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On the rational homotopy type of a moduli space
of vector bundles over a curve
Indranil Biswas and Vicente Muñoz

We study the rational homotopy of the moduli space NX that
parametrizes the isomorphism classes of all stable vector bundles
of rank two and fixed determinant of odd degree over a compact
connected Riemann surface X of genus g, with g ≥ 2. The symplec-
tic group Aut(H1(X, Z)) ∼= Sp(2g, Z) has a natural action on the
rational homotopy groups πn(NX)⊗ZQ. We prove that this action
extends to an action of Sp(2g, C) on πn(NX)⊗ZC. We also show
that πn(NX)⊗ZC is a non-trivial representation of Sp(2g, C) ∼= Aut
(H1(X, C)) for all n ≥ 2g − 1. In particular, NX is a rationally
hyperbolic space. In the special case where g = 2, for each n ∈ N,
we compute the leading Sp(2g, C) representation occurring in
πn(NX) ⊗Z C.

1. Introduction

Moduli spaces of vector bundles over curves have been studied from various
points of view. The aim here is to initiate investigations of their rational
homotopy groups.

Let X be an irreducible smooth projective curve, defined over C, of genus
g, with g ≥ 2. Fix a holomorphic line bundle L0 over X of degree 1, and
consider the moduli space NX of stable vector bundles E → X of rank two
with

∧2 E ∼= L0. This moduli space NX is an irreducible smooth complex
projective variety of complex dimension 3g − 3 (see [19]).

The mapping class group of X acts in a natural way on the cohomology
algebra H∗(NX , Q) of NX . This action actually factors through an action of
the symplectic group Aut(H1(X, Z)) ∼= Sp(2g, Z), which is a quotient of the
mapping class group. Moreover, the descended action of Aut(H1(X, Z)) on
H∗(NX , Q) extends to an action of Aut(H1(X, C)) ∼= Sp(2g, C) on H∗(NX , C).
On the other hand, using the fact that NX is simply connected, the mapping
class group acts naturally on the homotopy groups π∗(NX). Therefore, the
mapping class group acts on π∗(NX)⊗ZQ.
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Fix a symplectic basis of H1(X, Z). Using this basis Aut(H1(X, Z))
(respectively, Aut(H1(X, C))) gets identified with Sp(2g, Z) (respectively,
Sp(2g, C)).

Our first main result is the following (see Theorem 5.2).

Theorem 1.1. The action of the mapping class group on the rational
homotopy groups π∗(NX)⊗ZQ factors through an action of the symplectic
group Sp(2g, Z). This descended action of Sp(2g, Z) extends to an action of
Sp(2g, C) on π∗(NX) ⊗Z C.

We shall prove this theorem in Section 5 using the formality of NX and
endowing the minimal model of NX with an action of Sp(2g, C).

In Sections 6 and 7, we study the Sp(2g, C) representations πn(NX)⊗ZC.
In the special case of g = 2, we compute the leading representation for each
n ≥ 2 (Theorem 6.3).

In the general case where g ≥ 2, we find some non-trivial irreducible
Sp(2g, C) representations contained in πn(NX) ⊗Z C for each n ≥ 2g (see
Theorem 6.3 for the case of g = 2 and Theorem 7.1 for g > 2). We have the
following result.

Theorem 1.2. Take any integer n with n ≥ 2g. The Sp(2g, C) module
πn(NX) ⊗Z C is non-trivial. So the action of Sp(2g, Z) on the rational homo-
topy groups πn(NX) ⊗Z Q is non-trivial, and the action of the mapping class
group on πn(NX) is non-trivial.

A simply connected finite CW complex Z (e.g., a compact one-connected
manifold) is said to be rationally elliptic if the total dimension of the rational
homotopy groups is finite, or in other words,

∑

n∈N

dim πn(Z) ⊗Z Q < ∞ .

Otherwise, Z is called rationally hyperbolic (see [6]). If Z is rationally elliptic
of dimension N , then πn(Z) ⊗Z Q = 0 for all n ≥ 2N (equivalently, πn(Z)
are torsion for n ≥ 2N). On the other hand, if Z is rationally hyperbolic of
dimension N , then

f(k) =
N−1∑

i=1

dim πk+i(Z)⊗ZQ

grows faster than any polynomial in k. This dichotomy is discussed in [6].
A byproduct of Theorem 1.2 is the following corollary.
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Corollary 1.3. The moduli space NX is rationally hyperbolic for all g ≥ 2.

2. The moduli space NX

Let X be an irreducible smooth complex projective curve of genus g ≥ 2. Fix
a holomorphic line bundle L0 over X of degree 1. Let NX denote the moduli
space of stable vector bundles over X of rank two and det(E) =

∧2 E = L0.
This moduli space NX is an irreducible smooth complex projective variety of
complex dimension 3g − 3 (see [19]). In particular, it is a compact connected
C∞ (real) manifold of dimension 6g − 6. The complex structure of X endows
NX with a natural Kähler structure [1].

If we take any holomorphic line bundle L1 over X of odd degree 2d + 1,
then there is a holomorphic line bundle μ over X of degree d such that
L1 ∼= L0 ⊗ μ2. Therefore, the map defined by E �−→ E ⊗ μ is an algebraic
isomorphism from NX to the moduli space of stable vector bundles of rank
two over X with determinant L1. In particular, the isomorphism class of
the variety NX is independent of the choice of the line bundle L0.

The diffeomorphism class of the real manifold NX is independent of the
complex structure of X. This can be seen as follows. Fix a point x0 ∈ X,
and set X ′ = X \ {x0} to be the complement. Choosing a point x′ ∈ X ′,
consider the subset

Hom0(π1(X ′, x′) , SU(2)) ⊂ Hom(π1(X ′, x′) , SU(2))

parametrizing all homomorphisms from the fundamental group π1(X ′, x′)
to SU(2) satisfying the condition that the image of the conjugacy class in
π1(X ′, x′) corresponding to the free homotopy class of oriented loops in X ′

around x0 (with anticlockwise orientation) is −Id. Let

(2.1)
Hom0(π1(X ′, x′) , SU(2))

SU(2)

be the quotient space for the adjoint action of SU(2) on itself. It is easy
to see that Rg is a connected compact C∞ manifold of dimension 6g −
6 (see [16]). Given any homomorphism ρ ∈ Hom0(π1(X ′, x′), SU(2)), the
corresponding flat vector bundle over the Riemann surface X ′ extends to
X as a holomorphic vector bundle with a logarithmic connection which has
residue −1

2 Id at x0 (see [4]). The underlying holomorphic vector bundle Eρ

on X is stable and det(Eρ) = OX(x0). Sending any ρ to Eρ we obtain a
diffeomorphism of Rg with NX for L0 = OX(x0) (cf. [14]). Therefore, the
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diffeomorphism class of the real manifold NX is independent of the complex
structure of X (it depends only on the genus of X).

It is easy to see that the manifold Rg in Equation (2.1) is simply
connected [16, Corollary 2]. By [1, Theorem 9.10], the cohomology ring
H∗(NX , Z) is torsion-free, and by [1, Proposition 9.13], we have H2(NX ,
Z) = Z. Consequently, the variety NX has a natural polarization. Hence-
forth, we shall denote by α the natural positive (i.e., ample) generator of
H2(NX , Z).

Next we will describe an action of the mapping class group on the coho-
mology of NX . For that purpose, consider the moduli space M1

g parametriz-
ing all isomorphism classes of one-pointed compact Riemann surfaces (Y, y)
of genus g with Aut(Y, y) = e (i.e., Y does not have any non-trivial automor-
phism that fixes the marked point y ∈ Y ). This moduli space is a smooth
irreducible quasiprojective variety of dimension 3g − 2 defined over the field
C. Given any (Y, y), there is a natural choice of a holomorphic line bundle
of degree 1 over Y , namely OY (y). There is a universal family of Riemann
surfaces

(2.2) p : Cg −→ M1
g

and a holomorphic section h : M1
g −→ Cg giving the marked point. Let

(2.3) P : Ñ −→ M1
g

be the family of moduli spaces of stable vector bundles of rank two with
fixed determinant corresponding to the family of Riemann surfaces in Equa-
tion (2.2). For any one-pointed Riemann surface x = (Y, y) ∈ M1

g, the fiber
P−1(x) is the moduli space NY parametrizing all stable vector bundles over
Y of rank two and determinant OY (y).

Fix a base point x0 = (X , x0) ∈ M1
g of the moduli space. Let GZ

(respectively, GC) denote the group of all automorphisms of H1(X, Z)
(respectively, H1(X, C)) preserving the symplectic pairing given by the cup
product. Choosing a symplectic basis of H1(X, Z), the groups GZ and GC

get identified with Sp(2g, Z) and Sp(2g, C) respectively.
Convention. In the sequel, we will interchange GZ (respectively, GC) and
Sp(2g, Z) (respectively, Sp(2g, C)).

Consider the local system R1p∗Z on M1
g, where p is the projection in

Equation (2.2), and Z is the constant local system on Cg with stalk Z. Using
its monodromy, the group GZ is a quotient of the fundamental group

Γ1
g := π1(M1

g, x0) .



On the rational homotopy type of a moduli space 187

This group Γ1
g is known as the mapping class group, and the kernel of the

projection of Γ1
g to GZ is known as the Torelli group.

