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A general Schwarz lemma for almost-Hermitian
manifolds

Valentino Tosatti

We prove a version of Yau’s Schwarz lemma for general almost-
complex manifolds equipped with almost-Hermitian metrics. This
requires an extension to this setting of the Laplacian comparison
theorem. As an application, we show that the product of two
almost-complex manifolds does not admit any complete almost-
Hermitian metric with bisectional curvature bounded between two
negative constants that satisfies some additional assumptions.

1. Introduction

The classical Schwarz–Pick lemma says that a holomorphic map from the
unit disc in the complex plane into itself decreases the Poincaré metric. This
was later extended by Ahlfors [1] to maps from the disc into a hyperbolic
Riemann surface, and by Chern [5] and Lu [18] to allow more general
domains and targets. A major advance was Yau’s Schwarz lemma [28],
which says that a holomorphic map from a complete Kähler manifold with
Ricci curvature bounded below into a Hermitian manifold with holomorphic
bisectional curvature bounded above by a negative constant is distance
decreasing up to a constant depending only on these bounds. This proved
to be extremely useful in differential geometry and complex analysis (see,
for example, [17]). Later generalizations of this result were mainly in two
directions: relaxing the curvature hypothesis or the Kähler assumption
(see [3, 11, 20]) or proving similar results for harmonic maps of Riemannian
manifolds [10].

Here we take a different direction and generalize Yau’s Schwarz lemma
to the case when the complex structures are not integrable. Recently, there
has been a lot of interest on geometric and analytic aspects of almost-
complex manifolds (see [13, 24]), also in relation with symplectic geometry
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(see [7, 25]) and complex analysis [6]. Our setting is as follows: suppose we
are given two almost-complex manifolds M and M̃ , equipped with Rieman-
nian metrics compatible with the almost complex structures (we call such
data an almost-Hermitian manifold). A map from M to M̃ is said to be
almost-complex or holomorphic, if its differential intertwines the two almost-
complex structures. On any almost-Hermitian manifold there is a preferred
choice of connection, the so-called canonical connection, that generalizes
the Chern connection in the integrable case. In general, it is different from
the Levi–Civita connection, so it has non-trivial torsion, but is more suited
for analytic questions [24]. From now on, all geometric quantities (Ricci
and bisectional curvature, torsion, etc.) will be the ones of the canonical
connection. With this setup, we have the following Schwarz lemma (see
Section 2 for notation).

Theorem 1.1. Let (M2n, J, g) be a complete almost-Hermitian manifold
with second Ricci curvature bounded from below by −K1, and with torsion
and (2, 0) part of the curvature bounded. Let (M̃2ñ, J̃ , g̃) be an almost-
Hermitian manifold with bisectional curvature bounded from above by −K2,
K2 > 0. If f : M → M̃ is a non-constant almost-complex map, then we must
have K1 ≥ 0 and

f∗g̃ ≤ K1

K2
g.

In particular if K1 ≤ 0 then any almost-complex map is constant.

Corollary 1.1. Let (M2n, J, g) be a complete almost-Hermitian manifold
with non-negative second Ricci curvature and with torsion and (2, 0) part of
the curvature bounded. Then M does not admit any non-constant bounded
J-holomorphic function f : M → C.

Notice that when M is compact the assumptions of bounded torsion and
(2, 0) part of the curvature are automatically satisfied. Also, while almost-
complex maps between Kähler manifolds are always harmonic [16], this is
no longer true for general almost-complex manifolds (see [8, (9.11)]), so that
the results of [10] do not apply in our situation.

Next we assume that M and M̃ have the same dimension. A map
f : M → M̃ is called non-degenerate if f∗dVg̃ is a volume form on M , and
totally degenerate if f∗dVg̃ vanishes identically. Then we have the following
Schwarz lemma for the volume forms.

Theorem 1.2. Let (M2n, J, g) be a complete almost-Hermitian manifold
with second Ricci curvature bounded from below, with torsion and (2, 0) part
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of the curvature bounded, and with scalar curvature bounded from below
by −nK1. Let (M̃2n, J̃ , g̃) be an almost-Hermitian manifold of the same
dimension 2n with first Ricci curvature bounded from above by −K2, K2 > 0.
If f : M → M̃ is a non-degenerate almost-complex map, then we must have
K1 ≥ 0 and

f∗dVg̃ ≤
(

K1

K2

)n

dVg.

In particular if K1 ≤ 0 then any almost-complex map is totally degenerate.

As an application of the Schwarz lemma, we study the geometry of the
product of two (non-trivial) almost-complex manifolds. A classical theorem
of Preissman implies that a compact Riemannian manifold with negative
sectional curvature cannot be topologically a product manifold. For Kähler
manifolds the notion of bisectional curvature is more natural, and it is easy
to see that a compact Kähler manifold with negative bisectional curvature
cannot be the product of two non-trivial complex manifolds (this is because
the negativity of the curvature implies that the cotangent bundle is ample).
When the two factors are allowed to be non-compact, there are similar results
due to Yang, Zheng and Seshadri ([22, 26, 29]). In [23] it is proved that the
product of two complex manifolds does not admit any complete Hermitian
metric with bounded torsion and bisectional curvature bounded between two
negative constants. It is natural to expect that such a result should hold in
the almost-complex case, and this is precisely what we prove.

Theorem 1.3. Let M = X × Y be the product of two almost-complex mani-
folds of positive dimensions. Then M does not admit any complete almost-
Hermitian metric with torsion and (2, 0) part of the curvature bounded and
with bisectional curvature bounded between two negative constants.

