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Stability of Euclidean space under Ricci flow
Oliver C. Schnürer, Felix Schulze and Miles Simon

We study the Ricci flow for initial metrics which are C0 small
perturbations of the Euclidean metric on R

n. In the case that
this metric is asymptotically Euclidean, we show that a Ricci har-
monic map heat flow exists for all times, and converges uniformly
to the Euclidean metric as time approaches infinity. In proving this
stability result, we introduce a monotone integral quantity which
measures the deviation of the evolving metric from the Euclidean
metric. We also investigate the convergence of the diffeomorphisms
relating Ricci harmonic map heat flow to Ricci flow.

1. Introduction

In this paper we investigate the evolution of a family of complete non-
compact Riemannian manifolds (Rn, g(t)) under Ricci flow (RF)

{
∂
∂tg(t) = −2 Ric(t), in R

n × (0,∞),
g(t) → g0, in C0

loc as t ↘ 0,

where g0 is a given initial metric on R
n. We study the long-term behavior as

t → ∞ of solutions to (RF) for initial metrics g0 which are C0-close to the
standard Euclidean metric h, in standard coordinates hij = δij . For analytic
reasons, it is convenient to study the Ricci harmonic map heat flow which
is a variant of the Ricci–DeTurck flow

(1.1)

{
∂
∂tgij(x, t) = −2Rij(x, t) + ∇iVj + ∇jVi in R

n × (0,∞),
gij(t) → (g0)ij in C0

loc (Rn) as t ↘ 0,

where Vi = gik

(
gΓk

rs − hΓk
rs

)
grs, for a flat metric h, Vi = gik

gΓk
rsg

rs. If a
family of metrics (g(t))t∈(0,∞) solves (1.1), we call it a solution to the h-flow
with initial metric g0. Precise definitions are to be found in Section 2. Note
that the h-flow (1.1) and the (RF) equation are equivalent up to diffeomor-
phisms [12] in the case that the initial metric is smooth, and M is compact.
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Definition 1.1. Let g1 and g2 denote two Riemannian metrics on a given
manifold. We say that g1 is δ-fair to g2, if

δ−1g2 ≤ g1 ≤ δg2.

We call g1 ε-close to g2, if g1 is (1 + ε)-fair to g2.

We denote with Mk(Rn, I) the space of families (g(t))t∈I of sections in
the space of Riemannian metrics on R

n which are Ck on R
n × I. Similarly,

we define M∞, Mk
loc and use Mk(Rn) if the metric does not depend on t.

We wish to point out that we use Ck on non-compact sets to denote the
space, where derivatives of order up to k are in L∞. We also use Ck

loc.
Our existence result reads as follows.

Theorem 1.2. For every ε > 0 there exists 0 < ε0(ε, n) ≤ ε, such that the
following is true: if g0 ∈ M0(Rn) is a Riemannian metric on R

n which
is ε0-close to the standard metric h = δ, then there exists a solution g ∈
M∞(

R
n, (0,∞)

)
∩ M0

loc

(
R

n, [0,∞)
)

to (1.1) such that g(t) is ε-close to h
for all t. As t → ∞, the metrics g(t) converge subsequentially in M∞

loc

(
R

n
)

to a complete flat metric.

In this situation, our main theorem addresses convergence to the Euclidean
background metric.

Theorem 1.3. Let g ∈ M∞(
R

n, (0,∞)
)

∩ M0
loc

(
R

n, [0,∞)
)

be a solution
to (1.1). Assume that g(t) is ε̃(n)-close to the standard metric h for all
t ≥ 0, for some ε̃(n) chosen sufficiently small, and that g0 is ε(r)-close to h
on R

n \ Br(0) with ε(r) → 0 as r → ∞. Then

g(t) → h in C∞ as t −→ ∞.

That is,

sup
Rn

|g(t) − h| −→ 0

as t → ∞, and

sup
Rn

∣∣∣h∇k
g(t)

∣∣∣ −→ 0

as t → ∞ for all k ∈ {1, 2, . . .}.
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In this paper we will be concerned with the geometric quantities

(1.2) ϕm := ga1b1hb1a2g
a2b2hb2a3 · · · gambmhbma1

and

(1.3) ψm := ga1b1h
b1a2ga2b2h

b2a3 · · · gambm
hbma1 .

We use the Einstein summation convention, i.e., we sum over repeated upper
and lower indices like aj , bj , 1 ≤ j ≤ m, from 1 to n. If (λi) are the eigen-
values of (gij) with respect to (hij), we get

ϕm =
n∑

i=1

1
λm

i

and ψm =
n∑

i=1

λm
i .

In particular

(1.4) ϕm + ψm − 2n =
n∑

i=1

(
1

λm
i

+ λm
i − 2

)
=

n∑
i=1

1
λm

i

(λm
i − 1)2 ≥ 0

is non-negative and vanishes precisely when λi = 1 for all i ∈ {1, . . . , n}.

Theorem 1.4. Let n ≥ 3 and g ∈ M∞
loc

(
R

n, [0,∞)
)

be a solution to (1.1),
satisfying all the conditions of Theorem 1.3. Then there exist m = m(n) ∈ N

and ε̃(n) > 0, such that the following holds. If 1 ≤ p < n
2 can be chosen such

that initially

(1.5)
∫

Rn

(ϕm + ψm − 2n)p < ∞,

or, equivalently,
‖g(0) − h‖L2p < ∞,

then there exists a smooth family (ϕt)t≥0 of diffeomorphisms of R
n, ϕ0 =

idRn, such that for g̃(t) := ϕ∗
t g(t) the family (g̃(t))t≥0 is a smooth solution

to the RF equation satisfying

g̃(t) → (ϕ∞)∗h in M∞(
R

n
)

as t → ∞

for some smooth diffeomorphism ϕ∞ of R
n which satisfies ϕt → ϕ∞ in

C∞ (Rn, Rn) as t → ∞ and

|ϕ∞(x) − x| → 0 as |x| → ∞.
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Rewriting (1.5) in terms of a decay condition on ε(r) in the closeness
condition for g0 (see Theorem 1.3), yields the following

Corollary 1.5. Let n ≥ 3 and g ∈ M∞
loc

(
R

n, [0,∞)
)

be a solution to (1.1),
satisfying all the conditions of Theorem 1.3. If g0 is ε0-close to h for some
ε0 = ε0(n) > 0 sufficiently small, and in addition there exist constants C > 0
and ζ > 0 such that g0 is Cr−1−ζ-close to h on R

n \ Br(0), then the same
conclusions as in Theorem 1.4 hold.

Note that the solutions constructed in Theorem 1.2 satisfy the conditions
of Theorem 1.3, but are not necessarily ε(r)-close to h at infinity. We point
out that these solutions may depend on the subsequence chosen in the con-
struction in Section 4. Note, however, that it is not clear, whether solutions
to the initial value problem (1.1) are unique, as in general g0 does not have
bounded curvature or a well-defined Riemannian curvature tensor. Even if
g(t) is ε(n)-close to h on R

n for all t > 0, we do not know, whether such
solutions are unique. If we study only solutions as constructed in Section 4,
we can replace the ε(r)-closeness condition imposed on g0 by a considerably
weaker integrability condition.

Theorem 1.6. Fix p ≥ 1, m = m(n) ∈ N sufficiently large, and ε0 = ε0(n)
> 0 sufficiently small. Let g0 ∈ M0

(
R

n
)

be a Riemannian metric which is
ε0-close to the standard metric h. Let g ∈ M∞

loc(R
n, (0,∞)) be a solution to

(1.1) as constructed in Section 4. If for every δ > 0 the integral Im,p
δ (0), as

defined in Theorem 6.1, is finite, then

g(t) → h in M∞ (Rn) as t → ∞.

In the situation of Theorem 1.6, if Im,p
0 (0) is finite, we can show that the

diffeomorphisms ϕt stay bounded and converge in C∞
loc to a limiting diffeo-

morphism ϕ∞.
Outline. In order to prove stability of Euclidean R

n under the h-flow, we
proceed as follows.