Actually, the mapping class group has a natural action on the moduli
space NX = P−1(x0). To see this action, note that using the earlier men-
tioned identification NX = Rg (defined in Equation (2.1)), the fiber bundle
P in Equation (2.3) has a natural flat connection (this flat connection is
not holomorphic). The monodromy of this flat connection gives an action
of Γ1

g = π1(M1
g, x0) on NX ; more details can be found in [2].

The action of Γ1
g on H i(NX , Z) induced by the above action of Γ1

g on NX

evidently coincides with the monodromy representation of the local system
RiP∗Z on M1

g, where Z is the constant local system on Ñ with stalk Z.

Proposition 2.1. The action of the mapping class group on the cohomology
algebra H∗(NX , Q) factors through an action of the symplectic group GZ =
Sp(2g, Z). Moreover, this action of Sp(2g, Z) on H i(NX , Q) extends to an
action of GC = Sp(2g, C) on H i(NX , C).

Proof. The cohomology algebra H∗(NX , Q) is generated by the Künneth
components of the second Chern class of the adjoint bundle of a univer-
sal vector bundle over X × NX (see [1, 18] and also Section 3). Note that
although there is no unique universal bundle over X × NX , any two uni-
versal bundles differ by tensoring with a line bundle pulled back from NX .
Therefore, the universal adjoint bundle is unique. Consequently, the local
system

⊕
i≥0 RiP∗C on M1

g, where C is the constant local system on Ñ with
stalk C, is a quotient of some local system on M1

g of the form

W :=
�⊕

j=1

⎛

⎝

(
2⊕

i=0

Rip∗C

)⊕aj
⎞

⎠

⊗bj

,

where �, aj , bj ∈ N, the map p is the projection in Equation (2.2) and C is
the constant local system on Cg with stalk C. In other words, we have a
surjective homomorphism of local systems

(2.4) W −→
⊕

i≥0

RiP∗C −→ 0.

Both R0p∗C and R2p∗C are constant local systems on M1
g, and the mon-

odromy of the local system R1p∗C , by definition, factors through GZ.
Consequently, the monodromy representation

Γ1
g −→ Aut(Wx0

)(2.5)



188 Indranil Biswas and Vicente Muñoz

of the mapping class group for the local system W on M1
g factors through GZ.

Hence, the Torelli group is in the kernel of the monodromy representation

(2.6) Γ1
g −→

∏

i≥0

Aut((RiP∗C)x0
)

of the mapping class group for the quotient local system in Equation (2.4).
Therefore, the homomorphism in Equation (2.6) factors through the quotient
GZ of Γ1

g.
To prove that the action of Sp(2g, Z) on H i(NX , Q) extends to an action

of GC = Sp(2g, C) on H i(NX , C), first note that the monodromy represen-
tation

GZ −→ Aut(Wx0
)

in Equation (2.5) extends to a homomorphism from Sp(2g, C). The kernel
of the surjective homomorphism

(2.7) Wx0
−→

⊕

i≥0

(RiP∗C)x0

obtained from Equation (2.4) is preserved by GZ. On the other hand,
Sp(2g, Z) is Zariski dense in Sp(2g, C) (see [3]). Hence the kernel of the
homomorphism in Equation (2.7) is preserved by the action of Sp(2g, C) on
Wx0

. Consequently, the action of Sp(2g, C) on Wx0
induces an action of

Sp(2g, C) on the quotient in Equation (2.7). This completes the proof of the
proposition. �

3. Cohomology ring of NX

Let us recall the known description of the cohomology ring H∗(NX , Q) of
the moduli space NX (see [9, 11, 20]). Consider a universal bundle U →
X × NX . Let End0(U) → X × NX be the adjoint vector bundle (we recall
that End0(U) ⊂ End(U) is subbundle of rank three given by the trace-free
endomorphisms of the fibers of U). The Künneth decomposition of the
second Chern class c2(End0(U)) ∈ H4(X × NX , Z) can be written as

(3.1) c2(End0 (U)) = 2[X] ⊗ α + 4 ψ − 1 ⊗ β ,

where β ∈ H4(NX , Z), [X] ∈ H2(X, Z) denotes the fundamental class of
the Riemann surface X, α ∈ H2(NX , Z) as before is the positive genera-
tor of H2(NX , Z) = Z, and ψ ∈ H1(X, Z) ⊗Z H3(NX , Z). Let {c1, . . . , c2g}
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be a symplectic basis of H1(X, Z), which means that ci ∪ ci+g = [X] for all
1 ≤ i ≤ g, and cj ∪ ck = 0 for all j, k with |j − k| �= g. It is known that
ψ =

∑2g
i=1 ci ⊗ γi, where {γ1, . . . , γ2g} is a basis for H3(NX , Z); see [12]. In

other words, ψ gives an isomorphism

(3.2) H1(X, Z) = H1(X, Z)∗ −→ H3(N , Z).

The elements α, β and γi, 1 ≤ i ≤ 2g, together generate H∗(NX , Q) as
an algebra [18, 1, 21]. We can rephrase this as saying that there exists an
epimorphism

(3.3) F :
∧

(α, γ1, . . . , γ2g, β) := Q[α, β] ⊗ ∧(γ1, . . . , γ2g) � H∗(NX , Q),

where deg(α) = 2, deg(β) = 4 and deg(γi) = 3, 1 ≤ i ≤ 2g. Here
∧

means
the free graded algebra generated by the given elements, which is the ten-
sor product of the symmetric algebra on the even-degree elements and the
exterior algebra on the odd-degree elements.

We shall denote by W the standard Q representation of GZ =
Sp(2g, Z), so

H1(X, Q) ∼= W .

We noted in Section 2 that the monodromy action of Γ1
g on H∗(NX , Q)

factors through an action of Sp(2g, Z). It is easy to see that this action
fixes both α and β, and furthermore, the isomorphism in Equation (3.2) is
Sp(2g, Z)-equivariant. Therefore,

H3(NX , Q) ∼= H1(X, Q)∗ ∼= W ∗ ∼= W

as Sp(2g, Z) representations.
Let

H∗
I (NX , Q) ⊂ H∗(NX , Q)

be the subalgebra fixed pointwise by the action of Sp(2g, Z). The epimor-
phism in Equation (3.3) is Sp(2g, Z)-equivariant, and Sp(2g, Z) is Zariski
dense in the reductive group Sp(2g, C) [3]. Using these we conclude that the
invariant part H∗

I (NX , Q) is generated by α, β and γ = −2
∑g

i=1 γiγi+g (the
factor of −2 is for convenience, to be in accordance with the existing litera-
ture). Then the epimorphism F in Equation (3.3) gives an epimorphism

(3.4) Q[α, β, γ] � H∗
I (NX , Q) ,
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where deg(α) = 2, deg(β) = 4 and deg(γ) = 6. Hence we may write

(3.5) H∗
I (NX , Q) =

Q[α, β, γ]
Ig

,

where Ig is an ideal of relations satisfied by α, β and γ.
For each 0 ≤ k ≤ g, the primitive component of ∧kW is defined as

∧k
0W = ker(γg−k+1 : ∧k W −→ ∧2g−k+2W ).

The spaces ∧k
0W are irreducible Sp(2g, Z) representations.

The descriptions of the ideal Ig and the cohomology ring H∗(NX , Q) are
given in the following proposition.

Proposition 3.1 [9, 20]. Define q1
0 = 1, q2

0 = 0, q3
0 = 0 and then recur-

sively, for all r ≥ 1,

q1
r+1 = αq1

r + r2q2
r ,

q2
r+1 = βq1

r +
2r

r + 1
q3
r ,

q3
r+1 = γq1

r .

Then Ig = (q1
g , q

2
g , q

3
g) ⊂ Q[α, β, γ], for all g ≥ 1. Note that deg(q1

g) = 2g,
deg(q2

g) = 2g + 2 and deg(q3
g) = 2g + 4. Moreover the Sp(2g, Z) decomposi-

tion of H∗(NX , Q) is

(3.6) H∗(NX , Q) =
g−1⊕

k=0

∧k
0W ⊗ Q[α, β, γ]

Ig−k
.

Lemma 3.2. The vector space

E = 〈q1
g〉 ⊕ 〈q2

g〉 ⊕ (q1
g−1 · W ) ⊕ (q1

g−2 · ∧2
0W ) ⊕ · · · ⊕ (q1

1 · ∧g−1
0 W ) ⊕ ∧g

0W ,

realized as a subspace of A :=
∧

(α, γ1, . . . , γ2g, β) = Q[α , β] ⊗ ∧(γ1, . . . , γ2g)
using the identification W = 〈γ1, . . . , γ2g〉, generates the ideal kernel(F ) of
the map F in Equation (3.3).

Proof. Clearly we have E ⊂ kernel(F ). We will prove the reverse inclusion

kernel(F ) ⊂ I(E) ,

where I(E) is the ideal generated by E in A.
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By Proposition 3.1, kernel(F ) is generated by qi
g−k · ∧k

0W , where i ∈
[1, 3] and k ∈ [0, g]. Note that since q2

0 = 0 and q3
0 = 0, it suffices to prove

the following two:

(1) q2
g−k · ∧k

0W ⊂ I(E) for 1 ≤ k ≤ g − 1, and

(2) q3
g−k · ∧k

0W ⊂ I(E) for 0 ≤ k ≤ g − 1.