Corollary 1.2. The product of two compact non-trivial almost-complex
manifolds does not admit any almost-Hermitian metric with negative bisec-
tional curvature.

Let us stress that here the bisectional curvature is the one of the canon-
ical connection, and in general is different from the one of the Levi–Civita
connection (as defined in [12], for example). Nevertheless, this curvature
is more natural on almost-Hermitian manifolds (see the discussion after
Lemma 3.2).

The proof of the Schwarz lemma employs Cartan’s formalism of moving
frames and the canonical connection, as in [24]. To deal with the case
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of non-compact manifolds, we generalize Yau’s maximum principle [27] to
our situation. The proof of this requires a suitable Laplacian comparison
theorem for almost-Hermitian manifolds. This is the key technical tool and is
proved along the lines of the classical Laplacian comparison, but using local
holomorphic discs instead of complex coordinates that are not available, and
keeping carefully track of the torsion. The proof of Theorem 1.3 follows the
argument in [23], once the Schwarz lemma and the maximum principle hold.
The paper is organized as follows: in Section 2, we give some background
on almost-Hermitian metrics and the canonical connection. In Section 3, we
study the Laplacian of the canonical connection. In Section 4, we prove the
Laplacian comparison theorem and the maximum principle. In Section 5,
we give a proof of Theorems 1.1 and 1.2. Finally, Theorem 1.3 is proved in
Section 6.

2. Almost-Hermitian manifolds and the canonical connection

In this section, we give some background on almost-Hermitian manifolds, the
canonical connection and its torsion and curvature. Some of the exposition
follows [24, Section 2].

Let (M, J, g) be an almost-Hermitian manifold of dimension 2n. Namely,
J is an almost complex structure on M and g is a Riemannian metric
satisfying

g(JX, JY ) = g(X, Y ),

for all tangent vectors X and Y . Write T R
p M for the (real) tangent space

of M at a point p. In the following we will drop the subscript p. Denote
the complexified tangent space by T CM = T RM ⊗ C. Extending g and J
linearly to T CM , we see that the complexified tangent space can be decom-
posed as

T CM = T ′M ⊕ T ′′M,

where T ′M and T ′′M are the eigenspaces of J corresponding to eigen-
values

√
−1 and −

√
−1, respectively. T ′M and T ′′M are complex vector

spaces of dimension n, which inherit a Hermitian metric induced by g.
Note that by extending J to forms, we can uniquely decompose m-forms
into (p, q)-forms for each p,q with p + q = m. The real tangent bundle
T RM can be identified with T ′M in a natural way, by sending a vector
XR to X = 1√

2
(XR −

√
−1JXR). This identification is an isomorphism of

complex vector bundles, and an isometry. From now on, we will write g
for the induced Hermitian metric on T ′M , and dVg for its corresponding
volume element. Choose a local unitary frame {e1, . . . , en} for T ′M , and
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let {θ1, . . . , θn} be a dual coframe. Then we can write g = θi ⊗ θi and
dVg = (

√
−1)nθ1 ∧ θ1 ∧ · · · ∧ θn ∧ θn, where here, and henceforth, we are

summing over repeated indices.
Let ∇ be an affine connection on T RM , which we extend linearly to

T CM . We say that ∇ is an almost-Hermitian connection if

∇J = ∇g = 0.

It is easy to see that such connections always exist on any almost-
Hermitian manifold, and from now on we shall assume that ∇ satisfies
this condition. Observe that J(∇ei) =

√
−1∇ei, and hence ∇ei ∈ T ′M ⊗

(T C(M))∗. Then locally there exists a matrix of complex valued 1-forms
{θj

i }, called the connection 1-forms, such that

∇ei = θj
i ej .

Applying ∇ to g(ei, ej) and using the condition ∇g = 0, we see that {θj
i }

satisfies the skew-Hermitian property

θj
i + θi

j = 0.

Now define the torsion Θ = (Θ1, . . . ,Θn) of ∇ by

(2.1) dθi = −θi
j ∧ θj + Θi, for i = 1, . . . , n.

Notice that the Θi are 2-forms. Equation (2.1) is known as the first structure
equation. Define the curvature Ω = {Ωi

j} of ∇ by

(2.2) dθi
j = −θi

k ∧ θk
j + Ωi

j .

Note that {Ωi
j} is a skew-Hermitian matrix of 2-forms. Equation (2.2)

is known as the second structure equation. We have the following lemma
(see, e.g., [9]).

Lemma 2.1. There exists a unique almost-Hermitian connection ∇ on
(M, J, g) whose torsion Θ has everywhere vanishing (1, 1) part.

We call such a connection the canonical connection. In Riemannian
geometry the torsion of a connection ∇ is usually defined by

(2.3) ∇XY = ∇Y X + [X, Y ] + τ(X, Y ).
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We will show in Lemma 3.2 that in T CM the following identity holds:

(2.4) τ = 2(Θiei + Θjej).

Define functions M i
jk and N i

j k
by

(Θi)(2,0) = M i
jkθ

j ∧ θk, (Θi)(0,2) = N i
j k

θj ∧ θk,

with M i
jk = −M i

kj and N i
j k

= −N i
k j

. Define Rj

ik�
, Ki

jk� and Ki
jk �

by

(Ωj
i )

(1,1) = Rj

ik�
θk ∧ θ�

(Ωi
j)

(2,0) = Ki
jk�θ

k ∧ θ�

(Ωi
j)

(0,2) = Ki
jk �

θk ∧ θ�,

with Ki
jk� = −Ki

j�k and Ki
jk �

= −Ki
j� k

. The fact that {Ωi
j} is skew-Hermitian

implies that

(2.5) Ki
jk� = Kj

i� k
, Ri

jk�
= Rj

i�k
.

