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On a non-local curve evolution problem in the plane
Lishang Jiang and Shengliang Pan

This paper deals with a new curvature flow for closed convex plane
curves which shortens the length of the evolving curve but expands
the area it bounds and makes the evolving curve more and more
circular during the evolution process. And the final shape of the
evolving curve will be a circle (as the time t goes to infinity). This
flow is determined by a coupled system concerning both local and
global geometric quantities of the evolving curve.
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1. Introduction

Traditionally, differential geometry has been the study of curved spaces or
shapes in which, for the most part, time did not play a role. In the last
few decades, on the other hand, geometers and geometric analysts have
made great strides in understanding shapes that evolve in time; see, for
instance, [1–6,8,10,12–16,18,24,25], etc. Among them, perhaps, the simplest
case (but already a very subtle one) is the curve-shortening flow in the plane
studied by Gage and Hamilton [12] and Grayson [13]. The book by Kai-Seng
Chou(Tso) and Xi-Ping Zhu [7] provides an excellent and unified account of
many results related to flowing curves by curvature.

The aim of this paper is, motivated by [11,17,19], to investigate a non-
local curve evolution problem in the plane. Let X(u, t) : [a, b] × [0,∞) → R2

be a family of closed planar curves with X(u, 0) = X0(u) being a closed
convex curve. Consider the following evolution problem:

Xt =
(

k − L

2A

)
N,(1.1)

L(t) =
∫ b

a
|Xu|du =

∫ b

a

√(
∂x

∂u

)2

+
(

∂y

∂u

)2

du,(1.2)

A(t) =
1
2

∫ b

a

(
x

∂y

∂u
− y

∂x

∂u

)
du,(1.3)

X(u, 0) = X0(u),(1.4)
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where x = x(u, t) and y = y(u, t) are coordinate components of the position
vector X(u, t), k is the signed curvature of the evolving curve, L = L(t) and
A = A(t) are, respectively, the length of the curve and the area it bounds at
time t and N the unit inward pointing normal vector along the curve. We
will give our investigation along the ideas in [10–12], compared to which the
geometric estimates are somewhat easier in the present case and the analytic
estimates a bit harder.

This paper is organized as follows. Section 2 is devoted to prove that if
the evolving convex curve does not develop singularities then it converges
to a circle in the Hausdorff metric as t goes to infinity (Theorem 2.8).
Compared with the ideas in [10] and [12], our concepts are different in that
the limiting curve in our case is a circle not a point and that t does go to
infinity not a finite time. In Section 3, we shall first prove in Theorem 3.3
that the evolution problem is equivalent to the following initial value prob-
lem of a coupled differentia-integral system:

kt = k2kθθ +
(

k2 − L

2A
k

)
k,(1.5)

Lt = −
∫ 2π

0
kdθ +

πL

A
,(1.6)

At = −2π +
L2

2A
,(1.7)

k(θ, 0) = k0(θ) > 0,(1.8)

L(0) = L0 =
∫ 2π

0

dθ

k0(θ)
> 0,(1.9)

A(0) = A0 = −
∫ 2π

0
〈X0(θ), N〉 dθ

k0(θ)
> 0,(1.10)

where

X0(θ) =
(∫ θ

0

cos ϕ

k0(ϕ)
dϕ,

∫ θ

0

sin ϕ

k0(ϕ)
dϕ

)

and N = (− sin θ, cos θ). And then, using maximum principal, Picard’s the-
orem in ODEs and the Leray–Schauder fixed point theorem (for details,
see [22]) yields that this initial value problem is locally solvable
(Theorem 3.4).

In Section 4, just as Gage and Hamilton in [12] have done, we make the
geometric, integral and pointwise estimates about the evolving convex curve
and then use them to prove that all higher derivatives of curvature k with
respect to θ are uniformly bounded and therefore all higher derivatives of k
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with respect to t are also bounded. Thus we can conclude in Theorem 4.12
that the initial value problem (1.5)–(1.10) is also globally solvable.

In the last section, mimicking the proofs of Section 5 of [12] one can show
that the evolving curve converges to a circle in the “C∞” metric. Therefore,
we get the following main result of the present paper.

Main theorem. A closed convex plane curve which evolves according to
(1.1)–(1.4) remains convex, expands the enclosed area but shortens its length
during the evolution process and converges to a circle in the C∞ metric as
t goes to infinity.

Remark 1.1. It is known that if a one-parameter family of closed convex
plane curves γ(·, t) are evolved by the general flow Xt = W ∈ R2, then the
length L(t) and the enclosed area A(t) of γ(·, t) will satisfy the following

dL

dt
= −

∫
γ(·,t)

〈W, kN〉ds

and
dA

dt
= −

∫
γ(·,t)

〈W, N〉ds,

where N is the unit inward normal and k is the curvature with respect to
N . In particular, the isoperimetric ratio L2(t)/(4πA(t)) will satisfy

d

dt

(
L2(t)

4πA(t)

)
= − L(t)

2πA(t)

∫
γ(·,t)

〈W,

(
k − L(t)

2A(t)

)
N〉ds.

Hence for the obvious choice W =
(
k − L(t)

2A(t)

)
N , the isoperimetric ratio is

decreasing under the present flow. This is to say that the closed convex
curves are becoming more and more circular.

Remark 1.2. The present evolution problem has the following physical
interpretations. Equation (1.1) represents the motion of a super elastic
rubber band, with small mass in a viscous (high friction) medium, which
surrounds an expanding material while forces the boundary to decrease.

Remark 1.3. In our case, however, we cannot obtain an analogue of Gray-
son’s result now, i.e., it is not known for us whether a simple closed curve
evolves smoothly to a convex one under (1.1)–(1.4).