We shall use the following inclusions:

γ · ∧j
0W ⊂ I(∧j+1

0 W ), 0 ≤ j ≤ g − 1 ,(3.7)

∧j+1
0 W ⊂ I(∧j

0W ), 0 ≤ j ≤ g − 1 .(3.8)

For proving Equation (3.7), first note that ∧j
0W is an irreducible

Sp(2g, Z) representation, so it is enough to see that there is a non-zero ele-
ment in γ · ∧j

0W which lies in I(∧j+1
0 W ). Consider γ1 · · · γj ∈ ∧j

0W . Then

γ · γ1 · · · γj = − 2
g∑

i=j+1

γ1 · · · γjγj+1γj+1+g ,

and γ1 · · · γj+1 ∈ ∧j+1
0 W . Therefore γ · γ1 · · · γj ∈ I(∧j+1

0 W ), as required.
To prove Equation (3.8), we first note that ∧j+1

0 W is an irreducible
Sp(2g, Z) representation and γ1 · · · γj+1 ∈ ∧j+1

0 W . Clearly we have γ1 · · · γj

∈ ∧j
0W . Hence it follows that γ1 · · · γjγj+1 ∈ I(∧j

0W ). This gives the
required inclusion.

Using Equation (3.7), we have that

q3
g−k · ∧k

0W = q1
g−k−1γ · ∧k

0W ⊂ I(q1
g−k−1 · ∧k+1

0 W ) ⊂ I(E)

for all 0 ≤ k ≤ g − 1. Also, using Equation (3.8) we have

q2
g−k · ∧k

0W =
1

(g − k)2
(q1

g−k+1 − αq1
g−k) · ∧k

0W

⊂ I(q1
g−k+1 · ∧k−1

0 W ⊕ q1
g−k · ∧k

0W ) ⊂ I(E) ,

for all 1 ≤ k ≤ g − 1. �

Remark 3.3. The subspace E in Lemma 3.2 is minimal in the sense that
no proper subspace of E generates kernel(F ).
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4. Minimal models

Let us recall some definitions and results about minimal models (see [5, 8] for
more details). Let (A, d) be a differential graded algebra (in the sequel, we
shall just say a differential algebra). This means that A is a graded (in non-
negative degrees) commutative algebra over a field K, of characteristic zero,
and d : An −→ An+1 is a differential which satisfies the derivation condition
which says that

d(a · b) = (da) · b + (−1)deg(a)a · (db) ,

where deg(a) is the degree of a. Throughout this article we shall assume
that K = C, the field of complex numbers.

Morphisms between differential algebras are required to be degree-
preserving algebra maps that commute with the differentials. Given a differ-
ential algebra (A, d), we denote by H∗(A, d) its cohomology. We say that A is
connected if H0(A, d) = C, and one-connected if, in addition, H1(A, d) = 0.

A differential algebra (A, d) is said to be minimal if the following two
hold:

(i) A is free as a graded algebra, that is, A =
∧

V , where V = ⊕i>0V
i is

a graded vector space, and

(ii) there exists a collection of generators {aτ}τ∈I of the algebra A, where
I is some well-ordered index set, such that deg(aμ) ≤ deg(aτ ) if μ < τ
and each daτ is expressed in terms of preceding aμ, μ < τ .

As before,
∧

V is the tensor product of the symmetric algebra on the
even degree part of V with the exterior algebra on the odd degree part of V

For notational convenience, we shall use the dot “·” to denote the prod-
uct operation on

∧
V .

For any n, define V ≤n :=
⊕

i≤n V i. So
∧

V ≤n =
∧

(
⊕

i≤n V i) is the
subalgebra generated by elements of degrees at most n. For any m, let
(
∧

V )m denote the subspace of
∧

V spanned by all elements of total degree
m. Finally, for k ≥ 1, let

∧≥k V denote the ideal formed by elements which
are products of at least k generators. In other words,

∧+
V :=

(∧
V

)>0
=

⊕

m>0

(∧
V

)m
,
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and

∧≥k
=

k-times
︷ ︸︸ ︷
∧+

V · · ·
∧+

V .

Note that the condition (ii) in the definition of minimality implies that
d : V −→

∧≥2 V , and hence d :
∧i V −→

∧≥(i+1) V , for all i ≥ 1. Notations
like (

∧≥i V <j)n have natural meaning.
Given a differential algebra (A, d), we shall say that (

∧
V , d) is a min-

imal model of (A, d) if (
∧

V, d) is minimal and there exists a morphism
of differential graded algebras ρ : (

∧
V , d) −→ (A, d) such that the induced

homomorphism of cohomologies

ρ∗ : H∗
(∧

V, d
)

−→ H∗(A, d)

is an isomorphism. Such a homomorphism ρ is called a quasi-isomorphism.
Any one-connected differential algebra (A, d) has a minimal model unique
up to an isomorphism [5, 8].

A minimal model of a connected differentiable manifold M is a mini-
mal model (

∧
V, d) for the de Rham complex (Ω∗(M, C), d) of complex C∞

differential forms on M . If M is simply connected, then the dual of the com-
plex homotopy vector space πi(M) ⊗Z C is isomorphic to V i for any i > 0
(see [8]).

A minimal model (
∧

V , d) is said to be formal if there is a morphism of
differential algebras

ψ :
(∧

V , d
)

−→ (H∗
(∧

V, d
)

, 0)

which induces the identity map on cohomology. This means that (
∧

V, d) is
the minimal model of the algebra (H∗(

∧
V, d), 0) with zero differential.

We shall say that a connected differentiable manifold M is formal if
its minimal model is formal, or equivalently, the two differential algebras
(Ω∗(M, C), d) and (H∗(M, C) , 0) have the same minimal model. Therefore,
if M is formal and simply connected, then the complex homotopy groups
πi(M) ⊗Z C are obtained by computing the minimal model of (H∗(M, C) , 0).

The main result of [5] gives the following strong topological restriction
on the rational homotopy type of Kähler manifolds.

Theorem 4.1 [5]. Let M be a compact connected Kähler manifold. Then
M is formal.
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Therefore, the minimal model of a compact connected Kähler mani-
fold M can be obtained from the minimal model of its cohomology algebra
(H∗(M, C) , 0). Moreover, if the Kähler manifold M is simply connected, this
process will also give us the complex homotopy group πi(M) ⊗Z C of M .

We will briefly review a construction of the minimal model of a dif-
ferential algebra (A, d). For simplicity, we shall assume that (A, d) is one-
connected. We need to find a graded vector space V = ⊕n≥1V

n, a differential
d, with

d|V n : V n −→
≥2∧

V ≤(n−1) ,

and a graded linear map

ρ =
∑

ρn : V = ⊕ V n −→ A = ⊕ An

such that the induced homomorphism ρ :
∧

V −→ A respects the differen-
tials, which means that ρ ◦ d = d ◦ ρ, and furthermore, the map on coho-
mology

ρ∗ : H∗
(∧

V, d
)

−→ H∗(A, d)

is an isomorphism.
We shall construct V n, ρn and d|V n , where n ≥ 1, using induction on n.

They will satisfy the following conditions:

(i) ρn : V n −→ An;

(ii) dn = d|V n : V n −→
∧≥2 V ≤(n−1);

(iii) ρ≤(n−1) ◦ dn = d ◦ ρn on V n, where ρ≤(n−1) :
∧

V ≤(n−1) −→ A is
induced by the map ρi, i ≤ n − 1;

(iv) ρ∗
≤n : H i(

∧
V ≤n, d) 
−→ H i(A, d) is an isomorphism for i ≤ n;

(v) ρ∗
≤n : Hn+1(

∧
V ≤n, d) ↪→ Hn+1(A, d) is an injection.

From these conditions it follows that the map ρ : (
∧

V, d) −→ (A, d), con-
structed using ρn on each subspace V n, is a quasi-isomorphism. Given any i,
we evidently have (

∧
V )k = (

∧
V ≤(i+1))k for all k ≤ i + 1. So H i(

∧
V, d) ∼=

H i(
∧

V ≤(i+1), d). The composition

(∧
V ≤(i+1), d

)
↪→

(∧
V, d

)
ρ−→ (A, d)
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equals ρ≤(i+1). Hence

ρ∗ = ρ∗
≤(i+1) : H i

(∧
V, d

)
∼= H i

(∧
V ≤(i+1), d

)

−→ H i(A, d)

is an isomorphism. This proves that (
∧

V, d) is a minimal model for (A, d).
To construct V n, ρn and d|V n , we start with V 1 = 0. All conditions

(i)–(v) hold trivially, since H1(A, d) = 0.
Now assume that conditions (i)–(v) are satisfied for all j ∈ [1 , n − 1]

with n − 1 ≥ 1; let us see that we can find V n, ρn and dn also fulfilling these
conditions. Take

V n = Cn ⊕ Nn,

Cn = coker
(
ρ∗

≤(n−1) : Hn
(∧

V ≤(n−1), d
)

↪→ Hn(A, d)
)

,

Nn = ker
(
ρ∗

≤(n−1) : Hn+1
(∧

V ≤(n−1), d
)

−→ Hn+1(A, d)
)

.

