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A formula relating entropy monotonicity
to Harnack inequalities

Klaus Ecker

1. Introduction

In [1], Perelman considered the functional

W(g, f, τ) =
∫

X

(
τ(|∇f |2 + R) + f − (n + 1)

)
u dV

for τ > 0 and smooth functions f on a closed (n + 1)-dimensional Rieman-
nian manifold (X, g) where

u =
e−f

(4πτ)(n+1)/2

and defined an associated entropy by

μ(g, τ) = inf
{

W(g, f, τ),
∫

X
u dV = 1

}
.

His ingenious realization was that when τ(t) > 0 satisfies ∂τ
∂t = −1, (X, g(t))

evolves by the Ricci flow
∂

∂t
gij = −2Rij

and f satisfies the equation

∂f

∂t
+ Δf + R = |∇f |2 +

n + 1
2τ

which preserves the condition
∫

X
u dV = 1

then
d

dt
W (g(t), f(t), τ(t)) = 2τ

∫
X

∣∣∣Rij + ∇i∇jf − gij

2τ

∣∣∣2 u dV.
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This implies, in particular, that

d

dt
μ(g(t), τ(t)) ≥ 0

with equality exactly for homothetically shrinking solutions of Ricci flow.
An important consequence of this entropy formula is a lower volume

ratio bound for solutions of Ricci flow on a closed manifold for a finite time
interval [0, T ), asserting the existence of a constant κ > 0, only depending
on n, T and g(0), such that the inequality

Vt(Bt
r(x0))

rn+1 ≥ κ

holds for all t ∈ [0, T ) and r ∈ [0,
√

T ) for balls Bt
r(x0) (with respect to g(t))

in which the inequality r2|Rm| ≤ 1 for the Riemann tensor of g(t) is satisfied.
This lower volume ratio bound rules out certain collapsed metrics as

rescaling limits near singularities of Ricci flow such as products of Euclidean
spaces with the so-called cigar soliton solution of Ricci flow given by X = R

2

with the metric

ds2 =
dx2 + dy2

1 + x2 + y2 .

In this paper, we aim at adapting Perelman’s entropy formula to the
situation where a family of bounded open regions (Ωt)t∈[0,T ) in R

n+1 with
smooth boundary hypersurfaces Mt = ∂Ωt is evolving with smooth normal
speed

βMt
= −∂x

∂t
· ν.

Here, x denotes the embedding map of Mt and ν is the normal pointing out
of Ωt.

For open subsets Ω ⊂ R
n+1, smooth functions f : Ω̄ → R and β : ∂Ω →

R and τ > 0, we consider the quantity

Wβ(Ω, f, τ) =
∫

Ω

(
τ |∇f |2 + f − (n + 1)

)
u dx + 2τ

∫
∂Ω

βu dS

with

u =
e−f

(4πτ)(n+1)/2



Entropy monotonicity to Harnack inequalities 1027

and the associated entropy

μβ(Ω, τ) = inf
{

Wβ(Ω, f, τ),
∫

Ω
u dx = 1

}
.

We then derive a formula which states that if (Ωt) evolves as above, the
condition τ(t) > 0 satisfies ∂τ

∂t = −1, f satisfies the evolution equation

∂f

∂t
+ Δf = |∇f |2 +

n + 1
2τ

in Ωt with Neumann boundary condition

∇f · ν = β

on Mt = ∂Ωt and if we introduce a family of diffeomorphisms ϕt : Ω̄ → Ω̄t

with x = ϕt(q), q ∈ Ω̄ obeying

∂x

∂t
= −∇f(x, t)

then

d

dt
Wβ(Ωt, f(t), τ(t)) = 2τ

∫
Ωt

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

u dx −
∫

Mt

∇W · ν dS

where W = τ(2Δf − |∇f |2) + f − (n + 1).
For evolving bounded regions Ωt inside a fixed Riemannian manifold

(X, g) or inside a Ricci flow solution, one can derive analoguous versions of
this formula.

The main observation in this paper is that this can be converted to

d

dt
Wβ(Ωt, f(t), τ(t))

= 2τ

∫
Ωt

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

u dx

+ 2τ

∫
Mt

(
∂β

∂t
− 2 ∇Mβ · ∇Mf + A(∇Mf,∇Mf) − β

2τ

)
u dS

where A denotes the second fundamental form of Mt.
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For functions β for which the hypersurface integral is non-negative, the
inequality

d

dt
Wβ(Ωt, f(t), τ(t)) ≥ 2τ

∫
Ωt

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

u dx

results. When β = 0, i.e. for a fixed bounded region Ω with smooth boundary
inside a fixed manifold of non-negative Ricci curvature, Ni [2] has previously
obtained this inequality under the additional assumption of convexity of Ω.

This inequality implies, as in Perelman’s situation,

d

dt
μβ(Ωt, τ(t)) ≥ 0

and therefore also the following localized lower volume ratio bound:
There is a constant κ > 0 depending only on n, Ω0, T, supM0

|β| and c1
such that

V (Ωt ∩ Br(x0))
rn+1 ≥ κ

holds for all t ∈ [0, T ) and r ∈ (0,
√

T ] in balls Br(x0) ⊂ R
n+1 satisfying the

conditions V (Ωt ∩ Br/2(x0)) > 0 and

V (Ωt ∩ Br(x0)) + r2 ∫
Mt∩Br(x0) |β| dS

V (Ωt ∩ Br/2(x0))
≤ c1.

Since this statement is scaling invariant for suitably homogeneous β, it is also
valid on any smooth limit of suitably rescaled solutions of the flow consisting
of smooth, compact embedded hypersurfaces, but now for all radii r > 0 as
long as the other conditions still hold for the balls Br(x0) which we consider.

In the important case of mean curvature flow, that is where βMt
is the

mean curvature HMt
of the hypersurfaces Mt, the expression

Z(∇Mf) ≡ ∂H

∂t
− 2 ∇MH · ∇Mf + A(∇Mf,∇Mf)

is the central quantity in Hamilton’s Harnack inequality for convex solutions
of the mean curvature flow [3]. Note that the right-hand side of the above
identity vanishes on homothetically shrinking solutions and for f = |x|2/4τ .
This motivates the following conjecture:
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Conjecture. In the case of mean curvature flow in R
n+1 for compact

embedded hypersurfaces Mt, the inequality

∫
Ωt

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

u dx +
∫

Mt

(
Z(∇Mf) − H

2τ

)
u dS ≥ 0

holds for f = f(t) as above and for τ(t) > 0 where ∂τ
∂t = −1.

As we shall see, the validity of this conjecture in particular implies the
above lower volume ratio bound in the case of mean curvature flow. A direct
calculation shows that regions bounded by certain eternal solutions of mean
curvature flow, such as the product of R

n−1 with the grim reaper curve given
by y = − log cos x + t, do not satisfy the lower volume bound statement for
large r and, hence, should the conjecture hold, cannot occur as rescaling
limits in this situation. Similarly, certain stationary (zero mean curvature)
hypersurfaces would then be ruled out as rescaling limits such as for instance
the catenoid minimal surface in R

3 and two parallel hyperplanes. In the
positive mean curvature case, White [4] has previously shown that certain
solutions of mean curvature flow, in particular the grim reaper hypersurface,
cannot occur as rescaling limits.

The embeddedness assumption for the hypersurfaces Mt is essential.
Angenent [5] has shown that solutions of the curve-shortening flow with self-
intersections have the grim reaper curve as rescaling limit near singularities.

This paper is organized as follows. In Section 2, we define entropies for
open subsets Ω of complete (possibly non-compact) Riemannian manifolds
with respect to a given smooth function β defined on ∂Ω and establish some
of their properties.

In Section 3, we derive the entropy formula involving the Harnack expres-
sion for evolving domains in R

n+1. All of the calculations go through with
necessary modifications such as adding Ricci and scalar curvature terms in
the appropriate places in the case of a fixed ambient manifold or a back-
ground Ricci flow solution. However, at the moment we do not see how they
might lead to interesting consequences.