If X, Y are two (1, 0) vectors, we define

(2.6) B(X, Y ) =
Rj

ik�
XiXjY kY �

‖X‖2‖Y ‖2

to be the bisectional curvature of the canonical connection in the directions
X and Y , which is a real number. We define the first Ricci curvature, the
second Ricci curvature and the scalar curvature of the canonical connection
to be the tensors Rk� = Ri

ik�
, R′

k�
= R�

kii
and R = Rkk = R′

kk
, respectively.

Applying the exterior derivative to the first structure equation, we obtain
the first Bianchi identity,

(2.7) dΘi = Ωi
j ∧ θj − θi

j ∧ Θj .

If we define M i
jk,p, M i

jk,p by

(2.8) dM i
jk + θi

pM
p
jk − M i

pkθ
p
j − M i

jpθ
p
k = M i

jk,pθ
p + M i

jk,pθ
p,

and N i
j k,p

and N i
j k,p

by

(2.9) dN i
j k

+ θi
pN

p

j k
− N i

p k
θp
j − N i

jp
θp
k = N i

j k,p
θp + N i

j k,p
θp,



Schwarz lemma 1069

then the first Bianchi identity implies that (see, e.g., [24, Section 2.3])

(2.10) 2M i
pjN

p

k �
+ N i

k �,j
= Ki

jk �
.

We say that the bisectional curvature is bounded above by A if

B(X, Y ) ≤ A

holds for all X, Y ∈ T ′M . The first Ricci curvature is bounded below by a
constant −A1 if

Rk�X
kX� ≥ −A1‖X‖2

holds for all X ∈ T ′M , and the same for the second Ricci curvature. The
torsion is bounded by A2 > 0 if

‖τ(X, Y )‖ ≤ A2‖X‖‖Y ‖

holds for all X, Y ∈ T ′M , and the (2, 0) part of the curvature is bounded by
A3 if

|Ki
jk�X

iY jY kX�| ≤ A3‖X‖2‖Y ‖2.

3. The canonical Laplacian

In this section, we study the Laplacian of the canonical connection, and
relate it to the standard Laplacian of the Levi–Civita connection. Again,
part of the exposition follows [24].

Let ∇ be the canonical connection of (M, J, g), and u be a function on
M . We define the canonical Laplacian Δ of u by

Δu =
∑

i

((∇∇u)(ei, ei) + (∇∇u)(ei, ei)).

This expression is independent of the choice of unitary frame. Another way
to define Δu is as follows. Let {ν1, . . . , ν2n} be a real local orthonormal
frame for g and set

Δu =
2n∑

A=1

(∇∇u)(νA, νA).

Clearly this expression is independent of the choice of frame and coincides
with the one above. Now define ui and ui by

(3.1) du = uiθ
i + uiθ

i.
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Writing ∂u and ∂u for the (1, 0) and (0, 1) parts of du, respectively, we see
that ∂u = uiθ

i and ∂u = uiθ
i. Define uik, uik, uik and ui k by

dui − ujθ
j
i = uikθ

k + uikθ
k

dui − ujθ
j
i = uikθ

k + ui kθ
k.

The following lemma is proved in [24].

Lemma 3.1.

Δu = 2
∑

i

uii(3.2)

= −2
∑

i

(d∂u)(1,1)(ei, ei)(3.3)

= 2
∑

i

(d∂u)(1,1)(ei, ei)(3.4)

=
√

−1
∑

i

(d(Jdu))(1,1)(ei, ei),(3.5)

where J acts on a 1-form α by (Jα)(X) = α(J(X)) for a vector X.

We now want to relate the canonical Laplacian to the standard Levi–
Civita Laplacian. In general they are different, and their precise relation is
given by the following lemma.

Lemma 3.2. The Laplacian of the Levi–Civita connection of g acting on
a function u is equal to

Δu + 2M i
jiuj + 2M i

jiuj .

Proof. The Laplacian of the Levi–Civita connection applied to u is given by
the trace of the map F : T RM → T RM defined by

F (X) = ∇X(gradg u) + τ(gradg u, X),

(see, for example, [15, p. 282]) where ∇ is the canonical connection and
τ is its torsion, as defined in (2.3). To prove the lemma, it is enough to
show that (2.4) holds. We verify this for X, Y ∈ T ′M first. Define functions
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Xi
p, Xi

p, Xi
pq, Xi

pq, Xi
pq, Xi

p q by

dX i + Xjθi
j = Xi

pθ
p + Xi

pθ
p,(3.6)

dX i
p + Xj

pθi
j − Xi

jθ
j
p = Xi

pqθ
q + Xi

pqθ
q,(3.7)

dX i
p + Xj

pθi
j − Xi

j
θj
p = Xi

pqθ
q + Xi

p qθ
q,(3.8)

and similarly for Y . Then we have

∇XY = Xp∇ep
(Y iei) = Xp〈ep, dY i〉ei + XpY i〈θk

i , ep〉ek

= −XpY k〈θi
k, ep〉ei + XpY i

p ei + XpY i〈θk
i , ep〉ek = XpY i

p ei.
(3.9)

Here and in the following 〈·, ·〉 denotes the pairing between vectors and
1-forms. Moreover

− 〈θi
�, X〉〈θ�, Y 〉 + 〈θi

�, Y 〉〈θ�, X〉 + 2Θi(X, Y ) = 2dθi(X, Y )