Define ρn : V n −→ An as follows. First, we introduce the notation

Zn(A, d) = ker(d : An −→ An+1),

Bn(A, d) = im(d : An−1 −→ An),

for the spaces of cocycles and coboundaries, respectively. Let ı1 : Cn −→
Hn(A, d) be a linear map which is a splitting of the projection Hn(A, d) �
Cn. Also, let ı2 : Hn(A, d) −→ Zn(A, d) be a splitting of the projection
Zn(A, d) � Hn(A, d). Let ı3 : Zn(A, d) ↪→ An be the inclusion map. Then
define

ρn|Cn = ı3 ◦ ı2 ◦ ı1.

To define ρn|Nn , let j1 : Nn ↪→ Hn+1(
∧

V ≤(n−1), d) be the inclusion. Take
a splitting j2 : Hn+1(

∧
V ≤(n−1), d) −→ Zn+1(

∧
V ≤(n−1), d) of the obvious

projection. Then ρ≤(n−1) ◦ j2 ◦ j1 has image in Bn+1(A, d) ⊂ An+1. Take a
splitting of the map d : An � Bn+1(A, d), say

� : Bn+1(A, d) −→ An ,

and finally define

ρn|Nn = � ◦ ρ≤(n−1) ◦ j2 ◦ j1.
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Now, define dn as follows. On Cn, we set dn|Cn = 0. On Nn, we put
dn|Nn = j3 ◦ j2 ◦ j1, where

j3 : Zn+1
(∧

V ≤(n−1), d
)

↪→
(∧

V ≤(n−1)
)n+1

=
( ∧≥2

V ≤(n−1)
)n+1

is the inclusion. Clearly condition (ii) holds.
To check condition (iii), we need to verify that ρ≤(n−1) ◦ dn = d ◦ ρn.

On Cn, we have ρ≤(n−1) ◦ dn = 0 and d ◦ ρn = d ◦ ı3 ◦ ı2 ◦ ı1 = 0. On Nn,
we have

ρ≤(n−1) ◦ dn = ρ≤(n−1) ◦ j3 ◦ j2 ◦ j1 = d ◦ � ◦ ρ≤(n−1) ◦ j2 ◦ j1 = d ◦ ρn

as d ◦ � = Id. Therefore, condition (iii) holds.
Consider the inclusion j : (

∧
V ≤(n−1), d) ↪→ (

∧
V ≤n, d) and the cokernel

B =
(∧

V ≤n
)

/
(∧

V ≤(n−1)
)

.

Then (B, d) is a graded differential algebra, and Bi = 0 for all i < n, and
also, Bn = V n = Cn ⊕ Nn. We have (

∧
V ≤n)n+1 = (

∧
V ≤(n−1))n+1 as V 1 =

0, and hence Bn+1 = 0. Therefore,

j∗ : Hk
(∧

V ≤(n−1), d
)

−→ Hk
(∧

V ≤n, d
)

is an isomorphism for all k < n. As ρ∗
≤n ◦ j∗ = ρ∗

≤(n−1), we have that

ρ∗
≤n : Hk

(∧
V ≤n, d

)
−→ Hk(A, d)

is an isomorphism for all k < n.
To deal with the cases where k = n, n + 1, consider the long-exact

sequence associated to
∧

V ≤(n−1) ↪→
∧

V ≤n −→ B,
(4.1)
0 → Hn

(∧
V ≤(n−1), d

) j∗

−→ Hn
(∧

V ≤n, d
)

→ Hn(B, d) = Bn

= Cn ⊕ Nn

∂∗

−→ Hn+1
(∧

V ≤(n−1), d
)

→ Hn+1
(∧

V ≤n, d
)

→ 0.

For x = u + w ∈ Bn = Cn ⊕ Nn, we have ∂∗(x) = [d(u + w)] = [j3 ◦ j2◦
j1(w)] = j1(w).
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Therefore the exact sequence Equation (4.1) splits into two short exact
sequences:

(4.2) 0 −→ Hn
(∧

V ≤(n−1), d
)

−→Hn
(∧

V ≤n, d
)

−→ Cn −→ 0

and

(4.3) 0 −→ Nn j1−→ Hn+1
(∧

V ≤(n−1), d
)

−→ Hn+1
(∧

V ≤n, d
)

−→ 0.

From Equation (4.2), we have

0 −→ Hn
(∧

V ≤(n−1), d
)

−→ Hn
(∧

V ≤n, d
)

−→ Cn −→ 0
‖ ρ∗

≤n
↓ ↓

0 −→ Hn
(∧

V ≤(n−1), d
) ρ∗

≤(n−1)−→ Hn(A, d) −→ Cn −→ 0.

We note that the right vertical arrow is the identity map. Indeed, it sends
u ∈ Cn to the class of ρn(u) = ı3(ı2(ı1(u))) in

coker
(
ρ∗

≤(n−1) : Hn
(∧

V ≤(n−1), d
)

−→ Hn(A, d)
)

,

which is u itself. Thus the middle vertical arrow is an isomorphism, proving
condition (iv) for k = n.

In Equation (4.3), the homomorphism j1 is the inclusion of

Nn = ker
(
ρ∗

≤(n−1) : Hn+1
(∧

V ≤(n−1), d
)

−→ Hn+1(A, d)
)

in Hn+1
(∧

V ≤(n−1), d
)
. So ρ∗

≤(n−1) induces an inclusion

Hn+1

(∧
V ≤(n−1), d

)

Nn
∼= Hn+1

(∧
V ≤n, d

)
↪→ Hn+1(A, d) .

This map actually coincides with ρ∗
≤n, since (

∧
V ≤(n−1))n+1 = (

∧
V ≤n)n+1.

This proves that condition (v) holds.

Remark 4.2. Note that d : Nn −→ (
∧

V )n+1 is always injective, and
d|Cn = 0 for all n.

Remark 4.3. If (A, 0) is a differential algebra with zero differential, then
the minimal model ρ : (

∧
V, d) −→ (A, 0) constructed before has the property

that ρ(Nn) = 0 for all n.
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5. Minimal models and G-actions

Let G be a reductive complex Lie group. An action of the group G on a
differential algebra (A, d) is a representation r : G −→ GL(A) such that

• r(z)(An) = An for all n ≥ 0 and z ∈ G,

• r(z)(v1 · v2) = r(z)(v1) · r(z)(v2) for all v1, v2 ∈ A and

• r(z)(dv) = d(r(z)(v)) for all z ∈ G and v ∈ A.

If G acts on (A, d), then we say that (A, d) is a G-differential algebra.
A G-minimal differential algebra is a minimal differential algebra (

∧
V, d)

on which G acts satisfying the condition that each graded vector space V n,
n ≥ 0, is preserved by the action of G. A G-minimal model of a G-differential
algebra (A, d) is a G-minimal differential algebra (

∧
V, d) such that there is

a G-equivariant map

ρ :
(∧

V, d
)

−→ (A, d)

which is a quasi-isomorphism.
Note that a G-minimal model is in particular a minimal model.

Proposition 5.1. Let (A, d) be a one-connected G-differential algebra.
Then there exists a G-minimal model (

∧
V, d) of (A, d).

Proof. The construction of a minimal model in Section 4 works in the context
of G-differential algebras. All we need is to substitute the vector spaces V n

in the construction by G representations. We note that the reductivity of
the group G ensures that any short exact sequence of G modules splits. �

Let (X , x0) be a one-pointed compact connected Riemann surface of
genus g ≥ 2, and, as in Section 2, let NX be the moduli space of stable
vector bundles over X of rank two and fixed determinant OX(x0). Then
the mapping class group acts on the cohomology ring H∗(NX , Q), with
the action factoring through an action of Sp(2g, Z); moreover, this action
extends to an action of Sp(2g, C) on H∗(NX , C) (Proposition 2.1). We will
now show that a similar result holds for the rational homotopy groups.

Theorem 5.2. The mapping class group acts on the homotopy groups
π∗(NX). The induced action on the rational homotopy groups π∗(NX) ⊗Z Q

factors through an action of the symplectic group Sp(2g, Z). This action
extends uniquely to an action of Sp(2g, C) on π∗(NX) ⊗Z C.
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Let (
∧

V, d) be the Sp(2g, C)-minimal model, provided by Proposition 5.1,
for the one-connected Sp(2g, C)-differential algebra (H∗(NX , C) , 0). Then

V n ∼= (πn(NX) ⊗Z C)∗

as Sp(2g, C)-modules.

Proof. First note that the formality of NX (Theorem 4.1) means that
(
∧

V , d) is also the minimal model of NX .
Now, let η ∈ Γ1

g, where Γ1
g is the mapping class group of (X , x0). As we

noted prior to Proposition 2.1, the element η acts on NX by a diffeomorphism
fη : NX −→ NX . Hence we have an action on the free homotopy groups of
NX . As NX is simply connected, the free homotopy groups of NX coincide
with the homotopy groups of NX . So we have an induced map

ρ(η) : π∗(NX) −→ π∗(NX) .

The diffeomorphism fη induces a map on differential forms,

(5.1) f∗
η : (Ω∗(NX , C), d) −→ (Ω∗(NX , C), d),

which lifts to a map on the minimal model

(5.2) f̂∗
η :

(∧
V, d

)
−→

(∧
V, d

)
.