In Section 4, we state our conjecture and show several consequences it
would lead to, such as a lower local volume ratio bound and non-existence
of certain degenerate rescaling limits.

In Appendix A, we give some explicit examples of entropy functionals
and their values in R

n+1.
In the paper, a version of the logarithmic Sobolev inequality on bounded

open sets Ω in complete Riemannian manifolds is used. In Appendix B,
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we provide a proof based on the standard Sobolev inequality, essentially
following Gross [6].

In Appendix C, we give a derivation of a Harnack-type evolution equa-
tion associated with solutions of a backward heat equation. This equation is
one of the central results in [1] and also one of the main ingredients in the
proof of our entropy formula. Details of this calculation first appeared in [7]
and [2].

The work presented in this paper was inspired by a discussion with
Grisha Perelman in January 2003 in Berlin. I would like to thank Richard
Hamilton, Gerhard Huisken, Dan Knopf, Oliver Schnürer, Carlo Sinestrari,
Peter Topping, Mu-Tao Wang and Brian White for helpful discussions. I am
particularly indebted to Felix Schulze for a number of valuable suggestions.

2. Entropy-type functionals for domains
in Riemannian manifolds

For open subsets Ω of an (n + 1)-dimensional complete (possibly non-
compact) Riemannian manifold (X, g), functions f : Ω̄ → R and β : ∂Ω → R

and τ > 0 we consider the quantity

Wβ(Ω, g, f, τ) =
∫

Ω

(
τ(|∇f |2 + R) + f − (n + 1)

)
u dV + 2τ

∫
∂Ω

βu dS

where

u =
e−f

(4πτ)(n+1)/2 .

The scalar curvature R, the expression |∇f |2 and the volume and area
elements dV and dS are taken with respect to the metric g. We then define
an associated entropy by

μβ(Ω, g, τ) = inf
{

Wβ(Ω, g, f, τ) ,

∫
Ω

u dV = 1
}

.

For β = 0 and Ω = X, Wβ(Ω, g, f, τ) and μβ(Ω, g, τ) reduce to
Perelman’s functional W(g, f, τ) and his entropy quantity μ(g, τ). We
therefore write W for W0 and μ for μ0. We use n + 1 instead of n as
we will later be interested mainly in the hypersurface ∂Ω which we prefer
to be n-dimensional.
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When we do not intend to vary the ambient metric, we consider

Wβ(Ω, f, τ) =
∫

Ω

(
τ |∇f |2 + f − (n + 1)

)
u dV + 2τ

∫
∂Ω

βu dS

with infimum μβ(Ω, τ).
We shall only consider sets with smooth boundaries and smooth func-

tions f and β although the above expressions also make sense for more
general sets and functions. In case Ω is unbounded, we require suitable inte-
grability conditions on f and β. The function β could be the restriction to
∂Ω of a function on X or be defined only on ∂Ω. An important example of
the latter is β = H, where H is the mean curvature of ∂Ω with respect to
the outer unit normal.

In this section, we derive several basic properties for these entropies.
Some specific examples including the calculations of entropy values for some
natural choices of sets in R

n+1 are discussed in Appendix A.

Proposition 2.1. Suppose that Ω is bounded with smooth boundary and
that β is smooth. Then for any τ > 0 we have

μβ(Ω, g, τ) ≥ −c(n, Ω, g)
(

1 + log(1 + τ) + τ sup
∂Ω

|β|(1 + sup
∂Ω

|β|)
)

.

The same lower bound holds for μβ(Ω, τ).

Remark 2.2. The lower bound for μβ(Ω, g, τ) and for μβ(Ω, τ) follows
from the logarithmic Sobolev inquality for Ω which in turn can be derived
from the standard Sobolev inequality (see Appendix B). The constant
c(n, Ω, g) thus depends on the constant in the Sobolev inequality and
the L1(∂Ω)-trace inequality for C1(Ω̄)-functions, the latter controlling the
boundary integral. The ambient metric enters via bounds for the Riemann
curvature tensor on Ω̄ and the explicit bound for the supΩ |R|-term arising
from the functional. Proposition 2.1 holds for more general sets such as
bounded sets of finite perimeter and for bounded β.

Proof of Proposition 2.1. We give the proof only for μβ (Ω, g, τ). For μβ(Ω, τ)
simply set the scalar curvature term to zero. We essentially modify the
arguments in [7] and [2].
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Setting u = ϕ2 and using the condition
∫
Ω u dV = 1, we obtain

Wβ(Ω, g, f, τ) =
∫

Ω

(
τ(4|∇ϕ|2 + Rϕ2) − ϕ2 log ϕ2) dV

+ 2τ

∫
∂Ω

βϕ2 dS − c(n)(1 + log τ)
(2.1)

with
∫
Ω ϕ2 dV = 1. The trace inequality

∫
∂Ω

ϕ2 dS ≤ c2

∫
Ω

(
|∇ϕ2| + ϕ2) dV

with c2 = c2(Ω, g) in conjunction with Young’s inequality yields

∣∣∣∣2τ

∫
∂Ω

βϕ2 dS

∣∣∣∣ ≤
∫

Ω
2τ |∇ϕ|2 dV + c3 τ sup

∂Ω
|β| (1 + sup

∂Ω
|β|)

where c3 depends on c2. Here, we have used again the condition
∫
Ω ϕ2 dV = 1.

Combining this with (2.1) yields

Wβ(Ω, g, f, τ) ≥
∫

Ω

(
2τ |∇ϕ|2 − ϕ2 log ϕ2) dV

−c4

(
1 + log τ + τ

(
sup
Ω

|R| + sup
∂Ω

|β|(1 + sup
∂Ω

|β|)
))

(2.2)

where c4 depends on the previous constants. Scaling the metric gives

∫
Ω

(
2τ |∇ϕ|2 − ϕ2 log ϕ2) dV =

∫
Ω

(
|∇ϕτ |2τ − ϕ2

τ log ϕ2
τ

)
dVτ

− c(n)(1 + log τ)(2.3)

and ∫
Ω

ϕ2
τ dVτ = 1

where ϕτ = (2τ)(n+1)/4ϕ and dVτ and |∇ϕτ |2τ are taken with respect to gτ =
(2τ)−1g.
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By scaling the standard Sobolev inequality
(∫

Ω
|ψ|(n+1)/n dV

)n/(n+1)

≤ cS(Ω, g)
∫

Ω
(|∇ψ| + |ψ|) dV

we see that the Sobolev constant cS(Ω, gτ ) can be estimated by cS(Ω, g)
(1 +

√
τ). Therefore, by the logarithmic Sobolev inequality applied in Ω

with respect to the metric gτ (see Appendix B)
∫

Ω

(
|∇ϕτ |2τ − ϕ2

τ log ϕ2
τ

)
dVτ ≥ −c(n) (1 + log cS(Ω, g) + log(1 + τ)) .

Combining this inequality with (2.2) and (2.3), we arrive at

Wβ(Ω, g, f, τ) ≥ −c5

(
1 + log(1 + τ) + τ sup

∂Ω
|β|(1 + sup

∂Ω
|β|)

)

with c5 = c5(n, Ω, g) and for f satisfying
∫
Ω u dV = 1. This gives the desired

lower bound for μβ(Ω, g, τ). �

Proposition 2.3. Let Ω be bounded with smooth boundary and assume
β to be smooth. Then for every τ > 0 there exists a unique smooth min-
imizer for μβ(Ω, g, τ) and μβ(Ω, τ). The minimizer depends smoothly on
Ω, g, β and τ .