Remark 1.4. It is also interesting to consider the similar evolution problem
in higher dimensions.
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2. Final shape of the evolving curve

Let X0(u) : [a, b] −→ R2 be a convex closed curve in the plane and X(u, t) =
(x(u, t), y(u, t)) : [a, b] × [0,∞) −→ R2 be a family of closed planar curves
which evolves under (1.1)–(1.4).

Let g(u, t) = |Xu| = (x2
u + y2

u)1/2 denote the metric along the curve, then
the element of arc-length is given by ds = g(u, t)du, or formally

∂

∂s
=

1
g

∂

∂u
,

∂s

∂u
= g.

It is important that the partial derivative with respect to t is taken keeping
the parameter u fixed. The operator ∂

∂s is not a partial derivative and this
makes us change the parameters u and t to the new parameters θ and τ to
simplify the equation for curvature in Lemma 2.2 below. The tangent T ,
normal N , orientation θ, curvature k and length L of the curve and area A
it bounds are defined in the standard way:

T =
∂X

∂s
=

1
g

∂X

∂u
, k =

∂θ

∂s
=

1
g

∂θ

∂u
, N =

1
k

∂T

∂s
=

1
kg

∂T

∂u
,

θ = ∠(T, x), L(t) =
∫ b

a
g(u, t)du =

∮
ds,

A(t) =
1
2

∮
xdy − ydx = −1

2

∮
〈X, N〉ds.

According to [7, §1.3] or [21] one gets immediately

Lemma 2.1. The geometric quantities of the evolving curve evolve as

∂g

∂t
= −

(
k − L

2A

)
kg,

∂T

∂t
=

∂k

∂s
N,

∂N

∂t
= −∂k

∂s
T,

∂θ

∂t
=

∂k

∂s
=

1
g

∂k

∂u
,

∂k

∂t
=

∂2k

∂s2 +
(

k − L

2A

)
k2,

dL

dt
= −

∮
k2ds +

πL

A
,

dA

dt
= −2π +

L2

2A
.

Since s = s(u, t) depends on both u and t, the curvature evolution equa-
tion above is difficult to handle. Since the changing of the tangential com-
ponents of the velocity vector Xt affects only the parameterization, not the
geometric shapes of the evolving curve (see, for example, [7, 11,12] or [23]),
one may choose a suitable tangential component α = α(u, t) so that the geo-
metric analysis of the evolving curves can be simplified, i.e., we may consider
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the following evolution problem which is equivalent to (1.1)–(1.4):

Xt = αT +
(

k − L

2A

)
N,(2.1)

L =
∫ b

a
|Xu|du,(2.2)

A =
1
2

∮
xdy − ydx,(2.3)

X(u, 0) = X0(u).(2.4)

Similar to Lemma 2.1 one has

∂g

∂t
= αu −

(
k − L

2A

)
kg,(2.5)

∂T

∂t
=

(
αk +

∂k

∂s

)
N,(2.6)

∂N

∂t
= −

(
αk +

∂k

∂s

)
T,(2.7)

∂θ

∂t
= αk +

∂k

∂s
= αk +

1
g

∂k

∂u
,(2.8)

∂k

∂t
=

∂2k

∂s2 + α
∂k

∂s
+

(
k − L

2A

)
k2,(2.9)

dL

dt
= −

∮
k2ds +

πL

A
= −

∫ 2π

0
kdθ +

πL

A
,(2.10)

dA

dt
= −2π +

L2

2A
.(2.11)

Observing that the evolution equations for L and A are both independent
of α. Generally speaking, θ is a function of u and t. In order to make θ
independent of the time t, it can be seen from (2.8) that we should take the
tangential component function α as

(2.12) α = −1
k

∂k

∂s
= −∂k

∂θ
.

And then from (2.6) and (2.7), T and N are both independent of t, and the
evolution equation of curvature can be expressed in terms of θ and t.

Lemma 2.2.

(2.13)
∂k

∂t
= k2 ∂2k

∂θ2 + k3 − L

2A
k2.
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Proof. From (2.9), (2.12) and Lemma 2.1 we get

∂k

∂t
=

∂

∂s

(
k
∂k

∂θ

)
− ∂k

∂θ

∂k

∂s
+

(
k − L

2A

)
k2

= k
∂

∂s

(
∂k

∂θ

)
+

(
k − L

2A

)
k2 = k2 ∂2k

∂θ2 +
(

k − L

2A

)
k2.

�

From Theorem 2.4 below we can change the parameters (u, t) into (θ, τ)
so that τ = t. The point is that ∂/∂t �= ∂/∂τ , because ∂/∂t is the partial
derivative with u fixed, and ∂/∂τ is the derivative with θ fixed. In what
follows we will give our discussion in this new coordinate system and for
simplicity, we replace τ by t. In θ and t coordinates the evolution equations
for curvature k, length L and area A are also given by (2.13), (2.10) and
(2.11), respectively.

In the rest of this paper, we will focus our attention on the following
evolution problem which is also equivalent to (1.1)–(1.4):

Xt = −∂k

∂θ
T +

(
k − L

2A

)
N,(2.14)

L =
∫ 2π

0
|Xθ|dθ,(2.15)

A =
1
2

∫ 2π

0

(
x

∂y

∂θ
− y

∂x

∂θ

)
dθ,(2.16)

X(θ, 0) = X0(θ)(2.17)

where X(θ, t) = (x(θ, t), y(θ, t)) is the position vector of the curve.
This section is the first step which is devoted to proving that the evolving

curve remain convex during the evolution process and the final shape is a
circle in the Hausdorff metric if the initial curve is convex.