Such a lift is not unique; it is only unique up to homotopy of maps of
differential algebras [5]. However, the induced map on the indecomposables,

(5.3) f̃∗
η : V =

∧
V

∧≥2 V
−→ V =

∧
V

∧≥2 V
,

is unique [15, Proposition 2.12], and moreover, it coincides with the dual of
the map

ρ(η) ⊗ C : π∗(NX) ⊗Z C −→ π∗(NX) ⊗Z C ,

under the isomorphism of vector spaces V n ∼= (πn(NX) ⊗Z C)∗ (see [5, p. 259]).
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Let

(5.4) π : Γ1
g −→ Aut(H1(X, Z)) = Sp(2g, Z)

be the natural projection of the mapping class group onto the symplectic
group. Then the automorphism of cohomology

f
∗
η : H∗(NX , C) −→ H∗(NX , C)

induced by f∗
η in Equation (5.1) coincides with the action of π(η) on the

cohomology, where π is the earlier projection. The map f̂∗
η in equation (5.2)

evidently induces the previous automorphism f
∗
η.

The minimal model (
∧

V, d) has an action of Sp(2g, Z). Indeed, by
Proposition 5.1, the group Sp(2g, C) acts on (

∧
V, d) and this restricts to

an action of Sp(2g, Z) ⊂ Sp(2g, C). The homomorphism f
∗
η is induced by

the action of π(η) on (
∧

V, d), where π is the projection in Equation (5.4).
Therefore the map

f̃∗
η : V n −→ V n

defined in Equation (5.3) coincides with the action of π(η) on V n. Hence,
under the isomorphism V n ∼= (πn(NX) ⊗Z C)∗, the actions of π(η) and
(ρ(η) ⊗ C)∗ coincide.

If η ∈ Γ1
g belongs to the Torelli group, then ρ(η) ⊗ C must be the iden-

tity map of πn(NX) ⊗Z C, and hence ρ(η) ⊗ Q = Id on πn(NX) ⊗Z Q. This
proves that the action of the mapping class group on π∗(NX) ⊗Z Q fac-
tors through an action of Sp(2g, Z). Moreover, this action coincides with
the restriction of the Sp(2g, C) action on V n to the subgroup Sp(2g, Z) ⊂
Sp(2g, C) under the isomorphism (πn(NX) ⊗Z C)∗ ∼= V n. So the action of
Sp(2g, Z) on π∗(NX) ⊗Z C extends to an action of Sp(2g, C). Since Sp(2g, Z)
is Zariski dense in Sp(2g, C) [3], the extension is unique. This completes the
proof of the theorem. �

Let G = Sp(2g, C), and let (
∧

V, d) be the G-minimal model of (H∗(NX ,
C), 0). Then we may decompose V n into irreducible G representations.
Let {Γi}i∈Λ be a complete set of irreducible G representations, where Λ
parametrizes the isomorphism classes of irreducible G representations. So

V n =
⊕

i∈Λ

ai,nΓi

for some set of integers ai,n ≥ 0.
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6. The minimal model of NX for g = 2

In this section we will assume that X is a compact connected Riemann
surface of genus two. In this case, the moduli space NX , whose dimension is
now three, can be described explicitly [17, 13]. It turns out to be isomorphic
to the intersection of two quadrics in P

5.
The integral cohomology ring of NX has no torsion [16, Section 10].

Let h ∈ H2(NX , Z) be the hyperplane class. Note that, by the Lefschetz
hyperplane theorem, H2(NX , Z) = H2(P5, Z) = Z. So h = α, the generator
of the ample cone. The intersection of two quadrics in P

5 contains many
lines P

1 ⊂ NX ⊂ P
5. Let l ∈ H4(NX , Z) be the Poincaré dual of such a

line. Then h ∪ l = [NX ], so H4(NX , Z) ∼= Z is generated by l. We have h3 =
h ∪ h ∪ h = 4[NX ], as the degree of NX ⊂ P

5 is 4. Therefore, we conclude
that h ∪ h = 4l. Finally, H3(NX , Z) ∼= H1(X, Z)∗, so H3(NX , Z) ∼= W0, the
standard Sp(4, Z) representation W0 = Z

4. Moreover, the pairing

H3(NX , Z) ⊗Z H3(NX , Z) −→ H6(NX , Z) ∼= Z

is perfect (Poincaré duality) and Sp(4, Z)-equivariant, so it is equivalent to
the standard symplectic form on W0. The conclusion is that

H0(NX , Z) = 〈1〉 ,

H1(NX , Z) = 0 ,

H2(NX , Z) = 〈h〉 ,

H3(NX , Z) ∼= W0 ,

H4(NX , Z) = 〈l〉 ,

H5(NX , Z) = 0 ,

H6(NX , Z) = 〈[NX ]〉 .

This can also be seen by using Proposition 3.1, at least for rational
coefficients. Since I1 = (α, β, γ) and I2 = (α2 + β, αβ + γ, αγ), Proposition
3.1 says that

H∗(NX , Q) =
Q[α, β, γ]

I2
⊕

(

W ⊗ Q[α, β, γ]
I1

)
∼=

Q[α]
(α4)

⊕ W ,

where β = −α2 and γ = α3 in this ring, and γi ∪ γj = −1
4(γi · γj)α3, for any

γi, γj ∈ W . Note that β = −4l. Note that W = W0 ⊗Z Q is the standard Q

representation of Sp(4, Z).
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Now we pass on to compute the minimal model (
∧

V, d) of NX by com-
puting the minimal model of its cohomology algebra H∗(NX , C). This is
possible because NX is formal by Theorem 4.1. By Proposition 5.1, (

∧
V, d)

is a G minimal model for G = Sp(4, C).
The irreducible representations of Sp(4, C) are labeled by pairs (a, b),

a, b ≥ 0, such that the corresponding representation Γa,b has highest weight
aL1 + b(L1 + L2) = (a + b)L1 + bL2, where L1 and L2 are the orthogonal
generators (with respect to the Killing form) of the weight lattice; see [7,
Part III, Section 16].

The standard representation Wc = W ⊗Q C = C
4 of Sp(4, C) is Wc =

Γ1,0, whereas the irreducible Sp(4, C) representation ∧2
0Wc is Γ0,1. Some

easy cases are dealt with in [7, Part III, Section 16],

∧2 Γ1,0 = ∧2
0Wc ⊕ C = Γ0,1 ⊕ Γ0,0 ,

SymaΓ1,0 = Γa,0 ,

Γ0,1 ⊗ Γ1,0 = Wc ⊗ ∧2
0Wc = Γ1,1 ⊕ Γ1,0 .

We define a partial order in the set of weights of Sp(4, C) as follows:

(a, b) ≤ (c, d) ⇐⇒
{

a + b ≤ c + d,
a + 2b ≤ c + 2d.

This corresponds to the fact that the weights of the representation Γa,b are
a subset of the convex hull of the weights of Γc,d. Otherwise said, (a, b) ≥ 0
means that the highest weight (a + b)L1 + bL2 is a linear combination with
non-negative coefficients of the positive roots (see [7]). (We point out that
this order is defined in [10, p. 47] with the difference that in [10], (a, b) ≥ 0
means that (a + b)L1 + bL2 is a linear combination with non-negative integer
coefficients of the positive roots. This is equivalent to a + b ≥ 0, a + 2b ≥ 0
and a + 2b ≡ 0 (mod 2).)

In particular, for representations Γa1,b1 and Γa2,b2 , the sub-representations
Γc,d of the tensor product Γa1,b1 ⊗ Γa2,b2 satisfy the condition

(c, d) ≤ (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) ,

and furthermore, there is exactly one sub-representation (the Cartan com-
ponent) satisfying the equality. Note that this says in particular that Γa,b ⊂
W⊗a

c ⊗ (∧2
0Wc)⊗b appears with multiplicity 1.

We compute the Sp(4, C)-minimal model (
∧

V, d) following the mecha-
nism laid out in Section 4 and Proposition 5.1.
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Proposition 6.1. Let (
∧

V, d) be the minimal model of NX for a curve X
of genus g = 2. Then we have, as Sp(4, Z)-representations,

V 2 = Γ0,0

V 3 = Γ1,0

V 4 = Γ1,0

V 5 = Γ0,1 ⊕ Γ0,0

V 6 = Γ2,0 ⊕ Γ0,1

V 7 = Γ1,1 ⊕ Γ2,0 ⊕ Γ1,0 .

Proof. Abbreviating H∗(NX) for H∗(NX , C), we have

V 2 = C2 = H2(NX) = 〈h〉 ∼= Γ0,0 .

Recall that d|Cn = 0, for any n.
In the next step, we have V 3 = C3 ⊕ N3, with

C3 = coker
(
H3

(∧
V ≤2

)
= 0 −→ H3(NX)

)
= H3(NX) ∼= Wc

∼= Γ1,0 ,

N3 = ker
(
H4

(∧
V ≤2

)
= 〈h2〉 −→ H4(NX) = 〈h2〉

)
= 0.

For n = 4, we have V 4 = C4 ⊕ N4, with

C4 = coker
(
H4

(∧
V ≤3

)
= 〈h2〉 −→ H4(NX)〈h2〉

)
= 0,

N4 = ker
(
H5

(∧
V ≤3

)
−→ H5(NX) = 0

)
= H5

(∧
V ≤3

)

= V 3 · V 2 ∼= Γ1,0 ⊗ Γ0,0 = Γ1,0.