Proof. We consider only μβ(Ω, g, τ) again. The argument is analogous
as in [8]. The necessary semicontinuity and coercivity in W 1,2(Ω) for the
transformed functional

E(ϕ) =
∫

Ω

(
τ(4|∇ϕ|2 + Rϕ2) − ϕ2 log ϕ2) dV

+ 2τ

∫
∂Ω

βϕ2 dS − c(n)(1 + log τ)

for u = ϕ2 subject to the condition
∫
Ω ϕ2 dV = 1 follow from similar

arguments as in the proof of the lower bound for μβ(Ω, g, τ) given above.
The uniqueness and smooth dependence on the data is standard. �

The quantity

W = W (f) = τ(2Δf − |∇f |2 + R) + f − (n + 1)

is featured in Ch. 9 of [1] and in [2]. It arises naturally in the Euler–Lagrange
equation for the functional Wβ(Ω, g, f, τ).
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Proposition 2.4. The minimizer fmin for the functional Wβ(Ω, g, f, τ)
subject to the constraint

∫
Ω u dV = 1 satisfies the Euler–Lagrange equation

W (fmin) = μβ(Ω, g, τ)

in Ω and the natural boundary condition

〈∇fmin, ν〉 = β

on ∂Ω. Here 〈·, ·〉 refers to the metric g. For the minimizer of Wβ(Ω, f, τ),
we have instead

W (fmin) = μβ(Ω, τ)

where
W (f) = τ(2Δf − |∇f |2) + f − (n + 1).

Proof. Standard computation using Lagrange multipliers. �

Remark 2.5. The Euler–Lagrange equation for the transformed functional

E(ϕ) =
∫

Ω

(
τ(4|∇ϕ|2 + Rϕ2) − ϕ2 log ϕ2) dV

+ 2τ

∫
∂Ω

βϕ2 dS − c(n)(1 + log τ)

for ϕ2 = u subject to the condition
∫
Ω ϕ2 dV = 1 is

−4τ Δϕ − 2ϕ log ϕ + τRϕ = μ(Ω, g, τ) + (n + 1)
(

1 +
1
2

log (4πτ)
)

ϕ

in Ω with boundary condition 2〈∇ϕ, ν〉 = −βϕ on ∂Ω.

Proposition 2.6. For any smooth enough function f : Ω̄ → R satisfying

〈∇f, ν〉 = β

on ∂Ω with respect to the outer unit normal ν we have

Wβ(Ω, g, f, τ) =
∫

Ω
Wu dV

with W = W (f) = τ(2Δf − |∇f |2 + R) + f − (n + 1) and

Wβ(Ω, f, τ) =
∫

Ω
Wu dV
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for W = W (f) = τ(2Δf − |∇f |2) + f − (n + 1).

Proof. The boundary condition implies 〈∇u, ν〉 = −βu on ∂Ω and hence

Wβ(Ω, g, f, τ) =
∫

Ω

(
τ(|∇f |2 + R) + f − (n + 1)

)
u dV − 2τ

∫
Ω

Δu dV

by the divergence theorem. Since

Δu = u(|∇f |2 − Δf).

the claim follows. �

For the next statement we do not require Ω to be bounded.

Proposition 2.7. Suppose that μβ(Ω, g, r2) ≥ −c0 or μβ(Ω, r2) ≥ −c0. Let
Br(x0) ⊂ (X, g) satisfy V (Ω ∩ Br/2(x0)) > 0,

V (Ω ∩ Br(x0)) + r2 ∫
∂Ω∩Br(x0) |β| dS

V (Ω ∩ Br/2(x0))
≤ c1

and r2|Rm| ≤ c2 in Ω ∩ Br(x0) for the Riemann tensor of g. Then

V (Ω ∩ Br(x0))
rn+1 ≥ κ > 0

with κ = κ(n, c0, c1, c2).

Remark 2.8. We will actually prove that μβ(Ω, g, r2) and μβ(Ω, r2) are
bounded above by the expression

log
V (Ω ∩ Br(x0))

rn+1 + c
V (Ω ∩ Br(x0)) + r2 ∫

∂Ω∩Br(x0) |β| dS

V (Ω ∩ Br/2(x0))

with c = c(n, r2|Rm|). From this, the claim follows immediately.

Proof of Proposition 2.7. In the case Ω = X and β = 0, the proof is sketched
in Ch. 3 of [1] (see [7] and [2] for more details). We proceed along similar
lines.
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If we set e−f = aζ, the normalization condition for f becomes

a =
(4πr2)(n+1)/2∫

Ω ζ dV
.

The functional Wβ(Ω, f, r2) can then be expressed as

a

(4πr2)(n+1)/2

∫
Ω

(
4r2 |∇ζ|2

ζ
+ r2R ζ − ζ log(aζ)

)
dV

− (n + 1) + 2r2

∫
∂Ω βζ dS∫
Ω ζ dV

.

By approximation, we may substitute functions ζ ∈ C2
0 (X) into this expres-

sion. We choose ζ as a cut-off function for Br/2(x0), that is ζ satisfies
χBr/2(x0) ≤ ζ ≤ χBr(x0) as well as

4r2 |∇ζ|2
ζ

≤ 8r2 sup |∇2ζ| ≤ c

where c is a constant which depends on r2 supΩ∩Br(x0) |Rm| and is therefore
bounded by c2. Since

∫
Ω

ζ dV ≥ V (Ω ∩ Br/2(x0)) > 0

we can thus estimate

1
(4πr2)(n+1)/2

∫
Ω

4r2a
|∇ζ|2

ζ
dV ≤ c

V (Ω ∩ spt ζ)∫
Ω ζ dV

≤ c
V (Ω ∩ Br(x0))

V (Ω ∩ Br/2(x0))
.

Jensen’s inequality now implies

− 1
(4πr2)(n+1)/2

∫
Ω

aζ log(aζ) dV

≤ − 1
(4πr2)(n+1)/2

∫
Ω

aζ dV log
(

1
V (Ω ∩ sptζ)

∫
Ω

aζ dV

)
.

Since spt ζ = Br(x0) and in view of the normalization condition the right-
hand side equals

log
(

V (Ω ∩ Br(x0))
(4πr2)(n+1)/2

)
.
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The scalar curvature integral is estimated using the boundedness assump-
tion on the Riemann tensor in Ω ∩ Br(x0). This yields the upper bound for
μ(Ω, g, r2) and μ(Ω, r2) stated in Remark 2.8. �

Remark 2.9. In [1], Perelman ruled out the occurrence of collapsed metrics
as rescaling limits of compact, finite time solutions of Ricci flow. A metric g
on X is called collapsed if there exists a sequence of balls Brk

(xk) ⊂ (X, g)
satisfying r2

k|Rm| ≤ 1 in Brk
(xk) for which

V (Brk
(xk))

rn+1
k

−→ 0.

An important example of a collapsed metric is the so-called cigar soliton
solution of the Ricci flow given by X = R

2 endowed with the metric

ds2 =
dx2 + dy2

1 + x2 + y2 .

On collapsed metrics we have infτ>0 μβ(g, τ) = −∞ by the proposition.

The following reformulation of Proposition 2.7 links a kind of volume col-
lapsing behaviour of subsets of (X, g) to a property of the entropy μβ(Ω, g, τ).

Corollary 2.10. If for some fixed constants c1 and c2 we can find a
sequence of balls Brk

(xk) ⊂ (X, g) such that V (Ω ∩ Brk/2(xk)) > 0,

V (Ω ∩ Brk
(xk)) + r2

k

∫
∂Ω∩Brk

(xk) |β| dS

V (Ω ∩ Brk/2(xk))
≤ c1,

r2
k|Rm| ≤ c2 in Ω ∩ Brk

(xk) and

V (Ω ∩ Brk
(xk))

rn+1
k

−→ 0

then infτ>0 μβ(Ω, g, τ) = −∞ and infτ>0 μβ(Ω, τ) = −∞.

For compact Ω, we can of course always find such a sequence of balls
with radii tending to infinity. In the case of non-compact regions, the sitation
is more interesting. Examples are the following regions in X = R

n+1:
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(1) The slab

Ω = {x ∈ R
n+1, −d < xn+1 < d}

for some d > 0. On the hypersurface M = ∂Ω we have H = 0. The
enclosed region Ω satisfies V (Ω ∩ Br/2) > 0 and

V (Ω ∩ Br)
V (Ω ∩ Br/2)

≤ c(n, d)

for all balls Br = Br(0). Moreover,

lim
r→∞

V (Ω ∩ Br)
rn+1 = 0.