= X〈θi, Y 〉 − Y 〈θi, X〉 − 〈θi, [X, Y ]〉
= Xj〈ej , dY i〉 − Y k〈ek, dXi〉 − 〈θi, [X, Y ]〉
= −XjY k〈θi

k, ej〉 + Y kXj〈θi
j , ek〉 + XjY i

j − Y kXi
k − 〈θi, [X, Y ]〉

= −〈θi
k, X〉〈θk, Y 〉 + 〈θi

j , Y 〉〈θj , X〉 + 〈θi,∇XY − ∇Y X − [X, Y ]〉,

which shows that the ei component of τ is 2Θi. Similarly

2Θi(X, Y ) = 2dθi(X, Y ) = −〈θi, [X, Y ]〉 = 〈θi,∇XY − ∇Y X − [X, Y ]〉,

so that the ei component of τ is 2Θi.
Now we take X ∈ T ′M , Y ∈ T ′′M (the case when X, Y ∈ T ′′M is the

same as the one above). Then

∇XY = Xp∇ep
(Y iei) = Xp〈ep, dY i〉ei + XpY i〈θk

i , ep〉ek

= −XpY k〈θi
k, ep〉ei + XpY i

p ei + XpY i〈θk
i , ep〉ek = XpY i

p ei,
(3.10)

and similarly ∇Y X = Y pXi
pei. Then

〈θi
�, Y 〉〈θ�, X〉 + 2Θi(X, Y ) = 2dθi(X, Y ) = −Y 〈θi, X〉 − 〈θi, [X, Y ]〉
= −Y k〈ek, dXi〉 − 〈θi, [X, Y ]〉 = Y kXj〈θi

j , ek〉 − Y kXi
k

− 〈θi, [X, Y ]〉
= 〈θi

j , Y 〉〈θj , X〉 + 〈θi,∇XY − ∇Y X − [X, Y ]〉,

which shows again that the ei component of τ is 2Θi, and the verification
of the ei component is analogous. �
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A corollary of this is the following observation: if u achieves its infimum
at a point x ∈ M , then Δu(x) ≥ 0. We will use this remark later.

Along the same lines as in Lemma 3.2, it is easy to verify that the
bisectional curvature satisfies

1
2B(X, Y )‖X‖2‖Y ‖2 = R(V, JV, JW, W ),

where R is the (real) Riemann curvature tensor of the canonical connection,
and V = 1√

2
(X + X), W = 1√

2
(Y + Y ) are two real tangent vectors. This

quantity is in general different from

RLC(V, JV, JW, W ),

where RLC is the curvature of the Levi–Civita connection. This is usually
referred to as the holomorphic bisectional curvature [12], but is not very
natural on a general almost-Hermitian manifolds. In fact, it is not hard
to see [14] that the bisectional curvature of the canonical connection of an
almost-complex submanifold is always less than the one of the ambient space,
but this fails, in general, for the Levi–Civita connection (see [12, Proposition
10.1]). The two quantities obviously agree on a Kähler manifold.

Let (M, J, g) and (M̃, J̃ , g̃) be two almost-Hermitian manifolds of dimen-
sions 2n and 2ñ, respectively, and let f : M → M̃ be an almost-complex
mapping, which means that

J̃ ◦ f∗ = f∗ ◦ J.

We will also say that f is (J, J̃)-holomorphic. Then we have the following
invariance property.

Lemma 3.3. For any function u on M̃ we have

f∗d(J̃du) = d(Jd(u ◦ f)).

Proof. If X is vector tangent to M then

〈f∗J̃du, X〉 = 〈J̃du, f∗X〉 = 〈du, (J̃ ◦ f∗)(X)〉 = 〈du, f∗JX〉
= 〈d(u ◦ f), JX〉 = 〈Jd(u ◦ f), X〉,

and taking the exterior derivative we get the conclusion. �
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4. The maximum principle

In this section, we prove a version of Yau’s generalized maximum principle
[27] for almost-Hermitian manifolds. The key tool is a Laplacian comparison
theorem, whose analog in Riemannian and Kähler geometry is standard [21].
It was extended to Hermitian manifolds in [4] and we will show that it still
holds in our more general setting.

The first result is as follows.

Theorem 4.1. Let (M, J, g) be a complete almost-Hermitian manifold with
second Ricci curvature bounded below and with torsion and (2, 0) part of the
curvature bounded. Let u be a non-negative function that is not identically
zero and satisfies

(4.1) Δu ≥ Au1+α − Bu,

where α, A > 0. Then u is bounded above, B ≥ 0, and

sup
M

u ≤
(

B

A

)1/α

.

This can be proved exactly in the same way as in [28], once we have the
following proposition.

Proposition 4.1 (Maximum principle). Let (M, J, g) be a complete
almost-Hermitian manifold with second Ricci curvature bounded below and
with torsion and (2, 0) part of the curvature bounded. Let u be a real func-
tion that is bounded from below. Then given any ε > 0 there exists a point
xε ∈ M such that

lim inf
ε→0

u(xε) = inf
M

u,

|∇u|(xε) ≤ ε,

Δu(xε) ≥ −ε.

The proof of this follows the one in [27] and relies on the following
theorem.

Theorem 4.2 (Laplacian comparison). Let (M, J, g) be a complete
almost-Hermitian manifold with second Ricci curvature bounded below
by −A1, torsion bounded by A2 and (2, 0) part of the curvature bounded
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by A3. Let ρ be the distance from a fixed point o ∈ M . Then at any point
where ρ is smooth we have

Δρ ≤ 2n

ρ
+ C,

where C depends only on A1, A2, A3 and the dimension of M . Moreover,
this holds on the whole of M in the sense of distributions.