The differential d : N4 −→ V 3 · V 2 ⊂
∧

V is an isomorphism.
We continue with V 5 = C5 ⊕ N5, where

C5 = coker
(
H5

(∧
V ≤4

)
−→ H5(NX) = 0

)
= 0 ,

N5 = ker
(
H6

(∧
V ≤4

)
= ∧2V 3 ⊕ 〈h3〉 −→ H6(NX) = 〈h3〉

)

∼= ∧2V 3 ∼= ∧2Γ1,0 = Γ0,1 ⊕ Γ0,0 .

The differential d : N5 −→ ∧2V 3 ⊕ 〈h3〉 is an isomorphism of N5 with the
kernel of the map ∧2V 3 ⊕ 〈h3〉 −→ 〈h3〉. This map is the sum of a multiple
of the intersection product ∧2V 3 −→ C ∼= 〈h3〉 in the first summand, and
the identity in the second summand.
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For n = 6, we have V 6 = C6 ⊕ N6. Now

C6 = coker
(
H6

(∧
V ≤5

)
� H6(NX) = 〈h3〉

)
= 0 ,

since h3 ∈ H6(
∧

V ≤5). Moreover Ck = 0 for k > 6 since Hk(NX) = 0. Also
for all k ≥ 6, we have Nk = Hk+1(

∧
V ≤(k−1)), since Hk+1(NX) = 0. Now

(∧
V ≤5

)6
= (V 3 · V 3) ⊕ (V 2 · V 2 · V 2) ⊕ (V 4 · V 2) ,

(∧
V ≤5

)7
= (V 4 · V 3) ⊕ (V 3 · V 2 · V 2) ⊕ (V 5 · V 2) .

The space of coboundaries is B7(
∧

V ≤5) = d(V 4 · V 2) = V 3 · V 2 · V 2. The
differential d maps (V 4 · V 3) ⊕ (V 5 · V 2) onto ∧2V 3 · V 2 ⊕ 〈h4〉, and it has
kernel isomorphic to ker(V 4 · V 3 −→ 〈h4〉). But

V 4 · V 3 = V 4 ⊗ V 3 ∼= Γ1,0 ⊗ Γ1,0 = Sym2Γ1,0 ⊕ ∧2Γ1,0 ∼= Γ2,0 ⊕ Γ0,1 ⊕ Γ0,0 .

So the conclusion is that

N6 = H7
(∧

V ≤5
)

=
Z7

(∧
V ≤5

)

B7 (
∧

V ≤5)
∼= Γ2,0 ⊕ Γ0,1 ,

and the differential d : N6 −→ (V 4 · V 3) ⊕ (V 5 · V 2) is the sum of the two
maps d : N6 = Γ2,0 ⊕ Γ0,1 −→ V 4 · V 3 = Γ2,0 ⊕ Γ0,1 ⊕ Γ0,0 which is injective,
and d : N6 = Γ2,0 ⊕ Γ0,1 −→ V 5 · V 2 = Γ0,1 ⊕ Γ0,0 mapping onto the Γ0,1
summand.

The next case is V 7 = C7 ⊕ N7 = N7. Then

(∧
V ≤6

)7 = (V 5 · V 2) ⊕ (V 4 · V 3) ⊕ (V 3 · V 2 · V 2),
(∧

V ≤6
)8 = (V 6 · V 2) ⊕ (V 5 · V 3) ⊕ (V 4 · V 4) ⊕ (V 4 · V 2 · V 2)

⊕ (V 3 · V 3 · V 2) ⊕ 〈h4〉.

The space of coboundaries is B8(
∧

V ≤6) = (V 3 · V 3 · V 2) ⊕ 〈h4〉, from our
knowledge of d on both V 5 and V 4. To compute

N7 = H8
(∧

V ≤7
)

=
Z8(

∧
V ≤6)

B8(
∧

V ≤6)
=

= ker
(
d : (V 6 · V 2) ⊕ (V 5 · V 3) ⊕ (V 4 · V 4) ⊕ (V 4 · V 2 · V 2) −→

∧
V

)
,
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we look at each summand,

d : V 5 · V 3 −→ ∧3V 3 ⊕ V 3 · (V 2)3,

d : V 4 · V 2 · V 2 
−→ V 3 · (V 2)3,
d : V 6 · V 2 ↪→ (V 4 · V 3 · V 2) ⊕ (V 5 · V 2 · V 2)
d : V 4 · V 4 ↪→ V 4 · V 3 · V 2.

So N7 = K1 ⊕ K2, where K1 = ker((V 5 · V 3) ⊕ (V 4 · V 2 · V 2) −→
∧

V ) and
K2 = ker((V 6 · V 2) ⊕ (V 4 · V 4) −→

∧
V ). Clearly, K1 ∼= ker(V 5 ⊗ V 3 −→

∧3V 3), but V 5 ⊗ V 3 ∼= (Γ0,1 ⊕ Γ0,0) ⊗ Γ1,0 = Γ1,1 ⊕ Γ1,0 ⊕ Γ1,0 and ∧3V 3 ∼=
V 3 ∼= Γ1,0, so K1 ∼= Γ1,1 ⊕ Γ1,0. On the other hand, d maps V 4 · V 4 =
Sym2V 4 ∼= Γ2,0 to the corresponding summand in V 4 · V 3 · V 2 ∼= Γ1,0 ⊗ Γ1,0 =
Γ2,0 ⊕ Γ0,1 ⊕ Γ0,0, and d maps V 6 · V 2 ∼= Γ2,0 ⊕ Γ0,1 injectively to (V 4·
V 3 · V 2) ⊕ (V 5 · V 2 · V 2) ∼= (Γ2,0 ⊕ Γ0,1 ⊕ Γ0,0) ⊕ (Γ0,1 ⊕ Γ0,0). Thus K2 ∼=
Γ2,0. This concludes that N7 = Γ1,1 ⊕ Γ2,0 ⊕ Γ1,0, and the proof of the
proposition is complete. �

We may carry on the process as long as we want, but the calculations
get more involved, since we must keep track of the irreducible summands
of

∧
V onto which d|Vn

maps for each n. It is easier to find the “leading
representation”. We need a preliminary result.

Lemma 6.2. For any Sp(4, C)-irreducible representation Γa,b, a, b ≥ 0, if
Γa,b ⊂ V n, then n ≥ n(a, b), where

n(a, b) =
{

2a + 4b + 1, if b ≥ 1 or (a, b) = (1, 0),
2a + 2, if b = 0 and a �= 1.

Proof. We shall prove this by induction on n. By Proposition 6.1, the result
is true for 1 ≤ n ≤ 7. So suppose n ≥ 8. Let U ⊂ V n be a sub-representation
with U ∼= Γa,b. We want to prove that n(a, b) ≤ n, so we may assume that
(a, b) �= (0, 0), (1, 0), (0, 1), (1, 1) and (2, 0). As Hn(NX) = 0, we have that
Cn = 0. So V n = Nn, and in particular d : V n −→ (

∧
V )n+1 is injective.

Hence

U ∼= d(U) ⊂ d(V n) ⊂
(∧≥2

V

)n+1

=
∑

n1+ ... +nr=n+1, r≥2

V n1 · · ·V nr .

The projection of d(U) to some of these summands must be non-zero. Hence
there exists

U ′ ⊂ V n1 · · ·V nr ⊂ V n1 ⊗ · · · ⊗ V nr ,
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for some r ≥ 2, with n1 + · · · + nr = n + 1, U ′ ∼= U ∼= Γa,b. Note that all
ni < n, because ni ≥ 2, 1 ≤ i ≤ r. Decomposing each V ni into Sp(4, C)-
irreducible representations, there must be (a1, b1), . . . , (ar, br) such that

(6.1) Γa,b ⊂ Γa1,b1 ⊗ · · · ⊗ Γar,br
,

with Γai,bi
⊂ V ni . Applying the induction hypothesis it follows that ni ≥

n(ai, bi) for all 1 ≤ i ≤ r. We note that Equation (6.1) implies that (a, b) ≤
(a1, b1) + · · · + (ar, br), that is,

(6.2)
{

a + b ≤
∑

(ai + bi),
a + 2b ≤

∑
(ai + 2bi).

If a, b ≥ 1, we have

n + 1 = n1 + · · · + nr

≥ n(a1, b1) + · · · + n(ar, br)

≥
r∑

i=1

(2ai + 4bi + 1)

≥ 2a + 4b + r

≥ 2a + 4b + 2
= n(a, b) + 1,

(6.3)

using Equation (6.2). So n ≥ n(a, b) in this case.
If b = 0, a ≥ 3, then Equation (6.3) proves that n + 1 ≥ n(a, b). If

there is equality, then r = 2, ni = n(ai, bi) = 2ai + 4bi + 1 and a = a + 2b =∑
(ai + 2bi), for all i. Since a = a + b ≤

∑
(ai + bi), we get

∑
(ai + 2bi) =

a ≤
∑

(ai + bi), so bi = 0 for all i. As also ni = n(ai, 0) = 2ai + 1, we have
that ai = 1, ni = 3. But then a = 2 which is a case treated before. �

Theorem 6.3. Let n ≥ 4. The decomposition of V n into a direct sum of
irreducible Sp(4, C)-representations is as follows:

(i) If n = 2m is even, then

V n = Γm−1,0 ⊕

⎛

⎝
⊕

(a,b)<(m−1,0)

nabΓa,b

⎞

⎠ ,

with nab ≥ 0.
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(ii) If n = 2m + 1 is odd, then

V n = Γm−2,1 ⊕

⎛

⎝
⊕

(a,b)<(m−2,1)

nabΓa,b

⎞

⎠ ,

with nab ≥ 0.