(2) The “smaller” of the two regions bounded by the catenoid minimal
surface M = ∂Ω in R

3 given by

Ω = {x = (x̂, x3) ∈ R
3, |x̂| > 1, |x3| < cosh−1 |x̂|}.

Note that H = 0 on ∂Ω. One checks that there is a constant c1 such
that for all r ≥ 2

V (Ω ∩ Br)
V (Ω ∩ Br/2)

≤ c1

and

V (Ω ∩ Br) ≤ c1r
2 log(1 + r)

so that

lim
r→∞

V (Ω ∩ Br)
r3 = 0.

(3) The translating solution of mean curvature flow corresponding to the
grim reaper hypersurface M = ∂Ω where Ω = R

n−1 × G with

G =
{
(xn, xn+1) ∈ R

2, −π/2 < xn < π/2, xn+1 > − log cos xn

}
.

An explicit calculation shows that the mean curvature satisfies
H(x) = e−xn+1 for any x ∈ M = ∂Ω. Therefore, one checks directly
that there is a sequence of balls Brk

(xk) with rk → ∞ satisfying
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V (Ω ∩ Brk/2(xk)) > 0,

V (Ω ∩ Brk
(xk))

V (Ω ∩ Brk/2(xk))
≤ c(n),

r2
k

∫
∂Ω∩Brk

(xk) H dS

V (Ω ∩ Brk/2(xk))
≤ 1

and
V (Ω ∩ Brk

(xk))
rn+1
k

→ 0.

3. An entropy-type formula for evolving domains in R
n+1

In this section, we restrict ourselves to domain evolution in R
n+1. All the

calculations go through for fixed Riemannian manifolds or Ricci flow solu-
tions as ambient space if we add Ricci and scalar curvature terms in the
appropriate places. However, in this case, the formulas do not immediately
seem to lead to any interesting consequences.

We evolve bounded open subsets (Ωt)t∈[0,T ) with smooth boundary
hypersurfaces (Mt)t∈[0,T ) in R

n+1. More precisely, Ω̄t = φt(Ω̄) with Mt =
∂Ωt = φt(∂Ω) where φt = φ(·, t) : Ω̄ → R

n+1, t ∈ [0, T ) is a smooth
one-parameter family of diffeomorphisms. We will often abbreviate

x = φ(p, t)

for p ∈ Ω̄. The normal speed of Mt with respect to the inward pointing
normal −ν is defined by

β = βMt
= −∂x

∂t
· ν

for x ∈ Mt or expressed in terms of the embedding map φ(·, t) by

β(p, t) = −∂φ

∂t
(p, t) · ν(φ(p, t))

for p ∈ ∂Ω. We assume the function β to be smooth. If, for instance, β =
H, the mean curvature of Mt, this describes mean curvature flow up to
diffeomorphisms tangential to Mt.
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Let us assume more specifically that the family of subsets (Ωt)t∈(0,T )
evolves by the equation

(3.1)
∂x

∂t
= −∇f(x, t)

for x ∈ Ωt. This flow is compatible with the evolution of the boundaries
Mt = ∂Ωt with normal speed β if f satisfies the condition ∇f · ν = β on
Mt. Suppose f(t) satisfies the equation

(3.2)
(

∂

∂t
+ Δ

)
f = |∇f |2 +

n + 1
2τ

in Ωt for t ∈ (0, T ). The total time derivative of f is given by

(3.3)
df

dt
=

∂f

∂t
+ ∇f · ∂x

∂t
=

∂f

∂t
− |∇f |2.

Hence, (3.2) can also be written as

(3.4)
(

d

dt
+ Δ

)
f =

n + 1
2τ

.

If τ(t) > 0 evolves by ∂τ
∂t = −1, then (3.2) is equivalent to the equation

(3.5)
(

∂

∂t
+ Δ

)
u = 0

for

u =
e−f

(4πτ)(n+1)/2 .

The above equations are more precisely expressed in terms of the pull
back of the function f via the diffeomorphisms evolving Ωt. In fact, if we set
x = φ(q, t) where φt = φ(·, t) : Ω → Ωt, the pulled back function given by

f̃(q, t) = f(φ(q, t), t)

satisfies
df

dt
(x, t) =

∂f̃

∂t
(q, t).
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Analogously to Ch. 9 in [1] (see also [2]) the function W = τ(2Δf −
|∇f |2) + f − (n + 1) satisfies a nice evolution equation:

Proposition 3.1. Let (Ωt)t∈(0,T ) be a family of subsets evolving by (3.1)
that is according to the negative gradient of functions f(t) satisfying equa-
tion (3.2). Suppose also that τ(t) > 0 evolves by ∂τ

∂t = −1 for t ∈ (0, T ).
Then, the function

W = τ(2Δf − |∇f |2) + f − (n + 1)

satisfies the evolution equation
(

d

dt
+ Δ

)
W = 2τ

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

+ ∇W · ∇f

in Ωt.

Proof. We use Perelman’s identity
(

∂

∂t
+ Δ

)
W = 2τ

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

+ 2 ∇W · ∇f

from Ch. 9 in [1]. A derivation of this can be found in [7] and in [2]. In
our evolving coordinates x = φ(q, t) we change to total time derivatives
for W via

dW

dt
=

∂W

∂t
− ∇W · ∇f,

which yields the result. For the convenience of the reader, we repeat the
details of the calculation discussed in [2] for the expression

(
d
dt + Δ

)
W on

evolving sets Ωt ⊂ R
n+1 in Appendix C. �

Proposition 3.2. Suppose the conditions of the previous proposition hold.
Then

d

dt

∫
Ωt

u dx = 0

for all t ∈ (0, T ). If f satisfies additionally ∇f · ν = β on Mt = ∂Ωt then

d

dt
Wβ(Ωt, f(t), τ(t)) = 2τ

∫
Ωt

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

u dx

−
∫

Mt

∇W · ν u dS(3.6)

where W = τ(2Δf − |∇f |2) + f − (n + 1).
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Proof. In view of the family of diffeomorphisms generated by

∂x

∂t
= −∇f =

1
u

∇u,

the volume element dx on the evolving sets Ωt changes by

d

dt
dx = −Δf dx.

Since also
du

dt
=

∂u

∂t
+

|∇u|2
u

and

Δu = (|∇f |2 − Δf) u,

we obtain in Ωt

(3.7)
d

dt
(u dx) =

(
∂u

∂t
+ Δu

)
dx = 0

by Equation (3.5). Thus
d

dt

∫
Ωt

u dx = 0.

Combining the Neumann boundary condition, Proposition 2.6, identity
(3.7) and the evolution equation for W in Proposition 3.1 we then calculate

d

dt
Wβ(Ωt, f(t), τ(t))

=
d

dt

∫
Ωt

Wu dx =
∫

Ωt

(
d

dt
+ Δ

)
W u dx −

∫
Ωt

ΔW u dx

=
∫

Ωt

2τ

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

u dx −
∫

Ωt

(∇W · ∇u + ΔW u) dx

where we again used ∇u = −u∇f . The last integral equals

−
∫

Ωt

div (∇Wu) dx.

The result then follows by applying the divergence theorem. �



Entropy monotonicity to Harnack inequalities 1043

Remark 3.3. For a fixed domain Ω (i.e. when β = 0) inside a Riemannian
manifold of non-negative Ricci curvature, the inequality

d

dt
W(Ω, f(t), τ(t)) ≥ −

∫
Mt

∇W · ν u dS

for a solution f of the above backward heat equation discussed in [2]. Ni
then shows that

−〈∇W, ν〉 = 2τA(∇Mf,∇Mf)

and is therefore non-negative for a convex boundary (see below for a general-
ization of the corresponding calculation to evolving domains), thus obtaining

d

dt
W(Ω, f(t), τ(t)) ≥ 0.

