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Hamiltonian 2-forms in Kähler geometry, IV
Weakly Bochner-flat Kähler manifolds

Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon

and Christina W. Tønnesen-Friedman

We study the construction and classification of weakly Bochner-
flat (WBF) metrics (i.e., Kähler metrics with coclosed Bochner
tensor) on compact complex manifolds. A Kähler metric is WBF
if and only if its ‘normalized’ Ricci form is a hamiltonian 2-form:
such 2-forms were introduced and studied in previous papers in the
series. It follows that WBF Kähler metrics are extremal. We con-
struct many new examples of WBF metrics on projective bundles
and obtain a classification of compact WBF Kähler 6-manifolds,
extending work by the first three authors on weakly selfdual Kähler
4-manifolds. The constructions are independent of previous papers
in the series, but the classification relies on the classification of
compact Kähler manifolds with a hamiltonian 2-form [3].
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1. Introduction

A Kähler metric is said to be weakly Bochner-flat (WBF) if the Bochner
tensor (a component of the curvature tensor) is coclosed. By the differ-
ential Bianchi identity, this is equivalent to an overdetermined first-order
linear equation on the Ricci form ρ. Examples include Bochner-flat Kähler
metrics (where the Bochner tensor is zero, see [6] for a classification) — in
particular metrics of constant holomorphic sectional curvature (CHSC) —
and products of Kähler–Einstein metrics (for which ρ is parallel).

The equation satisfied by the Ricci form of a WBF Kähler metric means
that the normalized Ricci form ρ̃ := ρ − Scalg

2(m+1)ω is a hamiltonian 2-form.
Recall that a real (1, 1)-form (i.e., a J-invariant 2-form) φ on a Kähler
manifold (M, J, g, ω), of real dimension 2m > 2 is said to be hamiltonian [2] if

2∇Xφ = d tr φ ∧ (JX)� − (Jd tr φ) ∧ X�

for all X ∈ TM (where X�(Y ) = g(X, Y ) for Y ∈ TM and tr φ = 〈ω, φ〉g).
The momentum polynomial of a hamiltonian 2-form φ is

p(t) := (−1)m pf(φ − tω) = tm − (trφ) tm−1 + · · · + (−1)m pf φ,

where the pfaffian is defined by φ ∧ · · · ∧ φ = (pf φ)ω ∧ · · · ∧ ω. The rea-
son for calling φ hamiltonian is that the functions p(t) on M (for t ∈ R)
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are Poisson-commuting hamiltonians for Killing vector fields K(t) := J gradg

p(t) [2]. The integer � = maxx∈M dim span{K(t)x : t ∈ R} is called the order
of the hamiltonian 2-form (and 0 ≤ � ≤ m). The order of a WBF metric is
defined to be the order of its normalized Ricci form. Note that the Fubini–
Study metric on CPm has order zero, but admits hamiltonian 2-forms of
any order 0 ≤ � ≤ m [2].

It follows that WBF Kähler metrics are extremal in the sense of [7]. We
thus have the following implications between classes of Kähler metrics:

(1.1)
CHSC ⇒ Kähler–Einstein ⇒ CSC

⇓ ⇓ ⇓
Bochner-flat ⇒ WBF ⇒ Extremal.

The observation that a Kähler metric is WBF if and only if the normal-
ized Ricci form is hamiltonian motivated us to indulge in a detailed study of
the local and global theory of hamiltonian 2-forms on Kähler manifolds [2,3],
as well as the application of this to the theory of extremal Kähler metrics [4].
For the final paper in this series, we are now returning to our initial interest
in WBF Kähler metrics.

We do not wish to impose the study of hamiltonian 2-forms on the reader
of this paper, so we therefore propose to make the constructions of WBF
metrics herein essentially self-contained, whereas for the necessity of the
form of these constructions (both as motivation and as the source of the
classification results we obtain) we review in Section 2 the facts we require
from the general theory. These results will allow us to classify WBF metrics
on compact 6-manifolds.

The structure of the paper is as follows. In Section 2 we review the gen-
eral theory of Kähler metrics with hamiltonian 2-forms [2–4] with a special
attention to the case when the hamiltonian form has order � = 1. We present
an explicit construction of such metrics on a class of ‘admissible’ projective
bundles of the form M = P (E0 ⊕ E∞) → S, where E0 and E∞ are projec-
tively flat hermitian vector bundles over a Kähler manifold S endowed with
compatible local product structure. According to [3,4], any Kähler manifold
admitting a hamiltonian 2-form of order 1 is obtained by this construction
up to a covering, and if there is no torsion in H2(S, O∗), we can take the
covering to be trivial.

In Section 3, as a warm-up, we use Kähler–Ricci solitons [11] to study
Kähler–Einstein metrics on admissible bundles M = P (E0 ⊕ E∞) → S
where S is a product of positive Kähler–Einstein manifolds. We show that
a Kähler–Ricci soliton exists (and is unique) if and only if M is a Fano
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manifold. These examples were found by Koiso [11], and the vanishing of
the Futaki invariant is necessary and sufficient for the existence of a Kähler–
Einstein metric, cf. [11].

In the remainder of the paper, we study WBF metrics in general. In
Section 4 we construct many compact WBF manifolds of order 1, includ-
ing all such examples in dimension 6. This leads to a classification of
WBF 6-manifolds M in Section 5: they are either order 0 and general-
ized Kähler–Einstein, or they are order 1, and — apart from one exam-
ple on P (O ⊕ O(1) ⊗ C

2) → CP 1 — are then projective line bundles over
a ruled surface or a positive Kähler–Einstein surface. In each case the
WBF Kähler metric is unique up to scale and pullback by an automorphism
of (M, J).

This is much richer than the classification of WBF 4-manifolds, where
the only example of order 1 is the first Hirzebruch surface P (O ⊕ O(1)) →
CP 1 [1]. It is natural to conjecture that all compact WBF Kähler manifolds
have order 0 or 1, but such a result is out of reach using the explicit methods
of this paper.

2. Hamiltonian 2-forms and WBF Kähler metrics

We begin by recalling the classification of compact Kähler manifolds with a
hamiltonian 2-form from [2–4], focussing on the case that the hamiltonian
2-form has order 1. The output of this classification is a self-contained
Ansatz that we shall use to construct WBF Kähler metrics in Section 4, so
that we only need the results of [2–4] for the classification results we obtain.
We adopt the notations and conventions of [4] and refer to [4, §1 and App.
A] for further information.

2.1. Classification of hamiltonian 2-forms

Let (M, g, J, ω) be a compact connected Kähler 2m-manifold with a hamilto-
nian 2-form φ of order �. Then, according to [3], the vector fields {K(t) : t ∈
R} described in the introduction generate an effective isometric hamiltonian
action of an �-torus T on M . The stable quotient Ŝ of M by the induced
action of the complexified torus T

c is covered by a product of Kähler mani-
folds Sa indexed by the distinct constant roots of p(t), the dimension of Sa

being 2da, where da is the multiplicity of the corresponding root.
It was also shown in [3,4] that there is a subset A of the constant roots

such that M is a projective bundle, over a complex manifold S covered by∏
a∈A Sa, in such a way that Ŝ is a fibre product of flat projective unitary
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bundles over S, indexed by the remaining constant roots. In this paper, we
shall always be in a situation where the following assumption holds for these
bundles.

Assumption 2.1. A flat projective unitary CP r-bundle on S is of the form
P (E), where E is a rank r + 1 projectively flat hermitian holomorphic vector
bundle.

If S is simply connected, then any flat projective unitary CP r-bundle is
trivial, hence of the form P (E) with E ∼= E ⊗ C

r+1 for a holomorphic line
bundle E . In general the obstruction to the existence of E is given by a
torsion element of H2(S, O∗) (cf. [8]). In particular, such an E always exists
if S is a Riemann surface.

It then follows, as in [4, App. A], that by formally adjoining addi-
tional constant roots of multiplicity 0 (corresponding to CP 0 bundles over S)
that we can write Ŝ = P (E0) ×S P (E1) ×S · · · ×S P (E�) → S, where Ej →
S are projectively flat hermitian bundles of ranks dj + 1 (dj ≥ 0), which
can be chosen so that M = P (E0 ⊕ E1 · · · ⊕ E�) → S. Thus the distinct
constant roots are labelled by Â := A ∪ {0, 1, . . . �}, and Sa

∼= CP da for a ∈
{0, 1, . . . �}. We remark that M has a blow-up of the form M̂ = P (L0 ⊕
L1 · · · ⊕ L�) → Ŝ for line bundles Lj . If dj = 0 for all j ∈ {0, 1, . . . �} then
M̂ = M and Ŝ = S. Otherwise we say a blow-down occurs.

The extreme cases � = 0 and � = m are quite straightforward.

• If � = 0, M = Ŝ = S is a local Kähler product and the hamiltonian
2-form φ is a constant linear combination of the corresponding Kähler
forms.

• If � = m, (M, J) is biholomorphic to CPm (and Ŝ = S is a point).

For the intermediate cases, there is also an explicit description, but
we shall only need it in the case � = 1 to which we now turn. Here it is
convenient to index the constant roots by Â = A ∪ {0,∞} so that A can be
taken as a finite subset of Z

+.

2.2. Admissible bundles and metrics

Definition 2.1. A projective bundle of the form M = P
(
E0 ⊕ E∞

) p→ S
will be called admissible or an admissible manifold if:

• S is a covered by a product S̃ =
∏

a∈A Sa (for A ⊂ Z
+) of simply-

connected Kähler manifolds (Sa,±ga,±ωa) of real dimensions 2da;
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• E0 and E∞ are holomorphic projectively flat hermitian vector bundles
over S of ranks d0 + 1 and d∞ + 1 with c1(E∞) − c1(E0) = [ωS/2π]
and ωS =

∑
a∈A ωa, where c̄1(E) = c1(E)/rankE.

