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Complex projective 3-fold with non-negative
canonical Euler–Poincare characteristic

Meng Chen and Kang Zuo

Let V be a complex non-singular projective 3-fold of general type
with χ(ωV ) ≥ 0 (resp. > 0). We prove that the m-canonical map
Φ|mKV | is birational onto its image for all m ≥ 14 (resp. ≥ 8).
Known examples show that the lower bound r3 = 14 (resp. = 8)
is optimal.

1. Introduction

We work over the complex number field C.
In this paper, we study multi-canonical systems |mKV | on complex pro-

jective 3-folds V of general type.
On a smooth complex complete curve C of genus g(C) ≥ 2, it is well

known that the 3-canonical map ϕ3 := Φ|3KC | is always an embedding. On
a smooth minimal projective surface S of general type, Bombieri [2] proved
that the m-canonical map is a birational morphism for all m ≥ 5. The
work of Tsuji [31], Hacon–McKernan [13] and Takayama [28] says that there
exists a universal constant r3 such that the r3-canonical map Φr3 is birational
for all smooth projective 3-folds of general type. We note that Tsuji [31]
announced a very large r3. Recently Chen and the first author [5] have given
an explicit r3 (≤77).

Under extra assumptions there have been already the following opti-
mal results about r3 for minimal projective 3-folds X of general type with
Q-factorial terminal singularities:

• ϕ5 := Φ|5KX | is birational if either X is Gorenstein (by Chen, Chen
and Zhang [4]) or pg(X) ≥ 4 (by Chen [8]) or K3

X � 0 (by Todorov
[30]). r3 = 5 is optimal.

• ϕ8 := Φ|8KX | is birational if pg(X) ≥ 2 (by Chen [8]). r3 = 8 is optimal.

• ϕ7 is birational if q(X) > 0 (by Chen and Hacon [6]).
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• ϕ5 is birational if χ(ωX) ≥ 0 and q(X) > 0 (by Chen and Hacon [7]).
r3 = 5 is optimal.

Going on the study of 3-folds with χ(ω) ≥ 0, we prove the following.

Theorem 1.1. Let V be a non-singular projective 3-fold of general type with
χ(ωV ) :=

∑3
i=0(−1)ihi(V, ωV ) ≥ 0, where ωV is the canonical line bundle of

V . Then the m-canonical map ϕm is birational onto its image for all m ≥ 14.

The following example of Iano-Fletcher shows that r3 = 14 in Theorem
1.1 is optimal.

Example 1.2. (See [10, No. 19, p. 151]) The canonical hypersurface
X28 ⊂ P(1, 3, 4, 5, 14) has three terminal quotient singularities, pg(X) = 1,
q(X) = h2(OX) = 0 and χ(ωX) = −χ(OX) = 0. A smooth model V of X28
has the invariant: χ(ωV ) = 0 and V is of general type. It is clear that ϕm is
birational for all m ≥ 14 and that ϕ13 is not birational. So the lower bound
r3 = 14 in Theorem 1.1 is sharp.

Our method has a direct consequence.

Corollary 1.3. Let V be a smooth projective 3-fold of general type with
χ(ωV ) > 0. Then the m-canonical map Φ|mKV | is birational onto its image
for all m ≥ 8.

Example 1.4. (See [10, No. 12, p. 151]) Fletcher has a 3-fold X16 ⊂
P(1, 1, 2, 3, 8) on which the 8-canonical map is birational and the 7-canonical
map is not birational. A smooth model V of X16 has the invariant χ(ω) = 1
and V is of general type. V has r3(V ) = 8. Thus the lower bound r3 = 8 in
Corollary 1.3 is again optimal.

Note that 3-folds of general type with χ(ω) ≥ 0 form an interesting class,
around which there have been already some established works:

• Gorenstein minimal 3-folds of general type have χ(ω) > 0;

• Any 3-fold of general type admitting a generically finite cover over an
Abelian variety has χ(ω) > 0 (see Green–Lazarsfeld [12]);
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• Any 3-fold of general type, admitting a representation ρ : π1(X) → GL
such that the Shafarevich map Shρ is generically finite, has χ(ω) ≥ 0
(see Jost–Zuo [16]);

• Any 3-fold of general type with generically large fundamental group is
conjectured to have χ(ω) > 0 (see Kollár [20, Conjecture 18.12.1]).

It is clear that the key point in studying pluricanonical maps is to com-
pute Pm for m > 1. One may do this on a minimal model according to
Reid [23]. When χ(ω) = −χ(O) ≥ 0, it is clear from Reid’s formula that
P2 > 0. This makes it possible for us to prove effective birationality of ϕm.
But to prove the optimal bound r3 = 14 need more evolved argument, which
is exactly what we have done in this paper. The case χ(ω) < 0 has been
treated with quite a different approach very recently by Chen and the first
author [5].

2. Notations and set up

Since both the birationality of pluricanonical maps and χ(ω) are birationally
invariant, we may study a minimal model. By the 3-dimensional Minimal
Model Program (MMP) (see [19, 22], for instance), we only have to consider
a minimal 3-fold X of general type with Q-factorial terminal singularities.
Denote the Cartier index of X by r := r(X) which is the minimal positive
integer with rKX a Cartier divisor, where KX is a canonical divisor on X.
The symbol ≡ stands for the numerical equivalence of divisors, whereas ∼
denotes the linear equivalence and =Q denotes the Q-linear equivalence.

2.1. Set up for |m0KX |.

Assume Pm0(X) := h0(X, OX(m0KX)) ≥ 2 for some positive integer m0 > 0.
We study the m0-canonical map ϕm0 which is a rational map.

First we fix an effective Weil divisor Km0 ∼ m0KX . Take successive
blow-ups π : X ′ → X (along non-singular centers), which exists by Hiron-
aka’s big theorem, such that

(i) X ′ is smooth;

(ii) the movable part of |m0KX′ | is base point free;

(iii) the support of π∗(Km0) is of simple normal crossings.
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Denote by gm0 the composition ϕm0 ◦ π. So gm0 : X ′ −→ W ′ ⊆ P
Pm0 (X)−1

is a morphism. Let X ′ fm0−→ B
s−→ W ′ be the Stein factorization of gm0 .

We have the following commutative diagram.