When examining the integrand −∇W · ν of the above boundary inte-
gral more closely, an interesting relation with the expression in Hamilton’s
Harnack inequality for the mean curvature of a hypersurface evolving by
mean curvature flow emerges. To appreciate this, one should first note
that the hypersurfaces Mt evolve by the equation

(3.8)
∂x

∂t
= −βν − ∇Mf

due to the Neumann boundary condition for f where ∇M denotes the
tangential gradient on the hypersurfaces Mt.

Proposition 3.4. Under the above conditions on (Mt) and f(t) the quan-
tity W satisfies the identity

(3.9) −∇W · ν = 2τ

(
∂β

∂t
− 2 ∇Mβ · ∇Mf + A(∇Mf,∇Mf) − β

2τ

)

for all t < T , a ≥ T and τ = a − t where A denotes the second fundamental
form of Mt. This implies the inequality

d

dt
Wβ(Ωt, f(t), τ(t))

≥ 2τ

∫
Mt

(
∂β

∂t
− 2 ∇Mβ · ∇Mf + A(∇Mf,∇Mf) − β

2τ

)
u dS
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Proof. In view of Equation (3.4) we have

W = −τ

(
2
df

dt
+ |∇f |2

)
+ f.

We now calculate similarly as in Appendix C

d

dt
∇f = ∇2f (∇f, · ) + ∇df

dt
.

A calculation as for instance in [9] using the evolution Equation (3.8) for
the hypersurfaces Mt yields

dν

dt
= ∇Mβ − A(∇Mf, · )

for the outward unit normal field on Mt. The second term arises from the
definition of A in terms of tangential derivatives of ν. Combining these and
differentiating the identity β = ∇f · ν yields

dβ

dt
= ∇2f (∇f, ν) + ∇df

dt
· ν + ∇Mβ · ∇Mf − A(∇Mf,∇Mf).

Since

∇W · ν = −τ

(
2∇df

dt
· ν + ∇|∇f |2 · ν

)
+ ∇f · ν

and ∇|∇f |2 · ν = 2 ∇2f (∇f, ν) we obtain the result by observing

dβ

dt
=

∂β

∂t
− ∇Mβ · ∇Mf

in view of (3.8). The integral inequality then follows from Proposition 3.2.
�

Remark 3.5. Let f t0 be the minimizer for μβ(Ωt0 , τ(t0)). Since W (f t0) ≡
constant (see Proposition 2.4) we have

∫
Mt0

∇W · ν u dS = 0

at time t0. However, even if we assume that f(t) for t < t0 satisfies the “end”
condition f(t0) = f t0 we cannot conclude that

lim
t→t0

∫
Mt

∇W · ν u dS = 0
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and that therefore (note that Wβ is differentiable at t0)

d

dt |t0
Wβ(Ωt, f(t), τ(t)) ≥ 0.

The problem occurs since ∇W involves third derivatives of f which do not
behave continuously on the boundary for t → t0 unless we impose
some kind of higher order compatibility condition on the “end” data f t0

on Mt0 = ∂Ωt0 .

4. A conjectured Harnack-type inequality for mean
curvature flow and its consequences

For β = H, the expression

Z(∇Mf) ≡ ∂H

∂t
− 2 ∇MH · ∇Mf + A(∇Mf,∇Mf)

in Proposition 3.4 is the central quantity in Hamilton’s Harnack inequality
for convex solutions of the mean curvature flow (see [3]). Hamilton showed
that Z(V ) vanishes on translating solutions of mean curvature flow for some
vector field V which is tangential to the hypersurfaces Mt. His Harnack
inequality states that

Z(V ) +
H

2t
≥ 0

holds for any tangential vector field V on a convex solution of mean curvature
flow for t > 0 with equality for a suitable vector field on a homothetically
expanding solution. We observe that on homothetically shrinking solutions
that is where

H =
x · ν

2τ
the identity

2τZ(V ) − H = 0

holds for V = ∇Mf where f = |x|2/4τ .
Because of the term −H, we cannot expect this expression to be non-

negative for a general solution and for a general V . Certainly, it is negative
on translating solutions for a suitable V . For non-compact solutions, our
calculations do not lead to the integral inequality in Proposition 3.2 since
the integral expressions are usually not well-defined in this case as will see
a little later in the case of translating solutions. The above considerations
motivate the following.
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Conjecture. Let (Mt)t<T be a family of compact embedded hypersurfaces
evolving by their mean curvature. Let τ(t) > 0 with ∂τ

∂t = −1. Then the
inequality

∫
Ωt

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

u dx +
∫

Mt

(
Z(∇Mf) − H

2τ

)
u dS ≥ 0 (C)

holds if f satisfies (
∂

∂t
+ Δ

)
f = |∇f |2 +

n + 1
2τ

in Ωt for t < T with the boundary condition ∇f · ν = H and the domains
evolve by a family of diffeomorphisms generated by −∇f .

Let us give two explicit examples of mean curvature flow solutions which
illustrate the situation: first, note that the evolution equation for the
hypersurfaces Mt in the case β = H is

∂x

∂t
= −Hν − ∇Mf,

which is mean curvature flow up to tangential diffeomorphisms.
If Ωt is the interior of a homothetically shrinking solution of mean

curvature flow, that is up to translation in time,

Ωt =
√

2τ Ω0

for τ = T − t, then f = |x|2/4(T − t) + c with c chosen such that
∫
Ωt

u dx = 1
is a solution of Equation (3.2). The Neumann boundary condition above
becomes simply

H =
x · ν

2τ
.

In this situation,

∂H

∂t
− 2 ∇MH · ∇Mf + A(∇Mf,∇Mf) − H

2τ
= 0

so ∇W · ν = 0.
For translating solutions of mean curvature flow, the quantity −∇W · ν

is negative for positive H. However, our rate of change formula for WH is
not well defined in this case as the entropy calculations are not justified in
this situation.
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Indeed, if Ωt is the interior of a translating solution of mean curvature
flow, that is up to rotation in R

n+1,

Ωt = Ω + ten+1

for some fixed set Ω and for all t ∈ R then

f = −xn+1 + τ − log(4πτ)(n+1)/2

solves the boundary value problem. The Neumann boundary condition on
Mt in this case becomes H = −νn+1.

We note that Mt and Ωt are necessarily unbounded since compact solu-
tions cannot exist for all t ∈ R by comparison with spheres shrinking to
points in finite time. Moreover, the function u featuring in the integrand of
the entropy functional as well as in the normalization condition required for
the entropy is given by

u =
e−f

(4πτ)(n+1)/2 = exn+1−τ

in our example. In view of the comparison principle for mean curvature flow
applied to Mt and hyperplanes {x ∈ R

n+1, xn+1 = a}, which are stationary
solutions of mean curvature flow, the sets Ωt have an unbounded intersection
with the upper half space {x ∈ R

n+1, xn+1 > 0} for every t ∈ R. Therefore,
the function u cannot satisfy the normalization condition

∫
Ωt

u dx = 1 in Ωt.
There are a number of important consequences of inequality (C) espe-

cially for the open problem of no local volume collapse for mean curvature
flow solutions (an analogue of Perelman’s no local collapsing for Ricci flow
solutions) and consequently non-existence of certain degenerate rescaling
limits. This should provide sufficient motivation for settling the conjecture.