In the first condition, it is convenient to let (ga, ωa) be positive or negative
definite: otherwise we would have to admit signs in the definition of ωS . The
second condition means that we can fix hermitian metrics on E0 and E∞
whose Chern connections have trace-like curvatures Ω0 ⊗ IdE0 and Ω∞ ⊗
IdE∞ satisfying Ω∞ − Ω0 = ωS . We normalize the induced fibrewise Fubini–
Study metrics (g0, ω0) and (−g∞,−ω∞) on P (E0) and P (E∞) to have scalar
curvatures 2d0(d0 + 1) and 2d∞(d∞ + 1).

We also have M̂ = P (O ⊕ L̂) → Ŝ with c1(L̂) = [ωŜ/2π] and
ωŜ =

∑
a∈Â ωa.

Remark 2.1. The existence of the line bundle L̂ → Ŝ with c1(L̂) = [ωŜ/2π]
implies that ωŜ is integral in the sense that [ωŜ/2π] is in the image of
H2(Ŝ, Z) in H2(Ŝ, R). When Ŝ is a global Kähler product (so we have
M = P (O ⊗ C

d0+1 ⊕ L ⊗ C
d∞+1) → S =

∏
a∈A Sa), this integrality condi-

tion means that each ωa is integral, i.e., the compact manifolds (Sa,±ga,
±ωa) are Hodge. We write ωa = qaαa for an integer qa �= 0, where αa is a
primitive integral Kähler form on Sa, so that qa is a nonzero integer with
the same sign as (ga, ωa), and q0 = 1 and q∞ = −1.

If ±ga is Kähler–Einstein, then ρa = paαa where pa is an integer (called
the Fano index for positive Kähler–Einstein metrics). We set sa = pa/qa

and then Scala = ±2dasa, where the sign is that of qa, so the scalar cur-
vature of ±ga has the same sign as pa. For instance, if Sa is CP 1 and ga

is negative definite (i.e., qa is negative), then Scala is positive (and pa is
positive), but sa is negative. By the well-known Kobayashi–Ochiai inequal-
ity [10] pa ≤ da + 1, where equality holds iff Sa = CP da . Comparing the
Chern classes c1(La) = [qaαa/2π] and c1(K−1) = [paαa/2π], we have that
Lpa

a is K−qa tensored by a flat line bundle. If pa is not zero (i.e., Sa is not
Ricci-flat), this gives La

∼= K−qa/pa ⊗ La,0 for some flat line bundle La,0. For
instance if Sa = CP da , then pa = da + 1 and La

∼= O(qa).

We now describe the Kähler metrics which admit a hamiltonian 2-form
φ of order � = 1. In this case the hamiltonian torus action is just an S1

action generated by a single hamiltonian Killing vector field K = J gradg z,
and without loss, we can take the image of its momentum map z to be
[−1, 1]. We denote the constant roots by −1/xa and we have that 0 <
|xa| ≤ 1 with equality iff a ∈ {0,∞}; we can take x0 = 1 and x∞ = −1.
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Then M0 := z−1((−1, 1)) is a principal C
×-bundle over Ŝ with connection

1-form θ (θ(K) = 1) and there are Kähler metrics (±ga,±ωa), which are
Fubini–Study metrics for a ∈ {0,∞}, with the signs chosen so that ωa/xa

is positive for all a, together with a smooth function Θ on [−1, 1] such that
the Kähler structure on M0 is

g =
∑

a∈Â

1 + xaz

xa
ga +

dz2

Θ(z)
+ Θ(z)θ2,

ω =
∑

a∈Â

1 + xaz

xa
ωa + dz ∧ θ, where dθ =

∑

a∈Â
ωa,

(2.1)

and Θ satisfies

Θ > 0 on (−1, 1),(2.2)
Θ(±1) = 0, Θ′(±1) = ∓2.(2.3)

It follows from [3, 4] that if M admits a hamiltonian 2-form of order 1 and
either Assumption 2.1 holds or no blow-downs occur, then M = P (E0 ⊕
E∞) → S is an admissible bundle, and the above conditions are necessary
and sufficient for the compactification of a metric of the form (2.1) on M ,
where z : M → [−1, 1] with P (E0 ⊕ 0) = z−1(1) and P (0 ⊕ E∞) = z−1(−1),
θ is a connection 1-form (see [4] for more details), the S1 action generated
by K is given by scalar multiplication in E∞ (or equivalently in E0), and
the local product structure in (2.1) coincides with the given local product
structure on Ŝ = P (E0) ×S P (E∞) → S.

We refer to a compatible metric of the form (2.1) on an admissible bundle
as an admissible metric. It is straightforward (and standard) to see that the
conditions (2.2) and (2.3) are sufficient for the compactification of metrics
of the form, so that we can regard the above as an Ansatz for construct-
ing Kähler metrics on admissible bundles, independently of the theory of
hamiltonian 2-forms.

2.3. WBF Kähler metrics of order 0 and 1

According to the theory of hamiltonian 2-forms, a WBF Kähler manifold
M of order 0 is a local Kähler product and the normalized Ricci form is a
constant linear combination of the corresponding Kähler forms. It follows
that M is generalized Kähler–Einstein (i.e., its universal cover is a product
of Kähler–Einstein manifolds).
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In the order 1 case, we have the following characterization of WBF
Kähler metrics of the form (2.1).

Proposition 2.1. Let (g, J, ω) be a Kähler metric with a hamiltonian
2-form φ of order 1 as in (2.1), and write F (t) = Θ(t)pc(t) with pc(t) =

∏
a∈Â

(1 + xat)da. Then g is WBF, with ρ̃ a constant linear combination of φ and
ω, iff

• F ′(t) = Q(t)pc(t) and Q is a polynomial of degree ≤ 2;

• for all a, ±ga is Kähler–Einstein with scalar curvature ±daQ(−1/xa).

g is then Kähler–Einstein iff Q has degree ≤ 1.

(Here we use the conventions of [4], so that, compared with [2], we have
ηa = −1/xa and have rescaled F (z) and pc(z) by

∏
a∈Â xa.)

For the necessity of these conditions when (g, J, ω) is WBF, we refer
to [2], but their sufficiency is a straightforward verification. Together with
the discussion of the previous paragraph, we therefore have an Ansatz for
constructing admissible WBF Kähler metrics on admissible projective
bundles.

3. Kähler–Einstein metrics and Kähler–Ricci solitons

Recall that a Kähler–Ricci soliton on a compact complex manifold (M, J)
is a compatible Kähler metric (g, ω) satisfying

(3.1) ρ − λω = LV ω,

where V is a real holomorphic vector field with zeros and λ is a real constant
(necessarily equal to

∫
M Scalg ωm/

∫
M ωm). It follows from (3.1) that the

Futaki invariant F[ω](V ) vanishes iff the metric is Kähler–Einstein: if V =
J gradg f + gradg h, LV ω = ddch and the imaginary part of F[ω](V ) reduces,
after integrating by parts, to a nonzero multiple of the L2-norm of gradg h;
if this is zero, V is a hamiltonian Killing vector field, so LV ω = 0. Note that
if V is nonzero then by the Bochner formula λ > 0, and so c1(M) is positive,
i.e., (M, J) is a Fano manifold.

The theory of Kähler–Ricci solitons on Fano manifolds has recently
received attention as a natural generalization of Kähler–Einstein metrics.
In particular, a number of uniqueness results for such metrics have been
established [18, 19], as well as existence results in the case of toric Fano
manifolds [20] and certain geometrically ruled complex manifolds [11].
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We now adapt arguments from [11] to construct (admissible) Kähler–
Ricci solitons on admissible projective bundles M = P (O ⊗ C

d0+1 ⊕
L ⊗ C

d∞+1) → S, by taking V = (c/2) gradg z for a real constant c. Since
LV ω = (c/2)ddcz and

(3.2)

ρ =
∑

a∈Â

ρa − 1
2
ddc log F =

∑

a∈Â

ρa − 1
2

F ′(z)
pc(z)

∑

a∈Â

ωa − 1
2

(F ′

pc

)′
(z)dz ∧ θ,

where F and pc are as defined in Proposition 2.1 (see [2]), (3.1) is equiva-
lent to

∑

a∈Â

ρa =
∑

a∈Â

1
2

(
F ′(z)
pc(z)

+ c
F (z)
pc(z)

+ 2λ

(

z +
1
xa

))

ωa(3.3)

(F ′

pc

)′
(z) + c

(F

pc

)′
(z) + 2λ = 0.(3.4)

Now (3.3) implies that for all a, (±ga,±ωa) is Kähler–Einstein and

(3.5)
F ′(z)
pc(z)

+ c
F (z)
pc(z)

= 2sa − 2λ

(

z +
1
xa

)

.

Conversely this implies (3.3)–(3.4), the latter being just the derivative
of (3.5).

As in [4, §2.4], since Θ(z) = F (z)/pc(z), an application of l’Hôpital’s rule
shows that (2.3) is equivalent to

(3.6) F (±1) = 0, Ψ(−1) = 2(d0 + 1), Ψ(1) = −2(d∞ + 1),

where F ′(z) = Ψ(z)pc(z). Hence evaluating (3.5) at z = ±1, we have

2λ = d0 + d∞ + 2(3.7)
2saxa = (d∞ + 1)(1 − xa) + (d0 + 1)(1 + xa),(3.8)

both expressions being manifestly positive (so the base manifolds Sa have
positive scalar curvature). These equations allow us to rewrite (3.5) as a
single equation

(3.9)
F ′(z)
pc(z)

+ c
F (z)
pc(z)

= (d0 + 1)(1 − z) − (d∞ + 1)(1 + z)
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and (3.8) and (3.9) imply (3.5). Using (3.9), the boundary conditions (3.6)
reduce to

(3.10) F (±1) = 0.