If we perturb the metric on R
n, such that the perturbed metric is C0-

close to our original metric and the perturbation is small enough, this is
preserved for all times. The perturbation is measured in terms of the devi-
ation of the eigenvalues (λi) of the perturbed metric with respect to the
Euclidean metric from one. We have

(1 + ε)−1 ≤ λi ≤ 1 + ε for i = 1, . . . , n
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everywhere for all times and 0 < ε = ε(n) provided that initially (1 + ε0)−1

≤ λi ≤ 1 + ε0 for some 0 < ε0 ≤ ε0(n).
We have interior estimates for the gradient of the metric evolving under

DeTurck flow. If we assume that λ1 ≤ . . . ≤ λn, we get the estimate

|λi(x, t) − λi(y, t)| ≤ c√
t

· dEucl.(x, y).

Thus, for large times, the eigenvalues λi are almost spatially constant in
any Euclidean ball. It is, however, possible that these spatial constants vary
in time. In particular, it is not clear up until now whether these constants
converge as time tends to infinity.

Our perturbation of the Euclidean metric is small near infinity, i.e., all
eigenvalues λi approach one near infinity. Note, however, that we do not
impose a decay rate on our initial metric, at which the eigenvalues converge
to one as we approach spatial infinity. Still, we obtain for all positive times
that the eigenvalues converge to one at spatial infinity.

In order to get uniform control on the eigenvalues, we use the quantity
considered in (1.4) for some m ∈ N. It vanishes precisely when λi = 1 for all
i and measures the deviation from λi = 1. The functions ϕm and ψm were
initially considered by Shi in [12]. The key estimate is to show essentially
that

∫
(ϕm + ψm − 2n) is non-increasing in time. Here we integrate over

the manifold at a fixed time. For technical reasons we have to consider a
more complicated quantity. For details we refer to the respective proofs in
Section 6.

This implies convergence of the eigenvalues λi(x, t) to 1 as t → ∞, uni-
formly in x. For if this were not the case, we could pick points (xk, tk)
with tk → ∞ such that at least one λi(xk, tk) differs significantly from 1.
If tk is large enough, we find a big ball, where at least one eigenvalue dif-
fers considerably from 1. This yields an arbitrarily large contribution to∫

(ϕm + ψm − 2n) if tk is big compared to maxi |λi(xk, tk) − 1|, contradict-
ing the monotonicity of

∫
(ϕm + ψm − 2n). Thus λi(x, t) → 1, uniformly in

x as t → ∞, follows.

Remark 1.7. Note that all the above results also hold if we replace R
n by

T
k × R

n−k for n − k ≥ 1, where T
k is a flat k-dimensional torus.

In two space dimensions, Ricci flow is a conformal flow given by the
evolution equation

∂

∂t
g = −Rg,
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where R is the scalar curvature, see [6]. In this situation, we obtain (for
details, see the appendix) the following.

Theorem 1.8. Let g0 = e−u0h, where h = δ is the standard Euclidean met-
ric, and u0 ∈ C0

(
R

2
)

such that

sup
R2\Br(0)

|u| → 0 as r → ∞.

Then there exists a smooth solution (g(t))t∈(0,∞), g(t) = e−u(·,t)h, to RF such
that u(·, t) → u0 in C0

loc as t ↘ 0. Furthermore, as t → ∞, we obtain that
u(·, t) → 0 in C∞ (

R
2
)
.

For two-dimensional RF, Wu [16] studied long-time behavior and conver-
gence of solutions. She studied initial complete metrics g0 = eu0h which have
bounded curvature and satisfy e−u0 |Du0|2 < ∞. In this case, she showed
that a long-time solution to RF exists and that it “converges smoothly in
the sense of modified subsequences” to a smooth limiting metric as t → ∞.
A smooth family of metrics (g(t))t∈[0,∞) on R

n “converges smoothly in the
sense of modified subsequences” to a metric l on R

n as t → ∞ if there exist
diffeomorphisms ϕi : R

n → R
n and a sequence t1 < t2 < . . . with ti → ∞ as

i → ∞, such that (ϕi)∗(g(ti)) → l smoothly on any fixed compact subset of
R

n. In particular, this does not imply uniform convergence on all of R
n.

By imposing strong decay conditions on the curvature tensor at infinity,
stability of flat space under RF was proved by Shi [13]. Stability of compact
flat manifolds under RF was studied by Guenther et al. [4] and by Šešum [15].
In the rotationally symmetric situation stability of flat Euclidean space
was investigated by Oliynyk and Woolgar [10]. Chau and the first author
obtained a stability result for the Kähler potential of stationary rotation-
ally symmetric solitons of positive holomorphic bisectional curvature under
Kähler–Ricci flow [1]. Uniqueness of solutions to RF with bounded curva-
ture on non-compact manifolds is discussed in [2, 8]. Clutterbuck and the
first two authors proved stability of convex rotationally symmetric translat-
ing solutions to mean curvature flow in [3]. Short-time existence results for
C0-metrics were shown in [14] using similar techniques to this paper.

The rest of the paper is organized as follows. We introduce our notation
in Section 2 and recall some evolution equations in Section 3. In Section 4
we show the existence of solutions for all times. We prove interior closeness
and a priori estimates in Section 5. In Section 6 we show that an integral
quantity based on the expression in (1.4) is monotonically decreasing along
the flow. Combining this with the interior gradient estimates, we obtain in
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Section 7 that the eigenvalues of gij(x, t) with respect to the background
metric converge uniformly to one as t → ∞. An iteration scheme allows us
to improve our gradient estimates for large times, see Section 8. In Section
9, we study the diffeomorphisms relating RF equation and (1.1), and show
their convergence for large times. We address the proof of Theorem 1.6 in
Section 10. Stability results for RF in two dimensions are addressed in the
appendix.

2. Notation

Let g = (gij)1≤i,j≤n be a Riemannian metric. By (g(t))t∈(0,∞), we denote a
family of metrics. We denote the inverse of (gij) by

(
gij

)
and use the Einstein

summation convention for repeated upper and lower indices. If g1 and g2 are
two metrics such that (g1)ijξ

iξj ≤ (g2)ijξ
iξj for all

(
ξi

)
∈ R

n, we denote
this by g1 ≤ g2. Unless otherwise stated, geometric quantities like covariant
derivatives ∇i and Christoffel symbols Γk

ij are computed with respect to the
evolving metrics g(t). We use indices h to denote quantities depending on
the metric h, e.g.,

h∇g denotes the covariant derivative of g with respect
to h, i.e., a partial derivative. In short formulae, we also use ∇g instead.
With the exception of the beginning of Section 4, h will always denote the
standard metric on R

n. On R
n, we will always use co-ordinates such that

hij = δij . A ball of radius r, centered at x, is denoted by Br(x). We will
only use Euclidean balls. The norm h| · | is computed with respect to the
flat background metric h. We also denote it by | · |. The letter c denotes
generic constants.

In formulae, where we use λi to denote the eigenvalues of gij with respect
to hij , we will always assume that hij = δij in the co-ordinate system cho-
sen. Several times, we will use that h|gij(x, t) − gij(y, t)| ≤ A implies that
|λi(x, t) − λi(y, t)| ≤ A if we assume that λ1(·, t) ≤ . . . ≤ λn(·, t). Similarly,
h|gij(x, t) − hij | ≤ A implies |λi(x, t) − 1| ≤ A.

3. Evolution equations

In this section, we collect some evolution equations from [12] and state some
direct consequences.

Assume that in appropriate coordinates, we have at a fixed point and at
a fixed time hij = δij , gij = diag(λ1, λ2, . . . , λn), λi > 0.
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The evolution equation for the metric, computed with respect to a flat
background metric, is [12, Lemma 2.1],

∂

∂t
gij = gabh∇a

h∇bgij

+ 1
2gabgpq

(
h∇igpa

h∇jgqb + 2
h∇agjp

h∇qgib − 2
h∇agjp

h∇bgiq

−2
h∇jgpa

h∇bgiq − 2
h∇igpa

h∇bgjq

)
.