Proposition 4.1. Suppose that the conjectured inequality (C ) holds. Then

d

dt
WH(Ωt, f(t), τ(t)) ≥ 0

holds for t < T where f(t) and τ(t) are as above. In particular, the entropy
is monotonic that is

μH(Ωt1 , a − t1) ≤ μH(Ωt2 , a − t2)

for 0 ≤ t1 ≤ t2 < T and any a > t2.
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Proof. The first inequality follows directly from Propositions 3.2 and 3.4
applied to β = H and from (C ). To derive the second inequality, we let f t0

for t0 < T be the minimizer for μH(Ωt0 , τ(t0)) and let f(t) in addition to
solving the equation

(
∂

∂t
+ Δ

)
f = |∇f |2 +

n + 1
2τ

in Ωt and the boundary condition ∇f · ν = H on ∂Ωt for t < t0 obey the
“end” condition f(t0) = f t0 . Since

d

dt
WH(Ωt, f(t), τ(t)) ≥ 0

we have

WH(Ωt, f(t), τ(t)) ≤ WH(Ωt0 , f(t0), τ(t0))
= WH(Ωt0 , f

t0 , τ(t0)) = μH(Ωt0 , τ(t0)).

Taking the infimum on the left-hand side over all functions satisfying the
normalization condition

∫
Ωt

e−f

(4πτ)(n+1)/2 dV = 1,

we obtain the desired inequality for the entropies at t and at t0. Since t and
t0 were arbitrary we are done. �

Corollary 4.2. Let (Mt)t∈[0,T ) be a solution of mean curvature flow con-
sisting of smooth, compact, embedded hypersurfaces which enclose bounded
regions (Ωt)t∈[0,T ) in R

n+1. Suppose furthermore that inequality (C ) holds.
Then for every r > 0 and every t ∈ [0, T )

μH(Ωt, r
2) ≥ μH(Ω0, t + r2).

Since T < ∞ we have for every t ∈ [0, T ) and r ∈ (0,
√

T ]

μH(Ωt, r
2) ≥ −c0

where c0 depends only on n, Ω0, T and supM0
|H|. In particular, there

is a constant κ > 0 depending only on n, Ω0, T, supM0
|H| and c1 such
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that the inequality
V (Ωt ∩ Br(x0))

rn+1 ≥ κ

holds for all t ∈ [0, T ) and r ∈ (0,
√

T ] in balls Br(x0) satisfying the condi-
tions V (Ωt ∩ Br/2(x0)) > 0 and

V (Ωt ∩ Br(x0)) + r2 ∫
Mt∩Br(x0) |H| dS

V (Ωt ∩ Br/2(x0))
≤ c1.

Proof. By the above Proposition applied with a = r2 + t, t1 = 0 and t2 = t
and Proposition 2.1 applied to Ω0, we have

μH(Ωt, r
2) ≥ μH(Ω0, t + r2) ≥ −c(n, T, sup

M0

|H|, Ω0)

for all r ≤
√

T and t < T . The lower volume ratio bounds then follow from
Proposition 2.7 applied to Ωt. �

For λj ↘ 0, tj ↗ T and xj → x ∈ R
n+1, we define a sequence (Ωj

s) of rescaled
and translated

Ωj
s =

1
λj

(
Ωλ2

js+tj
− xj

)

where s ∈ (−λ−2
j tj , λ

−2(T − tj)) ≡ (aj , bj).

Definition 4.3. Let (Mt)t∈[0,T ) be a compact, smooth, embedded solution of
mean curvature flow enclosing bounded regions (Ωt)t∈[0,T ) in R

n+1. We call
a smooth, embedded solution (M ′

s)s∈(−∞,b) of mean curvature flow enclosing
(not necessarily bounded) regions (Ω′

s)s∈(−∞,b) a rescaling limit of (Mt)t∈(0,T )
at (x, T ) if there are sequences λj ↘ 0, tj ↗ T and xj → x ∈ R

n+1 such that

(Ωj
s)s∈(aj ,bj) → (Ω′

s)s∈(−∞,b)

smoothly in compact subsets in space-time (that is in particular, the hyper-
surfaces M j

s = ∂Ωj
s converge smoothly).

Remark 4.4. For a solution (Mt)t∈[0,T ) which becomes singular for t ↗ T ,
that is supt<T supMt

|A|2 = ∞ for the second fundamental form A on Mt,
one can always find a rescaling limit for a suitable choice of sequences (xj) in
R

n+1 and (λj) ↘ 0 (for example the reciprocal of the maximum of |A| at an
appropriately chosen sequence of times tj ↗ T ). The smooth convergence
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follows from standard a priori estimates for mean curvature flow (see for
instance [10]).

Rescaling limits are the so-called ancient solutions, which means that
they have existed forever. Examples of ancient solutions are all homoth-
etically shrinking solutions of mean curvature flow such as the shrinking
spheres given by M ′

s = ∂B√
−2ns for s ∈ (−∞, 0).

If the solution (Mt)t∈(0,T ) has a so-called type II-singularity, that is

sup
t<T

(
(T − t) sup

Mt

|A|2
)

= ∞,

then by a rescaling process described in [11] one can even find a limit flow
which is an eternal solution, that is b = ∞. Examples of eternal solutions
are all stationary solutions, that is solutions with Ω′

s = Ω for all s ∈ R. In
this case, the hypersurface M = ∂Ω is minimal that it satisfies H = 0. Other
eternal solutions are translating solutions of mean curvature flow for which
Ω′

s = Ω + sω for s ∈ R where Ω ⊂ R
n+1 and ω is a fixed unit vector in R

n+1.
The corresponding hypersurfaces M = ∂Ω satisfy the equation H + ν · ω = 0.

The statement of Corollary 4.2 is invariant under scaling and translation.
Hence, the rescaled solution (M j

s )s∈(aj ,bj) satisfies

V (Ωj
s ∩ Br(x0))
rn+1 ≥ κ > 0

for all s ∈ (aj , bj) and r ∈ (0,
√

T/λj) in balls with V (Ωj
s ∩ Br/2(x0)) > 0

and

V (Ωj
s ∩ Br(x0)) + r2 ∫

Mj
s ∩Br(x0) |H| dS

V (Ωj
s ∩ Br/2(x0))

≤ c1.

The constant κ = κ(n, Ω0, T, supM0
|H|, c1) is the same as for the unscaled

solution. As a consequence, we obtain a lower volume ratio bound for rescal-
ing limits, but without the radius restriction.

Corollary 4.5. Let (Mt)t∈[0,T ) be a solution of mean curvature flow con-
sisting of compact smooth, embedded hypersurfaces which enclose bounded
regions (Ωt)t∈[0,T ) in R

n+1. Suppose furthermore that inequality (C ) holds.
Then there is a constant κ > 0 depending only on n, Ω0, T, supM0

|H| and
c1 such that any rescaling limit (M ′

s)s∈(−∞,b) of (Mt)t∈[0,T ) with limiting
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enclosed regions (Ω′
s)s∈(−∞,b) satisfies

V (Ω′
s ∩ Br(x0))
rn+1 ≥ κ

for every s ∈ (−∞, b) and r > 0 in balls Br(x0) with V (Ω′
s ∩ Br/2(x0)) > 0

and
V (Ω′

s ∩ Br(x0)) + r2 ∫
M ′

s∩Br(x0) |H| dS

V (Ω′
s ∩ Br/2(x0))

≤ c1.

This Corollary rules out certain solutions of mean curvature flow as
rescaling limits under the assumption that our conjecture is valid.

Corollary 4.6. If the conditions of the above corollary are satisfied then the
following eternal solutions of mean curvature flow cannot occur as rescaling
limits of a compact, smooth embedded mean-convex solution (Mt)t∈[0,T ) of
mean curvature flow which encloses bounded regions (Ωt)t∈[0,T ) in R

n+1:

(1) The stationary solution corresponding to a pair of parallel hyper-
planes that is given by Ω′

s = Ω for all s ∈ R where

Ω = {x ∈ R
n+1, −d < xn+1 < d}

for some d > 0.
(2) The stationary solution of mean curvature flow corresponding to the

catenoid minimal surface M = ∂Ω in R
3 given by

Ω = {x = (x̂, x3) ∈ R
3, |x̂| > 1, |x3| < cosh−1 |x̂|}.

(3) The translating solution corresponding to the grim reaper hypersur-
face M = ∂Ω where Ω = R

n−1 × G with

G =
{
(xn, xn+1) ∈ R

2, −π/2 < xn < π/2, xn+1 > − log cos xn

}
.