Lemma 2.3. If X(θ, t) : S1 × [0,∞) −→ R2 evolves under (2.14)–(2.17)
then L

A decreases during the evolution process.

Proof. Using the fact that
∫

kds = 2π and the Cauchy–Schwartz’
inequality and the classical isoperimetric inequality, it follows from
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(2.10) and (2.11) that

d

dt

(
L

A

)
=

1
A

(
−

∮
k2ds +

πL

A

)
− L

A2

(
−2π +

L2

2A

)

≤ 1
A

(
−4π2

L
+

πL

A

)
− L

A2

(
−2π +

L2

2A

)

=
(L2 − 4πA)(2πA − L2)

2A3L
≤ 0,

which gives us the desired result. �

Theorem 2.4. A strictly convex curve evolving according to (2.14)–(2.17)
remains convex during the evolution process.

Proof. We will use the maximum principle to show that the curvature
remains positive for all time if the initial curvature is positive. Let W (θ, t) =
k(θ, t)eμt, with μ a constant to be chosen later. Then W satisfies the fol-
lowing equation:

(2.18) Wt = k2Wθθ +
(

k2 − L

2A
k + μ

)
W.

The coefficient of W is a quadratic polynomial in k whose discriminant is
(L2/4A2) − 4μ. From Lemma 2.3 we see that, for all t > 0, L/A ≤ L0/A0. If
we choose μ > L2

0/16A2
0, then the discriminant is negative and the coefficient

of W is positive. We will choose μ > L2
0/16A2

0 so that this coefficient is
always positive.

Now, let
Wmin(t) = inf{W (θ, t) : 0 ≤ θ ≤ 2π},

and suppose that there exists η, where 0 < η < Wmin(0) = kmin(0), such that
at some point t > 0, Wmin(t) = η. Let t0 = inf{t : Wmin(t) = η}, then, the
continuity of W assures that this minimum η is achieved for the first time
at (θ0, t0) and at this point

Wt ≤ 0, Wθθ ≥ 0 and W = η > 0,

which contradicts with the fact that W satisfies (2.18) and implies that, for
all t > 0, Wmin(t) ≥ Wmin(0). Hence, for all t > 0, we have

(2.19) k(θ, t) ≥ kmin(t) = Wmin(t)e−μt ≥ kmin(0)e−μt > 0.

Thus completes the proof. �
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Lemma 2.5. Under the evolution defined by (2.14)–(2.17) with the initial
curve being convex, then the length of the evolving curve decreases and the
area enclosed by the curve increases during the evolution process.

Proof. In [9], Gage has proved that for convex closed plane curves, there
holds ∫

k2ds ≥ πL

A
,

which is now called by us Gage’s inequality. Theorem 2.4 guarantees that
Gage’s inequality holds for each curve during the evolution process, and thus
from (2.10) and Gage’s inequality it follows that

Lt = −
∫

k2ds +
πL

A
≤ 0,

which proves the first assertion. As for the area A, using (2.11) and the
classical isoperimetric inequality, one obtains At ≥ 0, thus completes the
proof. �

This lemma tells us that L ≤ L0 and A ≥ A0, which together with the
classical isoperimetric inequality gives us:

(2.20) 4πA0 ≤ 4πA ≤ L2 ≤ L2
0,

and therefore

4π

L0
≤ 4π

L
≤ L

A
≤ L0

A0
,(2.21)

4π ≤ L2

A
≤ L2

0
A0

,(2.22)

where L0 and A0 are, respectively, the length of the initial curve and the
area it encloses. Thus L and A are both monotonic and bounded functions,
there exist L̄(

√
4πA0 ≤ L̄ ≤ L0) and Ā(A0 ≤ Ā ≤ L2

0
4π ) such that

lim
t→∞

L(t) = L̄, lim
t→∞

A(t) = Ā

and therefore L
A has a finite positive limit L̄

Ā
as t goes to infinity.

The following result is a direct corollary to Lemma 2.5.

Corollary 2.6. If a convex curve evolves according to (2.14)–(2.17), then
the isoperimetric deficit L2 − 4πA is decreasing during the evolution process
and converges to zero as t goes to infinity.
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Proof. Evidently, from the proof of Lemma 2.5,

d

dt
(L2 − 4πA) = 2LLt − 4πAt ≤ 0,

and thus L2 − 4πA is decreasing. Now we employ Lemma 2.5 and (2.10),
(2.11) and (2.20) to make further estimate:

d

dt
(L2 − 4πA) = 2LLt − 4πAt ≤ −4π

L2 − 4πA

2A

≤ −8π2

L2
0

(L2 − 4πA).

Integrating this yields

(2.23) L2 − 4πA ≤ (L2
0 − 4πA0)e−(8π2)/(L2

0)t.

From the classical isoperimetric inequality and (2.23), we see that L2 − 4πA
converges to zero as t goes to infinity. �

This result and the isoperimetric inequality imply that the limiting curve
is a circle. Furthermore, one can, in a similar way, prove the next corollary
which shows that the isoperimetric ratio is decreasing and converges to 4π
as t goes to infinity.

Corollary 2.7. Under the same hypothesis as in Corollary 2.6, the isoperi-
metric ratio L2

A is decreasing to 4π as t goes to infinity.

Employing Corollary 2.7 and the Bonnesen inequality (see [20]) yields
the following theorem easily, we omit the details of the proof (which is similar
to that of [11, Corollary 2.5]) here.

Theorem 2.8. If an evolving convex curve does not develop singularities
then it converges to a circle in the Hausdorff metric.

From Theorem 2.8 one can conclude that there exists a positive number
R such that

(2.24) lim
t−→∞

L(t) = 2πR, lim
t−→∞

A(t) = πR2.