Consider ϕm as defined in (1.2). The evolution equation of ϕm for a flat
background metric hij is [12, Lemma 2.2, Equation (70)],

∂

∂t
ϕm = gabh∇a

h∇bϕm

− m
∑
i,j,a

1
λa

[
m∑

k=2

(
1
λi

)k (
1
λj

)m+2−k
] (

h∇agij

)2

−
∑
i,q,k

m

2λm+1
i λqλk

(
h∇kgiq +

h∇qgik − h∇igqk

)2
.

We deduce for g(t) that are ε-close to h that

∂

∂t
ϕm ≤ gijh∇i

h∇jϕm − m(m − 1)(1 + ε)−(m+3)
∑
i,j,k

(
h∇kgij

)2
.

From the evolution equation of the metric, we get for ψm, as introduced in
(1.3), the evolution equation

∂

∂t
ψm = mha1b1gb1a2h

a2b2gb2a3 · · ·hambm
∂

∂t
gbma1

= mha1b1gb1a2h
a2b2gb2a3 · · ·hambm

(
gijh∇i

h∇jgbma1

)
+ c(n)m h−1 ∗ · · · ∗ h−1︸ ︷︷ ︸

m

∗ g ∗ · · · ∗ g︸ ︷︷ ︸
m−1

∗g−1 ∗ g−1 ∗ h∇g ∗ h∇g

= gijh∇i
h∇jψm − m

∑
i,j,a

[
m−2∑
k=0

λk
i λ

m−2−k
j

]
1
λa

(
h∇agij

)2

+ c(n)m h−1 ∗ · · · ∗ h−1︸ ︷︷ ︸
m

∗ g ∗ · · · ∗ g︸ ︷︷ ︸
m−1

∗g−1 ∗ g−1 ∗ h∇g ∗ h∇g,
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where ∗ indicates contractions and linear combinations of contractions. The
factor c(n) indicates that the number of the respective terms depends only
on n. Therefore, we deduce that

∂

∂t
ψm ≤ gijh∇i

h∇jψm

− m(m − 1)(1 + ε)−(m−1)
∑
i,j,k

(
h∇kgij

)2

+ c(n)m(1 + ε)m+1
∑
i,j,k

(
h∇kgij

)2
.

4. Existence

In this section we prove long-time existence of the h-flow for a smooth initial
metric g0 which is ε-close to h = δ. Short-time existence for Ricci–DeTurck
flow on non-compact manifolds was first proved in [12]. Short-time existence
for an arbitrary smooth background metric h with bounded curvature, when
g0 is ε-close to h, was proved in [14], using similar techniques to those of
Shi. We also reprove the short-time existence here for completeness. (Note
that some of the citations in [14] in the proof of the short-time existence
were incorrect.)

Lemma 4.1. Let (g(t))t∈[0,T ) be a smooth ε-close solution to the h-flow with
flat background metric h = δ on a closed ball D ⊂ R

n with 0 < ε ≤ ε(n) and
g(·, t)|∂D = h(·)|∂D. Then

sup
D×[0,T )

∣∣∣h∇m
g
∣∣∣2 ≤ c(n, m, D, T, g(0)).

Proof. We proceed exactly as in the proof of Shi [12, Lemma 3.1]: where he
uses g̃, we use h. The only other minor difference is that the dependence
on g(0) does not explicitly appear in Shi’s paper [12, Lemma 3.1]. This is
because he has g̃ = g(0). �

Lemma 4.2. Let (g(t))t∈[0,T ) be a smooth solution to the h-flow on Bi,
i ∈ N, where h is the standard metric on R

n. Then for all ε > 0 there exists



136 Oliver C. Schnürer, Felix Schulze and Miles Simon

0 < ε0(n, ε) < ε, such that the following holds. If g(0) is ε0-close to h and
g(t) = h on ∂Bi × [0, T ), then g(t) is ε-close to h for all t ∈ [0, T ).

Proof. Consider Φ := ϕm + ψm − 2n as in (1.4). It vanishes on ∂D × [0, T ).
The evolution equations in Section 3 imply that

∂

∂t
Φ ≤ gijh∇i

h∇jΦ(4.1)

as long as g(t) is ε̃-close to h for ε̃ > 0 satisfying

c(n)(1 + ε̃)2m ≤ (m − 1).

Choose ε̃ = ε̃(n) and m = m(n) accordingly.
Fix δ > 0 so that Φ ≤ 2δ implies, see (1.4), that the metric is ε-close to

h, in particular ε̃-close to h. Now fix ε0 = ε0(n) > 0 such that ε0 < ε and so
that Φ ≤ δ for every metric which is ε0-close to h.

Consider the maximal time interval I ⊂ [0, T ) on which Φ ≤ 2δ. We may
assume that I = [0, τ ] with τ < T . This implies that (g(t))t∈[0,τ ] is ε̃-close
to h (even ε-close to h). According to (4.1) and the maximum principle,
maxx∈D Φ(x, t) is non-increasing in t for all t ∈ [0, τ ]. Thus Φ(τ) ≤ Φ(0) ≤ δ.
This contradicts the choice of τ . Therefore I = [0, T ) and (g(t))t∈[0,T ) is
ε-close to h. �

In the remainder of this section, we will denote with ε0(n, ε) > 0 the
constant in Lemma 4.2. Note that although we allow for arbitrary ε > 0, it
follows from the proof that ε0(n, ε) ≤ ε for some small ε = ε(n) > 0.

Theorem 4.3. Let ε > 0 be given, and g0 be smooth and ε0(ε, n)-close to
h = δ on a closed ball D ⊂ R

n. Assume that g0 = h near ∂D. Then there
exists a unique smooth solution (g(t))t∈[0,∞) to the h-flow with g(0) = g0 and
g(t)|∂D = h|∂D. Furthermore, (g(t))t∈[0,∞) is ε-close to h.

Proof. Lemma 4.2 implies that a prospective solution g(t) is ε-close to h
as long as it exists. Therefore, we can apply the a priori bounds of Lemma
4.1 on a bounded time interval. We may then use the same arguments as
in [9, Theorem 7.1, Chapter VII] to show that a smooth solution exists (the
argument used there is based on the Leray–Schauder fixed point argument
of [9, Theorem 6.1, Chapter V]). Note that this argument works for every
finite time interval. �
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Theorem 4.4. Let g ∈ M∞ (BR, [0, T ]) be ε̃-close to h, solving (1.1), where
ε̃ = ε̃(n) > 0 is sufficiently small and h = δ. Then

sup
BR/2×[0,T ]

∣∣∣h∇m
g
∣∣∣2 ≤ c(m, n, g(0)|BR

, T ).

Proof. This follows using the arguments of Shi [12, Lemmas 4.1 and 4.2]. �

Theorem 4.5. Let ε > 0 be given, and g0 be smooth and ε0(n, ε)-close to
the standard Riemannian metric h = δ on R

n. Then there exists a ε-close
solution g ∈ M∞

loc (Rn, [0,∞)) to the h-flow (1.1).

Proof. Let Bi be the balls of radius i and center 0 (with respect to the
Euclidean metric). Set ig0 = ηig0 + (1 − ηi)h, where ηi : R

n → R is smooth,
and satisfies ηi = 0 on Bi − Bi−1, ηi = 1 on Bi−2, 0 ≤ η ≤ 1 and |∇mηi|2 ≤
c(m, n). Note that ig0 is ε0-close to h. Let ig(t) ∈ M∞ (Bi, [0,∞)) be the
solution coming from the local existence theorem (Theorem 4.3) above.
Using the interior estimates of Theorem 4.4 above, we see that the solu-
tions all satisfy

sup
Bj×[0,T ]

∣∣∣∣∣∇m

(
d

dt

)k (
ig

)∣∣∣∣∣
2

≤ c(j, g0|B2j
, m, k, n, T ),

for all i big enough, and so, using a diagonal subsequence argument, we
can find a subsequence which converges to a solution g ∈ M∞

loc (Rn, [0,∞))
where the convergence ig → g is uniform on Bj × [0, T ] for every fixed j ∈ N

and T ∈ (0,∞) and g(0) = g0. �

We do not know, whether the solution obtained in Theorem 4.5 is unique or
depends on the subsequence chosen.