Proof. All three examples admit sequences of balls for radii increasing to
infinity for which the volume ratio tends to zero while the other quantities
are controlled. This was discussed in Corollary 2.10. �

Remark 4.7. (1) In the special situation where the original solution (Mt)
is mean convex, that is H > 0 for M0 and subsequently for all Mt by the
maximum principle, White [4] ruled out the grim reaper hypersurface as a
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rescaling limit using techniques from minimal surface theory and geomet-
ric measure theory. His methods extend also to non-smooth limit flows of
generalized mean curvature flow solutions in the mean-convex case.

(2) In view of Corollary 2.1, the first two examples satisfy infτ>0 μ(Ω, τ) =
−∞ and the third one satisfies infτ>0 μH(Ω, τ) = −∞.

(3) The embeddedness assumption on the hypersurfaces Mt is essential.
In [5], it is proved that rescaling limits of non-embedded planar curves near
singularities are given by the grim reaper curve Γ = ∂G defined above.

(4) Some other translating solutions can occur as rescaling limits such
as, for instance, a rotationally symmetric translating bowl (see, for instance,
[12]). The region bounded by this translating bowl opens up quadratically
so one can show that it satisfies the conclusions of the above corollary.

(5) For the shrinking solution Ω′
s = B√

−2ns, there is no lower bound of
the form

V (Ω′
s ∩ Br)

rn+1 ≥ κ > 0

with a fixed κ for all s < 0 and all r > 0 since the balls Ω′
s shrink to the

origin for s ↗ 0. This does not contradict Corollary 4.5 though as κ depends
on c1 and in this case c1 behaves like −c(n)r2s−1 since for s ∈ [−1/(2n), 0)
and r ≥ 1

r2 ∫
M ′

s∩Br
H dS

V (Ω′
s ∩ Br/2)

=

∫
M ′

s
H dS

V (Ω′
s)

= −c(n)
r2

s
.

Appendix A. Some basic properties of entropies in R
n+1

Here, we discuss some explicit examples of entropies in R
n+1.

(1) When β = 0 and Ω = R
n+1 we have (see [1])

W(Rn+1, f, τ) =
∫

Rn+1

(
τ |∇f |2 + f − (n + 1)

)
u dx ≥ 0

for all f satisfying ∫
Rn+1

u dx = 1

with equality when f(x) = |x|2
4τ . In particular, therefore,

μ(Rn+1, τ) = 0

for all τ > 0.
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This identity is equivalent to the Gaussian logarithmic Sobolev
inequality as discussed by Gross [6]. Scaling by x =

√
2τy, setting

f = |y|2
2 − log ϕ2 as in [1] and using the identity

∫
Rn+1

(
|y|2 − (n + 1)

)
γn+1 dy = −

∫
Rn+1

div (yγn+1) dy = 0

for the Gaussian

γn+1(y) =
e−(|y|2/2)

(2π)n+1

we obtain its standard form∫
Rn+1

ϕ2 log ϕ γn+1 dy ≤ 1
2

∫
Rn+1

|∇ϕ|2 γn+1 dy

for all ϕ satisfying
∫

Rn+1

ϕ2γn+1 dx = 1.

(2) For x ∈ Ω ⊂ R
n+1, we set x = λy + x0 where λ > 0 and x0 ∈ R

n+1.
We then obtain

Wβ(Ω, f, τ) = W(λ−1(Ω − x0), f(λ · + x0), λ−2τ)

+ 2(λ−2τ)
∫

λ−1(∂Ω−x0)
λβ(λy + x0)

e−f(λy+x0)

(4πλ−2τ)(n+1)/2 dS(y)

and

1 =
∫

Ω
u(x) dx =

∫
λ−1(Ω−x0)

u(λy + x0) dy.

Therefore

μβ(Ω, τ) = μλβ(λ ·+x0)(λ
−1(Ω − x0), λ−2τ).

Suppose that β : R
n+1 → R satisfies

β

(
x − x0

λ

)
= λβ(x)

for x, x0 ∈ R
n+1 and λ > 0 or that β = β∂Ω is a geometric quantity

which behaves like
β(y) = λβ(x)
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where x = λy + x0 ∈ ∂Ω for y ∈ 1
λ(∂Ω − x0) such as for example the

mean curvature of ∂Ω. Then

μβ(Ω, τ) = μβ(λ−1(Ω − x0), λ−2τ).

For x0 = 0, λ =
√

2τ , Ω replaced by
√

2τ Ω and such functions β this
yields

μβ(
√

2τ Ω, τ) = μβ(Ω, 1/2).

(3) If x0 ∈ Ω then

λ−1(Ω − x0) → R
n+1.

Using this, the scaling identity for μβ with λ =
√

2τ as well as the
identity μ(Rn+1, 1/2) = 0 we expect that

μβ(Ω, τ) → 0

for τ → 0. This should follow along the same lines as in [2].

(4) A natural example is

β =
x · ν

2τ

where ν is the unit outward pointing normal to ∂Ω. By the above
scaling property we have

μ x·ν
2τ

(
√

2τ Ω, τ) = μy·ν(Ω, 1/2)

where x =
√

2τy and y ∈ Ω.
An example of a function f on Ω ⊂ R

n+1 satisfying the normaliza-
tion condition ∫

Ω

e−f

(4πτ)(n+1)/2 dx = 1

is

f =
|x|2
4τ

− log c

where
1
c

=
∫

Ω

e−(|x|2/4τ)

(4πτ)(n+1)/2 dx.
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For this f and β = x·ν
2τ , one calculates

Wβ(Ω, f, τ) = c

(∫
Ω

(
|x|2
2τ

− (n + 1)
)

e−(|x|2/4τ)

(4πτ)(n+1)/2 dx

+
∫

∂Ω
x · ν

e−(|x|2/4τ)

(4πτ)(n+1)/2 dS

)
+ log c.

Since

div
(
xe− |x|2

4τ

)
= −

(
|x|2
2τ

− (n + 1)
)

e− |x|2

4τ

the previous identity

Wβ(Ω, f, τ) = log c

by the divergence theorem.
Note that for Ω = R

n+1 we have c = 1 and hence Wβ(Ω, f, τ) =
W(Ω, f, τ) = 0 for f = |x|2

4τ .
For the half-space Ha = {x ∈ R

n+1, xn+1 < a}, a ∈ R and β = x·ν
2τ

we calculate
1
c

=
∫ a√

2τ

−∞
e− z2

2 dz.

This implies that W x·ν
2τ

(Ha, f, τ) → −∞ for a→ −∞ as well as limτ→0
W x·ν

2τ
(Ha, f, τ) = 0 and limτ→0 W x·ν

2τ
(Ha, f, τ) = − log 2 < 0 for fixed

a ∈ R.
By the scaling and translation property above we have

W x·ν
2τ

(
Ω,

|x|2
4τ

− log c, τ

)
= Wy·ν

(
1√
2τ

Ω,
|y|2
2

− log c,
1
2

)
= log c

for x =
√

2τy ∈ Ω with the condition
∫

(1/
√

2τ)Ω
γn+1 dy =

1
c
.

If the (n + 1)-dimensional volume of a set Ω inside large balls grows
like

V (Ω ∩ BR) ≤ cRp

for R ≥ R0 and p < n + 1, one checks that
∫

(1/
√

2τ)Ω
γn+1 dy −→ 0
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for τ → ∞. Therefore, as τ → ∞ we have c → ∞ and hence

μ x·ν
2τ

(Ω, τ) → −∞.

Such sets Ω include, for instance, all bounded sets but also unbounded
sets which lie in a slab in R

n+1. In the latter case the volume in balls
grows like Rn.

Appendix B. Sobolev and logarithmic Sobolev inequalities

For the convenience of the reader who is unfamiliar with logarithmic Sobolev
inequalities we show how these can be derived from the standard Sobolev
inequality. We essentially follow a proof given in [6].