Proof. (i) Let n = 2m ≥ 4. By Lemma 6.2, if Γa,b ⊂ V n then 2a + 4b + 1 ≤
n = 2m. This implies that

(a, b) ≤ (m − 1, 0),

since a + 2b ≤ m − 1 and a + b ≤ a + 2b ≤ m − 1. So the leading represen-
tation in V n is Γm−1,0. We will show that it actually appears and that its
multiplicity is one.

To see that there is Γm−1,0 ⊂ V n, we shall prove by induction on m
that there is a sub-representation Um−1 ⊂ V n, Um−1 ∼= Γm−1,0, such that
d(Um−1) ⊂ V n−2 · V 3. By Proposition 6.1, this is true for m = 2, 3. Assume
that it is true for m − 1 ≥ 3 and let us prove it for m. So Um−2 ⊂ V 2m−2 and
d(Um−2) ⊂ V 2m−4 · V 3. Then d : Um−2 · V 3 −→ V 2m−4 · V 3 · V 3 ⊂

∧
V .

But
Um−2 · V 3 ∼= Γm−2,0 ⊗ Γ1,0

contains a sub-representation Ũm−1 ⊂ Um−2 · V 3 such that Ũm−1 ∼= Γm−1,0.
On the other hand,

V 2m−4 · V 3 · V 3 = V 2m−4 ⊗ ∧2V 3 ∼= V 2m−4 ⊗ Γ0,1 .

Decomposing V 2m−4 into irreducible representations Γc,d, and noting that
(c, d) ≤ (m − 3, 0) by induction hypothesis, we see that if Γa,b ⊂ V 2m−4 ·
V 3 · V 3 then Γa,b ⊂ Γc,d ⊗ Γ0,1 for some (c, d) ≤ (m − 3, 0). Thus

(a, b) ≤ (c, d) + (0, 1) = (c, d + 1) ≤ (m − 3, 1) < (m − 1, 0).

As a consequence, Γm−1,0 �⊂ V 2m−4 · V 3 · V 3, and so d(Ũm−1) = 0. This
implies that Ũm−1 ⊂ Zn+1(

∧
V, d) = Bn+1(

∧
V, d), since Hn+1(

∧
V, d) = 0.

There must exist a sub-representation Um−1 ⊂ (
∧

V )n with d(Um−1) = Ũm−1.
As d maps (

∧≥i V )n −→ (
∧≥(i+1) V )n+1, it cannot be Um−1 ⊂ (

∧2 V )n, so
the projection of Um−1 by p : (∧V )n −→ V n is a sub-representation isomor-
phic to Γm−1,0. (Here we are allowed to substitute V n by Um−1 ⊕ p(Um−1)⊥,
where p(Um−1)⊥ is a Sp(4, C)-invariant complement of p(Um−1) ⊂ V n; this
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yields an isomorphic minimal model and ensures that d(Um−1) ⊂
V 2n−2 · V 3).

Now let us compute the multiplicity of Γm−1,0 in V n. The argument
of the proof of Lemma 6.2 implies that the multiplicity of Γm−1,0 in V n

is at most the sum of the multiplicities of Γm−1,0 in V n1 · · ·V nr , for the
different possibilities n1 + · · · + nr = n + 1, r ≥ 2. Let (a, b) = (m − 1, 0).
As in the proof of Lemma 6.2, for any sub-representation Γm−1,0 there are
(a1, b1), . . . , (ar, br) such that

(6.4)

2m + 1 = n + 1 = n1 + · · · + nr

≥ n(a1, b1) + · · · + n(ar, br)
≥

∑r
i=1(2ai + 4bi + 1)

≥ 2a + 4b + r = 2m − 2 + r.

In particular r ≤ 3. If r = 3, then ni = n(ai, bi) = 2ai + 4bi + 1 for all i, and
a = a + 2b =

∑
(ai + 2bi). Since a = a + b ≤

∑
(ai + bi), we get bi = 0 for

all i. This implies that ai = 1 and ni = 3. But then a = m − 1 = 3 and

Γ3,0 �⊂ V 3 · V 3 · V 3 = ∧3V 3 ∼= ∧3Wc
∼= Wc

∼= Γ1,0 .

If r = 2, then 2a + 4b + 1 ≥
∑

(2ai + 4bi) ≥ 2a + 4b. So
∑

(ai + 2bi) =
a + 2b = a. As before, this implies that bi = 0 for all i. At most one of
the ais is bigger than 1, so we can put (a1, b1) = (m − 2, 0), (a2, b2) = (1, 0).
This corresponds to the summand Γm−2,0 ⊗ Γ1,0 ⊂ V 2m−4 · V 3. This repre-
sentation contains Γm−1,0 with multiplicity one.

Since we know that the multiplicity of Γm−1,0 in V n is non-zero, we
conclude that it is exactly one.

(ii) Let n = 2m + 1 ≥ 5. By Proposition 6.1, the result holds for m =
2, 3, so assume that m ≥ 4.

If Γa,b ⊂ V n, then by Lemma 6.2, we have that 2a + 4b + 1 ≤ n = 2m +
1, so a + 2b ≤ m. This implies that

(a, b) ≤ (m − 2, 1),

since if b ≥ 1 then a + b ≤ a + 2b − 1 ≤ m − 1; and if b = 0 then Lemma
6.2 says that 2a + 2 ≤ n = 2m + 1, so a + b = a ≤ m − 1. So the leading
representation in V n is Γm−2,1. We will show that it actually appears with
multiplicity one.

As in the previous case, one can see using induction on m that there is a
sub-representation Um−1 ⊂ V 2m+1, with Um−1 ∼= Γm−2,1, such that d(Um−1)
⊂ V 2m−1 · V 3.
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To compute the multiplicity of Γm−2,1 in V n, let us find the multiplicity
of Γm−2,1 in V n1 · · ·V nr , for n1 + · · · + nr = n + 1, r ≥ 2. As n = 2m + 1 =
n(m − 2, 1), there must be equality in Equation (6.3) for (a, b) = (m − 2, 1),
which means that r = 2, ni = n(ai, bi) = 2ai + 4bi + 1 and

∑
(ai + 2bi) =

a + 2b = m. Since m − 1 = a + b ≤
∑

(ai + bi), we have
∑

(ai + 2bi) = m ≤∑
(ai + bi) +1 , so

∑
bi ≤ 1. As least one bi is zero, say b2 = 0. Then a2 = 1,

n2 = 3. Also m − 1 ≤
∑

(ai + bi) ≤ a1 + 2 and m = a1 + 2b1 + 1, implying
that (a1, b) = (m − 3, 1) or (m − 1, 0) and n1 = 2a1 + 4b1 + 1 = 2m − 1. By
induction hypothesis, Γm−1,0 �⊂ V 2m−1, so the second case is ruled out. The
multiplicity of Γm−2,1 in Γm−3,1 ⊗ Γ1,0 ⊂ V 2m−1 · V 3 is 1. This proves that
the multiplicity of Γm−2,1 in V n is one. �

7. Sub-representations in the minimal model of NX for g > 2

Suppose now that X is a smooth irreducible projective complex curve of
genus g > 2. The action of Sp(2g, C) on the cohomology algebra H∗(NX , C)
of the moduli space NX gives an action of Sp(2g, C) on the minimal model
(
∧

V, d) of NX , by Proposition 5.1. By Theorem 5.2, the action of Sp(2g, C)
on the minimal model (

∧
V, d) is compatible with the action of Sp(2g, C) on

the complex homotopy groups π∗(NX) ⊗Z C.
The isomorphism classes of irreducible Sp(2g, C)-representations are

labeled by g-tuples (a1, . . . , ag) ∈ (Z≥0)g (see [7, Part III, Section 17]). The
representation corresponding to (a1, . . . , ag) is denoted by

Γ(a1,...,ag) = Γa1e1+ ··· +ageg
,

where ei = (0, . . . , 1, . . . , 0), with 1 in the ith position and 0 elsewhere.
The Sp(2g, C)-module Γ(a1, ... ,ag) is characterized by its highest weight (a1 +
a2 + · · · + ag)L1 + (a2 + · · · + ag)L2 + · · · + agLg, where {L1, . . . , Lg} is the
standard basis for the weight lattice.

Let Wc = C
2g be the standard representation of Sp(2g, C). Then Wc =

Γe1 , and Γek
= ∧k

0Wc is the complexification of the representation ∧k
0W

introduced in Section 3.
We shall use two well-known facts: (i) the representation Γ(a1, ... ,ag) ⊗

Γ(b1, ... ,bg) contains Γ(a1+b1, ... ,ag+bg) (actually this is the highest weight rep-
resentation appearing with multiplicity one); and (ii) the representation
Γ(k−2,0, ... ,0) ⊗ Γ(0,1, ... ,0) does not contain Γ(k,0, ... 0) (this holds because the
weight kL1 does not appear in the tensor product), and the representation
Γ(k−2,1,0, ... ,0) ⊗ Γ(0,1,0, ... ,0) does not contain Γ(k,1,0, ... ,0).
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Theorem 7.1. Let X be a complex smooth projective irreducible curve of
genus g > 2. Let (

∧
V, d) be the minimal model of the moduli space NX .