Hence we must solve (3.8)–(3.10) subject to 0 < |xa| < 1 and F (z) > 0 for
z ∈ (−1, 1). Clearly (3.8) gives xa = (d0 + d∞ + 2)/(2sa + d∞ − d0) and so
we must have

sa > d0 + 1 if ωa > 0,(3.11)
sa < −(d∞ + 1) if ωa < 0.(3.12)

Restricting the formula (3.2) for ρ to the zero and infinity sections e0 and
e∞, we see that these are actually necessary conditions for c1(M) = [ρ/2π]
to be positive.

We now observe that

(3.13) F (z) = e−cz

∫ z

−1
ect

(
(d0 + 1)(1 − t) − (d∞ + 1)(1 + t)

)
pc(t)dt

solves (3.9) and (3.10) iff G(c) = 0, where

G(k) =
∫ 1

−1
ekt((d0 + 1)(1 − t) − (d∞ + 1)(1 + t))pc(t)dt

= ekt0

∫ 1

−1
ek(t−t0)(t − t0)g(t)dt

for some t0 ∈ (−1, 1) and g(t) with g < 0 on (−1, 1). Clearly e−kt0G(k) is
a strictly decreasing function of k tending to ∓∞ as k → ±∞, so it has a
unique zero c (consistent with the uniqueness of Ricci solitons). Since F ′ has
exactly one zero (namely t0) in (−1, 1), F (±1) = 0 and F is positive near
the endpoints, it is positive on (−1, 1). We deduce the following equivalence,
essentially due to Koiso [11].

Theorem 3.1. Let S =
∏

a∈A Sa be a finite product (A ⊂ Z
+) of compact

Kähler–Einstein manifolds (Sa,±ga,±ωa) with scalar curvatures Scala =
±2dasa and let M = P (O ⊗ C

d0+1 ⊕ L ⊗ C
d∞+1) → S, where L =

⊗
a∈A La

and La are line bundles over Sa with c1(La) = [ωa/2π]. Then the following
conditions are equivalent :

• the conditions (3.11) and (3.12) are satisfied ;
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• (M, J) is a Fano manifold ;

• there exists a Kähler–Ricci soliton on (M, J).

In this case, the Kähler–Ricci soliton (g, ω) is admissible with λ = (d0 +
d∞ + 1)/2 and V = (c/2)gradgz for a suitable real constant c.

Our arguments and the fact that any Fano manifold is simply connected
show that Theorem 3.1 gives all compact Kähler–Ricci solitons compatible
with a hamiltonian 2-form of order 1 as above. We also have the following
standard corollary.

Corollary 3.1. [11] Let M2m = P (O ⊗ C
d0+1 ⊕ L ⊗ C

d∞+1) → S, as in
the above theorem. Then there is a Kähler–Einstein metric on M if and
only if the conditions (3.11) and (3.12) are satisfied and the Futaki invari-
ant F[ρ](K) vanishes.

The Futaki invariant F[ρ](K) is a nonzero multiple of the coefficient of
zm+2 in the extremal polynomial F[ρ](z) as defined in [4] (which is the leading
coefficient if it is nonzero). Hence its vanishing is equivalent to F[ρ] having
degree at most m + 1. Unfortunately, verifying this condition is not easy (it
leads to a nontrivial diophantine problem); we will rediscover some Kähler–
Einstein examples of [12,13] in the next section as a byproduct of our study
of WBF metrics.

4. Constructions of WBF Kähler metrics

We turn now to the construction of admissible WBF Kähler metrics on
admissible projective bundles. By Proposition 2.1, an admissible metric g
with F (z) = Θ(z)pc(z), pc(z) =

∏
a(1 + xaz)da (0 ≤ a ≤ ∞, da ≥ 0) is WBF,

with ρ̃ a linear combination of the hamiltonian 2-form φ and the Kähler form
ω, precisely when the metrics ga are Kähler–Einstein and

(4.1) F ′(z) = pc(z)Q(z)

for a polynomial Q of degree ≤ 2 with

(4.2) Q(−1/xa) = 2sa (a ∈ Â).

In this case F is the extremal polynomial of the corresponding admissible
Kähler class [4] and the WBF Kähler metric is Kähler–Einstein iff Q has
degree ≤ 1.
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Since g is, in particular, extremal, we know from [4] (and it is straight-
forward to check) that the positivity (2.2) and endpoint conditions (2.3)
may be replaced with

F > 0 on (−1, 1)(4.3)
F (±1) = 0, F ′(±1) = ∓2pc(±1).(4.4)

Using equations (4.1) and (4.2), equation (4.4) implies that Q(−1) =
2(d0 + 1) and Q(1) = −2(d∞ + 1). We remark that since Q(z) therefore
changes sign only once on (−1, 1), so does F ′(z) (since pc(z) is positive).
Hence F (z) (and F (z)/pc(z)) will be positive on (−1, 1) as soon as (4.4) is
satisfied.

The general quadratic Q satisfying Q(−1) = 2(d0 + 1) and Q(1) = −2
(d∞ + 1) is

(4.5) Q(z) = B(1 − z2) + (d0 + 1)(1 − z) − (d∞ + 1)(1 + z)

(and the Kähler–Einstein case is when B = 0). Equation (4.2) gives

2sax
2
a = B(x2

a − 1) + (d0 + 1)(1 + xa)xa + (d∞ + 1)(1 − xa)xa.

We write B = Ba for the solutions of these equations (a ∈ A), so that

(4.6) Ba :=
xa

(
(d0 + 1)(1 + xa) + (d∞ + 1)(1 − xa) − 2saxa

)

(1 − x2
a)

.

On the other hand, given the above, then (4.4) is satisfied iff we set
F (z) =

∫ z
−1 pc(t)

(
B(1 − t2) + (d0 + 1)(1 − t) − (d∞ + 1)(1 + t)

)
dt and

(4.7)
∫ 1

−1
pc(t)

(
B(1 − t2) + (d0 + 1)(1 − t) − (d∞ + 1)(1 + t)

)
dt = 0.

Since pc(t)(1 − t2) is positive on (−1, 1), this determines B uniquely, once all
other quantities are known. Hence, in order to complete the construction,
we must show that B = Ba solves (4.7) for all a ∈ A. Multiplying by 1 − x2

a,
this means that ha = 0 for all such a, where

ha =
∫ 1

−1
pc(t)

(
(1 − x2

a)
(
(d0 + 1)(1 − t) − (d∞ + 1)(1 + t)

)

+ xa

(
(d0 + 1)(1 + xa) + (d∞ + 1)(1 − xa) − 2saxa

)
(1 − t2)

)
dt.(4.8)
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Our strategy for solving this problem is to use the equations {ha = 0 :
a ∈ A} to determine {xa : a ∈ A} as functions of {sa : a ∈ A}. For given
sa = pa/qa, we obtain a WBF Kähler metric on the corresponding projec-
tive bundle iff we can find solutions xa with 0 < |xa| < 1. We note that
ha =

∫ 1
−1 pc(t)ka(t)dt, where

ka(t) =
(
(d0 + 1)(1 + xa)(1 − t)

− (d∞ + 1)(1 − xa)(1 + t)
)
(1 + xat) − 2sax

2
a(1 − t2).(4.9)

We remark that if sb �= sa, xb cannot equal xa, since
∫ 1
−1 pc(t)(1 − t2)dt is

positive. Hence if xa = xb, then sa = sb and Sa × Sb is Kähler–Einstein.
Thus we do not need to check that xa are distinct: if xa = xb, we still get a
WBF Kähler metric, but the hamiltonian 2-form has fewer constant roots.

Note also that we can replace the momentum coordinate z by −z: this
allows us to replace sa by −sa and xa by −xa, provided we interchange d0
and d∞.

Remark 4.1. If the base manifolds are all CP da and come in pairs with
equal dimensions with d0 = d∞ and (say) d2k−1 = d2k for k ≥ 1, then it is
straightforward to find some Kähler–Einstein solutions to the equations ha =
0 by symmetry: for |qa| < (da + 1)/(d + 1) with q2j−1 = −q2j , set sa = (da +
1)/qa and xa = qa(d + 1)/(da + 1); then the integrand defining ha is an odd
function of t, hence ha = 0. These metrics are special cases of those of Koiso–
Sakane [12, 13] and provide examples where the necessary and sufficient
conditions of Corollary 3.1 are verified (see also Corollary 4.2 below).

4.1. WBF Kähler metrics over a Kähler–Einstein manifold

Let us consider the case when the base is a single Kähler–Einstein manifold
i.e., #A = 1. In the absence of blow-downs, this case was also considered
in [3]. Dropping the a subscript for this unique a ∈ A, we may assume that
we have to find 0 < x < 1 such that h(x) = 0, where

h(x) =
∫ 1

−1
(1 + t)d0(1 − t)d∞(1 + xt)dk(x, t)dt

k(x, t) =
(
(d0 + 1)(1 + x)(1 − t) − (d∞ + 1)(1 − x)

× (1 + t)
)
(1 + xt) − 2sx2(1 − t2).