Proof. Fix a point x ∈ M outside the cut locus of o, and a minimal unit-
speed geodesic γ : [0, ρ(x)] → M from o to x. Let D ⊂ C be the unit disc, z
be the coordinate on D and e = ∂/∂z|z=0 be the tangent vector at the ori-
gin. If v ∈ T ′

xM is small enough then Proposition 1.1 in [13] (see also [19])
gives a J-holomorphic map F : D → M with F (0) = x and F∗(e) = v, which
depends smoothly on x and v. Now extend v to a section v(t) of T ′M along
γ, that is small enough and vanishes at o. Using [13, Theorem A1] and
the compactness of the support of γ, we can extend F to a smooth family
Ft : D → M of J-holomorphic discs, with the properties that Fρ(x) = F ,
Ft(0) = γ(t), Ft∗(e) = v(t) and F0(z) = o. We will write F (t, z) = Ft(z)
so that we have a map F : [0, ρ(x)] × D → M . Notice that we can also
allow v = γ′(ρ(x)). The vector F∗(∂/∂t) belongs to T RM ⊂ T CM , and so
it can be written as T + T where T ∈ T ′M . Moreover, the fact that Ft is
J-holomorphic implies that the vector S = F∗(∂/∂z) belongs to T ′M . Notice
that both T and S depend on (t, z) and that S(t, 0) = v(t), (T + T )(t, 0) =
γ′(t). The map F that we just constructed should be thought of as a
J-holomorphic variation of γ, and we are going to compute the second
variation of the arclength. This is the function L : D → R defined by

(4.2) L(z) =
√

2
∫ ρ(x)

0
‖T (t, z)‖dt,

which is just the length of the curve t �→ F (t, z), that goes from o to F (ρ(x),z),
a point near x. Fixing for a moment (t, z), we can take a local unitary frame
{ei} near F (t, z) and write T = T iei, S = Sjej . Then

d(‖T‖) = d(T iT i)1/2 =
1

2‖T‖(T i
pT

iθp + T i
pT

iθp + T iT i
pθ

p + T iT i
pθ

p),

∂

∂z
‖T‖ = 〈d‖T‖, S〉 =

T i
pT

iSp + T iT i
pS

p

2‖T‖ .(4.3)
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The term T iT i
pS

p can be computed as follows:

[T + T , S] = F∗([∂/∂t, ∂/∂z]) = 0,

and so [T, S] = [S, T ]. Combining (2.3), (2.4), (3.9) and (3.10) we get

θi([T, S]) = −θi(∇ST ) = −SpT i
p,

because Θi has no (1, 1) component. But we also have

θi([T, S]) = θi([S, T ]) = −2Θi(S, T ) = −2N i
j k

SjT k,

and so

(4.4) SpT i
p = 2N i

j k
SjT k.

By the same token, θi([T, S]) = T jSi
j − SjT i

j − 2M i
jkT

jSk, but we also have
that θi([T, S]) = θi([S, T ]) = −T jSi

j
, and so

(4.5) SjT i
j = T jSi

j + T jSi
j
− 2M i

jkT
jSk = 〈θi,∇T+T S − τ(T, S)〉.

Also, [S, S] = F∗([∂/∂z, ∂/∂z]) = 0 implies SpSi
p = 0. Using this, we differ-

entiate (4.3) once more and we get

∂2

∂z∂z
‖T‖ =

〈
d

⎛
⎝T i

pT
iSp + 2N i

j k
T iSjT k

2‖T‖

⎞
⎠ , S

〉

= −

∣∣∣T i
pT

iSp + 2N i
j k

T iSjT k
∣∣∣2

4‖T‖3 +
T i

pqT
iSpSq + T i

pT
i
qS

pSq

2‖T‖(4.6)

+
2N i

j k,q
T iSjT kSq + 2N i

j k
T i

qS
jT kSq + 2N i

j k
T iSjT k

q Sq

2‖T‖ .

To deal with the term T i
pqT

iSpSq we take the exterior derivative of (3.6)
and using (3.7), (3.8) we get

T jΩi
j = T i

pqθ
q ∧ θp + T i

pqθ
q ∧ θp + T i

pΘ
p + T i

pqθ
q ∧ θp + T i

p qθ
q ∧ θp + T i

pΘp,

whose (1,1) part gives T i
pq = T i

qp − T jRi
jpq, and so

(4.7) T i
pqT

iSpSq = T i
qpT

iSpSq − T jT iSpSqRi
jpq.
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The term T i
qpT

iSpSq can now be computed as follows:

0 = 〈d(SqT i
qT

i − 2N i
j k

SjT kT i), S〉 = SqT i
qpT

iSp + SqT i
qT

i
pS

p

− 2N i
j k,p

SjT kT iSp − 2N i
j k

SjT k
p T iSp − 2N i

j k
SjT kT i

pS
p,

and using (4.4) we get

(4.8) T i
qpT

iSpSq = 2N i
j k,p

SjT kT iSp + 2N i
j k

SjT k
p T iSp.

Combining (4.6), (4.7), (4.8), (4.5), (4.4), (2.10), (2.5) and (2.6) we get

∂2

∂z∂z
‖T‖

≤
−B(T, S)‖T‖2‖S‖2 + |〈θi,∇T+T S − τ(T, S)〉|2 + |〈θi, τ(S, T )〉|2

2‖T‖

+
4Re(Kp

ikjS
jT kT iSp − 2M i

qpN
q

j k
SjT kT iSp + N i

j k
SjT iNk

p qS
pT q)

2‖T‖

≤
−B(T, S)‖T‖2‖S‖2 + ‖∇T+T S − τ(T + T , S)‖2

2‖T‖

+
(13A2

2 + 4A3)‖S‖2‖T‖2

2‖T‖ .