Remark 2.9. From (2.23) it follows that if the initial curve is a circle then
the evolving curve X(u, t) is always a circle the same as the initial one for
each time t. That is to say, the initial circle remains the same during the
evolution process.
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3. Short-time existence for convex curve

In this section, we will first reduce the evolution problem for the curve to
an initial value problem of certain nonlinear differential equations and then
consider the short time existence and uniqueness for the later initial value
problem.

First, we prove a result which can be considered as a refinement of
Theorem 2.4.

Theorem 3.1. Let

kmin(t) = inf{k(θ, t) : 0 ≤ θ ≤ 2π},

then the function kmin(t)e(L2(t))/(16A2(t))t is increasing during the evolution
process.

Proof. Set W (θ, t) = k(θ, t)eμt, where μ is a constant to be determined later,
then W satisfies the following problem:

Wt = k2Wθθ +
(

k2 − L

2A
k + μ

)
W,(3.1)

W |t=0 = k0(θ) > 0.

Let G(k, μ) = k2 − L
2Ak + μ, then from Lemma 3.3

G(k, μ) >

(
k − L

4A

)2

+ μ − L2
0

16A2
0
,

taking μ = L2
0/16A2

0 so that G(k, μ) > 0.
Now, let

Wmin(t) = inf{W (θ, t) : 0 ≤ θ ≤ 2π}

(a) First, similar to the proof of Theorem 2.4, we have Wmin(t) ≥ Wmin(0)
for all t > 0.

(b) Next, we show that Wmin(t) > Wmin(0) for all t > 0.
The proof is also by contradiction. If not the case, there exists a point

t∗ > 0 such that Wmin(t∗) = Wmin(0). We apply the maximum principle
to the set S1 × [0, t∗]. Similar to the proof of Theorem 2.4, we can arrive
at a contradiction observing that at the point (θ∗, t∗), W (θ, t) assume its
minimum.

(c) Now, we show that Wmin(t) increases strictly.
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The proof is again by contradiction. If not, there exists a time interval
(t1, t2), 0 ≤ t1 < t2 such that Wmin(t1) ≥ Wmin(t2). We apply the maximum
principle to the set S1 × [t1, t2], from (a) and (b), substituting t = t1 for
t = 0 and t = t2 for t = t∗, we have Wmin(t2) > Wmin(t1), a contradiction.

(d) Finally, we show further that kmin(t)e(L2(t))/(16A2(t))t is a increasing
function of t.

Dividing the time interval [0, t] into N parts, t = NΔt:

Δ : 0 = t0 < t1 = Δt < t2 < · · · < tN = t.

Considering the following problem on the set S1 × [tl, tl+1]:

kt = k2kθθ +
(

k2 − L

2A
k

)
k,

k|t=tl
= k(θ, tl) > 0.

where l = 0, 1, . . . , N − 1. Let Wl(θ, t) = k(θ, t)eμt+(μl−1−μ)tl , where μl−1 is
determined by induction, μ−1 = 0, μ0 = L2

0/16A2
0. Then, Wl

(θ, t) will satisfy

(Wl)t = k2(Wl)θθ +
(

k2 − L

2A
k + μ

)
Wl,

Wl|t=tl
= k(θ, tl)eμl−1tl > 0.

Taking

μ = μl =
L2(tl)

16A2(tl)
>

L2(t)
16A2(t)

,

for tl < t ≤ tl+1, then from (a), (b) and (c) we obtain that the function

(Wl)min(t) = inf{Wl(θ, t) : 0 ≤ θ ≤ 2π}

is increasing strictly for tl ≤ t ≤ tl+1.
Define WΔ(t):

WΔ(t) = (Wl)min(t) = kmin(t)eμl(t−tl)+μl−1tl ,

where tl ≤ t ≤ tl+1, 0 ≤ l ≤ N − 1, therefore WΔ(t) is increasing strictly.
Then

lim
Δ→0

WΔ(t) = kmin(t)e(L2(t))/(16A2(t))t

is increasing. �
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From this theorem, kmin(t)e(L2(t))/(16A2(t))t ≥ kmin(0) for all t > 0, and
therefore for all (θ, t) ∈ S1 × [0,∞) we have

(3.2) k(θ, t) ≥ kmin(t) ≥ kmin(0)e−(L2(t))/(16A2(t))t > 0.

Now we check the “closing condition” for each curve in the evolving
process.

Lemma 3.2. If k0(θ) = k(θ, 0) > 0 satisfies

∫ 2π

0

eiθ

k0(θ)
dθ = 0,

then, for each t, the solution k(θ, t) to (2.13) (i.e., (3.3) below) satisfies

∫ 2π

0

eiθ

k(θ, t)
dθ = 0.

Proof. From Theorem 3.1 we can rewrite (2.13) as

(
−1

k

)
t

= kθθ + k − L

2A
.

Integrating this over the set [0, 2π] × [0, t] (times eiθ) yields

∫ 2π

0

(
− eiθ

k(θ, t)

)
dθ −

∫ 2π

0

(
− eiθ

k0(θ)

)
dθ =

∫ t

0

∫ 2π

0
eiθ

(
kθθ + k − L

2A

)
dθ = 0,

where we have done the integration by parts in the last equation. �

Hence, we can reduce the evolution problem for the curve to an initial
value problem of some nonlinear differentio-integral equations in the follow-
ing theorem.

Theorem 3.3. The evolution problem (2.14)–(2.17) for the convex curves
is equivalent to the following initial value problem.