(Alternatively we could assume that e.g., d0 ≤ d∞, but then both x pos-
itive and x negative have to be considered.) Since (1 + t)d0+1(1 − t)d∞+1
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(1 + xt)d+1(1 − xt) vanishes at t = ±1 we may add its derivative onto the
integrand to obtain

h(x) =
∫ 1

−1
(1 + t)d0+1(1 − t)d∞+1(1 + xt)dxk̂(x, t)dt

k̂(x, t) = (d0 + d∞ + 2 − d)(1 + xt) + 2x((d + 1)t − s).
(4.10)

Using the two integral formulae for h(x), we make the following observations:

• h(1) has sign (d0 + 1) − s;

• if d �= d0 + d∞ + 2, h(x) has sign d0 + d∞ + 2 − d for x small and pos-
itive;

• if d = d0 + d∞ + 2, then h(x) has sign (d + 1)(d0 − d∞) − s(d + 2) (if
this is nonzero) for small nonzero x.

For this last case, evaluating h(x)/x2 at x = 0 gives (s + (d + 1))I0
+ (s − (d + 1))I∞ where I0 and I∞ are integrals related by the identity
(d0 + 2)I0 = (d∞ + 2)I∞.

If d = d0 + d∞ + 2 and (d + 1)(d0 − d∞) = s(d + 2), it is easy to see
(integrating (4.10) by parts) that there are no solutions of h(x) = 0 with
0 < x < 1.

Since h is continuous, these sign observations lead to existence results.

Theorem 4.1. Let (S, gS , ωS) be a compact Hodge Kähler–Einstein 2d-
manifold of scalar curvature 2ds and let E0, E∞ be projectively flat hermitian
vector bundles of ranks d0 + 1, d∞ + 1 over S with with c1(E∞) − c1(E0) =
[ωS/2π]. Then there is an admissible WBF Kähler metric on P (E0 ⊕ E∞) →
S when:

• S has nonpositive scalar curvature (s ≤ 0), d ≥ d0 + d∞ + 2, unless
d = d0 + d∞ + 2 and (d + 1)(d∞ − d0) ≤ |s|(d + 2);

• S has positive scalar curvature (s > 0), (d0 + 1) > s and d ≥ d0 +
d∞ + 2, unless d = d0 + d∞ + 2 and d0 > d∞;

• S has positive scalar curvature (s > 0), (d0 + 1) < s and d < d0 +
d∞ + 2.

When d0 = d∞ = 0 and S is a positive Kähler–Einstein manifold, these
existence results are sharp. In particular, when S = CP d, we obtain the
following result.
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Theorem 4.2. There is a WBF Kähler metric on P (O ⊕ O(q)) → CP d

with q > 0 if and only if d = 1 and q = 1 or d ≥ 2 and q > d + 1. The WBF
Kähler metric is then unique up to automorphism and scale.

Proof. Any WBF Kähler metric is extremal and the extremal Kähler met-
rics on M = P (O ⊕ O(q)) → CP d have cohomogeneity one under a maximal
compact connected subgroup of Aut(M, J) [7]. Since any two such subgroups
are conjugate in the connected component Aut(M, J)0, it follows that, up
to pullback by a automorphism, the WBF Kähler metrics on these mani-
folds must be admissible. The existence of a WBF Kähler metric in the
stated cases follows from Theorem 4.1 above, so it remains to establish the
nonexistence and uniqueness results.

For the case d = 1, we compute that

(4.11) h(x) = 4
3x

(
x2 + 1 − 2sx

)

and clearly there is a unique solution 0 < x < 1 to h(x) = 0 iff s > 1. Since S
in this case is CP 1, K−1 = O(2) and the only possibility is s = 2, L = O(1),
in accordance with the classification of [1].

For the case d = 2 we calculate directly that

(4.12) h(x) = 8
15x2(6x − s(x2 + 5)

)

and clearly there is a unique solution 0 < x < 1 to h(x) = 0 iff 0 < s < 1.
We now assume d ≥ 3 and compute the integral (e.g., by substitution)

to get:

− 1
2(d + 1)(d + 2)(d + 3)x2 h(x) =

(1 − x)d+2(d + 1 + ((d + 1)(d + 2) + 2s)x + ((d + 1)(d + 3)

+ 2(d + 2)s)x2) − (1 + x)d+2(d + 1

− ((d + 1)(d + 2) − 2s)x + ((d + 1)(d + 3) − 2(d + 2)s)x2).

If x = (y − 1)/(y + 1) and f(y) = −(d + 1)(d + 2)(d + 3)(y + 1)d+1(y − 1)
h(x)/2d+4 then

f(y) = (d + 1)(s + 1) − (d + 2)(d + 1 + 2s)y + (d + 3)(d + 1 + s)y2

+ yd+2(−(d + 3)(d + 1 − s) + (d + 2)(1 + d − 2s)y

+ (d + 1)(s − 1)y2).
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The zeros of h(x) in (0, 1) correspond to the zeros of f(y) in (1,∞). The
latter problem is more amenable to calculus, since f(1) = f ′(1) = f ′′(1) = 0
and f ′′′(y) = (d + 1)(d + 2)(d + 3)yd−1P (y), where

P (y) = −d(1 + d − s) + (d + 2)(d + 1 − 2s)y + (d + 4)(s − 1)y2.

Now P (1) = d − 2, which is positive for d > 2, while P (0) is nonpositive
since s ≤ d + 1. Hence P (y) is positive in (1,∞) unless s < 1, in which case
it has a unique zero. If P (y) is positive in (1,∞), then so is f ′′′, hence f ′′,
f ′ and f , because we know that f(1) = f ′(1) = f ′′(1) = 0. This gives the
nonexistence. Similarly, when f ′′′(y) has a unique zero in (1,∞), so does f ,
which gives the required uniqueness. �

Note that the proof above in the case d = 2 also gives us the following
result.

Theorem 4.3. Let S be a compact Kähler–Einstein complex surface. There
is an admissible WBF Kähler metric with #A = 1 on P (O ⊕ L) → S if
and only if S is a positive Kähler–Einstein manifold and L = K−q/p, where
integers with |q| > p > 0 such that K−1/p is the primitive ample root of the
canonical bundle of S. The admissible WBF Kähler metrics is then unique
up to automorphism and scale.

We end this paragraph by studying in more detail the case d = 1 and
d0 + d∞ = 1, when M is a CP 2-bundle over a compact Riemann surface
S1 = Σ. Again, we assume without loss that 0 < x < 1.

When d0 = 1 and d∞ = 0 we have h(x) = 0 iff r(x) = (3 − s)x2 + (4 −
5s)x + 5 = 0. If r(x) = 0 then s ≥ 4/5 and the (positive definite) metric
gΣ is a constant curvature metric on Σ = CP 1, so we must have that E0 =
L0 ⊗ C

2, E∞ = L∞ ⊗ C for some line bundles L0, L∞ and that ωΣ/2π is
integral. Thus s = 1 or s = 2 (since s = 2/q for q ∈ Z

+). However r(x) does
not have a root in (0, 1) in either case.

When d0 = 0 and d∞ = 1, we have h(x) = 0 iff r(x) = (3 + s)x2 −
(4 + 5s)x+ 5 = 0. Since r(x) = (1 − x)(5 − 4x) > 0 for s = 1 and ∂

∂sr(x) =
x(x − 5) < 0, r(x) has no roots in (0, 1) for s ≤ 1. Then we may assume that
S1 = CP 1 and that E0 = O ⊗ C = O and E∞ = L ⊗ C

2, where L is a holo-
morphic line bundle with c1(L) = [ωΣ/2π]. By integrality, the only possibil-
ity with s > 1 is s = 2, for which we find a unique solution x = (7 − 2

√
6)/5

in (0, 1) (so Σ = CP 1 and L = O(1)). Observe that B �= 0, so the corre-
sponding metric is not Kähler–Einstein.
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Theorem 4.4. Let E0, E∞ be projectively flat hermitian vector bundles
over a compact Riemann surface Σ with ranks d0 + 1, d∞ + 1, respectively.
Then there is an admissible WBF Kähler metric on P (E0 ⊕ E∞) → Σ with
d0 + d∞ = 1 if and only if (without loss) d0 = 0, d∞ = 1, Σ = CP 1 and
E0 = O while E∞ = O(1) ⊗ C

2. The admissible WBF Kähler metric is then
unique up to automorphism and scale.

4.2. WBF Kähler metrics over a product of Kähler–Einstein
manifolds

In this paragraph and the next, we consider the case that d0 = d∞ = 0 and
#A = 2 in detail. We will assume that the base S is a global product of two
Kähler Einstein manifolds Sa (a = 1, 2) of dimensions 2da > 0. We postpone
a detailed discussion of the case d1 = d2 = 1 to the next paragraph (where
we also consider the case where S is a local product). In this setting we
have (up to a constant factor)

h1(x1, x2) =
∫ 1

−1
(1 + x1z)d1(1 + x2z)d2

(
x1(x1s1 − 1)(1 − z2) + z(1 − x2

1)
)
dz,

h2(x1, x2) =
∫ 1

−1
(1 + x1z)d1(1 + x2z)d2

(
x2(x2s2 − 1)(1 − z2) + z(1 − x2

2)
)
dz.

We are looking for common zeros of these functions with 0 < |xa| < 1. Let
us note what we know about these functions on the boundary of this domain:

• when x1 = 0, h1 has the same sign as x2;

• when x1 = ±1, h1 has the same sign as s1 ∓ 1;

• when x2 = 0, h2 has the same sign as x1;

• when x2 = ±1, h2 has the same sign as s2 ∓ 1.