All the terms on the right-hand side are tensorial, and hence independent
of the choice of unitary frame. Combining this with (4.2) and setting z = 0
we finally get

∂2

∂z∂z
L(z)

∣∣∣
z=0

≤ 1
2

∫ ρ(x)

0
‖∇γ′(t)v(t) + τ(v(t), γ′(t))‖2dt

+
1
2

∫ ρ(x)

0
(C − B(γ′(t), v(t)))‖v(t)‖2dt,

(4.9)

where C = 13A2
2 + 4A3. Notice that the right-hand side is homogeneous

of degree 2 in v(t), so it does not matter that we had picked v(t) small
in the first place. Define G : D → M to be the J-holomorphic disc G(z) =
F (ρ(x), z), originally called F , and notice that since γ is minimizing we have
L(z) ≥ (ρ ◦ G)(z) and L(0) = (ρ ◦ G)(0), hence

(4.10)
∂2

∂z∂z
L(z)

∣∣∣
z=0

≥ ∂2

∂z∂z
(ρ ◦ G)(z)

∣∣∣
z=0

.
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But now Lemmas 3.1 and 3.3 imply that
√

−1d(Jdρ)(1,1)(v, v) =
√

−1d(JCd(ρ ◦ G))(e, e)

= 4
∂2

∂z∂z
(ρ ◦ G)(z)

∣∣∣
z=0

,
(4.11)

where JC is the standard complex structure on C.
Now we choose v to have unit length, and we choose v(t) to be of the form

v(t) = f(t)w(t), where w(t) is the parallel transport with respect to ∇ of v
along γ, and f(t) ≥ 0 is a smooth increasing function that satisfies f(0) = 0
and f(ρ(x)) = 1. Then, using (4.9) and the fact that ∇g = 0, we get

∂2

∂z∂z
L(z)

∣∣∣
z=0

≤ 1
2

∫ ρ(x)

0
‖f ′(t)w(t) + f(t)τ(w(t), γ′(t))‖2dt

+
1
2

∫ ρ(x)

0
f(t)2(C − B(γ′(t), w(t)))dt

≤ 1
2

∫ ρ(x)

0

(
f ′(t)2 + 2A2f(t)f ′(t) + A2

2f(t)2
)
dt

+
1
2

∫ ρ(x)

0
f(t)2(C − B(γ′(t), w(t)))dt.

(4.12)

Now we combine (4.10), (4.11), (4.12) and sum them up when v ranges in
v1, . . . , vn, a unitary basis of T ′

xM , and using Lemma 3.1 we get

Δρ(x) ≤ 2
∫ ρ(x)

0

(
nf ′(t)2 + 2nA2f(t)f ′(t) + C ′f(t)2

)
dt,

where C ′ = nC + A1 + nA2
2. Next, following [4], we choose

f(t) =
(

t

ρ(x)

)α

,

where α > 1 will be chosen presently. With this choice we can easily compute
that

Δρ(x) ≤ 2n

ρ(x)
+ 2nA2 +

2n(α − 1)2

(2α − 1)ρ(x)
+

2C ′

2α + 1
ρ(x).

Now we choose α, depending on ρ(x), such that the last two terms on the
right-hand side are equal. Thus

n(α − 1)2

(2α − 1)ρ(x)
+

C ′

2α + 1
ρ(x) = 2

√
(α − 1)2

4α2 − 1
nC ′ ≤

√
nC ′,
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which is what we want. Finally, to show that the inequality in the sense of
distributions holds on the whole manifold we can just follow the argument
in [21, p. 7]. �

Proof of Proposition 4.1. Once we have established the Laplacian compar-
ison theorem, Theorem 4.2, the proof is standard, but we include it for
completeness. We will use a trick due to Calabi [2] to avoid the cut locus
of o. If the infimum of u is attained in the geodesic ball of radius 1 centered
at o then there is nothing to prove, so that we may assume that ρ > 1.
Then Theorem 4.2 gives Δρ ≤ C for a uniform constant C. For any ε > 0
the function u + ερ attains its infimum at a point xε ∈ M . Let γ be a min-
imal unit-speed geodesic from o to xε, x̃ be another point on γ and denote
by ρ̃ the distance from x̃. Then for any x ∈ M we have

u(x) + ερ̃(x) = u(x) + ερ(x) − ερ(x) + ερ̃(x) ≥ u(x) + ερ(x) − ερ(x̃),

and taking the infimum over x we get

inf
M

(u + ερ̃) ≥ u(xε) + ερ(xε) − ερ(x̃) = u(xε) + ερ̃(xε).

Hence the function u + ερ̃ also attains its infimum at xε. But we can now
choose x̃ outside the cut locus of xε, so that ρ̃ is smooth at xε, and using
the remark after Lemma 3.2 we get

|∇u|(xε) = ε|∇ρ̃|(xε) = ε,

Δu(xε) ≥ −εΔρ̃ ≥ −εC.

Finally, we check that lim infε→0 u(xε) = infM u. If not, there exist x ∈ M
and δ > 0 such that u(x) < u(xε) − δ for all ε small. We still have

u(x) + ερ(x) ≥ u(xε) + ερ(xε).