Find k = k(θ, t): S1 × [0,∞) −→ R+, L = L(t): [0,∞) −→ R+ and
A = A(t) : [0,∞) −→ R+ such that

(i) k ∈C2 + σ, 1 + σ/2(S1 × [0, T ∗)), L ∈ C1([0, T ∗)) and A ∈ C1([0, T ∗))
for all T ∗ > 0.
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(ii)

∂k

∂t
= k2 ∂2k

∂θ2 + k3 − L

2A
k2,(3.3)

dL

dt
= −

∫ 2π

0
kdθ +

πL

A
,(3.4)

dA

dt
= −2π +

L2

2A
.(3.5)

(iii) (a) k(θ, 0) = k0(θ) ∈C1+σ(S1), k0(θ) > 0 and
∫ 2π
0 eiθ/k0(θ)dθ = 0; and

(b) L(0) = L0 =
∫ 2π
0

dθ
k0(θ) > 0, and A(0) = A0 > 0 (A0 is defined in

(3.9) below).

Proof. Equations (2.10), (2.11) and (2.13) tells us that given a solution to the
evolution problem (2.14)–(2.17), the curvature, length and area functions of
the evolving curves, expressed in θ and t coordinates, will satisfy (ii) and (iii).

Conversely, given a solution k(θ, t), L(t) and A(t) to the initial value
problem of the differentio-integral system, for each t ≥ 0 the associated curve
X(θ, t) = (x(θ, t), y(θ, t)), up to translation, defined by

(3.6) x(θ, t) =
∫ θ

0

cos φ

k(φ, t)
dφ, y(θ, t) =

∫ θ

0

sin φ

k(φ, t)
dφ

satisfies the evolution equation

∂X

∂t
= −∂k

∂θ
T +

(
k − L

2A

)
N.

Now, a direct calculation implies that the curvature of the associated curve
X(θ, t) is exactly k(θ, t).

Next, we check that the length L̃(t) of the associated curve is L(t). In
fact, from (3.6) it follows that

(3.7) L̃(t) =
∫ 2π

0

√
x2

θ + y2
θdθ =

∫ 2π

0

√
cos2 θ

k2 +
sin2 θ

k2 dθ =
∫ 2π

0

dθ

k
.

Using curvature evolution equation (3.3) we get

(3.8)
1
k

=
1
k0

−
∫ t

0

(
kθθ + k − L

2A

)
dθ.
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Taking (3.8) into (3.7) and exchanging the order of integration gives the
desired result as follows

L̃(t) =
∫ 2π

0

[
1

k0(θ)
−

∫ t

0

(
kθθ + k − L

2A

)
dt

]
dθ

=
∫ 2π

0

dθ

k0(θ)
−

∫ t

0

∫ 2π

0
kθθ dθ dt −

∫ t

0

∫ 2π

0
k dθ dt +

∫ t

0

πL

A
dt

= L0 +
∫ t

0

(
−

∫ 2π

0
kdθ +

πL

A

)
dt = L0 +

∫ t

0
Ltdt = L(t),

where we have used the length evolution equation (3.4) in the last but one
equality.

Finally, we check that the area Ã(t) bounded by the associated curve is
also A(t). In fact, by definition,

Ã(t) = −1
2

∮
〈X, N〉ds = −1

2

∫ 2π

0
〈X, N〉dθ

k
,

Ã(0) = −1
2

∫ 2π

0
〈X0, N0〉

dθ

k0(θ)
= A0.

(3.9)

Therefore, we need only to show that At = Ãt. From (3.8), (3.3) and the
facts that

Nt = 0, 〈T, N〉 = 0,

∫ 2π

0

dθ

k
=

∮
ds = L,

and L = −
∫ 2π
0 〈X, N〉dθ, it follows that

Ãt = − 1
2

∫ 2π

0
(〈Xt, N〉 + 〈X, Nt〉)

dθ

k
+

1
2

∫ 2π

0
〈X, N〉 kt

k2 dθ

= − 1
2

∫ 2π

0

(
k − L

2A

)
dθ

k
+

1
2

∫ 2π

0
〈X, N〉

(
kθθ + k − L

2A

)
dθ

=
1
2

(
−2π +

L2

2A

)
+

1
2

∫ 2π

0
〈X, N〉kθθdθ

+
1
2

∫ 2π

0
〈X, N〉kdθ +

1
2

L2

2A
.(3.10)
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Integrating by parts and using the facts that Xθ = 1
kT , Nθ = −T , Tθ = N

gives us
∫ 2π

0
〈X, N〉kθθdθ = 〈X, N〉kθ|2π

0 −
∫ 2π

0
(〈Xθ, N〉 + 〈X, Nθ〉)kθdθ

=
∫ 2π

0
〈X, T 〉kθdθ = 〈X, T 〉k|2π

0 −
∫ 2π

0
(〈Xθ, T 〉 + 〈X, Tθ〉))kdθ

= −2π −
∫ 2π

0
〈X, N〉kdθ.

Taking this into (3.10) yields

Ãt =
1
2

(
−2π +

L2

2A

)
+

1
2

(
−2π +

L2

2A

)
= At. �

In [22], we have proved that the above initial value problem is locally
solvable. (Comparing with the method used by Gage and Hamilton, we have
applied the maximum principal, the Picard theorem in ODEs and the Leray–
Schauder fixed point theorem instead of the Nash–Moser inverse function
technique).