X

X ′

W ′

B�

� �

�
�

�
�

��- - - - - - - - - - -�

fm0

sπ

ϕm0

gm0

We recall the definition of π∗(KX). One has r(X)KX′ = π∗(r(X)KX) +
Eπ, where Eπ is a sum of effective exceptional divisors. One defines
π∗(KX) := KX′ − (1/r(X))Eπ. So, whenever we take the round up of
mπ∗(KX), we always have �mπ∗(KX)� ≤ mKX′ for any integer m > 0. We
may write m0π

∗(KX) =Q Mm0 + E′
m0

, where E′
m0

is an effective Q-divisor
and Mm0 is the movable part of |m0KX′ |. On the other hand, one has
m0KX′ =Q π∗(m0KX) + Eπ,m0 = Mm0 + Zm0 , where Zm0 is the fixed part
and Eπ,m0 an effective Q-divisor which is a Q-sum of distinct exceptional
divisors. Clearly Zm0 = E′

m0
+ Eπ,m0 .

If dimϕm0(X) = 2, a general fiber of fm0 is a smooth projective curve
of genus at least 2. We say that X is m0-canonically fibered by curves.

If dimϕm0(X) = 1, a general fiber S of fm0 is a smooth projective surface
of general type. We say that X is m0-canonically fibered by surfaces with
invariants (c2

1(S0), pg(S)), where S0 is the minimal model of S. We may
write Mm0 ≡ am0S, where am0 ≥ Pm0(X) − 1 by considering the degree of
a curve in a projective space.

A generic irreducible element S of |Mm0 | means either a general member
of |Mm0 |, whenever dim ϕm0(X) ≥ 2 or, otherwise, a general fiber of fm0 .

Definition 2.1. Assume that |M ′| is movable on V . By abuse of concepts,
we also define a generic irreducible element S′ of an arbitrary linear system
|M ′| on an arbitrary variety V in a similar way. A generic irreducible element
S′ of |M ′| is defined to be a generic irreducible component in a general
member of |M ′|.

3. A technical theorem

Believing that Theorem 2.2 in [8] is quite effective in treating 3-folds X with
pg(X) ≥ 2, we extend the technique there to build a parallel theorem so as
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to study those X with pg(X) ≤ 1, but with Pm0(X) ≥ 2 for some integer
m0 > 0.

3.1. Assumptions

We need to make the following assumptions to explain our key method. Keep
the same notation as in Section 2.1 above. Let m > 0 be certain integer.

(i) Either m ≥ m0 + 2 and pg(X) > 0 or |mKX′ | separates different irre-
ducible elements S of |Mm0 | (namely, Φ|mKX′ |(S′) �= Φ|mKX′ |(S′′) for
two different irreducible elements S′, S′′ of |Mm0 |) and pg(X) = 0.

(ii) Assume that, on the smooth surface S, there is a movable linear system
|G| and that C, as a generic irreducible element of |G|, is smooth. The
linear system |mKX′ ||S on S (as a sub-linear system of |mKX′ |S |)
separates different generic irreducible elements of |G|. Or sufficiently,
the complete linear system

|KS + �(m − 1)π∗(KX) − S − 1
p
E′

m0
�|S |

separates different generic irreducible elements of |G|.
(iii) There is a rational number β > 0 such that π∗(KX)|S − βC is numer-

ically equivalent to an effective Q-divisor; Set

α :=
(

m − 1 − m0

p
− 1

β

)

ξ

and α0 := �α�.

(iv) Either the inequality α > 1 holds; or C is non-hyperelliptic, m − 1 −
(m0/p) − (1/β) > 0 and C is an even divisor on S.

(v) Either α > 2; or α0 ≥ 2 and C is non-hyperelliptic; or C is non-
hyperelliptic, m − 1 − (m0/p) − (1/β) > 0 and C is an even divisor
on S.

Set ξ := (π∗(KX) · C)X′ which is a positive rational number and define

p :=

{
1 if dim(B) ≥ 2,

am0(see Section 2.1 for the definition) otherwise.

Let f := fm0 : X ′ −→ B be an induced fibration by ϕm0 .
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Theorem 3.1. Let X be a minimal projective 3-fold of general type with
Pm0(X) ≥ 2 for some integer m0 > 0. Keep the same notation as in
Section 2.1 above. Then the inequality

mξ ≥ 2g(C) − 2 + α0

holds under assumptions (iii) and (iv). Furthermore, ϕm of X is birational
onto its image under assumptions (i), (ii), (iii) and (v).

Proof. First we shall show that |mKX′ | can separate different irreducible
elements of |Mm0 |. When pg(X) = 0, |mKX′ | can separate different irre-
ducible elements of |Mm0 | by assumption (i). When pg(X) > 0, we consider
the sub-system

∣
∣
∣
∣KX′ + �(m − 1)π∗(KX) − 1

p
E′

m0
�
∣
∣
∣
∣ ⊂ |mKX′ |.

Let S′ and S′′ be two different generic irreducible elements of |Mm0 |. Clearly
one has

KX′ + �(m − 1)π∗(KX) − 1
p
E′

m0
� ≥ KX′ + �(m − m0 − 1)π∗(KX)� + S ≥ S

by assumption (i). So |KX′ + �(m − 1)π∗(KX) − 1
pE′

m0
�| can separate S′

and S′′ if either dim(B) ≥ 2 (cf. [29, Lemma 2]) or dim(B) = 1 and g(B) = 0
((P2) in [9, Section 2.1]). For the case dim(B) = 1 and g(B) > 0, one has
am0 ≥ Pm0 ≥ 2. Thus p ≥ 2. Since

m − 1 − 2m0

p
≥ 1 +

(

1 − 2
p

)

m0 > 0

and then

(m − 1)π∗(KX) − 2
p
E′

m0
− S′ − S′′ ≡

(

m − 1 − 2m0

p

)

π∗(KX)

is nef and big, the Kawamata–Viehweg vanishing theorem [17, 32] gives a
surjective map:

H0
(

X ′, KX′ + �(m − 1)π∗(KX) − 2
p
E′

m0
�
)

−→ H0
(

S′, KS′ + �(m − 1)π∗(KX) − 2
p
E′

m0
�|S′

)

⊕ H0
(

S′′, KS′′ + �(m − 1)π∗(KX) − 2
p
E′

m0
�|S′′

)

.
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The last two groups are non-zero because pg(X) > 0 (so pg(S′), pg(S′′) >
0) and m − 1 − m0 > 0. Therefore |KX′ + �(m − 1)π∗(KX) − 2

pE′
m0

�| can
separate S′ and S′′ and so can |mKX′ |.