5. Interior estimates

Note that the following lemma does not imply λi(x, t) − 1 → 0 for |x| → ∞
uniformly in t, i.e.,

lim
R→∞

sup
x∈Rn\BR

sup
i∈{1, ..., n}

sup
t∈[0,∞)

|λi(x, t) − 1|

may be non-zero.
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Lemma 5.1. Let g ∈ M∞
loc (Rn, (0,∞)) be a solution to (1.1) with g0 as

in Theorem 1.3. Then the eigenvalues (λi(x, t)) of (gij(x, t)) with respect to
(hij(x)) uniformly tend to 1 in bounded time intervals,

lim
|x|→∞

λi(x, t) = 1.

This lemma is a direct consequence of the following interior closeness
estimate.

Lemma 5.2. Let g ∈ M∞
loc (Rn, (0,∞)) be a solution to (1.1) which is ε̃(n)-

close to the Euclidean background metric h. Assume that g0 is ε-close to h
on some ball BR(x0) for some ε ≤ ε̃(n)/2. Then there is a constant γ(n) > 0
such that g(t) is 2ε-close to h on BR/2(x0) for t ∈ [0, γR2].

Proof. According to the estimates in Section 3, there exists an ε(n) > 0 and
m(n) ∈ N such that

∂

∂t
(ϕm + ψm − 2n) ≤ gabh∇a

h∇b(ϕm + ψm − 2n) −
∑
i, j, k

(
h∇kgij

)2
.

If the background metric h is the standard flat metric on R
n, we define

for λ > 0

gλ
ij(x, t) = gij

(
x

λ
,

t

λ2

)
.

If g is a solution to the h-flow, gλ is also a solution to the h-flow as h is the
standard metric on R

n. Moreover, gλ is ε-close to h, if g is ε-close to h.
By scaling with the factor λ = 1/R and translation we can assume that

R = 1 and x0 = 0. Let η ∈ C∞
c (B1) be such that 0 ≤ η ≤ 1 and η ≡ 1 on

B1/2 and let

ζ := η · (ϕm + ψm − 2n).

We compute

∂

∂t
ζ ≤ gabh∇a

h∇bζ − 2gabh∇aη
h∇b(ϕm + ψm − 2n)

− (ϕm + ψm − 2n)gabh∇a
h∇bη − η

∑
i, j, k

(
h∇kgij

)2

≤ gabh∇a
h∇bζ + c,



Stability of Euclidean space under Ricci flow 139

since

∣∣h∇(ϕm + ψm − 2n)
∣∣2 ≤ c

∑
i, j, k

(
h∇kgij

)2
and |∇η|2/η ≤ C(n, ‖η‖C2).

So by the maximum principle the maximum of ζ grows at most linearly,
which implies the stated estimate. �

By scaling we want to extend a priori derivative estimates for the metric
to balls of any radius. If the background metric h is not necessarily flat, the
third author [14] obtained the following

Theorem 5.3. Let R > 0. Let h be a complete background metric of bounded
curvature. Fix T = T (n, R, h) > 0 sufficiently small. Fix a point x0. Let
g be a solution to the h-flow on

h

BR(x0) × (0, T ) which is ε̃-close to the
background metric h for ε̃ = ε̃(n) > 0 fixed sufficiently small, where

h

BR(x0)
denotes a geodesic ball of radius R with respect to the metric h. Then

∣∣∣h∇i
g(x, t)

∣∣∣ ≤ c(n, i, R)
ti/2

for all (x, t) ∈ h

BR/2(x0) × (0, T ) and all i ∈ N.

Applying Theorem 5.3 to gλ as defined in the proof of Lemma 5.2, we
get directly the following.

Corollary 5.4. Let h denote the standard flat metric on R
n and assume

that ε = ε(n) > 0 and γ = γ(n) > 0 are chosen sufficiently small. If g solves
the h-flow in BR(x0) ×

(
0, γR2

)
for some x0 ∈ R

n, R > 0, and if g is ε-close
to h on BR(x0) ×

(
0, γR2

)
, then we get the a priori estimates

∣∣∣h∇i
g(x, t)

∣∣∣ ≤ c(n, i)
ti/2

for all (x, t) ∈ BR/2(x0) ×
(
0, γR2

)
and all i ∈ N. We set c1 := c(n, 1).

Proof of Theorem 1.2. Let us first assume that g0 ∈ M∞
loc (Rn). Theorem

4.5 implies that an ε-close solution g ∈ M∞
loc (Rn, [0,∞)) to (1.1) exists.

The interior decay estimates of Corollary 5.4 and Arzelà–Ascoli imply that
the metrics g(t) converge subsequentially in M∞

loc to a complete flat metric
as t → ∞.

We approximate g0 ∈ M0 (Rn) by smooth metrics ig0 preserving the
ε0-closeness. Thus we obtain solutions ig ∈ M∞

loc which are ε-close to h.
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In view of the interior a priori estimates we obtain a limiting solution g ∈
M∞

loc (Rn, (0,∞)).
Note that g(t) → g0 in M0

loc as t ↘ 0: fix a point x0 ∈ R
n and use g0(x0)

as a flat background metric on R
n. Thus the metrics ig are again solutions

to the h-flow with h = g0(x0). Hence we can apply the interior closeness
estimates of Lemma 5.2 in order to see that all metrics ig attain their initial
values uniformly in i. This implies that g(t) → g0 as t ↘ 0 locally uniformly.

�

6. Integral estimates

In this section, we are once again concerned with the quantity ϕm + ψm − 2n
as introduced in (1.4).

Theorem 6.1. Fix δ > 0, m = m(n) ∈ N and p ≥ 1. Let g ∈ M∞
loc

(Rn, (0,∞)) be a solution to (1.1) which is ε̃(n, m)-close to the standard
Euclidean metric h for some 1 ≥ ε̃ = ε̃(n, m) > 0 sufficiently small. Let g0
be as in Theorem 1.3. Then the integral

I(t) ≡ Im,p
δ (t) :=

1
p

∫
Rn

(ϕm + ψm − 2n − δ)p
+ dx ≡ 1

p

∫
Rn

Φp
m,δ

is non-increasing in time.

Proof. As g is ε̃-close to h, ϕm + ψm − 2n is uniformly bounded above.
According to Lemma 5.1, we see that ϕm + ψm − 2n → 0 for |x| → ∞ and
t bounded above. Thus the positive part of ϕm + ψm − 2n − δ is contained
in a compact set for every bounded time interval and I(t) is finite there.

Assume that in appropriate co-ordinates, we have at a fixed point hij =
δij , gij = diag(λ1, λ2, . . . , λn), λi > 0.

Recall from Section 3 that we can estimate in the evolution equation of
ϕm + ψm for metrics ε-close to h as follows

∂

∂t
(ϕm + ψm) ≤ gijh∇i

h∇j(ϕm + ψm)

− m(m − 1)(1 + ε)−(m−1)
∑
i, j, k

(
h∇kgij

)2

+ c(n)m(1 + ε)m+1
∑
i, j, k

(
h∇kgij

)2
.
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We now want to show that I(t) is decreasing in time for m and ε chosen
properly. Note that Φp

m,δ is Lipschitz continuous in space and time, and the
support of Φp

m,δ is contained in BR(0) for some R > 0 on bounded time
intervals. This yields that I(t) is Lipschitz continuous in time as well and
thus also absolutely continuous. By Sard’s theorem we know that for almost
every δ > 0 the sets

Uδ ≡ Uδ(t) := {x ∈ R
n | ϕm(x, t) + ψm(x, t) − 2n > δ}

have a smooth boundary for almost every t. For such a δ and 0 ≤ t1 < t2,
we can compute

I(t2) − I(t1) =
∫ t2

t1

1
p

d

dτ

∫
Rn

Φp
m,δ dx dτ

=
∫ t2

t1

∫
Uδ

Φp−1
m,δ

∂

∂τ
(ϕm + ψm) dx dτ,

as Φm,δ is compactly supported as long as t is finite. Since the boundary of
Uδ is smooth we may estimate and integrate by parts