In particular, the curves h1 = 0 and h2 = 0 both pass through (0, 0) and we
know the gradients of these curves at (0, 0), since ∂ha/∂xa = 2(da − 2)/3
and ∂ha/∂xb = 2db/3 for b �= a. Hence along h1 = 0 we have dx2/dx1 = (2 −
d1)/d2 ≤ 1 at (0, 0), while along h2 = 0 we have dx1/dx2 = (2 − d2)/d1 ≤ 1
at (0, 0) so that dx2/dx1 = d1/(2 − d2) (infinite when d2 = 2). Furthermore,
if both curves have negative gradients, dx2/dx1, at (0, 0) — that is, both
curves emanate from the origin into the fourth quadrant — then we must
have that d1 > 2 and d2 > 2. Hence the difference in the gradients, namely
2(d1 + d2 − 2)/d2(d2 − 2), is positive, so that the curve h1 = 0 is above the
curve h2 = 0 for x1 > 0 near (0, 0).
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Figure 1: d1 = 2, d2 = 3, s1 = 3, s2 = −2 and d1 = 1, d2 = 2, s1 = 2,
s2 = −2.

Figure 2: d1 = 1, d2 = 3, s1 = 2/3, s2 = 4/5.

There are two separate types of solutions to seek: those with x1 and x2
of opposite sign, and those with x1 and x2 of the same sign. Figures 1, 2
plot examples of the graphs of h1 = 0 (solid) and h2 = 0 (dashed) in each
case.

We consider first the case of opposite signs, and without loss, we seek
solutions with x1 > 0 and x2 < 0. Suppose now that s1 > 1 and s2 < −1.
Then

• h1 changes sign on any path from x1 = 0, x2 < 0 to x1 = 1, x2 ≤ 0;

• h2 changes sign on any path from x2 = 0, x1 > 0 to x2 = −1, x1 ≥ 0.

It follows by continuity that the curves h1 = 0 and h2 = 0 must cross.

Lemma 4.1. If s1 > 1 and s2 < −1 then there exist x1 ∈ (0, 1), x2 ∈ (−1, 0)
such that h1(x1, x2) = 0 = h2(x1, x2).

Proof. Since h1 is negative on the half-line (x1 = 0, x2 < 0) and positive
on x1 = 1, there is a connected component C of the curve h1 = 0 in the
square (0, 1) × [0,−1] which crosses x2 = −1 for some x1 ∈ (0, 1), and it
either crosses x2 = 0 for some x1 ∈ (0, 1), or it emanates from the origin,
and, within the square, is initially above the curve h2 = 0, as in figure 1.
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It follows that h2 changes sign on C, hence vanishes by continuity and
connectedness. �

Let us turn now to the case that x1 and x2 have the same sign, so without
loss, x1 > 0 and x2 > 0. Suppose that s1 < 1 and s2 < 1. Then

• h1 changes sign on any path from x1 = 0, x2 > 0 to x1 = 1, x2 ≥ 0;

• h2 changes sign on any path from x2 = 0, x1 > 0 to x2 = 1, x1 ≥ 0;

• the curve h1 = 0 lies below the line x1 = x2 for x1 > 0 near (0, 0), and
is strictly below unless d1 = 1;

• the curve h2 = 0 lies above the line x1 = x2 for x2 > 0 near (0, 0), and
is strictly above unless d2 = 1.

Again we see that the curves h1 = 0 and h2 = 0 must cross, except perhaps
in the case d1 = d2 = 1, which we shall consider in the next paragraph.

Lemma 4.2. If s1 < 1 and s2 < 1, and d1, d2 are not both 1, then there
exist x1, x2 ∈ (0, 1) such that h1(x1, x2) = 0 = h2(x1, x2).

Proof. As in the previous lemma, there is a connected component C of the
curve h1 = 0 in the square (0, 1) × [0, 1] which crosses x2 = 1 for some x1 ∈
(0, 1), and it either crosses x2 = 0 for some x1 ∈ (0, 1), or it emanates from
the origin. In the latter case, we need to know that h1 = 0 is initially below
h2 = 0, so that h2 is initially positive. Since not both d1 and d2 equal one,
this follows from the observations prior to the statement of the lemma. �

Let us summarize what we have established, excluding the case d1 =
d2 = 1.

Theorem 4.5. Let Sa (a = 1, 2) be compact Kähler–Einstein 2da-manifolds
with da ≥ 1 not both one. Let Ka be the canonical bundles, and suppose
(without loss unless Sa is Ricci-flat) that the Kähler form ±ωa is integral.
Let La be line bundles on Sa with c1(La) = [ωa/2π] and, if Sa is not Ricci-
flat, let La be K−qa/pa

a tensored by a flat line bundle, for integers pa, qa where
K−1/pa is the primitive ample root of the canonical bundle of Sa. Then there
is an admissible WBF Kähler metric on P (O ⊕ L1 ⊗ L2) → S1 × S2 in the
following cases:

• S1 and S2 have positive scalar curvature, 0 < q1 < p1 and 0 <−q2 < p2;

• for a = 1, 2, qa > pa if Sa has positive scalar curvature, qa > 0 if Sa

has negative scalar curvature and ωa is positive if Sa is Ricci flat.
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Corollary 4.1. There is a WBF Kähler metric on P (O ⊕ O(q1, q2)) →
CP d1 × CP d2 in the following cases:

• q1 > d1 + 1 and q2 > d2 + 1;

• 1 ≤ q1 ≤ d1 and 1 ≤ −q2 ≤ d2.

We will see in the next paragraph that this corollary also holds for d1 =
d2 = 1. We conjecture that all WBF Kähler metrics on P (O ⊕ O(k1, k2)) →
CP d1 × CP d2 are given by this corollary and that the metric is unique (up
to automorphism and scale) in each case. As in Theorem 4.2, extremal
Kähler metrics on these manifolds are cohomogeneity one, hence of linear
type, but unless d1 = d2 = 1 (see next paragraph) we have not been able to
establish the relevant nonexistence and uniqueness results for solutions of
h1 = 0 = h2.

We note also that if d1 = d2 (including the case d1 = d2 = 1) and k1 =
−k2 in the above corollary, we have not just a WBF Kähler metric, but a
Kähler–Einstein metric, as found by Koiso and Sakane [12,13,15].

Corollary 4.2 [12,13,15]. On P (O ⊕ O(q, −q)) → CP d × CP d, with 1 ≤
q ≤ d, there is a Kähler–Einstein metric, given (on a dense open set) by

g =
(d + 1

q
+ z

)
g1 +

(d + 1
q

− z
)
g2 +

z2 − (d + 1)2/q2

F (z)
dz2

+
F (z)

z2 − (d + 1)2/q2 θ2,

where (g1, ω1) and (g2, ω2) are Fubini–Study metrics on the CP d factors
with holomorphic sectional curvature 2/q, dθ = ω1 − ω2 and F (z) =

∫ z
−1 2t

( (d+1)2
q2 − t2

)
dt = − (d+1)2

q2 (1 − z2) + 1
2(1 − z4).

Proof. Let s1 = −s2 = d+1
q and x1 = −x2 = q

d+1 . Then clearly h1(x1, x2) =
h2(x1, x2) = 0. Further, xa = 1/sa so the WBF metric is Kähler–Einstein.

�



Hamiltonian 2-forms in Kähler geometry, IV 111

4.3. WBF Kähler metrics over a ruled surface

Let us now consider the case d1 = d2 = 1, when the base is a product of
Riemann surfaces. Thus we have

h1(x1, x2) =
∫ 1

−1
(x1z + 1)(x2z + 1)

(
x1(x1s1 − 1)(1 − z2) + z(1 − x2

1)
)
dz

h2(x1, x2) =
∫ 1

−1
(x1z + 1)(x2z + 1)

(
x2(x2s2 − 1)(1 − z2) + z(1 − x2

2)
)
dz

(up to a constant factor), which by integration gives

h1(x1, x2) = 2
15(5x2 − 5x1 + 10s1x

2
1 − 7x2

1x2 − 5x3
1 + 2s1x

3
1x2)

h2(x1, x2) = 2
15(5x1 − 5x2 + 10s2x

2
2 − 7x2

2x1 − 5x3
2 + 2s2x

3
2x1).

Without loss, we look for solutions to h1(x1, x2) = 0 = h2(x1, x2) with
x1 > x2 and x1 > 0. Solving h1 = 0 for s1, we find that s1 must be positive,
hence s1 = 2/q1 for some integer q1 ≥ 1. We then establish the following
three lemmas, the proofs of which can be found in Appendix 5.

Lemma 4.3. If s1 = 2 then there exist (x1, x2) ∈ (0, 1) × (−1, 1) such that
h1(x1, x2) = h2(x1, x2) = 0 iff s2 ≤ −2. Moreover, in this case the solution
is unique. If s2 < −2 the solution is in (0, 1) × (0, 1), i.e., x2 > 0, while if
s2 = −2, the solution is (1

2 ,−1
2).

Lemma 4.4. If s1 = 1 then there exist (x1, x2) ∈ (0, 1) × (−1, 1) such that
h1(x1, x2) = h2(x1, x2) = 0 iff s2 < −1. Moreover, in this case the solution
is unique and x2 > 0.

Lemma 4.5. If s1 = 2/q1, where q1 ∈ Z and q1 ≥ 3, then there exist (x1, x2)
∈ (0, 1) × (−1, 1) such that h1(x1, x2) = h2(x1, x2) = 0 (with s2 = 2/q2 if
x2 > 0) iff −s1 < s2 < 1. Moreover, in this case the solution is unique and
x2 > 0.