By the birationality principle (P1) and (P2) of [9], it suffices to prove
that |mKX′ ||S on S gives a birational map onto its image. Practically we
may study a smaller linear system than |mKX′ ||S on S. Noting that

(m − 1)π∗(KX) − 1
p
E′

m0
− S ≡

(

m − 1 − m0

p

)

π∗(KX)

is nef and big under the assumptions (iv) or (v), the vanishing theorem gives
a surjective map

H0
(

X ′, KX′ + �(m − 1)π∗(KX) − 1
p
E′

m0
�
)

−→ H0
(

S, KS + �(m − 1)π∗(KX) − S − 1
p
E′

m0
�|S

)

.(3.1)

Note that |KX′ + �(m − 1)π∗(KX) − 1
pE′

m0
�| ⊂ |mKX′ |. It suffices to prove

that

|KS + �(m − 1)π∗(KX) − S − 1
p
E′

m0
�|S |

gives a birational map.
The birationality principle again allows us to study the restriction to

curves by assumption (ii). Now consider a generic irreducible element C ∈
|G|. By assumption (iii), there is an effective Q-divisor H on S such that

1
β

π∗(KX)|S ≡ C + H.

By the vanishing theorem, whenever m − 1 − m0
p − 1

β > 0, we have the
surjective map

H0
(

S, KS + �
(

(m − 1)π∗(KX) − S − 1
p
E′

m0

)

|S − H�
)

−→ H0(C, KC + D),

where

D := �((m − 1)π∗(KX) − S − 1
p
E′

m0
)|S − C − H�|C

is a divisor on C. Noting that
(

(m − 1)π∗(KX) − S − 1
p
E′

m0

)

|S − C − H ≡
(

m − 1 − m0

p
− 1

β

)

π∗(KX)|S
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and that C is nef on S, we have deg(D) ≥ α and thus deg(D) ≥ α0. When-
ever C is non-hyperelliptic, m − 1 − m0

p − 1
β > 0 and C is an even divisor on

S, deg(D) ≥ 2 automatically follows and thus |KC + D| gives a birational
map. Whenever deg(D) ≥ 3, then

|KS + �
(

(m − 1)π∗(KX) − S − 1
p
E′

m0

)

|S − H�||C

gives a birational map. Since
∣
∣
∣
∣KS + �

(

(m − 1)π∗(KX) − S − 1
p
E′

m0

)

|S − H�
∣
∣
∣
∣

⊂
∣
∣
∣
∣KS + �(m − 1)π∗(KX) − S − 1

p
E′

m0
�|S

∣
∣
∣
∣ ,

the latter linear system gives a birational map. So ϕm of X is birational.
Finally we show the inequality for ξ. Whenever we have deg(D) ≥ 2,

|KC + D| is base point free by the curve theory. Denote by |Mm| the movable
part of |mKX′ | and by |Nm| the movable part of |KS + �((m − 1)π∗(KX) −
S − 1

pE′
m0

)|S − H�|. Applying [9, Lemma 2.7] to surjective maps (3.1) and
(3.2), we have

mπ∗(KX)|S ≥ Nm and (Nm · C)S ≥ 2g(C) − 2 + deg(D).

Note that the above inequality holds without conditions (i) and (ii). We are
done. �

Remark 3.2. If we replace Mm0 in Theorem 3.1 by any divisor Nm0 ≤ Mm0

with h0(X ′, Nm0) ≥ 2, Theorem 3.1 is still true accordingly. This is clear
by the proof. The main point is that it suffices to prove that a sub-linear
system of |mKX′ | gives a birational map. To avoid frustrating setting up
and more complicated notations, we omit the proof in details. The idea is,
however, trivially similar.

While applying Theorem 3.1, one has to choose a suitable movable sys-
tem |G| on S. Then quite a technical problem is to find a suitable β as
in Theorem 3.1(iii). The following lemma presents the way for the most
difficult case – the rational pencil case.

Lemma 3.3. Keep the same notation as in Section 2.1 and Theorem 3.1.
Assume B = P

1. Let f : X ′ −→ P
1 be an induced fibration of ϕm0. Denote by
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F := S a general fiber of f . Then one can find a sequence of rational num-
bers {βn} with limn�→+∞ βn = p/(m0 + p) such that π∗(KX)|F − βnσ∗(KF0)
is Q-linearly equivalent to an effective Q-divisor Nn, where σ : F −→ F0 is
the blow down onto the smooth minimal model.

Proof. One has OB(p) ↪→ f∗ω
m0
X′ and therefore f∗ω

t0p
X′/B ↪→ f∗ω

t0p+2t0m0

X′ for
any big integer t0.

For any positive integer k, denote by Mk the movable part of |kKX′ |.
Note that f∗ω

t0p
X′/B is generated by global sections since it is semi-positive

according to Viehweg [33]. So any local section can be extended to a global
one. On the other hand, |t0pσ∗(KF0)| is base point free and is exactly the
movable part of |t0pKF | by Bombieri [2] or Reider [25]. Clearly one has the
following relation:

a0π
∗(KX)|F ≥ Mt0p+2t0m0 |F ≥ b0σ

∗(KF0),

where a0 := t0p + 2t0m0 and b0 := t0p. This means that there is an effective
Q-divisor E′

0 on F such that

a0π
∗(KX)|F =Q b0σ

∗(KF0) + E′
0.

Thus π∗(KX)|F =Q (p/(p + 2m0))σ∗(KF0) + E0 with E0 = 1
a0

E′
0.

We consider the case p ≥ 2.
Assume that we have defined an and bn such that the following is satisfied

with l = n :
alπ

∗(KX)|F ≥ blσ
∗(KF0).

We will define an+1 and bn+1 inductively such that the above inequality is
satisfied with l = n + 1. One may assume from the beginning that anπ∗(KX)
supports on a divisor with normal crossings. Then the Kawamata–Viehweg
vanishing theorem implies the surjective map

H0(KX′ + �anπ∗(KX)� + F ) −→ H0(F, KF + �anπ∗(KX)�|F ).

One has the relation

|KX′ + �anπ∗(KX)� + F ||F = |KF + �anπ∗(KX)�|F |
⊃ |KF + bnσ∗(KF0)|
⊃ |(bn + 1)σ∗(KF0)|.