I(t2) − I(t1) ≤
∫ t2

t1

∫
Uδ

Φp−1
m,δ

(
gijh∇i

h∇j(ϕm + ψm)
)

dx dτ

−
∫ t2

t1

∫
Uδ

m(m − 1)(1 + ε)−(m−1)Φp−1
m,δ

∑
i, j, k

(
h∇kgij

)2
dx dτ

+
∫ t2

t1

∫
Uδ

c(n)m(1 + ε)m+1Φp−1
m,δ

∑
i, j, k

(
h∇kgij

)2
dx dτ

=
∫ t2

t1

∫
∂Uδ

Φp−1
m,δ νig

ijh∇jΦm,δ dσ dt

−
∫ t2

t1

∫
Uδ

(p − 1)Φp−2
m,δ gijh∇iΦm,δ

h∇jΦm,δ dx dτ

−
∫ t2

t1

∫
Uδ

Φp−1
m,δ

(
h∇ig

ij
)

h∇jΦm,δ dx dτ

+
∫ t2

t1

∫
Uδ

(−m(m − 1))(1 + ε)−m+1Φp−1
m,δ

∑
i, j, k

(
h∇kgij

)2
dx dτ

+
∫ t2

t1

∫
Uδ

c(n)m(1 + ε)m+1Φp−1
m,δ

∑
i, j, k

(
h∇kgij

)2
dx dτ
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≤ m

∫ t2

t1

∫
Uδ

Φp−1
m,δ

∑
i, j, k

(
h∇kgij

)2

·
(
−(m − 1)(1 + ε)−m+1 + c(n)(1 + ε)m+3) dx dτ,

where we used generic constants c(n), the estimates

h
∣∣∣h∇gij

∣∣∣ ≤ c(1 + ε)2 ·
√∑

i,j,k

(
h∇kgij

)2
,

h
∣∣∣h∇Φm,δ

∣∣∣ ≤ c m (1 + ε)m+1 ·
√∑

i,j,k

(
h∇kgij

)2

and the fact that
h∇Φm,δ is antiparallel to the outer unit normal ν of Uδ along

∂Uδ. Note that the integration by parts involving the exponent p − 2 above
is justified by applying the divergence theorem on sets Uδi

for a sequence
δi ↘ δ, where we can assume by Sard’s theorem that ∂Uδi

is smooth for all
i and that ∂Uδi

→ ∂Uδ. If m and ε are such that

1 + c(n)(1 + ε)2m+2 ≤ m,

we obtain that the right-hand side is non-positive and our theorem follows
for such a δ. Fix ε̃ > 0 accordingly. Since

Iδi
m,p(t) → Iδ

m,p(t)

for δi → δ we obtain the above monotonicity for all δ. �

Corollary 6.2. Let g ∈ M∞
loc (Rn, (0,∞)) be a solution to (1.1) with g0 as

in Theorem 1.3. Let m, p and ε̃ be as in Theorem 6.1. If Im,p
0 (0) is finite,

then Im,p
0 (t) is non-increasing and thus

Im,p(t) :=
1
p

∫
Rn

(ϕm + ψm − 2n)p dx = Im,p
0 (t) ≤ Im,p

0 (0) < ∞.

Proof. Theorem 6.1 implies that

Im,p
δ (t) ≤ Im,p

δ (0) ≤ Im,p
0 (0)

for every δ > 0. For δ ↘ 0, we get

Im,p
δ (t) → Im,p

0 (t)

and our claim follows. �
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7. Convergence of eigenvalues

Lemma 7.1. Let g ∈ M∞
loc (Rn, (0,∞)) be a solution to (1.1) with g0 as in

Theorem 1.3, such that g(t) is ε̃(n)-close to h for all t. Then the eigenvalues
(λi)1≤i≤n of g(t) with respect to the background metric h converge uniformly
to one as t → ∞,

sup
x∈Rn

|λi(x, t) − 1| → 0 as t → ∞.

Proof. Denote the eigenvalues of gij with respect to hij by (λi). It is conve-
nient to assume that λ1 ≤ . . . ≤ λn.

Assume that the lemma were false. Then we could find ζ > 0 and a
sequence (xk, tk)k∈N in R

n × [0,∞) with tk → ∞ so that

(7.1) max
i∈{1,..., n}

|λi(xk, tk) − 1| ≥ 2ζ.

The strategy of the proof is to use Corollary 5.4 with i = 1 to show
that we find a controlled spatial neighborhood of (xk, tk) such that (7.1)
is fulfilled with 2ζ replaced by ζ, i.e., the eigenvalues are not all close to
one there. Therefore, ϕm + ψm − 2n is estimated from below by a positive
constant in that neighborhood. For large values of t, these neighborhoods
can be chosen arbitrarily large. Thus Im,p

δ becomes large, if δ is chosen small
enough. This contradicts Theorem 6.1.

Here we present the details: let BR(xk) denote a Euclidean ball around
xk. According to Corollary 5.4, applied with i = 1, we obtain for x ∈ B̃R(xk)
that the eigenvalues (λi(x, tk)) differ at most by c · R · t

−1/2
k from the eigen-

values (λi(xk, tk)),

sup
i∈{1, ..., n}

|λi(xk, tk) − λi(x, tk)| ≤ c1R√
tk

.

We deduce that in a ball of radius at least R around xk with R := 1
c1

ζ
√

tk,
we have

max
i∈{1, ..., n}

|λi(x, tk) − 1| ≥ ζ.

Note that this implies

max
i∈{1, ..., n}

|λm
i (x, t) − 1| ≥ ζ.
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So at least one eigenvalue differs significantly from one in that ball. As
our solution is ε̃(n)-close to h with 0 < ε̃(n) ≤ 1, we still have

1
2 ≤ (1 + ε̃)−1 ≤ λi, λ−1

i ≤ 1 + ε̃ ≤ 2.

We obtain in BR(xk) × {tk}

ϕm + ψm − 2n =
m∑

i=1

1
λm

i

(λm
i − 1)2 ≥ 1

2m
ζ2.

We define δ := 1
2

1
2m ζ2 and get in BR(xk) × {tk}

ϕm + ψm − 2n ≥ 2δ,

(ϕm + ψm − 2n − δ)+ ≥ δ.

This allows to estimate Im,p
δ (tk) from below as follows:

Im,p
δ (tk) ≥ 1

p

∫
B 1

c1
ζ
√

tk
(xk)

(ϕm + ψm − 2n − δ)p
+

≥ 1
p

· δp · c(n) ·
(

1
c1

ζ
√

tk

)n

.

We deduce that Im,p
δ (tk) → ∞ for tk → ∞. This contradicts Theorem 6.1

which implies that

Im,p
δ (tk) ≤ Im,p

δ (0)

as our initial decay assumption guarantees that for fixed m ∈ N+ as in
Theorem 6.1, p ≥ 1, and δ > 0, the integral Im,p

δ (0) is finite. �

Proof of Theorem 1.3. Lemma 7.1 implies that g(t) → h in C0 as t → ∞.
The convergence of the derivatives

h∇m
g(t) for all m ∈ N is a consequence

of Corollary 5.4. �

If Im,p
0 (0) is finite for some m, p as in Section 6, such a calculation implies

even a decay rate in time of

sup
x∈Rn

|λi(x, t) − 1|.

Lemma 7.2. Let g ∈ M∞
loc (Rn, (0,∞)) be a solution to (1.1) with g0 as in

Theorem 1.3, such that g(t) is ε̃(n)-close to h for all t. Then the eigenvalues



Stability of Euclidean space under Ricci flow 145

(λi)1≤i≤n of g(t) with respect to the flat background metric h converge to 1
as t → ∞:

sup
x∈Rn

sup
i∈{1, ..., n}

|λi(x, t) − 1| ≤ c(n, m, p, c1) · (Im,p
0 (0))1/(2p+n) ·

(
1
t

)n/(2(2p+n))

if Im,p
0 (0) < ∞.

Proof. Fix x0 ∈ R
n, t0 > 0, and i0 ∈ {1, . . . , n}. Define

ζ := 1
2 |λi0(x0, t0) − 1|.