We do not need to assume S1 and S2 are compact for these arguments.
However, if S1 is complete, it must be CP 1 and the product S1 × S2 is a
(trivial) ruled surface. More generally we can suppose this is the universal
cover of compact Kähler surface, which is then a geometrically ruled surface
S = P (E) over a Riemann surface Σ with universal cover S2. It is well known
that the existence of a local product metric on S is equivalent to P (E) → Σ
admitting a flat projective unitary connection. This in turn, by a famous
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result of Narasimhan and Seshadri [14], is equivalent to polystability of E.
The above lemmas therefore imply the following result.

Theorem 4.6. Let S be a Hodge 4-manifold whose universal cover is a
product of constant curvature Riemann surfaces and suppose that M =
P (O ⊕ L) → S has an admissible WBF Kähler metric. Then S is a geo-
metrically ruled surface P (E) such that E → Σ is polystable. Let f ,v =
c1(V P (E)) ∈ H2(S, Z) denote the classes of a fibre of P (E) → Σ and of the
vertical line bundle. We then have c1(L) = (q1/2)v + q2f where q1 ∈ Z, and
q2 ∈ Z unless q1 is odd and E → Σ is not spin (which may only happen
when Σ has genus g > 1), in which case q2 + 1/2 ∈ Z. Furthermore, up to
replacing L by L−1:

• if Σ = CP 1, S = CP 1 × CP 1 and we either have q1 = 1 and q2 = −1,
or we have q1, q2 > 2;

• if Σ = T 2, q1 > 2 and q2 > 0;

• if Σ has genus g > 1, we either have q1 > 2 and q2 > q1(g − 1), or we
have q1 ∈ {1, 2} and 0 < q2 < q1(g − 1).

Conversely, in each case there is a unique admissible WBF Kähler metric
on M up to automorphism and scale.

Note that E spin means that deg E is even. Since deg(E ⊗ L) = deg E +
2 deg L, this condition (like polystability) is independent of the choice of E
with S = P (E).

Proof. We have seen already that S = P (E) for E → Σ polystable. If Σ =
CP 1, E is trivial and S = CP 1 × CP 1. If Σ = T 2, without loss E is either
O ⊕ E → Σ with deg E = 0 or the nontrivial extension of O → Σ [16]. In
either case deg E = 0. Thus the non-spin case may only happen when the
genus of Σ is at least 2.

Let ωCP 1 be the Kähler form of the Fubini–Study metric on CP 1 with
volume one and let ωΣ be a Kähler form of a CSC Kähler metric on Σ of
volume one.

Let CP 1 × Σ̃ → S denote the universal cover of S (so Σ̃ covers Σ) and
let π1 : CP 1 × Σ̃ → CP 1 denote the projection to the first factor. Then
π∗

1ωCP 1 descends to a closed (1, 1)-form on S which represents v/2, whereas
f = [π∗ωΣ]. Hence we see that a local product q1ωCP 1 + q2ωΣ corresponds
to a line bundle L → S with Chern class (q1/2)v + q2f ∈ H2(S, Z). Now we
note that H2(S, Z) = Zh ⊕ Zf , where h ∈ H2(S, Z) denotes the class of the
dual of the (E-dependent) tautological line bundle on S (see e.g., [9]). Since
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v = 2h + (deg E)f , the integrality condition on q1, q2 for the existence of L
follows immediately. Now we apply Lemmas 4.3–4.5, bearing in mind that
s1 = 2/q1 and s2 = 2(1 − g)/q2. �

Corollary 4.3. There is a WBF Kähler metric (unique up to automor-
phism and scale) on P (O ⊕ O(q1, q2)) → CP 1 × CP 1 if and only if q1 > 2
and q2 > 2, or q1 = 1 and q2 = −1, the latter metric being Kähler–Einstein.

Proof. A WBF Kähler metric is in particular extremal and since extremal
Kähler metrics on these manifolds are cohomogeneity one, hence admissible
(up to automorphism), cf. [7], this follows from the above theorem and
Corollary 4.2. �

4.4. WBF versus extremal Kähler metrics

Any WBF Kähler metric is extremal, so our results provide examples of
extremal Kähler metrics in admissible Kähler classes in the sense of [4]. By
the results of [4], we then obtain N -dimensional families of such metrics
near a WBF metric, where N is the number of Kähler–Einstein factors in
the base. (In fact we do not need the base metrics ga to be Kähler–Einstein
to get an extremal Kähler metric: it suffices in the above calculations that
they are CSC and Hodge.)

5. Classification of WBF Kähler metrics on compact
6-manifolds

Using the theory of [3, 4], the results of the previous section yield the fol-
lowing classification result for compact 6-manifolds admitting WBF Kähler
metrics.

Theorem 5.1. Suppose that (M, J, g, ω) is a compact connected WBF
Kähler 6-manifold of order �. Then � ∈ {0, 1}.

(i) If � = 0 then (M, J, g, ω) is a local product of Kähler–Einstein mani-
folds.

(ii) If � = 1, then (M, J) is biholomorphic to one of the following.
(a) P (O ⊗ L) → S where S is a positive Kähler–Einstein complex

surface, L = K−q/p and q > p > 0 are integers and p is the Fano
index of S.
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(b) P (O ⊕ L) → S where S = P (E) → Σ is a geometrically ruled sur-
face such that E → Σ is polystable and L is given by Theorem 4.6,
excluding P (O ⊕ O(−1, 1)) → CP 1 × CP 1 (which arises in the case
� = 0 as it admits a Kähler–Einstein metric).

(c) P (O ⊕ O(1) ⊗ C
2) → CP 1 (a blow-down of P (O ⊕ O(1,−1)) →

CP 1 × CP 1).

On each manifold in (a)–(c), there is a unique WBF Kähler metric, up to
automorphism and scale (and it has order 1).

Proof. In [4, Thm. 11] we proved that a compact extremal Kähler 6-manifold
admitting a hamiltonian 2-form of order 2 with the extremal vector field
tangent to the T

c-orbits is isometric to CP 3 with a Fubini–Study metric.
On the other hand, a compact Kähler 6-manifold with a hamiltonian 2-form
of order 3 is biholomorphic to CP 3 [3], and hence, if it is extremal, it is
again isometric to a Fubini–Study metric. Thus there are no compact WBF
Kähler 6-manifolds of order 2 or 3.

Part (i) is immediate and the existence and biholomorphic classification
in part (ii) follow from Theorems 4.3, 4.4 and 4.6. It remains to prove
the uniqueness claim in (ii). By Theorems 4.3, 4.4 and 4.6, and the well-
known uniqueness result of Bando–Mabuchi for Kähler–Einstein metrics [5],
it suffices to prove that any WBF Kähler metric is admissible (with the given
bundle structures) up to scale and automorphism, for which, using [3] again,
it is enough to show that the metric can be pulled back by an automorphism
of (M, J) so that the extremal vector field J gradg Scalg becomes a nonzero
multiple of the generator of the canonical S1-action. We now establish the
uniqueness in each case.

(a) By the classification of [17], S is biholomorphic to CP 2, CP 1 × CP 1

or a blow-up of CP 2 at k points in general position for 3 ≤ k ≤ 8. When
S = CP 2 or S = CP 1 × CP 1, the uniqueness follows from Theorem 4.2 and
Corollary 4.3, so it remains to consider the case that S is a blow-up of
CP 2. This has Fano index p = 1, so L = K−q for q > 1. By Riemann–Roch,
H0(S, L) �= 0 while H0(S, L−1) = 0 since L is not trivial. Therefore, [4,
Props. 3–4] show that M does not admit any CSC Kähler metrics. In
particular, any other WBF Kähler metric g′ on M must have order 1 and
is therefore [3] admissible with respect to some ruling of M over a Kähler–
Einstein surface S′ with b2(S′) = b2(M) − 1 = b2(S). Since g and g′ are both
extremal, by [7] we can assume, after pulling back g′ by an automorphism,
that i0(M, g′) = i0(M, g) in h0(M). Let K, K ′ be the extremal vector fields
of g, g′. Then LKScalg′ = LK′Scalg = 0, so K and K ′ commute and induce
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hamiltonian Killing vector fields X, X ′ on S, S′. If either is zero, K ′ is
a multiple of K and we are done. Otherwise, h(S), h(S′) �= 0 so S, S′ are
both (isomorphic to) the blow-up of CP 2 at three points. The corresponding
Kähler–Einstein metrics agree up to automorphism and scale by [5], hence
so do g and g′ (by Theorem 4.3).

(b)–(c) Here any Kähler class on M is admissible, so M admits no CSC
Kähler metrics by [4, Thm. 5, Thm. 8 and Rem. 8] (in case (b), L is, without
loss, ample by Theorem 4.6). Thus any WBF metric on M has order 1.
Being in an admissible class, its extremal vector field must be a multiple of
K by [4, Prop. 6]. �

Remark 5.1. In the classification of WBF Kähler 4-manifolds obtained
in [1] the normalized Ricci form also has order 0 or 1. A naive dimension
counting argument [3] supports the conjecture that this feature persists in
higher dimensions. We also note that the base manifolds S have Kodaira
dimension −∞. In view of the examples of Theorem 4.1, this is no longer
true in dimension ≥ 8.

Appendix. Proofs of Lemmas 4.3, 4.4 and 4.5

This appendix gives the proofs of Lemmas 4.3, 4.4 and 4.5. The work here is
basically a calculus marathon: while the existence of solutions in the stated
cases is relatively straightforward, the nonexistence and uniqueness results
are much more subtle.