Denote by M ′
an+1 the movable part of |(an + 1)KX′ + F |. Applying

[9, Lemma 2.7] again, one has M ′
an+1|F ≥ (bn + 1)σ∗(KF0). Re-modifying



168 Meng Chen and Kang Zuo

our original π such that |M ′
an+1| is base point free. In particular, M ′

an+1 is
nef. Since X is of general type |mKX | gives a birational map whenever m is
big enough. Thus we see that M ′

an+1 is big if we fix a very big t0 in advance.
Now the Kawamata–Viehweg vanishing theorem again gives

|KX′ + M ′
an+1 + F ||F = |KF + M ′

an+1|F |
⊃ |KF + (bn + 1)σ∗(KF0)|
⊃ |(bn + 2)σ∗(KF0)|.

We may repeat the above procedure inductively. Denote by M ′
an+t the

movable part of |KX′ + M ′
an+t−1 + F | for t ≥ 2. For the same reason, we

may assume |M ′
an+t| to be base point free. Inductively one has:

M ′
an+t|F ≥ (bn + t)σ∗(KF0).

Applying the vanishing theorem once more, we have

|KX′ + M ′
an+t + F ||F = |KF + M ′

an+t|F |
⊃ |KF + (bn + t)σ∗(KF0)|
⊃ |(bn + t + 1)σ∗(KF0)|.

Take t = p − 1. Noting that

|KX′ + M ′
an+p−1 + F | ⊂ |(an + p + m0)KX′ |

and applying [9, Lemma 2.7] again, one has

an+1π
∗(KX)|F ≥ Man+p+m0 |F ≥ M ′

an+p|F ≥ bn+1σ
∗(KF0).

Here we set an+1 := an + p + m0 and bn+1 = bn + p. Set βn = bn

an
. Clearly

limn�→+∞ βn = p/(m0 + p).
The case p = 1 can be proved similarly, but with a simpler induction.

We omit the details. �
The following Lemma is needed in our proof. Though similar one has

already been established in several papers of the first author, we include it
here for the convenience to readers.

Lemma 3.4. Keep the same notation as in Section 2.1. Let f : X ′ −→ B
be the induced fibration of ϕm0. Denote by F := S a general fiber of f . If
dim(B) = 1 and g(B) > 0, then π∗(KX)|F ∼ σ∗(KF0) where σ : F −→ F0 is
the blow down onto the smooth minimal model.
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Proof. We shall use the idea of Lemma 14 in Kawamata’s paper [18]. By
Shokurov’s theorem in [26](see also [14]), each fiber of π : X ′ −→ X is ratio-
nally chain connected. Therefore, f(π−1(x)) is a point for all x ∈ X. Consid-
ering the image G ⊂ (X × B) of X ′ via the morphism (π × f) ◦ �X′ , where
�X′ is the diagonal map X ′ −→ X ′ × X ′, one knows that G is a projective
variety. Let g1 : G −→ X and g2 : G −→ B be two projections. Since g1 is a
projective morphism and even a bijective map, g1 must be both a finite mor-
phism of degree 1 and a birational morphism. Since X is normal, g1 must
be an isomorphism. So f factors as f1 ◦ π, where f1 := g2 ◦ g−1

1 : X → B
is a well-defined morphisms. In particular, a general fiber F0 of f1 must
be smooth minimal. So it is clear that π∗(KX)|F ∼ σ∗(KF0), where σ is
nothing but π|F . �

4. Proof of the main theorem

We begin to prove Theorem 1.1. Let X be a complex minimal projective
3-fold of general type with Q-factorial terminal singularities and χ(ωX) ≥ 0.

4.1. Reduction to the case pg=1

If pg(X) > 1, then ϕ8 is birational by [8]. If q(X) > 0, then ϕm is birational
for all m ≥ 7 by [6]. Thus we assume, from now on, that pg(X) ≤ 1 and
q(X) = 0. The assumption

0 ≤ χ(ωX) = −χ(OX) = −1 + q(X) − h2(OX) + pg(X)

implies pg(X) ≥ h2(OX) + 1 ≥ 1. Then we clearly have pg(X) = 1,
h2(OX) = 0 and χ(ωX) = 0.

According to [4], we only have to study non-Gorenstein minimal 3-folds
X. In practice, we may assume the Cartier index r(X) > 1.

4.2. Plurigenus

Let X be a minimal 3-fold of general type with terminal singularities. Recall
Reid’s plurigenus formula ([23, p. 413]):

(4.1) Pm(X) =
1
12

m(m − 1)(2m − 1)K3
X − (2m − 1)χ(OX) +

∑

Q

Rm(Q),
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where m > 1 is an integer, the correction term

Rm(Q) :=
r2 − 1
12r

(m − m̄) +
m̄−1∑

j=0

bj(r − bj)
2r

and the sum
∑

Q runs through all baskets of singularities Q of type 1
r (a,−a, 1)

with the positive integer a coprime to r, 0 < a < r, 0 < b < r, ab ≡ 1 (mod r)
and m̄ the smallest residue of m mod r. Reid’s result ([23, Theorem 10.2])
says that the above baskets {Q} of singularities are in fact virtual (!) though
X may have non-quotient terminal singularities. Iano–Fletcher ([15]) actu-
ally shows that the set of baskets {Q} in Reid’s formula is uniquely deter-
mined by X.

Lemma 4.1. For all basket Q, R5(Q) ≥ R4(Q) ≥ R3(Q) ≥ R2(Q). In par-
ticular,

P5(X) > P4(X) > P3(X) > P2(X) ≥ 1

for all 3-fold X with χ(OX) = 0.

Proof. Suppose that Q is of type 1
r (a,−a, 1) = 1

r (1,−1, b) with r > 1, a
coprime to r, ab ≡ 1 (mod r) and 0 < b < r.

When r = 2, one has

R3(Q) =
r2 − 1

6r
=

1
4

= R2(Q).

When r = 3, one has

R3(Q) =
r2 − 1

4r
=

2
3

>
1
3

=
b(r − b)

2r
= R2(Q).

When r > 3, one has m = m̄ for m = 2, 3 and

R3(Q) =
2∑

j=0

bj(r − bj)
2r

≥
1∑

j=0

bj(r − bj)
2r

= R2(Q).

If χ(OX) = 0, then Reid’s formula (4.1) gives

P3(X) =
5
2
K3

X +
∑

Q

R3(Q) >
1
2
K3

X +
∑

Q

R2(Q) = P2(X) > 0.