Theorem 3.4. Suppose that k(θ, 0) = k0(θ) ∈ C2+σ(S1) and there exist
positive constants αand β such that α ≤ k0(θ) ≤ β. Then there exists T0 > 0
such that there are unique solutions k ∈ C2 + σ, 1 + σ/2(Q0), L ∈ C1([0, T0])
and A ∈ C1([0, T0]) to the following initial value problem:

kt = k2kθθ +
(

k2 − L

2A
k

)
k,

Lt = −
∫ 2π

0
k(θ, t)dθ +

πL

A
,

At = −2π +
L2

2A
,

k(θ, 0) = k0(θ),

L(0) = L0 =
∫ 2π

0

dθ

k0(θ)
> 0,

A(0) = A0 = −1
2

∫ 2π

0
〈X0, N〉 dθ

k0(θ)
> 0,

where X0 = (
∫ θ
0 (cos ϕ)/(k0(ϕ))dϕ,

∫ θ
0 (sin ϕ)/(k0(ϕ))dϕ), N = (− sin θ, cos θ)

and Q0 = S1 × [0, T0], L0 and A0 satisfy L2
0 − 4πA0 ≥ 0.
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4. Long-term existence for convex curve

In this section, we will employ the standard method in curvature flow theory
given in [11,12,16,17] to derive uniform bound for the maximum curvature.
Define the median curvature k∗ as

(4.1) k∗(t) = sup{β : k(θ, t) > β on some interval of length π}.

From [12, Proposition 4.3.2], one has the geometric estimate. If the convex
closed planar curve encloses an area A and has length L then k∗(t) < L

A .
Observing that, in our case, the length L = L(t) is decreasing and the area
A = A(t) increasing, the median curvature k∗(t) is uniformly bounded in
terms of the initial conditions.

Proposition 4.1 (Geometric estimate). In our case, k∗(t) is uniformly
bounded, k∗(t) < L0

A0
.

Proposition 4.2 (Integral estimate). Since k∗(t) is bounded on the time
interval [0, T ∗), we have

∫ 2π
0 ln k(θ, t)dθ is bounded on [0, T ∗).

Proof. On one hand, using Theorem 3.1, for all t > 0, we have

∫ 2π

0
ln k(θ, t)dθ ≥

∫ 2π

0
ln kmin(t)dθ = 2π ln kmin(t)

≥ 2π ln[kmin(0)e−L2/16A2t] ≥ 2π ln kmin(0) − π

8
L2

0

A2
0
t.

On the other hand, in terms of the evolution equation for curvature and
integrating by parts we get

d

dt

∫ 2π

0
ln k(θ, t)dθ =

∫ 2π

0

(
kkθθ + k2 − L

2A
k

)
dθ

=
∫ 2π

0

(
−k2

θ + k2 − L

2A
k

)
dθ ≤

∫ 2π

0
(−k2

θ + k2)dθ.(4.2)

The open set U = {θ : k(θ, t) > k∗(t)} can be written uniquely as the
union of a countable number of disjoint open intervals Ii, each of which
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must have length ≤ π by definition (4.1). On each interval Ii we have

∫
Īi

(−k2
θ + k2)dθ =

∫
Īi

{−[(k − k∗)θ]2 + k2}dθ

≤
∫

Īi

[−(k − k∗)2 + k2]dθ =
∫

Īi

[2kk∗ − (k∗)2]dθ ≤ 2k∗
∫

Īi

kdθ,(4.3)

where we have used the Wirtinger inequality.
On the complement of U , U c, we have the estimate k ≤ k∗ and

(4.4)
∫

Uc

(−k2
θ + k2)dθ ≤ k∗

∫
Uc

kdθ.

Therefore, combining (4.2), (4.3) and (4.4) and using Proposition 4.1 we
obtain

d

dt

∫ 2π

0
ln k(θ, t)dθ ≤ 2k∗

∫ 2π

0
kdθ ≤ 2L0

A0

∫ 2π

0
kdθ.

Now, using (3.4) and (2.21) yields

d

dt

∫ 2π

0
ln k(θ, t)dθ ≤ 2L0

A0

(
πL

A
− Lt

)
≤ 2πL2

0

A2
0

− 2L0

A0
Lt.

Finally, integrating this gives us

∫ 2π

0
ln k(θ, t)dθ ≤

∫ 2π

0
ln k0(θ)dθ +

2πL2
0

A2
0

t − 2L0

A0
(L(t) − L0),

which completes the proof, noting that
√

4πA0 ≤ L ≤ L0. �

Lemma 4.3. If
∫ 2π
0 ln k(θ, t)dθ is bounded on [0, T ∗), then for any δ > 0

we can find a constant M such that k(θ, t) ≤ M except on θ intervals of
length ≤ δ.
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Proof. The proof is by contradiction. Suppose that, for any M > 0, there
exists an interval [a, b] with b − a > δ such that on this interval k > M , then

∫ 2π

0
ln k(θ, t)dθ =

∫ b

a
ln k(θ, t)dθ +

∫
[0,2π]\[a,b]

ln k(θ, t)dθ

> (b − a) lnM + (2π − (b − a)) ln kmin(t)
= 2π ln kmin(t) + (b − a)(lnM − ln kmin(t))
> 2π ln kmin(t) + δ(lnM − ln kmin(t))
= δ lnM + (2π − δ) ln kmin(t)

≥ δ lnM + (2π − δ) ln kmin(0) − (2π − δ)
L2

0

16A2
0
t.

This gives us a contradiction when M is very large. �

Now, we prove the following “reverse Poincare inequality.”

Lemma 4.4. We can find a constant D such that

∫ 2π

0
(kθ)2dθ ≤

∫ 2π

0
k2dθ + D

holds for 0 ≤ t < T ∗.

Proof. We can calculate:

(4.5)
d

dt

∫ 2π

0
[k2 − (kθ)2]dθ = 2

∫ 2π

0
(kkt − kθkθt)dθ = 2

∫ 2π

0
(k + kθθ)ktdθ.

