifold with boundary
∂V+ = Σ.

We adopt the following terminology.

Definition 1.1. Let Σn−1 be a MOTS in a spacelike hypersurface V n, as
above.
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(i) We say that Σ is an outermost MOTS in V provided there are no
outer trapped or marginally outer trapped surfaces outside of, and
homologous to, Σ.

(ii) We say that Σ is a weakly outermost MOTS in V provided there are
no outer trapped surfaces outside of, and homologous to, Σ.

Remark. (1) We note that Σ is an outermost MOTS if and only if there
are no weakly outer trapped surfaces (θ+ ≤ 0) outside of, and homolo-
gous to, Σ. The point is, if S is weakly outer trapped then either it is
a MOTS or else it can be perturbed, via null mean curvature flow, to
an outer trapped surface [5, Lemma 5.2].

(2) By the existence result for MOTSs alluded to above [5, 11, 19], under
a natural outer barrier condition (which always holds in the asymp-
totically flat case), and provided the dimension is not too high, there
exists outside of each outer trapped surface a MOTS homologous to
it. Hence, under these circumstances, an outermost MOTS, as defined
here, is outermost in the conventional sense.

(3) Heuristically, a weakly outermost MOTS Σ is the “outer limit” of outer
trapped surfaces in V . Weakly outermost MOTSs were referred to as
outer apparent horizons in [14].

One of the main aims of this paper is to present a proof of the following
theorem.

Theorem 1.1. Let (Mn+1, g), n ≥ 3, be a spacetime satisfying the domi-
nant energy condition, and let Σn−1 be an outermost MOTS in a spacelike
hypersurface V n. Then Σn−1 is of positive Yamabe type, i.e., admits a met-
ric of positive scalar curvature.

In fact, we shall prove the following rigidity result, which immediately
implies Theorem 1.1.

Theorem 1.2. Let (Mn+1, g), n ≥ 3, be a spacetime satisfying the domi-
nant energy condition, and let Σn−1 be a weakly outermost MOTS in a
spacelike hypersurface V n. If Σn−1 does not admit a metric of positive scalar
curvature then there exists a neighborhood U ≈ [0, ε) × Σ of Σ in V+ such
that each slice Σt = {t} × Σ, t ∈ [0, ε) is a MOTS. In fact, each such slice
has vanishing outward null second fundamental form, χ+ = 0, and is Ricci
flat.
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It is also shown that a certain energy-momentum term vanishes along
each slice. Theorem 1.2 shall be proved in two stages. The first stage and
the main effort of the paper is to prove Theorem 1.2 subject to the additional
assumption that V n has nonpositive mean curvature, τ ≤ 0;1 see Theorem
3.1 in Section 3. The second stage uses a “deformation” argument to derive
Theorem 1.2 from Theorem 3.1. While Theorem 3.1 is a pure “initial data”
result, the proof of Theorem 1.2 makes use of the enveloping spacetime.
Theorem 1.1 shows that, for outermost MOTS, the exceptional case in the
main result of [14] can be eliminated.

A basic fact about standard (3 + 1)-dimensional black hole spacetimes
[15, 22] obeying the null energy condition is that there can be no outer
trapped, or even marginally outer trapped, surfaces outside the event hori-
zon. The proof, which relies on the Raychaudhuri equation [15, 22], also
works in higher dimensions. Thus, Theorem 1.2 implies the following.

Corollary 1.3. Cross sections2 of the event horizon in stationary black hole
spacetimes obeying the dominant energy condition are of positive
Yamabe type.

In particular, there can be no toroidal horizons. The proof of Theorem
1.2 is presented in Section 3, following some preliminary results, presented
in Section 2.

2. Analytic and geometric preliminaries

Let (Σ, h) be a compact Riemannian manifold. We draw together here
various facts (all essentially known) about operators L: C∞(Σ) → C∞(Σ) of
the form

(2.1) L(φ) = −�φ + 2〈X, ∇φ〉 + (Q + div X − |X|2)φ,

where Q ∈ C∞(Σ), X is a smooth vector field on Σ and 〈 , 〉 = h. The
stability operator associated with variations in the null expansion, as
explicitly introduced in [2], is of this form.

As discussed in [2], although L is not self-adjoint in general, the Krein–
Rutman theorem, together with other arguments, implies the following.

1By our sign conventions, the hyperbola t = −
√

1 + x2 in Minkowski 2-space has
negative mean curvature.

2By cross section, we mean smooth compact intersection of the event horizon
with a spacelike hypersurface.



222 Gregory J. Galloway

Lemma 2.1. Let λ1 = λ1(L) be the principal eigenvalue of L (eigenvalue
with smallest real part). Then the following hold.