In particular, P3(X) ≥ 2.
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Similarly one can verify the inequality P5(X) > P4(X) > P3(X). So
P5(X) ≥ 4. �

Now Theorem 1.1 essentially follows from the following theorem by let-
ting m0 = 2, 3.

Theorem 4.2. Let X be a minimal projective 3-fold of general type with
Q-factorial terminal singularities, pg(X) = 1 and Pm0(X) ≥ 2. Then ϕm is
birational onto its image under one of the following conditions:

(1) m ≥ 4m0 + 3 and 2 ≤ m0 ≤ 3;

(2) m ≥ 4m0 + 2 and m0 ≥ 4;

(3) m ≥ 14, χ(OX) = 0 and m0 = 3.

Proof. Set dm0 := dim ϕm0(X). We discuss according to the value of dm0 .
We shall mainly apply Theorem 3.1. Because pg(X) > 0, 3.1(i) is always
satisfied whenever m ≥ m0 + 2.

Case 1. dm0 = 3. Recall that S is a generic irreducible element of |Mm0 |.
We have p = 1. On S we take G := S|S . Clearly |G| is base point free and
is not composed of a pencil. So a generic irreducible element C of |G| is a
smooth curve. Also under the assumption m ≥ m0 + 2 one has

KS + �(m − 1)π∗(KX) − S − E′
m0

�|S
≥ (KX′ |S + �(m − 1)π∗(KX) − S − E′

m0
�|S) + G ≥ G.

Thus 3.1(ii) is also satisfied. Because m0π
∗(KX)|S ≥ C, we may take

β = 1
m0

and so (iii) is satisfied.
Note that C2 ≥ 2 because |G| is not composed of a pencil. So m0π

∗

(KX)|S · C ≥ C2 ≥ 2, which implies ξ ≥ 2
m0

. Now we take m ≥ 3m0 + 2 and
run Theorem 3.1. One has α = (m − 1 − m0/p − 1/β)ξ ≥ 2 + 2/m0 > 2.
This means that ϕm is birational for all m ≥ 3m0 + 2. This is not the best.
In fact, Theorem 3.1 already gives ξ ≥ (2g(C) + 1)/(3m0 + 2). Note that
2g(C) − 2 = (KS + C) · C = (KX′ |S + 2C) · C > 4. One has ξ ≥ 9/(3m0 + 2).
Now take m > 8

3m0 + 13
9 . One has α = (m − 1 − 2m0)ξ > 2. Theorem 3.1

says that ϕm is birational whenever m > 8
3m0 + 13

9 . (One may go on opti-
mizing the estimate. We stop here since we have already proved the
theorem.)

Case 2. dm0 = 2. We have p = 1. On S we take G := S|S . Clearly
|G| is base point free and is composed of a pencil. So a generic irreducible
element C of |G| is a smooth curve. One has G ≡ tC for t ≥ Pm0 − 2 ≥ 1.



172 Meng Chen and Kang Zuo

Also under the assumption m ≥ m0 + 2 one has

KS + �(m − 1)π∗(KX) − S − E′
m0

�|S
≥ (KX′ |S + �(m − 1)π∗(KX) − S − E′

m0
�|S) + G ≥ C.

So |KS + �(m − 1)π∗(KX) − S − E′
m0

�|S | can separate different generic
irreducible elements of |G| provided that |G| is composed of a rational
pencil. When |G| is composed of an irrational pencil, we need the assump-
tion m ≥ 2m0 + 2. In fact, we have S|S ≡ tC with t ≥ 2 and m0π

∗(KX)|S
≡ tC + E′

m0
|S . Take two generic irreducible elements C ′, C ′′ of |G|.

Because

(m −m0 − 1)π∗(KX)|S −C ′ −C ′′ − 2
t
E′

m0
≡

(

m −m0 − 2
t
m0 − 1

)

π∗(KX)|S

is nef and big, the Kawamata–Viehweg vanishing theorem gives a surjective
map

H0
(

S, KS + �(m − m0 − 1)π∗(KX)|S − 2
t
E′

m0
|S�

)

−→ H0(C ′, KC′ + D′) ⊕ H0(C ′′, KC′′ + D′′),

where D′, D′′ are divisors of positive degree. Besides, the last groups are
non-zero. Noting that

KS + �(m − 1)π∗(KX) − S − E′
m0

�|S ≥ KS + �(m − m0 − 1)π∗(KX)|S�

≥ KS + �(m − m0 − 1)π∗(KX)|S − 2
t
E′

m0
|S�,

|KS + �(m − 1)π∗(KX) − S − E′
m0

�|S | separates C ′ and C ′′. So we see that
3.1(ii) is satisfied whenever m ≥ 2m0 + 2.

Because m0π
∗(KX)|S ≥ C, we may take β = 1

m0
and so (iii) is satisfied.

If we take a big m such that α is big enough, then Theorem 3.1 gives

mξ ≥ 2g(C) − 2 +
(

m − 1 − m0

p
− 1

β

)

,

which says ξ ≥ 2/(2m0 + 1). This is only an initial estimate. Take m >
4m0 + 2. Then α = (m − 2m0 − 1)ξ > 2. Theorem 3.1 says that ϕm is
birational and that ξ ≥ 5/(4m0 + 3). Take m = 3m0 + 2. Then α = (m −
2m0 − 1)ξ > 1. Theorem 3.1 gives ξ ≥ 4/(3m0 + 2). Finally take m >
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7
2m0 + 2. Then α = (m − 2m0 − 1)ξ > 2. Theorem 3.1 says that ϕm is
birational whenever m > 7

2m0 + 2.
Case 3. dm0 = 1. We have an induced fibration f : X ′ −→ B. Denote

by F := S a general fiber of f . Note that F is a surface of general type.
Denote by σ : F −→ F0 the blowing down onto the minimal model.

Subcase 3.1. g(B) > 0. By Lemma 3.4, we have π∗(KX)|F ∼ σ∗(KF0).
We need to study the condition (ii) in Theorem 3.1. For all m ≥ m0 + 5
one has

KF + �(m − 1)π∗(KX) − F − 1
p
E′

m0
�|F ≥ KF + �(m − m0 − 1)π∗(KX)|F �

≥ KF + (m − m0 − 1)π∗(KX)|F
≥ (m − m0)π∗(KX)|F ≥ 5σ∗(KF0).

So Φ|KF +�(m−1)π∗(KX)−F− 1
p
E′

m0
�|F | already gives a birational map. The proof

of Theorem 3.1 tells that we may omit the conditions (iii) ∼ (v) in Theorem
3.1. Thus ϕm is birational for all m ≥ m0 + 5.