From the evolution equation (3.3) for the curvature it follows that kθθ + k =
L
2A + kt

k2 . Taking this into (4.5) yields

d

dt

∫ 2π

0
(k2 − k2

θ)dθ = 2
∫ 2π

0

(
L

2A
+

kt

k2

)
ktdθ

=
L

A

∫ 2π

0
ktdθ + 2

∫ 2π

0

k2
t

k2 dθ≥ L

A

∫ 2π

0
ktdθ=

L

A

d

dt

∫ 2π

0
kdθ

=
(

L

A

∫ 2π

0
kdθ

)
t

−
(

L

A

)
t

∫ 2π

0
kdθ ≥

(
L

A

∫ 2π

0
kdθ

)
t

,
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where we have used Lemma 2.3, therefore, by integration we have
∫ 2π

0
(k2 − k2

θ)dθ −
∫ 2π

0
[k2

0(θ) − k2
θ(θ, 0)]dθ

≥L

A

∫ 2π

0
kdθ − L0

A0

∫ 2π

0
k0dθ ≥ −L0

A0

∫ 2π

0
k0dθ.

and therefore
∫ 2π

0
k2

θdθ ≤
∫ 2π

0
k2dθ +

∫ 2π

0

[
k2

θ(θ, 0) +
L0

A0
k0(θ) − k2

0(θ)
]

dθ.

Letting

D = max
{

0,

∫ 2π

0

[
k2

θ(θ, 0) +
L0

A0
k0(θ) − k2

0(θ)
]

dθ

}

yields the desired result. �

Proposition 4.5 (Pointwise estimate). If
∫ 2π
0 ln k(θ, t)dθ is bounded on

[0, T ∗), then k(θ, t) is uniformly bounded on S1 × [0, T ∗).

Proof. Since
∫ 2π
0 ln k(θ, t)dθ is bounded on [0, T ∗), from Lemma 4.3 we have

k ≤ M except on intervals length less than δ. On such an interval

k(φ) = k(a) +
∫ φ

a

∂k

∂θ
dθ ≤ k(a) +

∫ φ

a

∣∣∣∣∂k

∂θ

∣∣∣∣ dθ

≤ M +
√

δ

(∫
k2

θdθ

)1/2

≤ M +
√

δ

(∫
k2dθ + D

)1/2

.

This shows that if kmax is the maximum of k, then

kmax ≤ M +
√

δ(2πk2
max + D)1/2 ≤ M +

√
2πδkmax +

√
δD.

Choosing δ small we have kmax ≤ 2M . �
Therefore we have

Theorem 4.6. If k : S1 × [0, T ∗) −→ R satisfies equation (3.3), then the
curvature k is uniformly bounded on S1 × [0, T ∗).

Now, using estimates for the L2 norms of the derivatives of k with respect
to θ similar to those in [12, §4.4] we shall prove that all the higher derivatives
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of k with respect to θ are also bounded under the assumption that k is
bounded on the time interval [0, T ∗). To simplify notation, we use “ ′ ” to
denote the partial derivative with respect to θ in what follows, for example,

k′ =
∂k

∂θ
, k′′ =

∂2k

∂θ2 , · · · .

Lemma 4.7. If k is uniformly bounded on [0, T ∗), then k′ = ∂k
∂θ is also

bounded on the same interval.

Proof. Using the evolution equation (3.3) we calculate:

∂2k

∂t∂θ
=

(
∂k

∂t

)′
=

(
k2k′′ + k3 − L

2A
k2

)′

= 2kk′k′′ + k2k′′′ + 3k2k′ − L

A
kk′

= k2k′′′ + 2kk′k′′ +
(

3k2 − L

A
k

)
k′.

This implies that k′ grows at most exponentially as can be seen by con-
sidering the PDE. satisfied by eμtk′ and choosing μ so that the maximum
principle can be used. On a finite time interval k′ remains bounded. �

Lemma 4.8. If k and k′ are both bounded on the interval [0, T ∗), then so
is

∫ 2π
0 (k′′)4dθ.

Proof. Using the evolution equation and integrating by parts we get

d

dt

∫ 2π

0
(k′′)4dθ = 4

∫ 2π

0
(k′′)3

∂k′′

∂∂t
dθ = 4

∫ 2π

0
(k′′)3

(
∂k

∂t

)′′
dθ

= 4
∫ 2π

0
(k′′)3

(
k2k′′ + k3 − L

2A
k2

)′′
dθ

= −12
∫ 2π

0

(
k2k′′ + k3 − L

2A
k2

)′
(k′′)2k′′′dθ

= −12
∫ 2π

0
(k′′)2k′′′

(
k2k′′′ + 2kk′k′′ + 3k2k′ − L

A
kk′

)
dθ

= 12
∫ 2π

0

[
−k2(k′′)2(k′′′)2 − 2kk′(k′′)3k′′′

− 3k2k′(k′′)2k′′′ +
L

A
kk′(k′′)2k′′′

]
dθ.
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Using the Peter–Paul inequality: for any ε > 0

(4.6) ab ≤ εa2 +
b2

4ε

to bound the second, third and fourth terms by the first term and some
additional penalty terms and observing that L

A ≤ L0
A0

we obtain

d

dt

∫ 2π

0
(k′′)4 ≤C1

∫ 2π

0
(k′)2(k′′)4 + C2

∫ 2π

0
k2(k′)2(k′′)2 + C3

∫ 2π

0
(k′)2(k′′)2.

Using the uniform bounds on k and k′ and the fact that

(4.7)
∫ 2π

0
(k′′)2 ≤

√
2π

[∫ 2π

0
(k′′)4

]1/2

,

we see that
∫ 2π
0 (k′′)4 grows at most exponentially and therefore remains

finite on a finite interval. �

Lemma 4.9. If k, k′ and
∫ 2π
0 (k′′)4 are bound, so is

∫ 2π
0 (k′′′)2.