Then, as Sp(2g, C) representations, we have

V 2 = Γ0 ,
V 3 = Γe1 ,
V 4 = Γ0 ,
V n = 0, 5 ≤ n ≤ 2g − 2,
V 2g−1 = Γ0 ,
V 2g = Γe1 ,
V 2g+1 = Γe2 ⊕ Γ0 .

Moreover, for n ≥ 2g + 2, we have the following.

(i) If n = 2(g + k − 1) with k ≥ 2, then V n contains Γke1.

(ii) If n = 2(g + k) + 1 with k ≥ 1, then V n contains Γke1+e2.

Proof. Clearly, V 2 = C2 = 〈α〉 ∼= Γ0,

V 3 = C3 = H3(NX) = Wc
∼= Γe1

and V 4 = C4 = 〈β〉 ∼= Γ0. Now
∧

V ≤4 =
∧

(α, γ1, . . . , γ2g, β) = Ac ,

where Ac = A ⊗Q C is the complexification of the rational vector space
defined in Lemma 3.2. So the natural homomorphism

∧
V ≤4 −→ H∗(NX)

is surjective. This implies that Cn = 0 and

V n = Nn = ker
(
Hn+1

(∧
V <n

)
−→ Hn+1(NX)

)

for all n > 4. Since Fc : Ac −→ H∗(NX) is the complexification of the map
F in Equation (3.3), its kernel, kernel(Fc), has the lowest degree element
q1
g , which is of degree 2g. So V n = Nn = 0 for all 5 ≤ n ≤ 2g − 2. For

n = 2g − 1, we have

V 2g−1 = ker
(
H2g

(∧
V <(2g−1)

)
= A

2g
c −→ Hn+1(NX)

)
= (kernel(Fc))2g

= 〈q1
g〉 ∼= Γ0

with d : V 2g−1 
−→ 〈q1
g〉 ⊂

∧
V .
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For n = 2g, we have

H2g+1
(∧

V ≤(2g−1)
)

= H2g+1
(∧

V <(2g−1)
)

= A
2g+1
c ,

since (
∧

V ≤(2g−1))2g+1 = A
2g+1
c ⊕ (V 2g−1 · V 2) and the non-zero elements in

V 2g−1 · V 2 are not closed. So

V 2g = (kernel(Fc))2g+1 = q1
g−1 · Wc

∼= Γe1 ,

and d : V 2g 
−→ q1
g−1 · V 3 ⊂

∧
V .

For n = 2g + 1, we have

(∧
V ≤2g

)2g+1
= A

2g+1
c ⊕ (V 2g−1 · V 2) ,

(∧
V ≤2g

)2g+2
= A

2g+2
c ⊕ (V 2g−1 · V 3) ⊕ (V 2g · V 2) ,

with d : V 2g−1 · V 3 
−→ q1
g · V 3 and d : V 2g · V 2 
−→ α q1

g−1 · V 3. But α q1
g−1

and q1
g are linearly independent, so we have

H2g+2
(∧

V ≤2g
)

=
Z2g+2

(∧
V ≤2g

)

B2g+2 (
∧

V ≤2g)
=

A
2g+2
c

〈α q1
g〉

.

This gives

V 2g+1 = ker

(
A

2g+2
c

〈αq1
g〉

−→ H2g+2(NX)

)

= 〈q2
g〉 ⊕ q1

g−2 · ∧2
0Wc

∼= Γ0 ⊕ Γe2 ,

which follows easily using Lemma 3.2. Note that the differential d maps the
summand Γe2 to q1

g−2 · ∧2
0V

3.
We now proceed to prove the second part of the theorem.

Proof of (i). Let us prove by induction on k ≥ 1 that there exists a
sub-representation Uk ⊂ V 2g+2k−2 with Uk

∼= Γk e1 such that d(Uk) ⊂ Uk−1 ·
V 3 ⊂ V 2g+2k−4 · V 3, where U0 := 〈q1

g−1〉 ⊂ V 2g−2.
If k = 1, then

V n = V 2g = Γe1

with d : V 2g −→ q1
g−1 · V 3 ⊂

∧
V .

Now assume that there exists a sub-representation Uk−1 ⊂ V 2g+2k−4

with Uk−1 ∼= Γ(k−1)e1
such that d(Uk−1) ⊂ Uk−2 · V 3 ⊂ V 2g+2k−6 · V 3. Then
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we have

d(Uk−1 · V 3) ⊂ Uk−2 · V 3 · V 3 .

On one hand,

Uk−1 · V 3 = Uk−1 ⊗ V 3 ⊂ V 2g+2k−4 ⊗ V 3 ,
Uk−1 ⊗ V 3 ∼= Γ(k−1)e1

⊗ Γe1 ;

so there exists Ũk ⊂ Uk−1 · V 3 with Ũk
∼= Γk e1 such that Ũk ⊂ Uk−1 · V 3.

On the other hand,

Uk−2 · V 3 · V 3 ⊂ Uk−2 ⊗ ∧2V 3 ∼= Γ(k−2)e1
⊗ Γe2

does not contain Γk e1 . So d(Ũk) = 0, or in other words, Ũk ⊂ Z2g+2k−1(
∧

V ).
By Remark 4.3, we have ρ(V n) = 0 for all n ≥ 5, where ρ : (

∧
V, d) −→

(H∗(NX), 0) is the minimal model. As Uk−1 ⊂ V 2g+2k−4, we have ρ(Uk−1) =
0. Hence ρ(Ũk) = 0, or in other words, Ũk ⊂ B2g+2k−1(

∧
V ). This is only

possible if there exists Uk ⊂ V 2g+2k−2 with Uk
∼= Γk e1 and d : Uk


−→ Ũk ⊂
Uk−1 · V 3. Therefore, the proof of statement (i) is complete by induction.

Proof of (ii). We will show using induction on k ≥ 1 that there exists a
sub-representation

Uk ⊂ V 2g+2k+1

with Uk
∼= Γk e1+e2 such that d(Uk) ⊂ Uk−1 · V 3 ⊂ V 2g+2k−1 · V 3, where U0 ⊂

V 2g+1 is the sub-representation of V 2g+1 = Γ0 ⊕ Γe2 isomorphic to Γe2 .
For k = 1, note that d : U0 → q1

g−2 · ∧2
0V

3. So d : U0 · V 3 → q1
g−2 · ∧2

0V
3 ·

V 3, where

∧2
0V

3 · V 3 ∼= ∧3
0V

3 ⊕ γ · V 3 ∼= ∧3
0Wc ⊕ Wc = Γe3 ⊕ Γe1 .

As U0 ∼= Γe2 , we conclude that

U0 · V 3 ∼= U0 ⊗ V 3 ∼= Γe2 ⊗ Γe1

contains a sub-representation Ũ1 ⊂ U0 · V 3 with Ũ1 ∼= Γe1+e2 and d(Ũ1) = 0.
Working as in the proof of (i), this yields that there exists U1 ⊂ V 2g+3 with
U1 ∼= Γe1+e2 and d(U1) = Ũ1 ⊂ U0 · V 3.

Now assume that k ≥ 2 and that there exists a sub-representation Uk−1
⊂ V 2g+2k−1 with Uk−1 ∼= Γ(k−1)e1+e2

such that d(Uk−1) ⊂ Uk−2 · V 3 ⊂
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V 2g+2k−3 · V 3. Then we have d(Uk−1 · V 3) ⊂ Uk−2 · V 3 · V 3. On one hand,

Uk−1 · V 3 = Uk−1 ⊗ V 3 ∼= Γ(k−1)e1+e2
⊗ Γe1 ;

so there exists Ũk ⊂ Uk−1 · V 3 with Ũk
∼= Γk e1+e2 such that Ũk ⊂ Uk−1 · V 3.

On the other hand,

Uk−2 · V 3 · V 3 ⊂ Uk−2 ⊗ ∧2V 3 ∼= Γ(k−2)e1+e2
⊗ Γe2

does not contain Γk e1+e2 . Therefore, d(Ũk) = 0. Thus there exists Uk ⊂
V 2g+2k−2 with Uk

∼= Γk e1+e2 and d : Uk

−→ Ũk ⊂ Uk−1 · V 3. This completes

the proof of the theorem. �

From Theorem 6.3 and 7.1 it follows that for each g ≥ 2, the rational
homotopy group πn(NX) ⊗Z C is non-zero for infinitely many n. As noted
in the Introduction, this means that the moduli space NX is rationally
hyperbolic for all g ≥ 2. Therefore,

f(k) =
dimR NX−1∑

i=1

dim πk+i(NX) ⊗Z Q

grows faster than any polynomial in k.

Remark 7.2. Let X be a smooth irreducible projective complex curve of
genus g ≥ 2. Whereas the minimal model of (H∗(NX , C), 0) has infinitely
many n ∈ N for which V n �= 0, the minimal model of the algebra (H∗

I (NX ,
C), 0) has a very different behavior. Actually, from Equation (3.5) we find
that the minimal model of (H∗

I (NX , C), 0) is
(∧

(α, β, γ, f1, f2, f3), d
)

, df1 = q1
g , df2 = q2

g , df3 = q3
g ,

where deg(α) = 2, deg(β) = 4, deg(γ) = 6, deg(f1) = 2g − 1, deg(f2) = 2g +
1 and deg(f3) = 2g + 3.
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