Subcase 3.2. g(B) = 0. For a general F the natural map

H0(X ′, KX′ − F ) −→ H0(X ′, KX′)

is a strict inclusion simply because F is movable. This means that pg(F ) > 0
since pg(X ′) = pg(X) > 0. For our purpose, we classify F into the following
three types:

(I) (K2
F0

, pg(F ) = (1, 2);

(II) (K2
F0

, pg(F ) = (2, 3);

(III) F does not belong to types (I) and (II).

We first study the type (III) case. By the results of Bombieri [2], Reider
[25], Catanese–Ciliberto [3] and Francia [11], |2σ∗(KF0)| is always base point
free whenever pg(F ) > 0. We set G := 2σ∗(KF0) to run Theorem 3.1. The
inclusion O(1) ↪→ f∗ω

m0
X′ implies the inclusion

f∗ω
2
X′/P1 ↪→ f∗ω

4m0+2
X′ .

Viehweg [33] first showed that f∗ω2
X′/P1 is semi-positive. So it is also gener-

ated by global sections. Thus it is clear that

|M4m0+2||F ⊃ |2σ∗(KF0)|,
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where M4m0+2 is the movable part of |(4m0 + 2)KX′ |.

(#) So 3.1(ii) is satisfied for all m ≥ 4m0 + 2 and for all F with
pg(F ) > 0, G ≤ 2σ∗(KF0) and |G| not an irrational pencil.

In type (III) case, G is an even divisor under our setting and is not composed
of a pencil of curves. On the other hand, the birationality of Φ|3KF | implies
that a general C ∈ |G| is non-hyperelliptic. By Lemma 3.3, we can take
a β �→ 1/(2m0 + 2) such that π∗(KX)|F − βC is numerically equivalent to
an effective Q-divisor. By our definition, one has p ≥ Pm0 − 1 ≥ 1. For all
m ≥ 3m0 + 4, α = (m − 1 − m0/p − 1/β)ξ > 0. In general, whenever m ≥
4m0 + 2, Theorem 3.1 asserts that ϕm is birational.

Next we study the type (II) case. We have (K2
F0

, pg(F )) = (2, 3). By
[1, p. 227], we know that |σ∗(KF0)| is base point free and Φ|KF | is finite of
degree 2. We set G := σ∗(KF0). Then C, as a generic irreducible element of
G, is smooth and of genus 3. We have already showed (statement (#) in type
(III) case) that 3.1(ii) is satisfied for all m ≥ 4m0 + 2 because G ≤ 2σ∗(KF0).
By Lemma 3.3 we can take a β �→ 1/(m0 + 1) such that π∗(KX)|F − βC is
numerically equivalent to an effective Q-divisor. So ξ = π∗(KX)|F · C ≥
βC2 �→ 2/(m0 + 1). Taking the limit one has ξ ≥ 2/(m0 + 1). Similarly
we have p ≥ 1. Take m = 3m0 + 2. Then α = (m − 1 − m0/p − 1/β)ξ ≥
2m0/(m0 + 1) > 1. Theorem 3.1 gives ξ ≥ 6/(3m0 + 2). In order to get the
birationality, we need the assumption m ≥ 4m0 + 2, under which one has

α =
(

m − 1 − m0

p
− 1

β

)

ξ ≥ 12m0

3m0 + 2
> 2.

Thus ϕm is birational whenever m ≥ 4m0 + 2.
Finally we study the type (I) case. We have (K2

F0
, pg(F )) = (1, 2).

By [1] we know that the movable part of |KF | has one simple base point.
Take |G| to be the movable part of |KF |. Then a generic irreducible element
C of |G| is a smooth curve of genus 2. Similarly we need the assumption
m ≥ 4m0 + 2 to secure the condition 3.1(ii) (by virtue of the statement (#)
in the type (III) case because |G| is a rational pencil). By Lemma 3.3 we can
take a β �→ 1/(m0 + 1) such that π∗(KX)|F − βC is numerically equivalent
to an effective Q-divisor. Clearly we have p ≥ 1. If we take a big m such
that α is big enough, Theorem 3.1 gives

mξ ≥ 2g(C) − 2 + (m − 2m0 − 2)ξ
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which implies ξ ≥ 1/(m0 + 1). Take m = 4m0 + 5. Then α ≥ (2m0 + 3)/
(m0 + 1) > 2. Theorem 3.1 gives ξ ≥ 5/(4m0 + 5) and so does the bira-
tionality of ϕm. Take m = 4m0 + 4. Then α ≥ (10m0 + 10)/(4m0 + 5) > 2.
One has the birationality of ϕm and ξ ≥ 5/(4m0 + 4). Take m = 4m0 + 3.
Then α ≥ (10m0 + 5)/(4m0 + 4) > 2 whenever m0 ≥ 2. So ϕ4m0+3 is bira-
tional and ξ ≥ 5/(4m0 + 3). We have already proved Theorem 4.2(1).

Assume m0 ≥ 4 and take m = 4m0 + 2. Then α ≥ 10m0/(4m0 + 3) > 2.
Theorem 3.1 gives the birationality of ϕ4m0+2. We have proved Theorem
4.2(2).

The only left case to verify is m0 = 3 and χ(OX) = 0 for which we have
already the birationality of ϕ4m0+3. We have

(4.2) ξ ≥ 1
3

as shown above.

(∗∗) Furthermore the assumption m0 = 3, χ(OX) = 0 and ξ > 1
3

gives α ≥ 2m0ξ > 2, which means that ϕ4m0+2 = ϕ14 is bira-
tional by Theorem 3.1.

Claim 4.3. When m0 = 3 and χ(OX) = 0, ϕ4m0+2 = ϕ14 is birational.

To prove the claim, we need to study the 5-canonical system |5KX′ |. By
Lemma 4.1, one has P5(X) ≥ 4. Denote d5 := dim ϕ5(X). Keep the same
notation as in Section 2.1 and in Theorem 3.1. Recall that M5 is the movable
part of |5KX′ |. The induced fibration from ϕ5 is denoted by f5 : X ′ −→ W5.
(In fact, we can take further modifications over X ′ (still denote by X ′ the
final modification) such that the final X ′ dominates both ϕ3 and ϕ5.)