We are looking for common zeros of the functions

h1(x1, x2) =
2
15

(5x2 − 5x1 + 10s1x
2
1 − 7x2

1x2 − 5x3
1 + 2s1x

3
1x2)

h2(x1, x2) =
2
15

(5x1 − 5x2 + 10s2x
2
2 − 7x2

2x1 − 5x3
2 + 2s2x

3
2x1).

with 0 < x1 < 1 and 0 < |x2| < 1 (where x2 is negative if g2 is negative
definite and positive if g2 is positive definite). Since the equations h1, h2 = 0
are both of the form y(5 − 7x2 + 2sx3) − 5x + 10sx2 − 5x3 = 0 we need to
analyse the graphs of the functions y = fs(x) := 5x(x2−2sx+1)

2sx3−7x2+5 for −1 < x < 1.
Since also |sa| = 2|ga − 1|/qa, where ga is the genus of the corresponding
curve and qa ∈ Z

+, if xa is positive and sa > 2/3 then sa ∈ {1, 2}. Thus
for s > 2/3 we can restrict out attention to the case where −1 < x < 0 or
s ∈ {1, 2}. We then have the following lemma.
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Lemma 1. Let C = C(s) denote the part of the graph of y = fs(x) =
5x(x2−2sx+1)
2sx3−7x2+5 which lies within the square [−1, 1] × [−1, 1]. Then the fol-

lowing hold.

• When 0 ≤ s ≤ 2/3, C looks like

where the graph is convex for x < 0, increasing everywhere, intersects
the line y = −1 for some −1 < x < 0 and intersects y = 1 for some
0 < x < 1.

• When s = 1, C looks like

where the graph is convex everywhere, increasing for x < 0, intersects
the x-axis at x = 0 and x = 1 and intersects y = −1 for some −1 <
x < 0.

• When s = 2, C looks like

where the graph is convex everywhere, increasing for x < 0, intersects
the x-axis at x = 0 and x = 2 −

√
3 and intersects y = −1 at x = −1/3

and x = (5 −
√

10)/3.
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• When s ∈ (2/3, +∞), C restricted to −1 < x < 0 looks like

where the graph is convex and increasing, and intersects y = −1 for
some −1 < x < 0.

Since −f−s(−x) = fs(x), for s < 0, C(s) is obtained by rotating C(−s) by π.

Proof. The cases s = 0, s = 1 and s = 2 are elementary and will be omitted.
We first consider the graphs for −1 < x < 0. The numerator of

5x(x2−2sx+1)
2sx3−7x2+5 is strictly negative for −1 < x < 0, whereas the denominator

is negative at x = −1, positive at x = 0 and strictly increasing for −1 <
x < 0. We conclude that fs has precisely one asymptote −1 < a < 0 and
limx→a± fs(x) = ∓∞. Also

f ′
s(x) =

5(5 − 20sx + 22x2 − 4sx3 − 7x4 + 4s2x4)
(5 − 7x2 + 2sx3)2

is positive for −1 < x < 0 and since fs(−1) = 5 > 1 the graph of fs is out-
side the square [−1, 1] × [−1, 1] for −1 < x < a. Thus we may restrict our
attention to a < x < 0 (and fs(x) is negative in this range). Now

f ′′
s (x) = −20(25s−90x+135sx2−42x3−70s2x3+51sx4−6s2x5−7sx6+4s3x6)

(5−7x2+2sx3)3

is negative for a < x < 0 so fs is convex for a < x < 0. Since limx→a+ fs(x) =
−∞ and fs(0) = 0, C must intersect the line y = −1 for some −1 < a <
x < 0.

It remains to consider 0 < x < 1 and 0 < s ≤ 2/3.
The denominator of 5x(x2−2sx+1)

2sx3−7x2+5 is a third degree polynomial which is
negative at x = −1, positive at x = 0, negative at x = 1 and positive for x →
+∞, while the numerator is positive for 0 < x < 1. We conclude that fs has
precisely one asymptote 0 < b < 1, limx→b± fs(x) = ∓∞, fs(x) > 0 for 0 <
x < b and fs(x) < 0 for b < x < 1. For x ∈ [0, 1] \ {b} the denominator of

f ′
s(x) =

5(5 − 20sx + 22x2 − 4sx3 − 7x4 + 4s2x4)
(5 − 7x2 + 2sx3)2
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is positive. For a fixed 0 < x < 1, the numerator may be viewed as a function
of s and its derivative, 5x(8sx3 − 4x2 − 20), with respect to s is clearly
negative. Since the value of the numerator of f ′

s(x) at s = 2/3 equals

5
9(45 − 120x + 198x2 − 24x3 − 47x4)

= 5
9(47(x2 − x4) + 24(x2 − x3) + (127x2 − 120x + 45)),

which is positive, we conclude that if 0 < s ≤ 2/3, f ′
s(x) is positive for x ∈

[0, 1] \ {b}. Thus fs is strictly increasing. Since fs(1) = −5 the graph of fs

is outside the square [−1, 1] × [−1, 1] for b < x < 1. Moreover, since fs(0) =
0 and limx→b− fs(x) = +∞, C intersects the line y = 1 for some 0 < x <
b < 1. �

It is clear from the shape of the graphs C(s) (corresponding to h1 = 0)
and their reflections in the line y = x (corresponding to h2 = 0) that the
zero-sets of h1 and h2 intersect in the fourth quadrant 0 < x1 < 1, −1 <
x2 < 0 iff s1 = 2 and s2 = −2, and in this case they meet at a unique point
x1 = 1/2, x2 = −1/2. Hence we may assume from now on that 0 < x2 < 1
and s2 ≤ 2.

Let us now recall what we know about the functions h1 and h2:

• the curves h1 = 0 and h2 = 0 both pass through (0, 0);

• along h1 = 0 and h2 = 0 we have dx2/dx1 = 1 at (0, 0);

• along h1 = 0 we have d2x2/dx2
1 = −4s1 at (0, 0);

• along h2 = 0 we have d2x2/dx2
1 = 4s2 at (0, 0).

Therefore if s2 > −s1 the zero-set of h2 is above the zero-set of h1 for x1
small and positive, while if s2 < −s1 it is below the zero-set of h1 for x1
small and positive.

By Lemma 1, the zero-sets of h2 in (0, 1) × (0, 1) look like

for s2 ≤ 0, 0 < s2 ≤ 2/3, s2 = 1 and s2 = 2, respectively. For s2 ≤ 2/3 the
zero-set of h2 is an increasing graph which meets x1 = 1 at a point with
0 < x2 < 1.

It now follows easily that the zero-sets of h1 and h2 meet in at least one
point (x1, x2) ∈ (0, 1) × (0, 1) in the following cases:
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• s1 ∈ {1, 2}, s2 < −s1;

• 0 < s1 ≤ 2/3, −s1 < s2 ≤ 2/3.

For the nonexistence and uniqueness results, assume that we do have
a solution (x1, x2) ∈ (0, 1) × (0, 1) for h1 = h2 = 0. Then from h1 = 0, we
have that

x2 =
5x1(x2

1 − 2s1x1 + 1)
2s1x3

1 − 7x2
1 + 5

.

(It is easy to check that if 2s1x
3
1 − 7x2

1 + 5 = 0 then we cannot have h1 = 0
for x1 ∈ (0, 1).) If we substitute into h2 = 0 we get

10x2
1(x

2
1 − 5)M(x1, 1 − x1, s1, s2)
(2s1x3

1 − 7x2
1 + 5)3

= 0

with

M(x, y, s1, s2) = −25s1y
6 + 30(2 − 5s1)xy5 + 20(15 − 23s1)x2y4

+ 8(72 − 105s1 + 25s2
1)x

3y3

+ 4(1 − s1)(132 − 125s1 + 25s2
1)x

4y2

+ 8(1 − s1)2(36 − 25s1)x5y + 96(1 − s1)3x6

− 25s2y(2x + y)
(
y2 + 2(1 − s1)x(x + y)

)2
.

Thus if (x1, x2) ∈ (0, 1) × (0, 1) is any solution of h1 = h2 = 0, then x1 must
be a root of M(x1, 1 − x1, s1, s2) and this determines x2 uniquely. In the
following Mx denotes the difference between the x and y derivatives of M, so
Mx(x, 1 − x, s1, s2) is the x derivative of M(x, 1 − x, s1, s2); Mxx is defined
similarly.

Proof of Lemma 4.3. In this case s1 = 2. We have seen that the zero-sets
of h1 and h2 meet in (0, 1) × (−1, 0) iff s2 = −2 and then the intersection
point is unique, being (1/2,−1/2). We now analyse the case x2 > 0. Any
intersection point (x1, x2) ∈ (0, 1) × (0, 1) of the zero-sets of h1 and h2 must
have 0 < x1 < 2 −

√
3 by Lemma .1, and x = x1 must be a root of M(x, 1 −

x, 2, s2) where

M(x, y, 2, s2) = −96x6 − 112x5y + 72x4y2 − 304x3y3 − 620x2y4 − 240xy5

− 50y6 − 25s2y(2x + y)(y2 − 2x(x + y))2.
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Clearly M(x, 1 − x, 2, s2) is a decreasing function of s2 when 0 < x < 2 −√
3. Since

M(x, z + x, 2,−2) = −4xz(765x4 + 2040x3z + 1846x2z2 + 680xz3 + 85z4),

M(x, 1 − x, 2,−2) < 0 for 0 < x < 2 −
√

3 < 1/2, hence so is M(x, 1 − x,
2, s2) for s2 ≥ −2. Thus there are no solutions to h1 = h2 = 0 in (0, 1) ×
(0, 1) for s2 ≥ −2.