We want to estimate ζ from above. As in the proof of Lemma 7.1, we obtain
that

ζ ≤ max
i∈{1, ..., n}

max
x∈B

ζ
√

t0/c1
(x0)

|λi(x, t0) − 1|,

ϕm + ψm − 2n ≥ 1
2m

ζ2,

Im,p
0 (0) ≥ Im,p

0 (t0)

≥ 1
p

∫
x∈B

ζ
√

t0/c1
(x0)

(ϕm + ψm − 2n)p

≥ 1
p

(
1

2m
ζ2

)p

· c(n) ·
(

1
c1

ζ
√

t0

)n

,

and thus

(2ζ)2p+n ≤ c(n, m, p, c1) · t
−n/2
0 · Im,p

0 (0).

Our claim follows. �

8. Improved C 1-estimates

Based on an iteration of two steps, we can improve our a priori estimates.
So far, we have obtained a priori estimates of the form

|g − h|C0 ≤ c (n, m, p, c1(n), Im,p
0 )

t
n

2(2p+n)
≡ c0

t
n

2(2p+n)
,
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see Lemma 7.2, and

∣∣∣h∇i
g
∣∣∣ ≤ c(i, n)

ti/2 ≡ ci

ti/2(8.1)

for every i ∈ N, see Lemma 5.4. The two steps to improve these are
as follows.

Step 1: Interpolation inequalities of the form ‖Du‖2
L∞ ≤ c · ‖u‖L∞ ·

‖D2u‖L∞ and an iteration argument as in [11, Lemma C.2] can be applied
to a metric g satisfying (8.1) and

|g − h|C0 ≤ a

tα

for some constant a. We obtain for any 0 < β < α the estimate

∣∣∣h∇i
g
∣∣∣ ≤

c((ck)1≤k≤k0(i,α,β), a, α, β)
t(i/2)+β

,

ck as in (8.1). Note that if β gets closer to α, the upper bound depends on
more and more constants ck as in (8.1).

Step 2: Recall that for solutions of the h-flow satisfying∣∣∣h∇g
∣∣∣ ≤ c

tγ
,

arguing as in Lemma 7.2 yields

|g − h|C0 ≤ c

t
γ
(

n
2p+n

) .

Iteration. We start with ∣∣∣h∇g
∣∣∣ ≤ c

tγ0
.

According to Corollary 5.4 (with i = 1), we may take γ0 = 1
2 . So Step 2

yields

|g − h|C0 ≤ C1

tα1

with α1 = n
2(2p+n) . By combining Steps 1 and 2, we get

|g − h|C0 ≤ C2(δ)
tα2
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with α2 =
(1

2 + (1 − δ)α1
)

n
2p+n for any fixed 0 < δ < 1. We also get

|g − h|C0 ≤ Ck(δ)
tαk

with αk+1 =
(1

2 + (1 − δ)αk

)
n

2p+n for all k ∈ N.
It is easy to check that

n

2(2p + n)
= α1 < α2 < . . . <

n

2(2p + δn)
.

As αk is increasing in k, we see that lim αk exists. Passing to the limit in
the defining equation for αk yields

lim
k→∞

αk =
n

2(2p + δn)
.

Now δ > 0 can be chosen arbitrarily small. So we obtain for any 0 < ζ � 1

|g − h|C0 ≤ c(ζ)
tn/(4p)−ζ

.

We can finally apply step 1 once again in order to obtain a derivative bound.
Thus we have proved the following.

Lemma 8.1. Let g be as in Lemma 7.2. Then we obtain for every 0 < ζ � 1
the estimates

|g − h|C0 ≤ c(ζ)
tn/(4p)−ζ

and for every i ∈ N

∣∣∣h∇i
g
∣∣∣ ≤ c(ζ)

ti/2+n/(4p)−ζ
.(8.2)

9. Construction of a solution to Ricci flow

In this section we construct a solution to RF for smooth initial metrics g0
on R

n which are ε-close to the standard metric δ. It is well known that on
a compact manifold, we can recover the RF from a solution to the h-flow
using time-dependent diffeomorphisms [7,14]. We use the a priori estimates
of the previous section and construct diffeomorphisms in our set up which
allow us to construct a solution to the RF (similar to the compact case).
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Lemma 9.1. Let g ∈ M∞
loc (Rn, [0,∞)) be a solution to (1.1) which is

ε̃(n)-close to h (for all t with ε̃ as in Theorem 1.2). Then there exists
a smooth family of diffeomorphisms (ϕ(·, t))t∈[0,∞), ϕt ≡ ϕ(·, t) : R

n → R
n,

with ϕ(x, 0) = x, such that (ϕt)∗(g(t)) solves (RF).

Proof. Let iϕ : Bi × [0,∞) → Bi ⊂ R
n be the solutions to the ordinary dif-

ferential equations

{
∂
∂t(

iϕ)α(x, t) = ηi(ϕ(x, t))V α(ϕ(x, t), t), (x, t) ∈ Bi × [0,∞),
iϕ(x, 0) = x, x ∈ Bi,

where V α(y, t) := gβγ
(
gΓα

βγ − hΓα
βγ

)
(y, t), and ηi : R

n → R is a smooth cut-
off function 0 ≤ η ≤ 1 with η|Bi/2 ≡ 1 and η|Rn−Bi

≡ 0. Notice that iV :=
ηiV is smooth and compactly supported in Bi. Hence the ϕi(·, t) : Bi → Bi

are diffeomorphisms.
Using again Corollary 5.4 we see that for x ∈ Bi/2 and small times

∣∣∣h∇g(x, t)
∣∣∣ ≤ c(n)√

t
.

This implies that

∣∣∣∣ ∂

∂t

(
iϕ

)α(x, t)
∣∣∣∣ =

∣∣∣iV α(iϕ(x, t), t)
∣∣∣ ≤ c(n)√

t
,

(here we have used that g(t) is ε-close to h). In particular, this gives us

∣∣∣(iϕ
)α(x, t) − x

∣∣∣ ≤
∫ t

0

∣∣∣∣ ∂

∂τ

(
iϕ

)α(x, τ)
∣∣∣∣ dτ ≤ c(n)

√
t.

This implies that iϕ(·, t)|Bj
is independent of i for i big enough, j fixed and

t bounded above. In particular we obtain, taking a (diagonal subsequence)
limit, a well-defined solution ϕ : R

n × [0,∞) → R
n to the equation

(9.1)

{
∂
∂t(ϕ)α(x, t) = V α(ϕ(x, t), t), (x, t) ∈ R

n × [0,∞),
ϕ(x, 0) = x, x ∈ R

n,

and thus ϕt = ϕ(t, ·) : R
n → R

n is a diffeomorphism for all t. According to
[12] (ϕt)∗(g(t)) solves the RF equation. �
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In the situation that we have the improved decay estimates of Lemma 8.1 we
show that the diffeomorphisms ϕt converge to a diffeomorphism ϕ∞ : R

n →
R

n as t → ∞ for n ≥ 3 as long as p ≥ 1 is small enough.

Theorem 9.2. Let g ∈ M∞
loc (Rn, [0,∞)) be a solution to (1.1) and m, p

and ε̃(m, n) all be as in Theorem 6.1. Assume that (1.5) holds. For n ≥ 3,
ϕt converges in C∞

loc to a diffeomorphism ϕ∞ : R
n → R

n as t → ∞.

Proof. Step 1. Fix p with n/2 > p ≥ 1 and ζ > 0 such that α := (1/2) + n/(4p)
− ζ > 1. In the following, our constants c may depend on n, p, ζ, m and Im,p

0
as defined in Theorem 6.1.

We wish to show that

|ϕt(x) − x| ≤ c ∀ t ∈ [0,∞).

Corollary 5.4 implies that

∣∣∣∣ d

dt
ϕt(x)

∣∣∣∣ ≤ c

t1/2 .

Hence |ϕt(x) − x| ≤ c for all 0 ≤ t ≤ 1. So we may assume that t > 1. The
evolution equation (9.1) for ϕt and the fact that |∇g| ≤ c

tα imply that

∣∣∣∣ d

dt
ϕt(x)

∣∣∣∣ ≤ c

tα
.