If d5 = 3, then dim ϕ5(F ) = 2 and dim ϕ5(C) = 1 for a general curve
C ∈ |G| in a general fiber F . This means that the linear system |M5||C (⊂
|M5|C |) gives a finite map from C onto a curve and so does |M5|C |. The
Riemann–Roch and Clifford theorem on C says that 5π∗(KX) · C ≥ M5 ·
C ≥ 2, i.e., ξ ≥ 2

5 > 1
3 . Statement (**) tells that ϕ14 is birational.

If d5 = 1, then |5KX′ | induces the same fibration f : X ′ −→ W5 = B
simply because 5KX′ ≥ 3KX′ . The typical property here is that 5π∗(KX) ≥
3F for a general fiber F . By Lemma 3.3 (just take m′

0 = 5 and p′ = 3) we
can find a β �→ 3

8 such that π∗(KX)|F − βC is numerically equivalent to
an effective Q-divisor. Going on the argument just before the claim, we
have m0 = 3, p = 1, β = 3

8 and ξ ≥ 1
3 as in (4.2). Take m = 14. Then

α = (m − 1 − m0 − 1
β )ξ > 2. So Theorem 3.1 gives the birationality of ϕ14.
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Finally if d5 = 2, we need to study the image surface W ′
5 of X ′ through

the morphism Φ|M5|. In fact, we have the decomposition

Φ|M5| : X ′ f5−→ W5
s5−→ W ′

5 ⊂ P
P5(X)−1.

There is a very ample divisor H5 on W ′
5 such that M5 = Φ∗

|M5|(H5). Fur-
thermore one has M5|S5 ≡ a5C̃ for a general member S5 ∈ |M5| and an
integer a5 ≥ deg s5 deg(W ′

5) ≥ deg(W ′
5) ≥ P5(X) − 2, C̃ is a general fiber

of f5. If a5 ≥ 3, we may utilize our argument in Case 2 replacing m0 by
m′

0 = 5. Over there we have shown ξ ≥ 4/(3m′
0 + 2) = 4

17 . But we can
take a better β, namely β = 3

5 . We have p = 1. Take m = 12. Then α =
(12 − 1 − 5 − (5/3))ξ > 1. Theorem 3.1 gives ξ ≥ 1

3 . Take m = 14. Then
α = (14 − 1 − 5 − (5/3))ξ ≥ 19

9 > 2. Theorem 3.1 says that ϕ14 is birational.
So we are left to study what happens if a5 = 2. This means that

deg(W ′
5) = 2, P5(X) = 4 and deg(s5) = 1. Recall that a degree 2 irreducible

surface in P
3 must be one of the following type of surfaces (see, for instance,

Reid’s lecture notes [24, Exercise 19, p. 30]):

(a) W ′
5 is the cone F2 by blowing down the unique section with the self-

intersection −2 on the Hirzebruch surface F2 (a ruled surface);

(b) W ′
5 = P

1 × P
1.

We study these two cases separately in the following propositions. �

Proposition 4.4. For case (a), ϕ14 is birational.

Proof. We know that M5 = g∗
5(H

′
5) for a very ample divisor H ′

5 on W ′
5 with

H ′
5
2 = 2 and g5 : X ′ −→ W ′

5 is the birational morphism. Because W ′
5 is

already normal (which is a cone), by taking further modification to X ′, we
can assume that g5 factors through the minimal resolution F2 of W ′

5. So
we have the map g5 : X ′ h5−→ F2

ν−→ W ′
5 where h5 is a fibration and ν is the

minimal resolution. Set H̄5 = ν∗(H ′
5). Then H̄2 = (H ′

5)
2 = 2. Noting that

H̄5 is nef and big on F2, we can write

H̄ ∼ μG0 + nT,

where G0 is the unique section with G2
0 = −2, μ and n are integers and T is

the general fiber of the ruling on Fe. The property of H̄5 being nef and big
implies μ > 0 and n ≥ 2μ ≥ 2. Now let θ2 : F2 −→ P

1 be the ruling, whose
fibers are all smooth rational curves. Set f0 := θ2 ◦ h5 : X ′ −→ P

1, which is
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a fibration with connected fibers. Denote by F̃ a general fiber of f0 and by
σ̃ : F̃ −→ F̃0 the contraction onto the minimal model. Clearly pg(F̃ ) > 0.
We have

M5 ∼ g∗
5(H

′
5) = h∗

5(H̄) ≥ 2F̃ .

Set N5 = 2F̃ . Replace |M5| by the sub-linear system |N5| in Theorem 3.1.
We can also study the birationality of ϕm as in Remarked 3.2.

Note that the fibration f0 : X ′ −→ P
1 is the induced fibration by Φ|2F̃ |.

We can repeat a similar argument to that in Subcase 3.2 above. We can
verify those conditions in Theorem 3.1.

Because 14 KX′ ≥ 2F̃ , 3.1(i) is satisfied. On the other hand, we have
O(2) ↪→ f0∗ω

5
X′ which implies the inclusion

f0∗ω
2
X′/P1 ↪→ f0∗ω

12
X′ .

Similarly Viehweg’s semi-positivity and the base point freeness of |2σ∗(KF̃0
)|

say that |12 KX′‖F̃ can separate different generic irreducible elements of
|2σ∗(KF̃0

)|. So can |14KX′‖F̃ . So 3.1(ii) is satisfied.
Now we take m′

0 = 5 to run Theorem 3.1 with |M5| replaced by |N5|.
One has p = 2.

If F̃ is of type (III), we take G̃ := 2σ̃∗(KF̃0
). Take m = 14. The proof of

Lemma 3.3 says that one can take a β �→ 1
7 such that π∗(KX)|F̃ − 2βσ̃∗(KF̃0

)
is numerically equivalent to an effective Q-divisor. So α = (m − 1 − m′

0/p −
1/β)ξ̃ > 0. Noting that a generic irreducible element of |G̃| is non-
hyperelliptic and even, ϕ14 is birational by Theorem 3.1.