Now suppose s2 < −2. We have seen that the zero-sets intersect in at
least one point (x1, x2) ∈ (0, 1) × (0, 1). We now compute

∂Mxx

∂s2
(x, z + x, 2, s2) = −25(9x4 + 216x3z + 306x2z2 + 136xz3 + 17z4)

Mxx(x, z + 2x, 2,−2) = 8(4554x4 + 9340x3z + 5757x2z2 + 1311xz3 + 85z4),

so Mxx(x, 1 − x, 2, s2) is a decreasing function of s2 for 0 < x < 2 −
√

3 <
1/2 whose value at s2 = −2 is positive for 0 < x < 2 −

√
3 < 1/3. Hence

M(x, 1 − x, 2, s2) is a concave function of x ∈ (0, 2 −
√

3). At x = 0 it equals
−25(2 + s2) > 0, while at x = 2 −

√
3 it equals 48(240 − 139

√
3) < 0. Hence

it has exactly one root x = x1 ∈ (0, 2 −
√

3) and the solution to h1 = h2 = 0
is unique. �

Proof of Lemma 4.4. In this case s1 = 1. We have seen that the zero-sets of
h1 and h2 do not meet in (0, 1) × (−1, 0), so we restrict attention to x2 > 0.
Since

M(x, y, 1, s2) = −y3(64x3 + 160x2y + 10(9 + 5s2)xy2 + 25(1 + s2)y3),

there are no roots of M(x, 1 − x, 1, s2) in (0, 1) for s2 ≥ −1. Suppose now
that s2 < −1. We have seen that the zero-sets intersect in at least one
point in (0, 1) × (0, 1). The difference between the x and y derivatives
of −M(x, y, 1, s2)/y3 is

32x2 + 140xy + 15y2 − 25s2y(4x + y),

which is clearly positive for x ∈ (0, 1), y = 1 − x since s2 is negative. Hence
−M(x, 1 − x, 1, s2)/(1 − x)3 is an increasing function of x ∈ (0, 1) so it has
at most one root and the solution to h1 = h2 = 0 is unique. �

Proof of Lemma 4.5. In this case s1 = 2/q1, q1 = 3, 4, 5, · · · . We have seen
that the zero-sets of h1 and h2 do not meet in (0, 1) × (−1, 0). Thus we may
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assume 0 < x2 < 1 and s2 ≤ 2/3: by the previous two lemmas (with s1, s2
interchanged) there are no solutions with s2 ∈ {1, 2}.

If there were a solution (x1, x2) ∈ (0, 1) × (0, 1) to h1 = h2 = 0 it would
give a root x = x1 of the function M(x, 1 − x, s1, s2). We now observe that
∂M/∂s2 is negative for y = 1 − x, x ∈ (0, 1) (since s1 < 1) and that

M(x, y, s,−s) = 4x((1 − s)x + y)M0(x, y, s)

M0(x, y, s) = 24(1 − s)2x4 + 48(1 − s)x3y

+ 4(21 − 25s2)x2y2 + 20(3 − 5s2)xy3 + 5(3 − 5s2)y4,

so M(x, 1 −x, s, − s) is positive on (0, 1) for s≤ 2/3 <
√

3/5. Thus M(x, 1 −
x, s1, s2) is positive for 0 < x < 1 and s2 ≤ −s1 and there are no solutions
(x1, x2) to h1 = h2 = 0 with 0 < x1 < 1 when s2 ≤ −s1.

We now let s2 > −s1. We have seen that the zero-sets intersect in at
least one point in (0, 1) × (0, 1). We want to show that they intersect in at
most one point. The proof, which is harder than previously, is motivated by
the observation that

M(x, y, 2/3, 2/3) = 4
27(3x2 − xy − 5y2)

× (8x4 + 8x3y + 112x2y2 + 120xy3 + 45y4)

and hence M(x, 1 − x, 2/3, 2/3) is positive for x0 < x < 1 where x0 = (9 −√
61)/2 is the smallest root of x2 − 9x + 5 = 0. Observe that x0 ≈ 0.595 is

less than 3/5 (since 1521 = 392 is less than 1525 = 52 · 61). We are going
to prove that M(x, 1 − x, s1, s2) > 0 for 3/5 ≤ x < 1 and that Mx(x, 1 −
x, s1, s2) > 0 for 0 < x ≤ 3/5. This will prove that there is at most one root
on (0, 1).

Since M(x, 1 − x, s1, s2) is a decreasing function of s2, to prove positivity
for 3/5 ≤ x < 1, it suffices to prove M(x, 1 − x, s1, 2/3) > 0 for 3/5 ≤ x < 1.
This is true for s1 = 2/3 and so the positivity follows from:

Claim 1. ∂M
∂s1

(x, 1 − x, s1, 2/3) < 0 for 3/5 ≤ x < 1.

The positivity of Mx(x, 1 − x, s1, s2) on 0 < x ≤ 3/5 for −s1 < s2 ≤ 2/3
follows from the fact that it is an affine linear function of s2 such that:

Claim 2. Mx(x, 1 − x, s1, 2/3) > 0 for 0 < x ≤ 3/5;

Claim 3. Mx(x, 1 − x, s1,−s1) > 0 for 0 < x ≤ 3/5.

Subject to these three claims, we are done. �
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Proof of Claim 1. We compute that −12∂M
∂s1

(z/2 + 3y/2, y, s, 2/3) is
given by

18(6665 − 11290s + 6237s2)y6 + (195155 − 361344s + 194157s2)y5z

+ 2(67267 − 131470s + 69255s2)y4z2 + 2(24931 − 50180s + 26055s2)y3z3

+ 2(5213 − 10610s + 5445s2)y2z4 + (1 − s)(1163 − 1197s)yz5 + 54(1 − s)2z6.

It suffices to show that the coefficient of each monomial in y, z is positive
for 0 < s ≤ 2/3 (put y = 1 − x, z = 5x − 3). The first five quadratics in s
have no real roots and are positive at s = 0, and for the last two the result
is clear. �

Proof of Claim 2. We compute that 729
2 Mx(x, z/3 + 2x/3, s, 2/3) is given by

4(88050 − 255955s + 293700s2 − 99063s3)x5 + 80(2460 − 4277s + 5862s2

− 2025s3)x4z + 4(19530 − 3229s + 10575s2 − 4050s3)x3z2 + 4(4632

+ 2425s − 975s2)x2z3 + 5(420 + 347s − 120s2)xz4 + 10(9 + 10s)z5.

It suffices to show that the coefficient of each monomial in x, z is positive for
0 < s ≤ 2/3 (put z = 3 − 5x). For the two quadratics and the last coefficient,
this is clear. The remaining three cubics are positive multiples of

44025(2 − 3s)3 + 140270(2 − 3s)2s + 240345(2 − 3s)s2 + 251028s3

1230(2 − 3s)3 + 6793(2 − 3s)2s + 19272(2 − 3s)s2 + 21789s3

9765(2 − 3s)3 + 84656(2 − 3s)2s + 265431(2 − 3s)s2 + 281844s3.

Hence they are all positive on [0, 2/3]. �

Proof of Claim 3. We compute that 729
4 Mx(x, z/3 + 2x/3, s,−s) is given by

48(7125 − 23940s + 23225s2 − 4974s3)x5 + 240(1020 − 2259s + 1054s2

+ 525s3)x4z + 24(4080 − 4509s− 2750s2 + 4275s3)x3z2 + 24(897 − 450s

− 1225s2 + 750s3)x2z3 + 30(25 − 6s)(3 − 5s2)xz4 + 30(3 − 5s2)z5.

It suffices to show that the coefficient of each monomial in x, z is positive
for 0 < s ≤ 2/3. This is clear for the last two coefficients. The remaining
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four cubics are positive multiples of

7125(2 − 3s)3 + 16245(2 − 3s)2s − 2005(2 − 3s)s2 + 363s3

510(2 − 3s)3 + 2331(2 − 3s)2s + 2324(2 − 3s)s2 + 1863s3

2040(2 − 3s)3 + 13851(2 − 3s)2s + 22526(2 − 3s)s2 + 15099s3

897(2 − 3s)3 + 7173(2 − 3s)2s + 13919(2 − 3s)s2 + 7419s3.

Only the first is not manifestly positive on [0, 2/3]. However it is positive
at the endpoints and (dividing by 8) the cubic 7125 − 23940s + 23225s2 −
4974s3 has a minimum at s = (23225 −

√
182167945)/14922 ≈ 0.652 where

it takes the value 5(492445959775 − 36433589
√

182167945)/333999126 ≈
10.5, which is positive (since 4924459597752 = 242503023298720918050625 >
(36433589

√
182167945)2 = 241810897419701928577345). �

Remark 2. The calculations in this final claim are remarkably tight. Numer-
ical computations show that if we had broken the interval (0, 1) at a point
� 0.602, instead of 3/5, then this argument would fail, so we are fortunate
that (9 −

√
61)/2 ≈ 0.595 is less than this. We also remark that uniqueness

of solutions to these equations can fail if we allow s1, s2 ∈ (2/3, 1), so the
integrality conditions are crucial.

Depending on one’s point of view, there are two possible responses to
this serendipity. The first is that it is just a coincidence that we obtain
unique WBF metrics in this (low-dimensional) situation. The second is that
there is a general uniqueness theorem for WBF metrics. We leave it to the
reader to decide.
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Canada H3C 3P8

Institue of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str. Bl. 8

1113 Sofia

Bulgaria

E-mail address: apostolov.vestislav@uqam.ca

Department of Mathematics

University of York

Heslington, York YO10 5DD

UK

Current address

Department of Mathematical Sciences

University of Bath

Bath BA2 7AY

UK

E-mail address: D.M.J.Calderbank@bath.ac.uk



126 Vestislav Apostolov et al.

Centre de Mathématiques
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