If ρ(xε) is bounded then we can take a convergent subsequence of points and
letting ε → 0 we get a contradiction. If ρ(xε) is unbounded, we take ε small
so that ρ(xε) > ρ(x) and get

u(xε) + ερ(xε) ≤ u(x) + ερ(x) < u(xε) − δ + ερ(xε),

which again is absurd. �



Schwarz lemma 1079

Proof of Theorem 4.1. Now that we have Proposition 4.1, the argument is
exactly the same as in [28] so we will coill just sketch it. One defines a
function

v = (u + c)−α/2,

where c > 0 is fixed. Since v is bounded below we can apply Proposition 4.1
and for any ε > 0 we get a point xε ∈ M where we have

Au1+α − Bu ≤ Δu ≤ 2
α

(
(u + c)(α+2)/2 + ε

α + 2
α

(u + c)1+α

)
ε.

If supM u = +∞ then we can let ε → 0 in the last inequality and get
a contradiction. So supM u < +∞ and again letting ε → 0 we get the
conclusion. �

Remark 4.1. Instead of our Theorem 4.2 we could have used the standard
Laplacian comparison, as in [27]. This gives a similar result for the Laplacian
of the Levi–Civita connection, under the assumption that the Ricci curvature
of the Levi–Civita connection is bounded below. Notice that to apply this
to our situation we still need the assumption that the torsion be bounded, to
compare the two Laplacians as in Lemma 3.2. The reason why we chose not
to do this is because in our main theorems we do not want any assumption
on the Levi–Civita connection, but only on the canonical connection.

5. The Schwarz lemma

In this section, we prove Theorems 1.1 and 1.2. Using Cartan’s formalism
of moving frames, and the canonical connection, we prove in (5.9) a gener-
alization of a formula due to Chern and Lu [18] in the integrable case. The
Schwarz lemma then follows at once from the maximum principle, Theorem
4.1. The corresponding formula for the volume form is much easier, and
already appears in [11].

Let (M, J, g) and (M̃, J̃ , g̃) be two almost-Hermitian manifolds of dimen-
sions 2n and 2ñ, respectively, and let f : M → M̃ be an almost-complex
mapping. Let {ei} and {θi} be local unitary frames and coframes for g on
M and let {ẽi} and {θ̃i} be those for g̃ on M̃ . Let ∇ and ∇̃ be the canonical
connections for (M, J, g) and (M̃, J̃ , g̃), respectively. We will use θi

j , Θi, Ωi
j

and θ̃α
β , Θ̃α, Ω̃α

β to denote the connection 1-forms, torsion and curvature for
∇ and ∇̃, respectively. Here we use roman letters i, j, k, . . . = 1, 2, . . . , n for
indices on M and Greek letters α, β, . . . = 1, 2, . . . , ñ for indices on M̃ .
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Since f is almost-complex, there exist functions aα
i on M such that

(5.1) f∗θ̃α = aα
i θi.

Define a function u by u = trg(f∗g̃). Locally we can write u as

u = aα
i aα

i .

From now on, we will often omit writing the pullback f∗. Differentiating
(5.1) and using the first structure equations for ∇ and ∇̃ we obtain

dθ̃α = daα
i ∧ θi − aα

i θi
j ∧ θj + aα

i Θi

= −aβ
i θ̃α

β ∧ θi + Θ̃α.(5.2)

Rearranging this gives

(5.3) (daα
i + θ̃α

βaβ
i − aα

j θj
i ) ∧ θi = Θ̃α − aα

i Θi.

Since the right-hand side has no (1, 1) component, it follows that we can
define functions aα

ik by

(5.4) daα
i + θ̃α

βaβ
i − aα

j θj
i = aα

ikθ
k.

Now apply the exterior derivative to both sides of this equation, substitute
from the structure equations and (5.4), and cancel some terms to obtain

aβ
i Ω̃α

β + aβ
ikθ

k ∧ θ̃α
β − aα

j Ωj
i − aα

jkθ
k ∧ θj

i = daα
ik ∧ θk + aα

ik(−θk
j ∧ θj + Θk),

which can be rewritten as

(5.5) (daα
ik − aα

ijθ
j
k + aβ

ikθ̃
α
β − aα

jkθ
j
i ) ∧ θk = aβ

i Ω̃α
β − aα

j Ωj
i − aα

ikΘ
k.

Define functions aα
ik� and aα

ik�
by

(5.6) daα
ik − aα

ijθ
j
k + aβ

ikθ̃
α
β − aα

jkθ
j
i = aα

ik�θ
� + aα

ik�
θ�.

Then taking the (1, 1) part of (5.5) we obtain

(5.7) aα
ik�

θk ∧ θ� = −aβ
i R̃α

βγδ
θ̃γ ∧ θ̃δ + aα

j Rj

ik�
θk ∧ θ�.

We now wish to calculate du. Using (5.4) we have

du = aα
i aα

ik θk + aα
i aα

ikθ
k,
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which means ∂u = aα
i aα

ik θk, ∂u = aα
i aα

ikθ
k. Then

d∂u = aα
ikdaα

i ∧ θk + aα
i daα

ik ∧ θk + aα
i aα

ikdθk

= aα
ika

α
i�θ

� ∧ θk + aα
i (aα

ik�θ
� + aα

ik�
θ�) ∧ θk + aα

i aα
ikΘ

k,

where we have used (5.4), (5.6) and the first structure equation. Hence

(5.8) (d∂u)(1,1) = −aα
ika

α
i�θ

k ∧ θ� − aα
i aα

ik�
θk ∧ θ�.

Substituting from (5.7) we have

(d∂u)(1,1) =
(
−aα

ika
α
i� + aα

i aβ
i R̃α

βγδ
aγ

kaδ
� − aα

i aα
j Rj

ik�

)
θk ∧ θ�.

Then from Lemma 3.1 we obtain

(5.9) 1
2Δu = |aα

ik|2 − aα
i aβ

i aγ
kaδ

kR̃
α
βγδ

+ aα
i aα

j R′
ij

.