If F̃ is of type (II), we set G̃ := σ̃∗(KF̃0
). Then C̃, as a generic irreducible

element of |G̃|, is smooth and of genus 3. We have already showed above
that 3.1(ii) is satisfied for m = 14. By Lemma 3.3 we can take a β �→ 2

7 such
that π∗(KX)|F̃ − βC̃ is numerically equivalent to an effective Q-divisor. So
ξ̃ = π∗(KX)|F̃ · C̃ ≥ βC̃2 �→ 4

7 . Taking the limit one has ξ̃ ≥ 4
7 . We have

p = 2. Take m = 14. Then α = (m − 1 − (m′
0/p) − (1/β))ξ̃ ≥ 4. Theorem

3.1 says that ϕ14 is birational.
If F̃ is of type (I), we take G̃ to be the movable part of |σ̃∗(KF̃0

)|. Then
C̃, as a generic irreducible element of |G̃|, is smooth and of genus 2. We have
already showed above that 3.1(ii) is satisfied for m = 14. By Lemma 3.3, we
can take β = 2

7 such that π∗(KX)|F̃ − βσ̃∗(KF̃0
) is numerically equivalent to

an effective Q-divisor. So ξ̃ = π∗(KX)|F̃ · C ≥ β = 2
7 . Take m = 12. Then

α = (m − 1 − m′
0/p − 1/β)ξ̃ > 1. Theorem 3.1 gives ξ̃ ≥ 1

3 . Take m = 14.
Then α = (m − 1 − m′

0/p − 1/β)ξ̃ ≥ 7
3 > 2. Theorem 3.1 says that ϕ14 is

birational. �
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Proposition 4.5. For case (b), ϕ14 is birational.

Proof. Recall that we have two fibrations f : X ′ −→ B and f5 : X ′ −→ W ′
5 =

P
1 × P

1. For a general canonical curve C in the a general fiber F of f ,
we can study dim ϕ5(C). If dim ϕ5(C) = 1, then Φ|M5| maps C onto a
curve. Clearly 5π∗(KX) · C ≥ M5 · C ≥ 2. So ξ ≥ 2

5 > 1
3 and ϕ14 is bira-

tional according to the statement (**). From now on, we assume that
dim ϕ5(C) = 0 for a general C. We may take further blowing ups to X ′

so that a general C is simply a generic fiber of f5.
Because the only very ample divisor H ′

5 on W ′
5 with H ′

5
2 = 2 is L1 + L2 =

q∗
1(point) + q∗

2(point) where q1, q2 are projection maps from P
1 × P

1 to P
1.

Set f̃i := qi ◦ f5 : X ′ −→ P
1, i = 1, 2. Then f̃1 and f̃2 are two fibrations onto

P
1. Let F1 and F2 are respectively general fibers of f̃1 and f̃2. Then F1 ∩ F2

is simply a general fiber C of f5. We will prove alternatively that ϕ14 is
birational.

Consider the sub-liner system |KX′ + �8π∗(KX)� + F1 + F2| ⊂ |14KX′ |
which clearly separates different fibers of f̃1. Take a general F1 as a fiber of
f̃1. Because 8π∗(KX) + F2 is nef and big, the Kawamata–Viehweg vanishing
theorem gives a surjective map

H0(KX′ + �8π∗(KX)� + F2 + F1) −→ H0(F1, KF1 + �8π∗(KX)�|F1 + C).

We hope to prove that |KF1 + �8π∗(KX)�|F1 + C| gives a birational map for
a general F1. Note that |C| is a rational pencil on the surface |F1|. Clearly
|KF1 + �8π∗(KX)�|F1 + C| separate different C simply because pg(F1) > 0
and �8π∗(KX)�|F1 ≥ 0. Take a general curve C in the family |F2|F1 |. The
vanishing theorem again gives the surjective map

H0(F1, KF1 + �8π∗(KX)|F1� + C) −→ H0(C, KC + D)

where D := (�8π∗(KX)|F1�)|C is a divisor of

deg(D) ≥ (8π∗(KX)|F1) · C = 8π∗(KX) · C = 8ξ ≥ 8
3

> 2

recalling the inequality (4.2) and that C is also a canonical curve in the
surface F . So Φ|KC+D| is an embedding and the birationality principle says
that ϕ14 is birational. We have completely showed Theorem 4.2. �

Example 4.6. Example 1.2 shows that Theorem 4.2 is optimal for
m0 = 3. It is also optimal for m0 = 2. In fact, Fletcher has an example
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([10, No. 18, p. 151]): the canonical hypersurface X22 ⊂ P(1, 2, 3, 4, 11). It
is clear m0 = 2 and that ϕ11 is birational, but ϕ10 is not birational.

Recently we were informed of a new construction of a 3-fold Y by E.
Stagnaro [27]. Y also has pg = 1, P2 = 2 and ϕ10 is not birational.

By a similar method, we are able to prove Corollary 1.3. To avoid
unnecessary redundancy we omit some details.

4.3. A sketch proof of Corollary 1.3

First one has P2(X) ≥ 4 by a similar application of Reid’s formula (see the
proof of Lemma 4.1). So one may take m0 = 2. Set d2 := dimϕ2(X).

If d2 ≥ 2, it is clear that 3.1(i), (ii) are satisfied for m ≥ 8. Now the
situation d2 = 3 follows directly from the argument in Case 1 of Theorem
4.2. In fact, one get the birationality of ϕ7. In the situation d2 = 2, one
may also follow the argument in Case 2 of Theorem 4.2. The only difference
is that we can take p = 2 here. So it can be verified that ϕ8 is birational.

If d2 = 1, one has an induced fibration f : X ′ −→ B. When g(B) > 0,
the argument in Subcase 3.1 of Theorem 4.2 shows that ϕm is birational for
all m ≥ 7. We assume g(B) = 0 from now on. Let F be a general fiber of f .
If pg(F ) = 0, then q(X) = q(F ) = 0 and the assumption χ(ωX) > 0 implies
pg(X) ≥ 2. So ϕm is birational for all m ≥ 8 by the main theorem in [8].
We are reduced to study the situation pg(F ) > 0. Now we can follow the
argument of Subcase 3.2 in Theorem 4.2. The typical property here is the
inclusion

O(3) ↪→ f∗ω
2
X′ .

We can still choose G ≤ 2σ∗(KF0) on F . We can verify that Theorem 3.1
(i), (ii) are satisfied for all m ≥ 6. Also we can choose much better p (p ≥ 2)
and β, respectively, than those in Subcase 3.2 in Theorem 4.2. We can
verify with less difficulties, case by case (for type (I), (II), (III)) by applying
Theorem 3.1, that ϕm is birational for all m ≥ 8.

In a word, Corollary 1.3 is true.

4.4. Final remarks

Clearly, for the case pg = 0, Theorem 3.1 will generate some new results
which improves a corollary of J. Kollár [21] and the first author on the
birationality of ϕm, where m is certain function in terms of m0. We do
not include our result here because we are not sure whether that would be
optimal.
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