As α > 1, we see that (upon integrating from 1 to t > 1) |ϕ1(x) − ϕt(x)| ≤ c.
By the triangle inequality we get

|ϕt(x) − x| ≤ |ϕt(x) − ϕ1(x)| + |ϕ1(x) − x| ≤ c.

For later use, note that this implies for Ft : R
n → R

n defined by Ft := ϕ−1
t

|Ft(x) − x| ≤ c.

Step 2. Using the estimate
∣∣ d
dtϕt(x)

∣∣ ≤ c
tα from Step 1, we see that

for fixed x ∈ R
n, ϕt(x) → y as t → ∞ for some y ∈ R

n. We define
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ϕ∞(x) = limt→∞ ϕt(x). All the derivatives of ϕt (for t > 1) satisfy

∂

∂t
log

(
1 +

∣∣∣h∇mϕt(x)
∣∣∣2) ≤

c
(
ϕ1|Br(y), n, m, p, ζ, (ck), I

m,p
0

)
tα

∀ x ∈ Br(y)

for some α > 1 and

sup
x∈Br(y)

∣∣∣h∇mϕt(x)
∣∣∣2 ≤ c

(
ϕ1|Br(y), n, m, p, ζ, (ck), I

m,p
0

)
.

This may be seen as follows (for the rest of this argument, we set ∇ := h∇).
Differentiating gives for V as in (1.1)

|∇mV (x, t)| ≤ cm

m+1∑
k=1

∑
i1+···+ik=m+1
1≤i1,...,ik≤m+1

∣∣∇i1g
∣∣ · · ·

∣∣∇ikg
∣∣ ,

(9.2)

|∇m(V (ϕ(x, t), t))| ≤ cm

m∑
i=1

∑
j1+···+ji=m

1≤j1,...,ji≤m

∣∣(∇iV
)
(ϕ(x, t), t)

∣∣ ·
∣∣∇j1ϕ

∣∣ · · ·
∣∣∇jiϕ

∣∣ .

(9.3)

Then

∂

∂t
log

(
1 + |∇mϕt(x)|2

)
=

∂
∂t |∇mϕt(x)|2(

1 + |∇mϕt(x)|2
)

≤ c
|∇mϕt(x)|

∣∣∇m ∂
∂tϕt(x)

∣∣(
1 + |∇mϕt(x)|2

)
= c

|∇mϕt(x)| |∇m(V (ϕt, t))(x)|(
1 + |∇mϕt(x)|2

) .

Substituting (9.2) and (9.3) into the above, using the estimates for
∣∣∇kg

∣∣
and arguing inductively (for m) leads to the estimate.

Hence ϕ∞ : R
n → R

n is C∞ and ϕt → ϕ∞ converges in C∞
loc as t → ∞.

Step 3. We wish to show that ϕ∞ is a diffeomorphism. Let Ft be the
inverse of ϕt. Letting l(t) := ϕ∗

t g(t), we know that l solves RF on R
n. But
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then we get in view of (8.2)

l∣∣∣∣ ∂

∂t
l

∣∣∣∣ (x, t) = 2 · l| Ric(l)|(x, t) = 2 · g| Ric(g)|(ϕt(x), t) ≤ c

t3/2 for t ≥ 1,

which is integrable (from 1 to ∞). This implies that l(t) converges locally
uniformly to a well-defined continuous Riemannian metric l∞ as t → ∞ in
view of [5, Lemma 14.2]. According to [5], there must exist a c = c(y) with
1
ch(x) ≤ l(x, t) ≤ c h(x) for all t ∈ [0,∞) for all x ∈ B1(y), for all y ∈ R

n, as
Theorem 4.4 implies this uniform equivalence for t ∈ [0, 1].

Now using the definition of l we get

1
c
δαβ ≤ lαβ(x, t) =

∂ϕs

∂yα
(x, t)

∂ϕk

∂yβ
(x, t)gsk(ϕt(x), t)

≤ (1 + ε̃)
∂ϕs

∂yα

∂ϕk

∂yβ
(x, t)δsk

= (1 + ε̃) (Dϕ) (Dϕ)T (x, t).

In particular, we see that det (Dϕt)
2 (x) ≥ 1/(c(1 + ε̃)) > 0, where Df is the

Jacobian of f . Taking the limit as t → ∞ we get det (Dϕ∞)2 (y) ≥ 1/(c(1 +
ε̃)) > 0. As det (Dϕ0) = 1, we see that det (Dϕ∞)(y) ≥ 1/

√
(1 + ε̃)c(y) > 0

for all y ∈ R
n. Hence ϕ∞ is an immersion. In view of the derivative estimates

for |∇mϕt|, the function ϕ∞ : R
n → R

n is a smooth diffeomorphism if it is
bijective. Recall that Ft ≡ F (·, t) = (ϕt)

−1 for t < ∞. The estimates for ϕt

above ensure that there exists a function F∞ : R
n → R

n such that Ft → F∞
in C∞

loc as t → ∞.
As ϕt and Ft are smooth diffeomorphisms with estimated derivatives,

ϕt → ϕ∞ and Ft → F∞, we obtain

(F∞ ◦ ϕ∞)(x) = lim
t→∞

(Ft ◦ ϕt) (x) = x for all x ∈ R
n.

Thus ϕ∞ is injective. Similarly, we see that ϕ∞ is surjective. Hence ϕ∞ is a
diffeomorphism. �

Proof of Theorem 1.4. In Lemma 9.1 we have constructed diffeomorphisms
ϕt so that (ϕ∗

t g(t))t∈[0,∞) solves the RF equation if (g(t))t∈[0,∞) solves (1.1).
Define g̃(t) := ϕ∗

t g(t). According to Theorem 1.3, we get g(t) → h. Theorem
9.2 implies that the diffeomorphisms ϕt converge to a diffeomorphism ϕ∞
for t → ∞. Thus g̃(t) → ϕ∗

∞h in C∞ as t → ∞. �
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We can also show that the diffeomorphisms ϕt are close to the identity
near infinity, uniformly in t.

Lemma 9.3. Let g ∈ M∞
loc (Rn, [0,∞)) be a solution to (1.1) as in Theorem

9.2 and (ϕt)t∈[0,∞] be the diffeomorphisms of R
n constructed before. Then

for every η > 0 there exists an R > 0 such that

sup
Rn\BR(0)

|ϕt(x) − x| ≤ η

for all t ∈ [0,∞].

Proof. We first want to show that for any given η′ > 0 there exists an R1 > 0
such that g(t) is η′-close to h = δ on R

n \ BR1(0) for all t.
By Lemma 7.2 we can choose a T > 0 such that g(t) is η′-close to h on all
of R

n for t ≥ T . Now choose R0 > 0 such that g(0) is η′/2-close to h on
R

n \ BR0(0). Applying the interior closeness estimates, Lemma 5.2, we see
that we can find R1 > R0 such that g(t) is η′-close to h on (Rn \ BR1(0)) ×
[0, T ]. Note that this implies

sup
Rn\BR1 (0)

|g(t) − δ| ≤ η′

for all t. By Lemma 8.1 we have that

∣∣h∇g
∣∣ ≤ c

t1/2+n/(4p)−ζ

for t > 0. Now fix t1 > 0 such that

∫ ∞

t1

c

t1/2+n/(4p)−ζ
dt ≤ η

2
.

By interpolation we deduce from Lemma 5.4 that

∣∣h∇g
∣∣ ≤ δ(η′)√

t
on R

n\BR1(0)

for t > 0, and in particular for 0 < t ≤ t1, where δ(η) → 0 as η → 0. Arguing
as in Step 1 of the proof of Theorem 9.2 we obtain the claimed estimate for
some R > R1. �
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10. Convergence based on integral bounds

Proof of Theorem 1.6. In view of Corollary 5.4 and interpolation inequalities
of the form ‖∇v‖C0 ≤ c · ‖v‖C0 · ‖v‖C2 , it suffices to prove that g(t) → h in
C0 as t → ∞.

Assume the conclusions were false. Then we could find δ > 0 and points

(xk, tk, lk) ∈ R
n × (0, ∞) × {1, . . . , n},

k ∈ N, such that tk → ∞ as k → ∞ and

|λlk(xk, tk) − 1| ≥ 4δ.