Theorem (Logarithmic Sobolev inequality). For any open subset Ω of a
Riemannian manifold (X, g) which satisfies the Sobolev inequality

(∫
Ω

|ψ|
n+1

n dV

) n

n+1

≤ cS(Ω, g)
∫

Ω
(|∇ψ| + |ψ|) dV

for all ψ ∈ C1(Ω̄) there also holds a logarithmic Sobolev inequality of the
form

∫
Ω

(
ε |∇ϕ|2 − ϕ2 log ϕ2) dV ≥ −c(n)(1 + log cS(Ω, g)) − 1

ε

for functions ϕ satisfying
∫
Ω ϕ2 dV = 1 and every ε > 0.

Proof. By a standard approximation argument it will be sufficient to prove
the theorem for non-negative functions. We abbreviate

‖ψ‖p ≡
(∫

Ω
ψp dV

) 1
p

for p > 0. The interpolation inequality for Lp-norms says for functions ψ
satisfying ‖ψ‖1 = 1 that

‖ψ‖q ≤ ‖ψ‖
n− n

q
n

n−1

for 1 ≤ q ≤ n
n−1 . Since for q = 1 we have equality, differentiation with respect

to q at q = 1 preserves the inequality and leads to
∫

Ω
ψ log ψ dV ≤ n log ‖ψ‖ n

n−1
.
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In view of the Sobolev inequality

‖ψ‖ n

n−1
≤ cS(Ω, g) (‖∇ψ‖1 + 1)

for such functions this yields
∫

Ω
ψ log ψ dV ≤ n log (cS(Ω, g) (‖∇ψ‖1 + 1))

= n log
(

1
n

(‖∇ψ‖1 + 1)
)

+ n log(ncS(Ω, g)).

The inequality log x ≤ x − 1 implies
∫

Ω
ψ log ψ dV ≤ ‖∇ψ‖1 + c(n)(1 + log cS(Ω, g)).

Setting ψ = ϕ2 with
∫
Ω ϕ2 dV = 1 gives

∫
Ω

ϕ2 log ϕ2 dV ≤
∫

Ω
|∇ϕ2| dV + c(n)(1 + log cS(Ω, g)).

Using Young’s inequality, we finally arrive
∫

Ω
ϕ2 log ϕ2 dV ≤ ε

∫
Ω

|∇ϕ|2 dV +
1
ε

+ c(n)(1 + log cS(Ω, g))

where we again used
∫
Ω ϕ2 dV = 1. �

Appendix C. Proof of the evolution equation for W

For the convenience of the reader we give a detailed proof of the evolution
equation of Proposition 3.1 in Section 3. In Section 3, we merely modified
the appropriate formulas discussed in [1] and [2] by transforming to total
time derivatives.

Let us briefly recall the set-up given in Section 3 in the case of evolving
domains in R

n+1. We consider a family of subsets (Ωt)t∈(0,T ) in R
n+1 which

evolve by the equation

(C.1)
∂x

∂t
= −∇f(x, t)

for x ∈ Ωt where f(t) satisfies the equation

(C.2)
(

∂

∂t
+ Δ

)
f = |∇f |2 +

n + 1
2τ
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in Ωt for t ∈ (0, T ). The total time derivative of f is given by

(C.3)
df

dt
=

∂f

∂t
+

〈
∇f,

∂x

∂t

〉
=

∂f

∂t
− |∇f |2

and so (C.2) can also be written as

(C.4)
(

d

dt
+ Δ

)
f =

n + 1
2τ

.

We also assume that τ(t) > 0 evolves by ∂τ
∂t = −1.

Proposition. In the above setting, the function W = τ(2Δf − |∇f |2) +
f − (n + 1) satisfies the evolution equation

(
d

dt
+ Δ

)
W = 2τ

∣∣∣∣∇i∇jf − 1
2τ

δij

∣∣∣∣
2

+ ∇W · ∇f.

Proof. We adapt the computation in [2] to the case of domains evolving
by (C.1) (the different sign in Ni’s Lemma 2.2 stems from the fact that he
considers the forward heat equation by interchanging the roles of τ and t.) In
a general Riemannian manifold (X, g), an additional Ricci term arises when
we interchange third derivatives of f . In the Ricci flow case, this expression
is balanced by terms coming from the time derivative of the metric. Details
of the latter can be found in [7].

If we write above x = φ(q, t) where φt = φ(·, t) : Ω → Ωt are the diffeo-
morphisms evolving Ωt, the pulled back function f given by

f̃(q, t) = f(φ(q, t), t)

satisfies
df

dt
(x, t) =

∂f̃

∂t
(q, t).

The evolution Equation (C.1) written in terms of f̃(q, t) = f(φ(q, t), t) looks
like

∂φ

∂t
(q, t) = −∇̃f̃(q, t)

where ∇̃ is the gradient with respect to the pull-back of the Euclidean metric
under φt on Ω ⊂ R

n+1 given by

gij(q, t) =
∂φ

∂qi
(q, t) · ∂φ

∂qj
(q, t).
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In these coordinates we have

|∇f |2 = gij ∂f̃

∂qi

∂f̃

∂qj
.

One now calculates
∂

∂t
gij = −2∇̃i∇̃jf,

and the inverse metric satisfies

∂

∂t
gij = 2∇̃i∇̃jf.

Furthermore, one computes for the Christoffel symbols of the gij

(C.5) gij ∂

∂t
Γk

ij = ∇̃kΔ̃f̃ .

One then checks from this and Δf(x, t) = Δ̃f̃(q, t) with

Δ̃f̃ = gij

(
∂2f̃

∂qi∂qj
− Γk

ij

∂f̃

∂qk

)

that the identities

(C.6)
d

dt
|∇f |2 = 2∇i∇jf∇if∇jf + 2∇f · ∇df

dt

and

(C.7)
d

dt
Δf = Δ

df

dt
+ 2|∇2f |2 + ∇f · ∇Δf

hold. We now follow [2] exactly, except for working with df
dt instead of ∂f

∂t −
|∇f |2. The latter of the above identities in combination with (C.4) and the
relation ∂τ

∂t = −1 implies

(C.8)
(

d

dt
+ Δ

)
df

dt
=

n + 1
2τ2 − 2|∇2f |2 − ∇f · ∇Δf.

Combining (C.6) and (C.4) with the Bochner identity

Δ|∇f |2 = 2|∇2f |2 + 2∇f · ∇Δf
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we find

(C.9)
(

d

dt
+ Δ

)
|∇f |2 = 2|∇2f |2 + 2∇i∇jf∇if∇jf.

To break up the calculation for W , we rewrite W = τ(2Δf − |∇f |2) +
f − (n + 1) using (C.4) as

W = τw + f

where

(C.10) w = −2
df

dt
− |∇f |2 = 2Δf − |∇f |2 − n + 1

τ
.

From (C.8) and (C.9) we calculate
(

d

dt
+ Δ

)
w = 2|∇2f |2 − n + 1

τ2 − 2∇i∇jf∇if∇jf + 2∇f · ∇Δf.

Since
−2∇i∇jf∇if∇jf + 2∇f · ∇Δf = ∇f · ∇w

we thus arrive at
(

d

dt
+ Δ

)
w = 2|∇2f |2 − n + 1

τ2 + ∇f · ∇w.

Using again ∂τ
∂t = −1 we now compute

(
d

dt
+ Δ

)
W =

(
d

dt
+ Δ

)
(τw + f)

= −w + 2τ |∇2f |2 − n + 1
τ

+ ∇f · ∇(τw) +
n + 1
2τ

= ∇f · ∇W − w − |∇f |2 + 2τ |∇2f |2 − n + 1
2τ

.

Substituting the identities

2τ |∇2f |2 = 2τ

∣∣∣∣∇i∇jf − δij

2τ

∣∣∣∣
2

+ 2Δf − n + 1
2τ

and

w = 2Δf − |∇f |2 − n + 1
τ

yields the desired evolution equation for W . �
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