Proof. Similarly, we calculate:

d

dt

∫
(k′′′)2 = 2

∫
k′′′ ∂k′′′

∂t
= 2

∫
k′′′

(
k2k′′ + k3 − L

2A
k2

)′′′

= −2
∫

k(4)
(

k2k′′ + k3 − L

2A
k2

)′′

= −2
∫

k(4)
[
k2k(4) + 2kk′k′′′ + 2(k′)2k′′ + 2k(k′′)2

+2kk′k′′′ + 6k(k′)2 + 3k2k′′ − L

A
(k′)2 − L

A
kk′′

]

= 2
∫ [

−k2(k(4))2 − 4kk′k′′′k(4) − 2(k′)2k′′k(4)

−2k(k′′)2k(4) − 3k2k′′k(4) − 6k(k′)2k(4)

+
L

A
kk′′k(4) +

L

A
(k′)2k(4)

]
.

We use the same trick as in the proof of the previous lemma to bound
the last seven terms by the first one and some additional penalty ones.
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Thus we get

d

dt

∫
(k′′′)2 ≤ C1

∫
(k′)2(k′′′)2 + C2

∫
(k′)4(k′′)2

k2 + C3

∫
(k′′)4

+ C4

∫
k2(k′′)2 + C5

∫
(k′)4 + C6

∫
(k′′)2 + C7

∫
(k′)4

k2 ,

where each term except the first is bounded by a constant (recall again
that k ≥ kmin(t) ≥ kmin(0)e−(L2)/(16A2)t has a positive lower bound). And
the first term is bounded by a constant times

∫
(k′′′)2 which shows that the

growth rate of
∫

(k′′′)2 is at worst exponential and that the quantity is finite
on finite intervals. �

Corollary 4.10. Under the same hypothesis as in the previous lemma, k′′

is bounded.

Proof. In one-dimensional case

max |f |2 ≤ C

∫
|f ′|2 + f2,

and we apply this to k′′. �

Lemma 4.11. If k, k′ and k′′ are uniformly bounded, then so are k′′′ and
all the higher derivatives with respect to θ.

Proof. We calculate:

∂k′′′

∂t
=

(
k2k′′ + k3 − L

2A
k2

)′′′

= k2k(5) + 6kk′k(4) +
[
6(k′)2 + 8kk′′ + 3k2 − L

A
k

]
k′′′

+
[
6k′(k′′)2 + 18kk′k′′ + 6(k′)3 − 3L

A
k′k′′

]

If k, k′ and k′′ are bounded then the maximum principle can be applied to
k′′′eμt for suitably choosing μ. On a finite time interval, this implies that
|k′′′| is bounded.

Generally, if k, k′, . . . , l(l−1) are bounded, then

∂k(l)

∂t
≤ k2k(l+2) + 2lkk′k(l+1) + Ck(l) + C

shows that k(l) is bounded on finite intervals. �
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Theorem 4.12. The solutions k, L and A to the initial value problem in
Theorem 3.4 are continuous on the time interval [0,∞).

Proof. Theorem 3.4 has shown the short-time existence and uniqueness for
the classical solutions. Now suppose that the solutions exist on the time
interval [0, T ∗), with T ∗ < ∞, then from the above geometric, integral and
pointwise estimates and Lemma 4.7, Corollary 4.10 and Lemma 4.11, it
follows that k and all its derivatives with respect to θ are bounded. Using
the evolution equation (3.3) for curvature and inequality (2.21) we can bound
the time derivatives of k as well. Thus k converges to a C∞ function at T ∗

and defines a closed curve by using (3.6) in the previous section. Now, we use
the short-time existence to extend the time interval on which the solution k
is defined. This shows that the solution k(θ, t) can be defined on the time
interval [0,∞). Therefore the associated L and A can also be defined by
using (3.7) and (3.9). Thus completes the proof. �

5. The proof of the main theorem

Main theorem. A convex closed curve in the plane which evolves under
(1.1)–(1.4) remains convex, expands the enclosed area while shortens its
length during the evolution process and converges to a circle in the C∞

metric.

Proof. Since the tangential component of the evolution equation for the
curve does not affect the geometric shape of the evolving curve, and therefore
we can reduce the problem equivalently to (2.14)–(2.17). Now, Theorem 2.4
and Lemma 2.5 ensure that a convex curve evolving according to (2.14)–
(2.17) remains convex and makes the enclosed area increase and its length
decrease.

As to existence, we have first shown in Theorem 3.3 that the evolution
problem (2.14)–(2.17) is equivalent to an initial value problem of nonlinear
differentio-integral equations (Theorem 3.3), and then shown that the later
is both locally (Theorem 3.4) and globally solvable (Theorem 4.12).

To check convergence, one sees from Theorem 2.8 that the evolving curve
converges to a circle in the Hausdorff metric, which can be considered as
“C0” convergence. Now, mimicking the proofs of subsections 5.1–5.6 of [12],
one can show that

kmin(t)
kmax(t)

→ 1
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as t → ∞. This implies that the curvature k converges to a constant R,
which can be considered as “C2” convergence to the circle. Finally, after a
series of calculations and estimates similar to those of Section 5.7 of [12], one
can prove by induction that for any α (0 < α < 1) and any positive integer
l ≥ 1, there exists a constant C(l) and sufficiently large time T such that
for t > T ,

‖k(l)‖∞ ≤ C(l)e−(2α)/(R2)t.

This proves that all of the derivatives of k converge to 0 as the time t goes to
infinity, which can be considered as the “C∞” convergence to the circle. �
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