(i) λ1 is real and simple. There exists an associated eigenfunction φ
(L(φ) = λ1φ) which is strictly positive.

(ii) λ1 ≥ 0 (respectively, λ1 > 0) if and only if there exists ψ ∈ C∞(Σ),
ψ > 0, such that L(ψ) ≥ 0 (respectively, L(ψ) > 0).

We wish to compare L with the “symmetrized” operator L0 : C∞(Σ) →
C∞(Σ), obtained by setting X = 0,

(2.2) L0(φ) = −�φ + Qφ.

The main argument in [14] shows that if λ1(L) ≥ 0 then λ1(L0) ≥ 0.
In fact, as remarked to us by Mars and Simon, a simple tweaking of this
argument gives the following.

Lemma 2.2. The principal eigenvalues λ1(L) of L and λ1(L0) of L0 satisfy
λ1(L) ≤ λ1(L0).

Proof. In inequality (2.7) in [14], replace “≥ 0” by “= λ1φ”, and proceed.
�

A key result in the Schoen–Yau study of manifolds of positive scalar cur-
vature [20] is that a compact stable minimal hypersurface in a manifold of
positive scalar curvature admits, itself, a metric of positive scalar curvature.
Related results have been obtained in [1,14], and are proved using a simpli-
fication of the original argument of Schoen and Yau due to Cai [8]. These
results may be formulated in a slightly more general context, as follows.

Lemma 2.3. Consider the operator L0 = −� + Q on (Σ, h), with

(2.3) Q = 1
2S − P,

where S is the scalar curvature of (Σ, h) and P ≥ 0. If λ1(L0) ≥ 0 then Σ
admits a metric of positive scalar curvature, unless λ1(L0) = 0, P ≡ 0 and
(Σ, h) is Ricci flat.

Proof. Let φ ∈ C∞(Σ) be a positive eigenfunction associated to the eigen-
value λ1 = λ1(L0). The scalar curvature S̃ of Σ in the conformally rescaled
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metric h̃ = φ2/(n−2)h is then given by,

S̃ = φ−n/(n−2)
(

−2�φ + Sφ +
n − 1
n − 2

|∇φ|2
φ

)

= φ−2/(n−2)
(

2λ1 + 2P +
n − 1
n − 2

|∇φ|2
φ2

)
(2.4)

where the second equation follows from (2.2), (2.3) and the fact that L0(φ) =
λ1φ. Since all terms in the parentheses above are non-negative, (2.4) implies
that S̃ ≥ 0. If S̃ > 0 at some point, then by well-known results [16] one can
conformally rescale h̃ to a metric of strictly positive scalar curvature. If,
on the other hand, S̃ vanishes identically, then (2.4) implies: λ1 = 0, P ≡ 0
and φ is constant. Equations (2.2) and (2.3) then imply that S ≡ 0. By an
argument of Bourguignon (see [16]), one can then deform h in the direction
of the Ricci tensor of Σ to obtain a metric of positive scalar curvature, unless
(Σ, h) is Ricci flat. �

Finally, Lemmas 2.2 and 2.3 combine to give the following.

Lemma 2.4. Lemma 2.3 also holds for the operator L in (2.1), with Q as
in (2.3).

Apart from the conclusion that λ1(L) = 0 (if Σ does not admit a metric
of positive scalar curvature), this was proved, in a specific context, in [14].

3. Proof of Theorem 1.2

Let the notation and terminology be as in the statement of Theorem 1.2, and
the discussion leading up to it. As discussed in the introduction, we begin by
proving Theorem 1.2, subject to a restriction on the mean curvature of V n.

Theorem 3.1. Let (Mn+1, g), n ≥ 3, be a spacetime satisfying the domi-
nant energy condition, and let V n be a spacelike hypersurface in Mn+1 with
mean curvature τ ≤ 0. Suppose Σn−1 is a weakly outermost MOTS in V n

that does not admit a metric of positive scalar curvature. Then there exists
a neighborhood U ≈ [0, ε) × Σ of Σ in V+ such that each slice Σt = {t} × Σ,
t ∈ [0, ε) is a MOTS. In fact, each such slice has vanishing outward null
second fundamental form, χ+ = 0, and is Ricci flat.