By the construction of the solution g(t) in Section 4 from solutions ig, we
find sequences (ikj )j∈N with ikj → ∞ as j → ∞, such that for the eigenvalues
(iλl)1≤l≤n of ig, we have

(10.1)
∣∣∣ik

jλlk(xk, tk) − 1
∣∣∣ ≥ 3δ.

Fix R > 0. We want to establish a similar bound on the spatial ball BR(xk) ×
{tk}. This is done as follows. We consider only k ≥ k0 so that the tk is
sufficiently large and hence the right-hand side in the estimate of the first
spatial derivative (i = 1) in Corollary 5.4 is bounded above by δ/R. Then we
choose Rk ≥ R such that γ(2Rk)2 ≥ tk, where γ is as in the corollary. Now
we fix j = j(k) so large that νk ≡ ikj(k) ≥ 2Rk + |xk| + 1. This ensures that
the metric νkg is defined on the cylinder B2Rk

(xk) ×
(
0, γ(2Rk)2

)
. Hence

we can apply Corollary 5.4 for that cylinder and get the gradient estimate∣∣∣h∇νkg(·, tk)
∣∣∣ ≤ δ/R in BR(xk). In view of (10.1), we obtain

(10.2) inf
x∈BR(xk)

sup
1≤l≤n

∣∣νk
λl(x, tk) − 1

∣∣ ≥ 2δ.

Define

iIm,p
δ (t) :=

1
p

∫
Bi(0)

(
iϕm + iψm − 2n − δ

)p

+ dx,

where

iϕm(x, t) :=
n∑

l=1

1
iλm

l (x, t)
and iψm(x, t) :=

n∑
l=1

iλm
l (x, t).
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By construction of the initial metrics ig0, we have for the eigenvalues
(λl(x))1≤l≤n of the metric g0 with respect to h which we label such that
λ1(x) ≤ . . . ≤ λn(x) and similarly for the eigenvalues iλ1(x) ≤ . . . ≤ iλn(x)
of ig0 for |x| ≤ i the inequalities{

λl(x) ≤ iλl(x) ≤ 1 if λl(x) ≤ 1,

1 ≤ iλl(x) ≤ λl(x) if 1 ≤ λl(x),

which implies in particular the estimate
(
iλm

l − 1
)2 ≤ (λm

l − 1)2 for all
i, l, m ∈ N. We deduce that

iϕm + iψm − 2n =
n∑

l=1

1
iλm

l

(
iλm

l − 1
)2

≤
n∑

l=1

λm
l

λm
l

(1 + ε(n))m (λm
l − 1)2

≤ (1 + ε(n))2m
n∑

l=1

1
λm

l

(λm
l − 1)2

= (1 + ε(n))2m(ϕm + ψm − 2n).

Thus

iIm,p
δ (0) =

1
p

∫
Bi(0)

(
iϕm + iψm − 2n − δ

)p

+ dx

∣∣∣∣
t=0

≤ (1 + ε(n))2m 1
p

∫
Bi(0)

(ϕm + ψm − 2n − δ)p
+ dx

∣∣∣∣
t=0

≤ (1 + ε(n))2m 1
p

∫
Rn

(ϕm + ψm − 2n − δ)p
+ dx

∣∣∣∣
t=0

= (1 + ε(n))2mIm,p
δ (0) < ∞

(10.3)

is uniformly bounded in i.
The proof of Theorem 6.1 extends directly to our situation and ensures

that
iIm,p

δ (t) ≤ iIm,p
δ (0) for t ≥ 0.

Here,
(
iϕm + iψm − 2n − δ

)
+ is compactly supported in Bi(0) due to the

boundary values imposed on ig in Theorem 4.3. Therefore, we do not have
to use the local closeness estimates of Lemma 5.2 in order to justify the
integration by parts employed in the proof of Theorem 6.1.
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Using (10.2) and (10.3), we estimate for ε and m such that (1 + ε(n))m ≤
2 as follows:

(1 + ε(n))2mIm,p
δ (0) ≥ νk

Im,p
δ (0)

≥ νk
Im,p
δ (tk)

=
1
p

∫
Bνk

(0)
(νkϕ(x, tk) + νkψ(x, tk) − 2n − δ)p

+ dx

≥ 1
p

∫
x∈BR(xk)

(
n∑

l=1

1
νk λm

l (x, tk)
(νk

λm
l (x, tk) − 1

)2 − δ

)p

+

dx

≥ 1
p

∫
BR(xk)

(
1

(1 + ε(n))m
4δ − δ

)p

≥ 1
p

∫
BR(xk)

δp

=
δp

p
c(n)Rn.

As R ≥ 0 can be chosen arbitrarily large, we arrive at a contradiction. This
finishes the proof of Theorem 1.6. �

Appendix: Conformal Ricci flow in two dimensions

Studying RF on R
2 for conformally flat metrics g(x, t) = eu(x,t)δ is equivalent

[6, 16] to considering the evolution equation

(A.1)
∂

∂t
u = Δgu = e−uΔδu on R

2 × (0,∞).

We are especially interested in initial conditions u0 : R
2 → R fulfilling

(A.2) sup
R2\Br(0)

|u0| → 0 as r → ∞.

We wish to point out that we do not assume in the following that u0 ful-
fills an ε0-closeness condition for a small constant ε0 > 0, corresponding to
sup |u0| being small. It suffices to have sup |u0| bounded. Note also that in
two dimensions, we do not have to study Ricci harmonic map heat flow first
before we can obtain results for RF.
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In this situation, we get the following existence result.

Theorem A.1. Let u0 ∈ C0
(
R

2
)

satisfy ‖u0‖L∞ < ∞. Then there exists
u ∈ C∞(R2 × (0,∞)) solving (A.1) such that u(·, t) → u0 in C0

loc

(
R

2
)

as
t ↘ 0. As t → ∞, u(·, t) converges subsequentially in C∞

loc to a complete flat
metric.

Idea of Proof. Mollifying u0, we get a sequence ui
0 ∈ C∞ (

R
2
)
, i ∈ N, such

that ui
0 → u0 in C0

loc as i → ∞,
∥∥ui

0

∥∥
L∞ ≤ ‖u0‖L∞ , and ‖D2ui

0‖L∞ +
‖Dui

0‖L∞ ≤ ci. According to [16], there exist smooth solutions ui for t ≥ 0
solving (A.1) with ui(·, 0) = ui

0 such that
∣∣ui(x, t)

∣∣ ≤ sup |u0|. The tech-
niques of Krylov–Safonov, Schauder, and scaling imply

∣∣Dkui
∣∣ ≤ ck

tk/2 . Thus
we find a smooth solution u to (A.1). Considering ψ = ui(x, t) − ui(x0), we
can argue as in Lemma 5.2 (using ψ2 instead of ϕm + ψm − 2n) to see that
for any δ > 0 we find i0 = i0(δ, u0) and ζ > 0 such that

∣∣ui(x, t) − ui(x0)
∣∣ ≤ δ

for |x − x0|2 + t ≤ ζ and i ≥ i0. Thus u(·, t) → u0 in C0
loc as t ↘ 0. Note that

in the case of (A.2), this convergence is uniform in space. The remaining
details are similar to the higher dimensional case. �

Theorem A.2. Let u0 be as in Theorem A.1 and assume that (A.2) is
fulfilled. Let u be the solution to (A.1) obtained there. Then u(·, t) → 0 in
C∞ as t → ∞.

Idea of Proof. The proof is similar to the proof of Theorem 1.3. Choose p ≥
sup |u0| + 1. According to the construction of u in the proof of Theorem A.1
and the maximum principle, we have p ≥ supx |u0(x)| + 1 ≥ supx,t

|u(x, t)| + 1. Instead of Theorem 6.1, however, we use the following estimate
(and a similar argument for the negative part of u)

d

dt

∫
R2

1
p(u − δ)p

+ dx =
∫

{u>δ}
(u − δ)p−1e−uΔδu dx

=
∫

{u>δ}
(u − δ)p−2((u − δ) − p + 1)e−u|∇u|2 dx ≤ 0.

�
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