If the second Ricci curvature of g is bounded below by −K1 and the bisec-
tional curvature of g̃ is bounded above by −K2 < 0, then we obtain

1
2Δu ≥ K2u

2 − K1u.

Then Theorem 4.1 gives that

trg f∗g̃ = u ≤ K1

K2
,

which proves Theorem 1.1 since f∗g̃ ≤ ug.
Now assume that M and M̃ have the same dimension 2n. Define a

function

v =
det f∗g̃

det g
,

so that f∗dVg̃ = vdVg. Then f is non-degenerate precisely when v > 0 and
is totally degenerate when v ≡ 0. Locally v = |ν|2 where ν = det(aα

i ). A
computation in Section 3 of [11] (see also [24, Lemma 3.2]) gives

1
2Δv = vR − vR̃αβaα

i aβ
i .

So if the scalar curvature of g is bounded below by −nK1 and the first Ricci
curvature of g̃ is bounded above by −K2, with K2 > 0, then we get

1
2Δv ≥ K2uv − nK1v ≥ nK2v

1+1/n − nK1v,
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where we used the arithmetic-geometric mean inequality. Then Theorem
4.1 gives that

v ≤
(

K1

K2

)n

,

which proves Theorem 1.2.

6. Product of almost-complex manifolds

In this section we prove Theorem 1.3. We adapt the argument in [23] to our
case, using again local holomorphic discs instead of complex coordinates,
and applying our Theorem 1.1 and Proposition 4.1.

Suppose M = X × Y is the product of two almost-complex manifolds
of (real) dimensions 2n and 2m, respectively. Assume for a contradiction
that M admits a complete almost-Hermitian metric g with torsion and
(2, 0) part of the curvature bounded, and with bisectional curvature bounded
between two negative constants such that

−C1 < B(V, W ) < −C2 < 0

holds for all V, W ∈ T ′M . Fix a point q ∈ Y and choose F : D → Y a
J-holomorphic disc with F (0) = q and F∗(e) �= 0. Here again D ⊂ C is the
unit disc and the existence of such a map is given by [13]. Moreover, up to
shrinking the disc, we can assume that the F is an immersion, so that the
vector field V = F∗(∂/∂z) ∈ T ′Y does not vanish on the image of F , and
that T ′Y can be trivialized in a neighborhood of the image. For each x ∈ X
define a map Gx : D → M by sending z to (x, F (z)). Each Gx is almost-
complex with respect to the given almost-complex structures and moreover
the map G : X × D → M given by G(x, z) = Gx(z) is also almost-complex.
Take η ∈ C∞

c (D) to be a smooth non-trivial cutoff function, with 0 ≤ η ≤ 1,
and define a smooth positive function f on M by

f(x, y) = f(x) =
∫

D
ηG∗

xg.

Equip D with the Poincaré metric g0, and apply Theorem 1.1 to Gx to get

G∗
xg ≤ 1

C2
g0,

which implies that f is bounded above. Now fix a point p = (x0, q) ∈ M
and pick {e1, . . . , en} a local frame on X around x0, and {en+1, . . . , en+m}
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a local frame on Y around the image of F . Then, by abusing notation,
we denote by {e1, . . . , en+m} the induced frame on M , which in general is
not unitary. Then locally the Hermitian metric g on T ′M can be written
as gijθ

i ⊗ θj , and on the image of Gx, V is of the form V = V jej , where
n + 1 ≤ j ≤ n + m. Moreover we can assume that at p we have gij = δij for
1 ≤ i, j ≤ n. Then we can write

f =
√

−1
∫

D
ηgjkV

jV kdz ∧ dz.

Since f is constant along Y , we see that fj = fj = 0 for n + 1 ≤ j ≤ n + m.
From now on fix 1 ≤ i ≤ n, and notice that on X × D we have, by abusing
notation, [ei, ∂/∂z] = 0. Hence

0 = G∗([ei, ∂/∂z]) = [ei, V ],

and so (2.3) gives 0 = θj([ei, V ]) = V j

i
for all n + 1 ≤ j ≤ n + m. Hence

fi =
√

−1
∫

D
ηgjkV

j
i V kdz ∧ dz,

fii =
√

−1
∫

D
ηgjk

(
V j

ii
V k + V j

i V k
i

)
dz ∧ dz

≥
√

−1
∫

D
ηgjkV

j

ii
V kdz ∧ dz,

(6.1)

where we have used that ∇g = 0. Now proceeding as in the derivation of
(4.7), we obtain

gjkV
j

ii
V k = gjk

(
V j

ii
V k − V �V kRj

�ii

)
= −gjkV

�V kRj

�ii

≥ C2gjkV
jV kgii.

(6.2)

Denote by h the almost-Hermitian metric on X obtained by restricting g to
X × {q}. In [14] it is proved that the bisectional curvature of an almost-
complex submanifold is always less than the one of the ambient space, and
so the bisectional curvature of h is bounded above by −C2. The projection
π1 : (M, g) → (X, h) is almost-complex and Theorem 1.1 gives

π∗
1h ≤ C3g,

where C3 = (n + m)C1/C2. This implies that

(6.3) gii(x, q) ≤ C3gii(x, y)
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for any (x, y) near p. Combining (6.1), (6.2) and (6.3) we obtain

fii(x, y) ≥ C2

C3
gii(x, q)f(x, y),

and so at p we obtain fii ≥ αf , where α = C2
C3

> 0. Summing up and using
Lemma 3.1 we obtain 1

2Δf ≥ nαf, and Proposition 4.1 applied to −f gives
f = 0, which is absurd.
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