Proof. The first step is to show that a neighborhood of Σ in V+ is foliated
by constant null expansion hypersurfaces, with respect to a suitable scaling
of the future directed outward null normals.
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Let t → Σt be a variation of Σ = Σ0, −ε < t < ε, with variation vector
field V = ∂

∂t

∣∣
t=0 = φν, φ ∈ C∞(Σ), where ν is the outward unit normal of Σ

in V . Let θ(t) denote the null expansion of Σt with respect to Kt = Z + νt,
where Z is the future directed timelike unit normal to V and νt is the outer
unit normal to Σt in V . A computation shows [2–4,9],

(3.1)
∂θ

∂t

∣∣∣∣
t=0

= L(φ) = −�φ + 2〈X, ∇φ〉 + (Q + div X − |X|2)φ,

where,

(3.2) Q = 1
2S − T (Z, K) − 1

2 |χ|2,

S is the scalar curvature of Σ, χ is the null second fundamental form of
Σ with respect to K = ν + Z, X is the vector field on Σ defined by X =
tan (∇νZ), and 〈 , 〉 now denotes the induced metric on Σ.

Let λ1 be the principal eigenvalue of L. As per Lemma 2.1, λ1 is real,
and there is an associated eigenfunction φ that is strictly positive. Using φ
to define our variation, we have from (3.1),

(3.3)
∂θ

∂t

∣∣∣∣
t=0

= λ1φ.

The eigenvalue λ1 cannot be negative, for otherwise (3.3) would imply that
∂θ
∂t < 0 on Σ. Since θ = 0 on Σ, this would mean that for t > 0 sufficiently
small, Σt would be outer trapped, contrary to assumption. Thus, λ1 ≥ 0,
and since Σ does not carry a metric of positive scalar curvature, we may
apply Lemma 2.4 to L in (3.1), with P = T (Z, K) + 1

2 |χ|2 ≥ 0, to conclude
that λ1 = 0 (and also that Q = 0).

For u ∈ C∞(Σ), u small, let Θ(u) denote the null expansion of the hyper-
surface Σu : x → expx u(x)ν with respect to the (suitably normalized) future
directed outward null normal field to Σu. Θ has linearization, Θ′(0) = L.
We introduce the operator,

(3.4) Θ∗ : C∞(Σ) × R → C∞(Σ) × R, Θ∗(u, k) =
(

Θ(u) − k,

∫
Σ

u

)
.

Since, by Lemma 2.1, λ1 = 0 is a simple eigenvalue, the kernel of Θ′(0) = L
consists only of constant multiples of the eigenfunction φ. We note that
λ1 = 0 is also a simple eigenvalue for the adjoint L∗ of L (with respect to
the standard L2 inner product on Σ), for which there exists a positive eigen-
function φ∗. Then the equation Lu = f is solvable if and only if

∫
fφ∗ = 0.
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From these facts it follows easily that Θ∗ has invertible linearization about
(0, 0). Thus, by the inverse function theorem, for s ∈ R sufficiently small
there exists u(s) ∈ C∞(Σ) and k(s) ∈ R such that

(3.5) Θ(u(s)) = k(s) and
∫

Σ
u(s)dA = s.

By the chain rule, Θ′(0)(u′(0)) = L(u′(0)) = k′(0). The fact that k′(0) is
orthogonal to φ∗ implies that k′(0) = 0. Hence u′(0) ∈ ker Θ′(0). The second
equation in (3.5) then implies that u′(0) = const · φ > 0.

It follows that for s sufficiently small, the hypersurfaces Σus
form a

smooth foliation of a neighborhood of Σ in V by hypersurfaces of constant
null expansion. Thus, one can introduce coordinates (t, xi) in a neighbor-
hood W of Σ in V , such that, with respect to these coordinates, W =
(−t0, t0) × Σ, and for each t ∈ (−t0, t0), the t- slice Σt = {t} × Σ has con-
stant null expansion θ(t) with respect to K|Σt

, where K = Z + ν, and ν is
the outward unit normal field to the Σts in V . In addition, the coordinates
(t, xi) can be chosen so that ∂

∂t = φν, for some positive function φ = φ(t, xi)
on W .

A computation similar to that leading to (3.1) (but where we can no
longer assume θ vanishes) shows that the null expansion function θ = θ(t)
of the foliation obeys the evolution equation,3

(3.6)
dθ

dt
= L̃t(φ)

where, for each t ∈ (−t0, t0), L̃t is the operator on Σt acting on φ according to,

L̃t(φ) = −�φ + 2〈X, ∇φ〉

+
(

1
2
S − T (Z, K) + θτ − 1

2
θ2 − 1

2
|χ|2 + div X − |X|2

)
φ.(3.7)

It is to be understood that, for each t, the above terms live on Σt, e.g.,
� = �t is the Laplacian on Σt, S = St is the scalar curvature of Σt,
and so on.

The assumption that Σ is weakly outermost, together with the con-
stancy of θ(t), implies that θ(t) ≥ 0 for all t ∈ [0, t0). Hence, since θ(0) = 0,
to show that θ(t) = 0 for all t ∈ [0, t0). It is sufficient to show that θ′(t) ≤ 0

3Although we have checked this independently, equation (3.6) follows easily from
Lemma 3.1 in [3]; see also [4].
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for all t ∈ [0, t0). Suppose there exists t ∈ (0, t0) such that θ′(t) > 0. For
this value of t, (3.6) implies L̃t(φ) > 0. Then Lemma 2.1 implies that
λ1(L̃t) > 0. Recalling the assumption τ ≤ 0, we may apply Lemma 2.4 to L̃t,
with P = T (Z, K) − θτ + 1

2θ2 + 1
2 |χ|2 ≥ 0, to conclude that Σt ≈ Σ carries

a metric of positive scalar curvature, contrary to assumption.
Thus, θ(t) = 0 for all t ∈ [0, t0). Since, by (3.6), L̃t(φ) = θ′ = 0, Lemma

2.1 implies λ1(L̃t) ≥ 0 for each t ∈ [0, t0). Hence, by Lemma 2.4, we have for
each t ∈ [0, t0), χt = 0, Σt is Ricci flat and T (Z, K) vanishes along Σt. �
Proof of Theorem 1.2. We now show how Theorem 1.2 can be obtained from
Theorem 3.1.

Let the setting be as in the statement of Theorem 1.2. It is straight
forward to construct a spacelike hypersurface Ṽ n in Mn+1 with the following
properties: (i) Ṽ and V meet tangentially along Σ, (ii) Ṽ is in the causal
past of V and (iii) Ṽ has mean curvature τ̃ ≤ 0. (Ṽ can be constructed from
spacelike curves orthogonal to Σ and tangent to V at Σ, having sufficiently
large curvature, and bending towards the past.)

The condition that Σ is weakly outermost in V transfers to a sufficient
extent to Ṽ , as described in the following claim.

Claim. For every variation t → Σt, −ε < t < ε, of Σ = Σ0 in Ṽ , with vari-
ation vector field V = φν̃, φ > 0, there exists t0 ∈ (0, ε) such that Σt is not
outer trapped for all t ∈ (0, t0).

Proof of the claim. Suppose, to the contrary, there exists a variation t → Σt,
0 ≤ t < ε, of Σ in Ṽ+ (the outside of Ṽ ) and a sequence tn ↘ 0 such that
Σn := Σtn

is outer trapped. Let Hn be the null hypersurface generated by
the future directed outward null geodesics orthogonal to Σn. Restricting to
a small tubular neighborhood of Σ, for all n sufficiently large, Hn will be
a smooth null hypersurface that meets V in a compact surface Σ̂n outside
of, and homologous to, Σ. By Raychaudhuri’s equation for a null geodesic
congruence [15,22] and the null energy condition (which is a consequence of
the dominant energy condition), the expansion of the null generators of Hn

must be nonincreasing to the future. It follows that, for n large, Σ̂n is outer
trapped, contrary to the assumption that Σ is weakly outermost. �

Hence, Σ is weakly outermost in Ṽ , in the restricted sense of the claim.
But this version of weakly outermost is clearly sufficient for the proof of
Theorem 3.1. Thus, by this slight modification of Theorem 3.1, there exists
a foliation {Σ̃u}, 0 ≤ u ≤ u0, of a neighborhood Ũ of Σ in Ṽ+ by MOTS,
θ̃+(u) = 0. Pushing each Σ̃u along its future directed outward null normal
geodesics into V , we obtain, by taking u0 smaller if necessary, a smooth



Marginally trapped surfaces and black holes 227

foliation {Σu}, 0 ≤ u ≤ u0, of a neighborhood U of Σ in V+. Moreover, the
argument based on Raychaudhuri’s equation used in the claim now implies
that, for each u ∈ (0, u0), Σu is weakly outer trapped, i.e., has null expansion
θ+(u) ≤ 0. If θ+(u) < 0 at some point, one could perturb Σu within V to
obtain a strictly outer trapped surface in V homologous to Σ (see the first
remark after Definition 1.1). It follows that each Σu in the foliation is a
MOTS. Moreover, the same argument as that used at the end of the proof
of Theorem 3.1 implies that for each u ∈ [0, u0), χu = 0, Σu is Ricci flat and
T (Z, K) vanishes along Σu. �

We remark in closing that the curvature estimates of Andersson and
Metzger [4] provide criteria for extending the local foliation by MOTS in
Theorem 3.1 to a global one.

Acknowledgement

The author would like to thank Lars Andersson, Abhay Ashtekar, Robert
Bartnik, Mingliang Cai, Piotr Chruściel, Jan Metzger, Dan Pollack and
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